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Abstract. Given a graph G, let Gσ be an oriented graph of G with the orientation σ and skew-

adjacency matrix S(Gσ). Then the spectrum of S(Gσ) consisting of all the eigenvalues of S(Gσ) is

called the skew-spectrum of Gσ, denoted by Sp(Gσ). The skew energy of the oriented graph Gσ,

denoted by ES(G
σ), is defined as the sum of the norms of all the eigenvalues of S(Gσ). In this paper,

we give orientations of the Kronecker product H⊗G and the strong product H ∗G of H and G where H

is a bipartite graph and G is an arbitrary graph. Then we determine the skew-spectra of the resultant

oriented graphs. As applications, we construct new families of oriented graphs with optimum skew

energy. Moreover, we consider the skew energy of the orientation of the lexicographic product H [G] of

a bipartite graph H and a graph G.

1. Introduction

Let G be a simple undirected graph with vertex set V (G) = {v1, v2, . . . , vn}, and let Gσ be an

oriented graph of G with the orientation σ, which assigns to each edge of G a direction so that the

induced graph Gσ becomes an oriented graph or a directed graph. Then G is called the underlying

graph of Gσ . The skew-adjacency matrix of Gσ is the n × n matrix S(Gσ) = [sij], where sij = 1

and sji = −1 if 〈vi, vj〉 is an arc of Gσ, otherwise sij = sji = 0. It is easy to see that S(Gσ) is a

skew-symmetric matrix, and thus all its eigenvalues are purely imaginary numbers or 0, which form

the spectrum of S(Gσ) and are said to be the skew-spectrum Sp(Gσ) of Gσ .

The concept of the energy of a simple undirected graph was introduced by Gutman in [6]. Then

Adiga, Balakrishnan and So in [1] generalized the energy of an undirected graph to the skew energy

of an oriented graph. Formally, the skew energy of an oriented graph Gσ is defined as the sum of
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the absolute values of all the eigenvalues of S(Gσ), denoted by ES(Gσ). Most of the results on the

skew energy are collected in our recent survey [7], among which the problem about the optimum skew

energy has been paid more attention.

In [1], Adiga, Balakrishnan and So derived that for any oriented graph Gσ with order n and

maximum degree ∆, ES(Gσ) ≤ n
√
∆. They also showed that the equality holds if and only if

S(Gσ)TS(Gσ) = ∆In, which implies that Gσ is ∆-regular. Among all oriented graphs with order

n and maximum degree ∆, the skew energy n
√
∆ is called the optimum skew energy. Naturally, they

proposed the following problem:

Problem 1.1. Which k-regular graphs on n vertices have orientations Gσ with ES(Gσ) = n
√
k, or

equivalently, S(Gσ)TS(Gσ) = kIn ?

For k = 1, 2, 3, 4, all k-regular graphs which have orientations Gσ with ES(Gσ) = n
√
k were char-

acterized, see [1, 5, 3]. Other families of oriented regular graphs with the optimum skew energy were

also obtained. Tian in [9] gave the orientation of the hypercube Qk such that the resultant oriented

graph has optimum skew energy. In [1], a family of oriented graphs with optimum skew energy was

constructed by considering the Kronecker product of graphs. To be specific, let Gσ1

1 , Gσ2

2 , Gσ3

3 be the

oriented graphs of order n1, n2, n3 with skew-adjacency matrices S1, S2, S3, respectively. Then the

Kronecker product matrix S1⊗S2⊗S3 is also skew-symmetric and is in fact the skew-adjacency matrix

of an oriented graph of the Kronecker product G1⊗G2⊗G3. Denote the corresponding oriented graph

by Gσ1

1 ⊗Gσ2

2 ⊗Gσ3

3 . The following result was obtained.

Theorem 1.2. [1] Let Gσ1

1 , Gσ2

2 , Gσ3

3 be the oriented regular graphs of order n1, n2, n3 with optimum

skew energies n1

√
k1, n2

√
k2, n3

√
k3, respectively. Denote by S1, S2 and S3 the skew-adjacency

matrices of Gσ1

1 , Gσ2

2 and Gσ3

3 , respectively. Then the oriented graph Gσ1

1 ⊗ Gσ2

2 ⊗ Gσ3

3 has optimum

skew energy n1n2n3

√
k1k2k3.

