Degree powers in C_{5}-free graphs*

Ran Gu, Xueliang Li, Yongtang Shi ${ }^{\dagger}$
Center for Combinatorics and LPMC-TJKLC
Nankai University, Tianjin 300071, China
guran323@163.com, lxl@nankai.edu.cn, shi@nankai.edu.cn

Abstract

Let G be a graph with degree sequence $d_{1}, d_{2}, \ldots, d_{n}$. Given a positive integer p, denote by $e_{p}(G)=\sum_{i=1}^{n} d_{i}^{p}$. Caro and Yuster introduced a Turántype problem for $e_{p}(G)$: given an integer p, how large can $e_{p}(G)$ be if G has no subgraph of a particular type. They got some results for the subgraph of particular type to be a clique of order $r+1$ and a cycle of even length, respectively. Denote by $e x_{p}(n, H)$ the maximum value of $e_{p}(G)$ taken over all graphs with n vertices that do not contain H as a subgraph. Clearly, $e x_{1}(n, H)=2 e x(n, H)$, where $e x(n, H)$ denotes the classical Turán number. In this paper, we consider $e x_{p}\left(n, C_{5}\right)$ and prove that for any positive integer p and sufficiently large n, there exists a constant $c=c(p)$ such that the following holds: if $e x_{p}\left(n, C_{5}\right)=e_{p}(G)$ for some C_{5}-free graph G of order n, then G is a complete bipartite graph having one vertex class of size $c n+o(n)$ and the other $(1-c) n+o(n)$.

Keywords: degree power; Turán-type problem; H-free
AMS Subject Classification (2010): 05C35, 05C07.

1 Introduction

All graphs considered here are finite, undirected, and have no loops or multiple edges. For standard graph-theoretic notation and terminology, the reader is referred to [1]. Denote by $e x(n, H)$ the classical Turán number, i.e., the maximum number of

[^0]edges among all graphs with n vertices that do not contain H as a subgraph. Denote by $T_{r}(n)$ the r-partite Turán graph of order n, namely, ex $\left(n, K_{r+1}\right)=e\left(T_{r}(n)\right)$. Given a graph G whose degree sequence is d_{1}, \ldots, d_{n}, and for a positive integer p, let $e_{p}(G)=\sum_{i=1}^{n} d_{i}{ }^{p}$. Caro and Yuster [4] introduced a Turán-type problem for $e_{p}(G)$: given an integer, how large can $e_{p}(G)$ be if G has no subgraph of a particular type. Denote by $e x_{p}(n, H)$ the maximum value of $e_{p}(G)$ taken over all graphs with n vertices that do not contain H as a subgraph. Clearly, $e x_{1}(n, H)=2 e x(n, H)$. It is interesting to determine the value of $e x_{p}(n, H)$ and the corresponding extremal graphs. In [4], Caro and Yuster considered K_{r+1}-free graphs and proved that
\[

$$
\begin{equation*}
e x_{p}\left(n, K_{r+1}\right)=e_{p}\left(T_{r}(n)\right) \tag{1}
\end{equation*}
$$

\]

for $1 \leq p \leq 3$.
Therefore, it is interesting to find the values of p for which equality (1) holds and determine the asymptotic value of $e x_{p}\left(n, K_{r+1}\right)$ for large n. In [2], Bollobás and Nikiforov showed that for every real $p(1 \leq p<r)$ and sufficiently large n, if G is a graph of order n and has no clique of order $r+1$, then $e x_{p}\left(n, K_{r+1}\right)=e_{p}\left(T_{r}(n)\right)$, and for every $p \geq r+\lceil\sqrt{2 r}\rceil$ and sufficiently large $n, e x_{p}\left(n, K_{r+1}\right)>(1+\epsilon) e_{p}\left(T_{r}(n)\right)$ for some positive $\epsilon=\epsilon(r)$. In [3], Bollobás and Nikiforov proved that if $e_{p}(G)>$ $(1-1 / r)^{p} n^{p+1}+C$, then G contains more than $\frac{C n^{r-p}}{p 2^{r(r+1)+1} r^{r}}$ cliques of order $r+1$. Using this statement, they strengthened the Erdös-Stone theorem by using $e_{p}(G)$ instead of the number of edges.