It should be noted that the above Kronecker product of oriented graphs is naturally defined, but

the product requires 3 or an odd number of oriented graphs.

Moreover, Cui and Hou in [4] gave an orientation (Pm�G)o of the Cartesian product Pm�G, where

Pm is a path of order m and G is an arbitrary graph. They computed the skew-spectra of (Pm�G)o,

and by applying this result they constructed a family of oriented graphs with optimum skew energy.

Then we in [2] extended their results to the oriented graph (H�G)o where H is an arbitrary bipartite

graph, and thus a larger family of oriented graphs with optimum skew energy was obtained.

Theorem 1.3. [2] Let Hτ be an oriented ℓ-regular bipartite graph on m vertices with optimum skew

energy ES(Hτ ) = m
√
ℓ and Gσ be an oriented k-regular graph on n vertices with optimum skew

energy ES(Gσ) = n
√
k. Then the oriented graph (Hτ

�Gσ)o of H�G has the optimum skew energy

ES((Hτ
�Gσ)o) = mn

√
ℓ+ k.

In this paper, we consider other products of graphs, including the Kronecker product H ⊗ G, the

strong product H ∗G and the lexicographic product H[G], where H is a bipartite graph and G is an
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arbitrary graph. In Subsection 2.1, We first give an orientation of H ⊗ G, and then determine the

skew-spectra of the resultant oriented graph. As an application, we construct a new family of oriented

graphs with optimum skew energy. Subsection 2.2 is used to orient the graph H ∗ G, determine the

skew-spectra of the resultant oriented graph and construct another new family of oriented graphs with

optimum skew energy. Finally we consider the skew energy of the orientation of the lexicographic

product H[G] of H and G in Subsection 2.3.

In the sequel of this paper, it will be seen that there is no limitation of the number of oriented

graphs in our Kronecker product, and the oriented graphs that we will construct have smaller order

than the previous results under the same regularity.

2. Main results

We first recall some definitions. Let H be a graph of order m and G be a graph of order n. The

Cartesian product H�G of H and G has vertex set V (H)×V (G), where (u1, v1) is adjacent to (u2, v2)

if and only if u1 = u2 and v1 is adjacent to v2 in G, or u1 is adjacent to u2 in H and v1 = v2. The

Kronecker product H⊗G of H and G is a graph with vertex set V (H)×V (G) and where (u1, v1) and

(u2, v2) are adjacent if u1 is adjacent to u2 in H and v1 is adjacent to v2 in G. The strong product

H ∗G of H and G is a graph with vertex set V (H)×V (G); two distinct pairs (u1, v1) and (u2, v2) are

adjacent in H ∗G if u1 is equal or adjacent to u2, and v1 is equal or adjacent to v2. The lexicographic

product H[G] of H and G has vertex set V (H) × V (G) where (u1, v1) is adjacent to (u2, v2) if and

only if u1 is adjacent to u2 in H, or u1 = u2 and v1 is adjacent to v2 in G.

It can be verified that the Cartesian product H�G, the Kronecker product H ⊗ G, the strong

product H ∗ G are commutative, that is, H�G = G�H, H ⊗ G = G ⊗H and H ∗ G = G ∗H. But

the lexicographic product H[G] may not be the same as G[H]. Moreover, the two graphs H�G and

H ⊗G are edge-disjoint and E(H ∗G) = E(H�G) ∪ E(H ⊗G). Finally, we point out that if H is a

bipartite graph, then H ⊗G is also bipartite.

In what follows, we always assume that H is a bipartite graph on m vertices with bipartite (X,Y )

where |X| = m1 and |Y | = m2 and G is a graph on n vertices. Let Hτ be an arbitrary oriented graph

of H and Gσ be an arbitrary oriented graph of G. Let S1 and S2 be the skew-adjacency matrices

of Hτ and Gσ, respectively. Giving the labeling of the vertices of H such that the vertices of X are

labeled first. Then the skew-adjacency matrix S1 can be formulated as

(
0 A

−AT 0

)
, where A is an

m1×m2 matrix and m1+m2 = m. Let S′
1 =

(
0 A

AT 0

)
. Note that S1 is skew-symmetric and S′

1 is

symmetric. It is easy to see that S1S
T
1 = S′

1(S
′
1)

T , and thus S1 and S2 have the same singular values.

2.1. The orientation of H⊗G. We first give an orientation of H⊗G. For any two adjacent vertices

(u1, v1) and (u2, v2), u1 and u2 must be in different parts of the bipartition of vertices of H and assume

that u1 ∈ X. Then there is an arc from (u1, v1) to (u2, v2) if 〈u1, u2〉 is an arc of H and 〈v1, v2〉 is an
arc of G, or 〈u2, u1〉 is an arc of H and 〈v2, v1〉 is an arc of G; otherwise there is an arc from (u2, v2)
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to (u1, v1). Denote by (Hτ ⊗Gσ)o the resultant oriented graph and by S its skew-adjacency matrix.

For the skew-spectrum of (Hτ ⊗Gσ)o, we obtain the following result.

Theorem 2.1. Let Hτ be an oriented bipartite graph of order m and let the skew-eigenvalues of Hτ

be the non-zero values ±µ1i, ±µ2i, . . . , ±µti and m− 2t 0’s. Let Gσ be an oriented graph of order n

and let the skew-eigenvalues of Gσ be the non-zero values ±λ1i, ±λ2i, . . . , ±λri and n− 2r 0’s. Then

the skew-eigenvalues of the oriented graph (Hτ ⊗Gσ)o are ±µjλki with multiplicities 2, j = 1, . . . , t,

k = 1, . . . , r, and 0 with multiplicities mn− 4rt.

Proof. With suitable labeling of the vertices of H⊗G, the skew-adjacency matrix S of (Hτ ⊗Gσ)o can

be formulated as S = S′
1 ⊗ S2. We first compute the singular values of S. Note that ST = −S′

1 ⊗ S2.

Then

SST = (S′
1 ⊗ S2)(−S′

1 ⊗ S2) = −(S′
1)

2 ⊗ S2
2 .

It follows that the eigenvalues of SST are µ(S′
1)

2 · λ(S2)
2, where µ(S′

1) is the eigenvalues of S′
1 and

λ(S2)i is the eigenvalues of S2. That is to say, the eigenvalues of SST are µ(Hτ )2 · λ(Gσ)2, where

µ(Hτ )i ∈ Sp(Hτ ) and λ(Gσ)i ∈ Sp(Gσ). From this, it immediately follows what we want. The proof

is now complete. �

The above theorem can be used to yield a family of oriented graphs with optimum skew energy.

The following lemma was obtained in [1].

Lemma 2.2. [1] Let Gσ be an oriented graph of G with order n and maximum degree ∆. Then

ES(Gσ) ≤ n
√
∆, where the equality holds if and only if S(Gσ)TS(Gσ) = ∆In.

Theorem 2.3. Let Hτ be an oriented k-regular bipartite graph of order m with optimum skew energy

m
√
k. Let Gσ be an oriented ℓ-regular graph of order n and the optimum skew energy n

√
ℓ. Then

(Hτ⊗Gσ)o is an oriented kℓ-regular bipartite graph and has the optimum skew energy ES((Hτ⊗Gσ)o) =

mn
√
kℓ.

Proof. By the definition of the Kronecker product, it is easy to find that H ⊗ G is a kℓ-regular

bipartite graph with mn vertices. Let S(Hτ ) =

(
0 A

−AT 0

)
be the skew-adjacency matrix of Hτ

and S(Gσ) be the skew-adjacency matrix of Gσ. Then by Lemma 2.2, we have S(Hτ )TS(Hτ ) = kIm

and S(Gσ)TS(Gσ) = ℓIn. From Theorem 2.1, the skew-adjacency matrix S of (Hτ ⊗ Gσ)o can

be written as S = S′(Hτ ) ⊗ S(Gσ), where S′(Hτ ) =

(
0 A

AT 0

)
. Note that S′(Hτ )TS′(Hτ ) =

S(Hτ )TS(Hτ ) = kIm. It follows that

STS =
(
S′(Hτ )⊗ S(Gσ)

)T (
S′(Hτ )⊗ S(Gσ)

)

=
(
(S′(Hτ ))TS′(Hτ )

)
⊗
(
S(Gσ))T (S(Gσ)

)

= kIm ⊗ ℓIn = kℓImn.