When considering cycles as the forbidden subgraphs, Caro and Yuster [4] determined the value of $e x_{2}\left(n, C^{*}\right)$ for sufficiently large n, where C^{*} denotes the family of cycles with even length. And they also characterized the unique extremal graphs. In [7], Nikiforov proved that for any graph G with n vertices, if G does not contain $C_{2 k+2}$, then for every $p \geq 2, e_{p}(G) \leq k n^{p}+O\left(n^{p-1 / 2}\right)$. Since the graph $K_{k}+\bar{K}_{n-k}$, i.e., the join of K_{k} and \bar{K}_{n-k} contains no $C_{2 k+2}$, that gives $e x_{p}\left(n, C_{2 k+2}\right)$, hence $e x_{p}\left(n, C_{2 k+2}\right)=k n^{p}(1+o(1))$, which settles a conjecture of Caro and Yuster. Cheng et al. [5] determined the extremal values of the sum of degree squares of bipartite graphs, i.e., $p=2$.

In this paper, we will study $e x_{p}\left(n, C_{5}\right)$. For a fixed $(r+1)$-chromatic graph H, Bollobás and Nikiforov [3] showed that for every $r \geq 2$ and $p>0, e x_{p}(n, H)=$ $e x_{p}\left(n, K_{r+1}\right)+o\left(n^{p+1}\right)$. This gives us that $e x_{p}\left(n, C_{5}\right)=e x_{p}\left(n, K_{3}\right)+o\left(n^{p+1}\right)$. Our main result is the following theorem.

Theorem 1 For any positive integer p and sufficiently large n, there exists a constant $c=c(p)$ such that the following holds: if exp $\left(n, C_{5}\right)=e_{p}(G)$ for some C_{5}-free graph
G of order n, then G is a complete bipartite graph having one vertex class of size $c n+o(n)$ and the other of size $(1-c) n+o(n)$.

2 Proof of Theorem 1

When $p=1$, it is a well-known result of the classical Turán problem. So in the following we assume $p \geq 2$. Throughout the paper, let G be the extremal graph satisfying that $e x_{p}\left(n, C_{5}\right)=e_{p}(G)$. Observe that $T_{2}(n)$ contains no C_{5}, and we have

$$
e_{p}\left(T_{2}(n)\right)=\left\lfloor\frac{n}{2}\right\rfloor\left(\left\lceil\frac{n}{2}\right\rceil\right)^{p}+\left\lceil\frac{n}{2}\right\rceil\left(\left\lfloor\frac{n}{2}\right\rfloor\right)^{p}=\left(\frac{1}{2}\right)^{p} n^{p+1}+o\left(n^{p+1}\right) .
$$

By the definition of $e x_{p}\left(n, C_{5}\right)$, we have $e_{p}(G) \geq e_{p}\left(T_{2}(n)\right)$. Hence, the coefficient of n^{p+1} in $e_{p}(G)$ must be at least $\left(\frac{1}{2}\right)^{p}$.

Lemma 1 For every integer p and sufficiently large n, if $e_{p}(G)=e x_{p}\left(n, C_{5}\right)$, then $\Delta(G)=a n+o(n)$, where the constant $a=a(p) \geq \frac{1}{2}$.

Proof. Suppose $\Delta(G)=o(n)$, we then have $e_{p}(G) \leq n \cdot[\Delta(G)]^{p}=n \cdot o\left(n^{p}\right)=o\left(n^{p+1}\right)$, a contradiction. Let $\Delta(G)=a n+o(n)$. Then we have $e_{p}(G) \leq n \cdot(a n)^{p}+o\left(n^{p+1}\right)=$ $a^{p} n^{p+1}+o\left(n^{p+1}\right)$, which implies $a \geq \frac{1}{2}$.

In order to describe the structure of the extremal graph G, we introduce some classes of graphs and a graph operation on two or more graphs. Let S^{k} denote the set of graphs of order k as shown in Figure 1. And graphs S_{1}, S_{2}, S_{3} are also shown in Figure 1. Each of these graphs has a labeled vertex, i.e., the cross vertex as shown in Figure 1.

Let $\mathcal{S}=\left\{S_{1}, S_{2}, S_{3}\right\}, \mathcal{S}^{*}=\mathcal{S} \cup S^{4} \cup S^{6} \cup \cdots$, for all possible integer k. When we say "attaching" two graphs in \mathcal{S}^{*}, it means that we identify the labeled vertices in each graph. Note that this attaching operation could be applied on more than two graphs. Before the proof, we recall a classical result of Erdös and Gallai [6].

Lemma 2 If a graph of order n has more than $k n / 2$ edges, then it contains a path of order $k+2$.

Proof of Theorem 1: We will consider the following two cases.
Case 1. For any vertex u with maximum degree in G, there is no edge in $G\left[N_{G}(u)\right]$.
In this case, we can construct a complete bipartite graph H, which satisfies that $e_{p}(H) \geq e_{p}(G)$. The complete bipartite graph $H=(X, Y)$ can be constructed as

Figure 1: The illustration of S^{k} and S_{i}.
follows: $X=\left(V(G) \backslash N_{G}(u)\right) \cup\{u\}$ and $Y=N_{G}(u)$. It is easy to check that $d_{H}(v) \geq d_{G}(v)$ for any vertex $v \in V(G)$, hence $e_{p}(H) \geq e_{p}(G)$. Since G is the extremal graph, we can deduce that G itself is isomorphic to H.
Case 2. There exists a vertex v with maximum degree in G, such that there is at least one edge in $G\left[N_{G}(v)\right]$.

Let u be such a vertex with maximum degree. By Lemma 1, we assume that $d_{G}(u)=a n+o(n)$, where $a \geq \frac{1}{2}$. Let A denote the set $\{u\} \bigcup N_{G}(u)$, and B denote $V(G) \backslash\left(\{u\} \bigcup N_{G}(u)\right)$, respectively. Since G is C_{5}-free, we have that $G[A]$ is also C_{5}-free. Then we can get that $G[A]$ must be constructed by attaching some graphs in \mathcal{S}^{*}, and moreover, u is just the vertex identified by labeled vertices. For example, $G[A]$ may be isomorphic to the graph as shown in Figure 2.

Figure 2: An example of $G[A]$.
In fact, considering the edges between A and B, we can obtain the following two observations. Note that the vertices in B can only be adjacent to the unlabeled vertices, since all of neighbors of u are in A. Without loss of generality, suppose $G[A]$
is constructed by attaching $t_{i} S_{i}$'s, $i=1,2,3$ and $r_{k} S^{k}$'s, for possible k. Observe that if $w \in B$, then w cannot be adjacent to two graphs among all $t_{i} S_{i}$'s, and r_{k} S^{k} 's, except one case that the two graphs are S_{1} and S_{1}.

Observation 1 For any vertex w in B, the edges between w and A can only be one of the following four cases:
(a) w is not adjacent to any vertex in A.
(b) w is adjacent to some unlabeled vertices of S_{1} 's;
(c) w is adjacent to one or two unlabeled vertices of exactly one S_{2};
(d) w is adjacent to only one graph F among all $t_{i} S_{i}$'s, and $r_{k} S^{k}$'s. Moreover, w is adjacent to exactly one unlabeled vertex in F.