By Lemma 2.2, the oriented graph (Hτ⊗Gσ)o has the optimum skew energy ES((Hτ⊗Gσ)o) = mn
√
kℓ.

We thus complete the proof of this theorem. �
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Let Hτ be an oriented bipartite graph with optimum skew energy. Let Gσ1

1 and Gσ2

2 be any two

oriented graphs with the optimum skew energies. By the above theorem, the oriented graph (Hτ ⊗
Gσ1

1 )o is bipartite and has the optimum skew energy. Therefore, the Kronecker product H ⊗G1 ⊗G2

can be oriented as ((Hτ ⊗ Gσ1

1 )o ⊗Gσ2

2 )o, abbreviated as (Hτ ⊗Gσ1

1 ⊗ Gσ2

2 )o, which is also bipartite

and has the optimum skew energy. The process is valid for any positive integral number of oriented

graphs. Then the following corollary is immediately implied.

Corollary 2.4. Let Hτ be an oriented k-regular bipartite graph of order m with optimum skew energy

m
√
k. Let Gσi

i be an oriented ℓi-regular graph of order ni with optimum skew energy ni

√
ℓi for i =

1, 2, . . . , s and any positive integer s. Then the oriented graph (Hτ ⊗Gσ1

1 ⊗· · ·⊗Gσs

s )o has the optimum

skew energy mn1n2 · · ·ns

√
k ℓ1ℓ2 · · · ℓs.

Remark 2.5. In Corollary 2.4, the value s can be any positive integer. If s = 2, then the oriented

graph (Hτ ⊗ Gσ1

1 ⊗ Gσ2

2 )o has the optimum skew energy mn1n2

√
k ℓ1ℓ2. Recall the orientation in

Theorem 1.2, which illustrates that the oriented graph Hτ ⊗ Gσ1

1 ⊗ Gσ2

2 also has the optimum skew

energy mn1n2

√
k ℓ1ℓ2. In fact, this two orientations are identical.

Let S0 =

(
0 A

−AT 0

)
be the skew-adjacency matrix of Hτ and S′

0 =

(
0 A

AT 0

)
. Let S1 and

S2 be the skew-adjacency matrices of Gσ1

1 and Gσ2

2 . Then the oriented graph Hτ ⊗Gσ1

1 ⊗Gσ2

2 has the

skew-adjacency matrix

(
0 A⊗ S1 ⊗ S2

−AT ⊗ S1 ⊗ S2 0

)
. The oriented graph (Hτ ⊗ Gσ1

1 )o has the

skew-adjacency matrix

S′
1 ⊗ S2 =

(
0 A⊗ S1

AT ⊗ S1 0

)
.

It follows that the skew-adjacency matrix of (Hτ ⊗Gσ1

1 ⊗Gσ2

2 )o is

(
0 A⊗ S1

−AT ⊗ S1 0

)
⊗ S2 =

(
0 A⊗ S1 ⊗ S2

−AT ⊗ S1 ⊗ S2 0

)
,

which is the same as that of Hτ ⊗Gσ1

1 ⊗Gσ2

2 .

In fact, for any even s, the oriented graph obtained in Corollary 2.4 is identical to the one obtained

in Theorem 1.2.

2.2. The orientation of H ∗G. Now we consider the strong product H ∗G of a bipartite graph H

and a graph G, Let Hτ be an oriented graph of H and Gσ be an oriented graph of G. Since the edge

set of H ∗G is the disjoint-union of the edge sets of H�G and H ⊗G, there is a natural orientation

of H ∗G if H�G and H ⊗G have been given orientations.