Observation 2 For any edge $w_{1} w_{2}$ in $G[B]$, the edges between $w_{1}\left(w_{2}\right)$ and A can only be one of the following two cases:
(a) w_{1} and w_{2} are adjacent to the same unlabeled vertex in exactly one graph among all $t_{i} S_{i}$'s and $r_{k} S^{k}$,s;
(b) one of w_{1} and w_{2}, say w_{1}, is adjacent to no vertices in A, w_{2} is adjacent to vertices in A as described of Observation 1.

With the aid of the above two observations and the assumption of G, we can prove the following claim.

Claim $1 G[A]$ is isomorphic to the graph obtained by attaching one S_{2} and $d_{G}(u)-2$ S_{1} 's.

Proof. Let $\mathcal{A}=\left\{S \in\left\{S_{2}, S_{3}, S^{k}\right\}: S \subseteq G[A]\right.$ and some unlabeled vertex v in S has degree $\left.d_{G}(v)=O(n)\right\}$. By the previous observations, we have $|\mathcal{A}|=o(n)$, since $|A|=a n+o(n),|B|=(1-a) n+o(n)$ and the number of edges between the vertices in \mathcal{A} and B will be no more than $2|B|$. So $\sum_{v \in V(S), S \in \mathcal{A}} d_{G}{ }^{p}(v)=o\left(n^{p+1}\right)$. Therefore, the vertices in \mathcal{A} have no contribution to the value of the coefficient of n^{p+1} in $e_{p}(G)$. In order to maximize the value of $e_{p}(G), G[A]$ must consist of as many S_{1} 's as possible. Since we assume that there exists at least one edge in $G[A], G[A]$ must be isomorphic to the graph obtained by attaching of one S_{2} and $d_{G}(u)-2 S_{1}$'s.

Let A_{1} denote the set of all the unlabeled vertices in S_{1} contained in $G[A]$.
From Claim 1, the extremal graph in Case 1 satisfies the description in Claim 1. We construct two graphs G^{\prime} and G^{*} to characterize the extremal graph G in
detail. Let $V\left(G^{\prime}\right)=V\left(G^{*}\right)=V(G)$, both G^{\prime} and G^{*} satisfy the assumption of Case 2 and the description of Claim 1, i.e., in both G^{\prime} and G^{*}, let u be the vertex with maximum degree $d_{G}(u)$, there exist edges in $G\left[N_{G^{\prime}}(u)\right]$ and $G\left[N_{G^{*}}(u)\right]$. Without loss of generality, let $A=\{u\} \bigcup N_{G^{\prime}}(u)=\{u\} \bigcup N_{G^{*}}(u)$, and let $B=V\left(G^{\prime}\right) \backslash$ $\left(\{u\} \bigcup N_{G^{\prime}}(u)\right)=V\left(G^{*}\right) \backslash\left(\{u\} \bigcup N_{G^{*}}(u)\right)$. Observe that $G^{\prime}[A]$ and $G^{*}[A]$ satisfy the description of Claim 1. Hence, we can still use notation A_{1} to denote the set of all the unlabeled vertices in S_{1} contained in $G^{\prime}[A]$, and the same set in $G^{*}[A]$.

The difference between G^{\prime} and G^{*} is as follows. For $G^{\prime}, G^{\prime}[B]$ is empty, every vertex in B is adjacent to every vertex in A_{1} and there is no edge between $A \backslash A_{1}$ and B. And for G^{*}, there are two vertices in B, say w_{1}, w_{2}, such that $G^{*}[B]$ is a complete bipartite graph with one class $\left\{w_{1}, w_{2}\right\}$, every vertex in $B \backslash\left\{w_{1}, w_{2}\right\}$ is adjacent to every vertex in A_{1}, there is no edge between $A \backslash A_{1}$ and B, and also no edge between A_{1} and $\left\{w_{1}, w_{2}\right\}$.

The next claim characterizes the extremal graph G in Case 2 . Since we only consider the case when n is sufficiently large, from the preceding discussions, we can assume that $d_{G}(u)=a n$ instead of $a n+o(n)$ to simplify the calculation.

Claim $2 e_{p}(G)$ is equal to either $e_{p}\left(G^{\prime}\right)$ or $e_{p}\left(G^{*}\right)$.
Proof. Firstly, we calculate $e_{p}\left(G^{\prime}\right)$ and $e_{p}\left(G^{*}\right)$. For any vertex $v \in A_{1}, d_{G^{\prime}}(v)=$ $(1-a) n$; for any vertex $v \in A \backslash\left(A_{1} \cup\{u\}\right), d_{G^{\prime}}(v)=2$; and for any vertex v in B, $d_{G^{\prime}}(v)=a n-2$. Hence,

$$
e_{p}\left(G^{\prime}\right)=(a n)^{p}+2 \times 2^{p}+(a n-2)[(1-a) n]^{p}+[(1-a) n-1](a n-2)^{p} .
$$

Similarly, Observe that for any vertex $v \in A_{1}, d_{G^{*}}(v)=(1-a) n-2$, and for any vertex $v \in A \backslash\left(A_{1} \cup\{u\}\right), d_{G^{*}}(v)=2$, also we have $d_{G^{*}}(u)=a n, d_{G^{*}}\left(w_{i}\right)=(1-a) n-3$, $i=1,2$, and for any vertex w in $B \backslash\left\{w_{1}, w_{2}\right\}, d_{G^{*}}(w)=a n$. It is easy to calculate that $e_{p}\left(G^{*}\right)=[(1-a) n-2](a n)^{p}+(a n-2)[(1-a) n-2]^{p}+2[(1-a) n-3]^{p}+2 \times 2^{p}$.

We assume $e_{p}(G)>e_{p}\left(G^{\prime}\right)$. Then, there must exist some vertex v satisfying $d_{G}(v)>d_{G^{\prime}}(v)$. Note that for each vertex $v \in A_{1}$, the degree of v is at most $(1-a) n$, we only need to consider such two cases.

Case 1. There exists some vertex $v \in B$, such that $d_{G}(v)>d_{G^{\prime}}(v)$, and for each vertex $v^{\prime} \in A, d_{G}\left(v^{\prime}\right)$ is no larger than $d_{G^{\prime}}\left(v^{\prime}\right)$.

Let $B_{1}=N_{G}(v) \cap B$. In the following, we will consider the following two subcases.
Subcase 1.1. $\left|N_{G}(v) \cap A\right|=x n$ and $\left|B_{1}\right|=y n$, where $0 \leq x<a, 0<y \leq 1-a$, $x+y \leq a$, and if $x=0,\left|N_{G}(v) \cap A\right| \geq 2$.

Firstly, we know that $G\left[B_{1}\right]$ contains no path of order 4, since otherwise, there will exist one C_{5} including v.

By Lemma 2, we have that the number of edges in $G\left[B_{1}\right]$, denote by $e\left(G\left[B_{1}\right]\right)$, is no more than $2 y n / 2=y n$. Hence, $e\left(G\left[B_{1}\right]\right)=\sum_{v \in B_{1}} d_{G\left[B_{1}\right]}(v) \leq 2 y n$. We will calculate the maximum possible value of $e_{p}(G)$. We assume that there is one vertex in B_{1} with degree $d_{G\left[B_{1}\right]}=y n-1$ and the remaining vertices in B_{1} with degree $d_{G\left[B_{1}\right]}=1$. For each vertex in B_{1}, we can assume that it is adjacent to each vertex in $B \backslash B_{1}$. (Note that the vertices in B_{1} cannot be adjacent to the vertices in A from the previous observations.) Suppose that all the vertices in $B \backslash B_{1}$ reach the maximum degree an in G. We can see that such a situation can maximize the value of $e_{p}(G)$, and it may be much larger than the exact value of $e_{p}(G)$. We then have

$$
\begin{aligned}
e_{p}(G) \leq & (a n)^{p}+2 \times 2^{p}+(a n)^{p}+[(1-a) n-2-y n](a n)^{p} \\
& +(a n-2)[(1-a) n-y n]^{p}+(y n-1)[(1-a) n-y n]^{p}+[(1-a) n-2]^{p} .
\end{aligned}
$$