First recall the orientation (Hτ
�Gσ)o of the Cartesian product H�G given in [2]. For any two

adjacent matrices (u1, v1) and (u2, v2), we give it an orientation as follows. When u1 = u2 ∈ X,

there is an arc from (u1, v1) to (u2, v2) if 〈v1, v2〉 is an arc of Gσ and an arc from (u2, v2) to (u1, v1)

otherwise. When u1 = u2 ∈ Y , there is an arc from (u1, v1) to (u2, v2) if 〈v2, v1〉 is an arc of Gσ and

an arc from (u2, v2) to (u1, v1) otherwise. When v1 = v2, there is an arc from (u1, v1) to (u2, v2) if
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〈u1, u2〉 is an arc of Hτ and an arc from (u2, v2) to (u1, v1) otherwise. Let S be the skew-adjacency

matrix of (Hτ
�Gσ)o.

Now we give an orientation of H ∗ G such that the arc set of the resultant oriented graph is the

disjoint-union of the arc sets of (Hτ
�Gσ)o and (Hτ⊗Gσ)o. Denote by (Hτ∗Gσ)o this resultant oriented

graph and by Ŝ be the skew-adjacency matrix of (Hτ ∗ Gσ)o. The skew-spectrum of (Hτ ∗ Gσ)o is

determined in the following theorem.

Theorem 2.6. Let Hτ be an oriented bipartite graph of order m and let the skew-eigenvalues of Hτ

be the non-zero values ±µ1i, ±µ2i, . . . , ±µti and m− 2t 0’s. Let Gσ be an oriented graph of order n

and let the skew-eigenvalues of Gσ be the non-zero values ±λ1i, ±λ2i, . . . , ±λri and n− 2r 0’s. Then

the skew-eigenvalues of the oriented graph (Hτ ∗Gσ)o are ± i
√

(u2j + 1)(λ2
k + 1)− 1 with multiplicities

2, j = 1, . . . , t, k = 1, . . . , r, ±µji with multiplicities n − 2r, j = 1, . . . , t, ±λki with multiplicities

m− 2t, k = 1, . . . , r, and 0 with multiplicities (m− 2t)(n − 2r).

Proof. Suppose that (X,Y ) is the bipartition of the vertices of H with X = m1 and Y = m2. Let S1

and S2 be the skew-adjacency matrices of Hτ and Gσ , respectively, where S1 =

(
0 A

−AT 0

)
and A

is an m1×m2 matrix. Then the skew-adjacency matrix Ŝ of (Hτ ∗Gσ)o can be written as Ŝ = S +S,

where S and S are the skew-adjacency matrices of (Hτ
�Gσ)o and (Hτ ⊗Gσ)o, respectively.

With suitable labeling of the vertices of H ∗G, we can derive the following formulas.

(2.1) S = I ′m1+m2
⊗ S2 + S1 ⊗ In and S = S′

1 ⊗ S2,

where I ′m1+m2
=

(
Im1

0

0 −Im2

)
and S′

1 =

(
0 A

AT 0

)
. For the details of Equation (2.1), one can

also see Theorem 3.1 of [2] and Theorem 2.1 of this paper.

We then compute the singular values of Ŝ. Note that Ŝ ŜT = S S
T
+ SST + SST + SS

T
. From

Theorem 3.1 of [2] or direct computation, we can derive that S S
T

= −(Im ⊗ S2
2 + S2

1 ⊗ In). It is

obvious that SST = (S′
1 ⊗ S2)((S

′
1)

T ⊗ ST
2 ) = −(S′

1)
2 ⊗ S2

2 = S2
1 ⊗ S2

2 . Moreover,

SST + SS
T
=
(
I ′m1+m2

⊗ S2 + S1 ⊗ In
) (

S′
1 ⊗ (−S2)

)

+
(
S′
1 ⊗ S2

) (
I ′m1+m2

⊗ (−S2) + (−S1)⊗ In
)

=−
[(
S1 ⊗ S2

2 + S1S
′
1 ⊗ S2

)
+
(
(−S1)⊗ S2

2 + S′
1S1 ⊗ S2

)]

=0.

To sum up all computation, we obtain that

Ŝ ŜT = −Im ⊗ S2
2 − S2

1 ⊗ In + S2
1 ⊗ S2

2 = (S2
1 − Im)⊗ (S2

2 − In)− Imn.