Expanding the right hand side of the inequality above, the coefficient of n^{p+1} is

$$
(1-a-y) a^{p}+a(1-a-y)^{p}+y(1-a-y)^{p}=(y+a)(1-a-y)^{p}+(1-a-y) a^{p} .
$$

Since from the previous calculation we know that the coefficient of n^{p+1} in $e_{p}\left(G^{\prime}\right)$ is $a(1-a)^{p}+a^{p}(1-a)$, to derive a construction to our assumption, it is sufficient to show that

$$
(y+a)(1-a-y)^{p}+(1-a-y) a^{p}<a(1-a)^{p}+a^{p}(1-a)
$$

for sufficiently large n. Let

$$
f(a, y)=a(1-a)^{p}+a^{p}(1-a)-\left[(y+a)(1-a-y)^{p}+(1-a-y) a^{p}\right] .
$$

We will show that $f(a, y)>0$. We first suppose that $\frac{1-a}{2}<y<1-a$, i.e., $1-a-y<$ $y<a$. Then, we have

$$
\begin{aligned}
f(a, y) & =a(1-a)^{p}-y(1-a-y)^{p}-a(1-a-y)^{p}+a^{p} y \\
& >a(1-a)^{p}-y(1-a-y)^{p}-a y^{p}+a^{p} y \\
& >a y^{p}-y(1-a-y)^{p}-a y^{p}+a^{p} y=y a^{p}-y(1-a-y)^{p}>0 .
\end{aligned}
$$

Now we suppose $0<y \leq \frac{1-a}{2}$. In this case, we have

$$
\begin{aligned}
f(a, y) & =a(1-a)^{p}-(y+a)(1-a-y)^{p}+a^{p} y \\
& \geq a(1-a)^{p}+a^{p} y-\frac{1+a}{2}(1-a-y)^{p} \\
& =a(1-a)^{p}+a^{p} y-\frac{1+a}{2}(1-a)^{p}+\frac{1+a}{2}(1-a)^{p}-\frac{1+a}{2}(1-a-y)^{p} \\
& =a^{p} y+\frac{a-1}{2}(1-a)^{p}+\frac{1+a}{2}\left[(1-a)^{p}-(1-a-y)^{p}\right] \\
& >a^{p} y+\frac{a-1}{2}(1-a)^{p}+\frac{1+a}{2} y^{p}>a^{p} y+\frac{a-1}{2}(1-a)^{p}+\frac{1-a}{2} y^{p} \\
& =a^{p} y+\frac{1-a}{2}\left[y^{p}-(1-a)^{p}\right] \geq y\left[a^{p}+y^{p}-(1-a)^{p}\right]>0 .
\end{aligned}
$$

Hence, we have proved that $f(a, y)>0$.
Subcase 1.2. $\left|N_{G}(v) \cap A\right|=a n-o(n)$ and $\left|B_{1}\right|=o(n)$.
With similar methods, we have

$$
\begin{aligned}
e_{p}(G) \leq & (a n)^{p}+2 \times 2^{p}+(a n)^{p}+[(1-a) n-2-o(n)](a n)^{p} \\
& +(a n-2)[(1-a) n-o(n)]^{p}+(o(n)-1)[(1-a) n-o(n)]^{p}+[(1-a) n-2]^{p} .
\end{aligned}
$$

Similarly, there are two cases when we compare the values of $e_{p}(G)$ and $e_{p}\left(G^{\prime}\right)$.