Therefore, the eigenvalues of Ŝ ŜT are (µ2 + 1)(λ2 + 1) − 1, where µi ∈ Sp(Hτ ) and λi ∈ Sp(Gσ).

Then the skew-spectrum of (Hτ ∗Gσ)o immediately follows. The proof is complete. �

Similar to Theorem 2.3, we can construct a new family of oriented graphs with the optimum skew

energy by applying the above theorem.
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Theorem 2.7. Let Hτ be an oriented k-regular bipartite graph of order m with optimum skew energy

m
√
k. Let Gσ be an oriented ℓ-regular graph of order n and optimum skew energy n

√
ℓ. Then (Hτ ∗

Gσ)o is an oriented (k + ℓ + kℓ)-regular graph and has the optimum skew energy ES((Hτ ∗ Gσ)o) =

mn
√
k + ℓ+ kℓ.

Comparing Theorems 2.3, 2.7 obtained above with Theorem 1.3 (or see Theorem 3.2 in [2]), we

find that the oriented graphs constructed from these theorems have the same order mn but different

regularities, which are kℓ, k + ℓ+ kℓ and k + ℓ, respectively.

Example 2.8. Let H = C4, G0 = K4, G1 = H�G0, . . . , Gr = H�Gr−1. Obviously, Gr is a (2r+3)-

regular graph of order 4r+1. From [1, 9], we know that H has the orientation with the optimum skew

energy 4
√
2 and G0 has the orientation with the optimum skew energy 4

√
3, see Figure 1. By Theorem

1.3, Gr has the orientation with the optimum skew energy 4r+1
√
2r + 3.

1

2

3

4

Kσ
4

1 3

24

Cσ
4

Figure 1. The orientations of K4 and C4 with the optimum skew energies

Example 2.9. Let H = C4, G0 = K4, G1 = H ⊗G0, . . . , Gr = H ⊗Gr−1. It is obvious that Gr is a

(3 · 2r)-regular graph of order 4r+1. Then by Theorem 2.3, Gr has the orientation with optimum skew

energy 4r+1
√
3 · 2r.

Example 2.10. Let H = C4, G0 = K4, G1 = H ⊗G0, G2 = G1 ⊗ G0, . . . , Gr = Gr−1 ⊗ G0. Note

that H, G1, G2, . . . , Gr−1 are all regular bipartite graphs and Gr is a (2 · 3r)-regular bipartite graph

of order 4r+1. Then by Theorem 2.3, Gr has the orientation with optimum skew energy 4r+1
√
2 · 3r.

Example 2.11. Let H = C4, G0 = K4, G1 = H ∗ G0, . . . , Gr = H ∗ Gr−1. Note that Gr is a

(4 · 3r − 1)-regular graph of order 4r+1. Then by Theorem 2.7, Gr has the orientation with optimum

skew energy 4r+1
√
4 · 3r − 1.

From Examples 2.9, 2.10 and 2.11, we can see that for some positive integers k, there exist oriented

k-regular graphs with the optimum skew energy, which has order n ≤ k2. It is unknown that whether

for any positive integer k, the oriented graph exists such that its order n is less than k2 and it has an

orientation with the optimum skew energy.
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2.3. The orientation of H[G]. In this subsection, we consider the lexicographic product H[G] of a

bipartite graph H and a graph G. All definitions and notations are the same as above. We can see

that the edge set H[G] is the disjoint-union of the edge sets of H�G and H ⊗ Kn, where Kn is a

complete graph of order n.

Let Hτ and Gσ be oriented graphs of H and G with the skew-adjacency matrices S1 and S2,

respectively. Let Kς
n be an oriented graph of Kn with the skew-adjacency matrix S3. Then we can

obtain two oriented graphs (Hτ
�Gσ)o and (Hτ ⊗Kς

n)
o. Thus it is natural to yield an orientation of

H[G], denoted byH[G]o, such that the arc set ofH[G]o is the disjoint-union of the arc sets of (Hτ
�Gσ)o

and (Hτ ⊗ Kς
n). Let S̃ be the skew-adjacency matrix of H[G]o. We can see that S̃ = S + S′

1 ⊗ S3,

where S = I ′m1+m2
⊗ S2 + S1 ⊗ In is the skew-adjacency matrix of (Hτ

�Gσ)o. Then

S̃T S̃ = −S̃2 = −
(
S + S′

1 ⊗ S3

)2

= −
[
Im ⊗ S2

2 + S2
1 ⊗ In + (S′

1)
2 ⊗ S2

3 + S(S′
1 ⊗ S3) + (S′

1 ⊗ S3)S
]

= −
[
Im ⊗ S2

2 + S2
1 ⊗ In − S2

1 ⊗ S2
3 + S1 ⊗ (S2S3)− S1 ⊗ (S3S2)

]

Suppose that Hτ is an oriented k-regular bipartite graph of order m with optimum skew energy

m
√
k. Then ST

1 S1 = kIm. Let Gσ be an oriented ℓ-regular graph of order n and optimum skew

energy n
√
ℓ. Then ST

2 S2 = ℓIn. It is obvious that H[G]o is (kn + ℓ)-regular. Moreover, let Kς
n be an

oriented graph of Kn with optimum skew energy n
√
n− 1. Then ST

3 S3 = (n − 1)In, that is, S3 is a

skew-symmetric Hardamard matrix [8] of order n. If another condition that S2S3 = S3S2 holds, then

S̃T S̃ = −
[
Im ⊗ S2

2 + S2
1 ⊗ In − S2

1 ⊗ S2
3

]
= (kn + ℓ)Imn.

By Lemma 2.2, H[G]o has the optimum skew energy mn
√
kn+ ℓ.

The following example illustrates that the oriented graph satisfying the above conditions indeed

exists.

Example 2.12. Let Hτ is an arbitrary oriented k-regular bipartite graph of order m with the optimum

skew energy m
√
k. Let Cσ

4 be the oriented graph of C4 with optimum skew energy 4
√
2 and the skew-

adjacency matrix S2, and Kς
4 be the oriented graph of K4 with optimum skew energy 4

√
3 and the

skew-adjacency matrix S3, see Figure 1. It can be verified that S2S3 = S3S2. It follows that (H[G])o

is an oriented (4k + 2)-regular graph of order 4m with optimum skew energy 4m
√
4k + 2.

There are many options for H, such as P2, C4, K4,4, the hypercube Qd and so on, which forms a

new family of oriented graphs with the optimum skew energy.

References

[1] C. Adiga, R. Balakrishnan, W. So, The shew energy of a digraph, Linear Algebra Appl. 432(2010), 1825–1835.

[2] A. Anuradha, R. Balakrishnan, X. Chen, X. Li, H. Lian, W. So, Skew spectra of oriented bipartite graphs, Electron.

J. Combin. 20(2013), #P18.

[3] X. Chen, X. Li, H. Lian, 4-Regular oriented graphs with optimum skew energy, Linear Algebra Appl. 439(2013),

2948–2960.

[4] D. Cui, Y. Hou, On the skew spectra of Cartesian products of graphs, Electron. J. Combin. 20(2013), #P19.

[5] S. Gong, G. Xu, 3-Regular digraphs with optimum skew energy, Linear Algebra Appl. 436(2012), 465–471.



Trans. comb. x no. x (201x) xx-xx X. Li and H. Lian 9

[6] I. Gutman, The energy of a graph, Ber. Math. Statist. Sekt. Forschungsz. Graz, 103(1978), 1–22.

[7] X. Li, H. Lian, A survey on the skew energy of oriented graphs, arXiv: 1304.5707.

[8] F.J. MacWilliams, N.J.A. Sloane, The Theory of Error-Correcting Codes, North-Holland, New York, 1977.

[9] G. Tian, On the skew energy of orientations of hypercubes, Linear Algebra Appl. 435(2011), 2140–2149.

Xueliang Li

Center for Combinatorics and LPMC-TJKLC, Nankai University, Tianjin 300071, P.R. China

Email:lxl@nankai.edu.cn

Huishu Lian

College of Science, China University of Mining and Technology, Xuzhou 221116, P.R. China

Email:lhs6803@126.com


	1. Introduction
	2. Main results
	2.1. The orientation of HG
	2.2. The orientation of HG
	2.3. The orientation of H[G]

	References