- The $o(n)$ part of $\left|N_{G}(v) \cap A\right|$, denoted by ω, satisfies that $\omega \rightarrow+\infty$.

Observe that $n^{p}<\omega n^{p}<n^{p+1}$. So we need to consider the coefficient of ωn^{p}. By expanding the expression of $e_{p}(G)$, it is clear that the coefficient is $-a^{p}+(1-a)^{p} \leq 0$, which implies $e_{p}(G) \leq e_{p}\left(G^{\prime}\right)$, a contradiction.

- The $o(n)$ part of $\left|N_{G}(v) \cap A\right|$ is a constant.

Let $o(n)=c, c \geq 1$. We will prove in that subcase, G is isomorphic to G^{*}. Now we consider the structure of G. If a vertex in $B \backslash B_{1}$ has degree $a n$, then at least two of its neighbors in B will be not adjacent to any vertices in A. So in order to maximize the number of vertices whose degree is $O(n)$, we suppose that as many as possible vertices in $B \backslash B_{1}$ have degree an, all of them have only two neighbors in B. It is not difficult to get that if they share two common neighbors in B, we will have a larger value of $e_{p}(G)$. Furthermore, let these two common neighbors be both in B_{1}, and there are no other vertices in B_{1}, we can get the maximum value of $e_{p}(G)$ in that situation. And we can see that c is equal to 2 in such case. Moreover, G is isomorphic to G^{*}.

Subcase 1.3. $\left|N_{G}(v) \cap A\right|=1$.
Since $a \geq \frac{1}{2},|B|=(1-a) n-1$, and we assume that $d_{G}(v)>d_{G^{\prime}}(v)=a n-2$, we have that $a=\frac{1}{2}$ and $\left|B_{1}\right|=(1-a) n-2$, i.e., v is adjacent to every vertex in $B \backslash\{v\}$.

Let $N_{G}(v) \cap A=\left\{v^{\prime}\right\}$, by Observation 2, the vertices in B can only be adjacent to v^{\prime} in A. To maximize the value of $e_{p}(G)$, let all the vertices in B be adjacent to v^{\prime} and $G[B]$ be a complete graph. Note that every vertex has its maximal possible degree. Hence, $e_{p}(G) \leq 2 \times 2^{p}+(a n)^{p}+[(1-a) n]^{p}+(a n-3)+[(1-a) n-1][(1-a) n-1]^{p}=$ $\left(\frac{1}{2}\right)^{p+1} n^{p+1}+o\left(n^{p+1}\right)<e_{p}\left(T_{2}(n)\right)$, a contradiction.

Case 2. There exists a vertex $v \in A \backslash\left(A_{1} \cup\{u\}\right)$ such that $d_{G}(v)>d_{G^{\prime}}(v)$.
Let $A \backslash\left(A_{1} \cup\{u\}\right)=\left\{v_{1}, v_{2}\right\}$. Without loss of generality, assume that $d_{G}\left(v_{1}\right)=$ $2+x, d_{G}\left(v_{2}\right)=2+y$. Suppose that $w \in B$ is adjacent to v_{1}, from Observation $2, w$ can not be adjacent to any vertices in A_{1}, and to avoid 5 -cycles, the neighbors of w in B can not be adjacent to any vertices in A_{1}. Just similar to Case 1 , we can derive that there are two vertices $w^{\prime}, w^{\prime \prime}$ in B, such that all neighbors of v_{1} in B is adjacent to w^{\prime}, and all neighbors of v_{2} in B is adjacent to $w^{\prime \prime}$, the set of remaining vertices in B and $\left\{w^{\prime}, w^{\prime \prime}\right\}$ form a complete bipartite graph. Note that v_{1} and v_{2} have no common neighbors in B in order to avoid 5-cycles and maximize the value of $e_{p}(G)$. If either x or y is zero, then $w^{\prime}=w^{\prime \prime}$. So, if $x \geq 1, y \geq 1$, then,

$$
\begin{align*}
& e_{p}(G)=(2+x)^{p}+(2+y)^{p}+(a n)^{p}+(x+y) \cdot 2^{p}+(a n-2)[(1-a) n-2-x-y]^{p} \\
& \quad+[(1-a) n-3-x-y](a n)^{p}+[(1-a) n-3-y]^{p}+[(1-a) n-3-x]^{p} . \tag{2}
\end{align*}
$$

Suppose either x or y is zero, by symmetry, we need only consider the case when $y=0$ and $x \geq 1$. In such case, we have

$$
\begin{align*}
e_{p}(G)= & x \cdot 2^{p}+2^{p}+(2+x)^{p}+(a n)^{p}+(a n-2)[(1-a) n-1-x]^{p} \\
& +[(1-a) n-2-x](a n-1)^{p}+[(1-a) n-2]^{p} . \tag{3}
\end{align*}
$$

In equation (2), if x or y is $O(n)$, then the coefficient of n^{p+1} is strictly less than $a(1-a)^{p}+a^{p}(1-a)$. Since the coefficient of n^{p+1} in $e_{p}\left(G^{\prime}\right)$ is $a(1-a)^{p}+a^{p}(1-a)$, we have $e_{p}(G)<e_{p}\left(G^{\prime}\right)$, which contradicts to our assumption. Hence, x and y are both $o(n)$, and $(2+x)^{p}+(2+y)^{p}$ has no contribution to the coefficient of n^{p}. Thus, the coefficient of n^{p} in $e_{p}(G)$ is

$$
\begin{aligned}
& a^{p}-2(1-a)^{p}-p a(2+x+y)(1-a)^{p-1}-a^{p}(3+x+y)+2(1-a)^{p} \\
= & -p a(2+x+y)(1-a)^{p-1}-a^{p}(2+x+y) .
\end{aligned}
$$

From the expression of $e_{p}\left(G^{*}\right)$, the coefficient of n^{p} in $e_{p}\left(G^{*}\right)$ is $-2 p a(1-a)^{p-1}-$ $2 a^{p}$, which is larger than $-p a(2+x+y)(1-a)^{p-1}-a^{p}(2+x+y)$. Similarly, when $y=0$, we can deduce that x is $o(n)$. With some calculations, one can see that the coefficient of n^{p} in (3) is less than that in $e_{p}\left(G^{*}\right)$. Hence, $e_{p}(G)<e_{p}\left(G^{*}\right)$ for sufficiently large n, i.e., G can not be the extremal graph, a contradiction.

Combining all cases above, we have proved this claim.

In the sequel, we will prove that the extremal graph described in Case 2 will always have a smaller value of $e_{p}(\cdot)$ than the extremal graph in Case 1. Let G_{1} and G_{2} be the extremal graph in Case 1 and Case 2, respectively. So we have $e_{p}\left(G_{2}\right)=\max \left\{e_{p}\left(G^{\prime}\right), e_{p}\left(G^{*}\right)\right\}$. It is easy to get that, the coefficient of n^{p+1} in the expression of $e_{p}\left(G_{2}\right)$ is $a(1-a)^{p}+a^{p}(1-a)$, which is equal to that of $e_{p}\left(G_{1}\right)$. The coefficient of n^{p} in the expression of $e_{p}\left(G^{\prime}\right)$ is

$$
a^{p}-2 p(1-a) a^{p-1}-2(1-a)^{p}-a^{p}=-2 p(1-a) a^{p-1}-2(1-a)^{p}<0 .
$$

And the coefficient of n^{p} in the expression of $e_{p}\left(G^{*}\right)$ is $-2 a^{p}-2 p a(1-a)^{p-1}<0$.
Therefore, for sufficiently large $n, e_{p}\left(G_{2}\right)<\left[a(1-a)^{p}+a^{p}(1-a)\right] n^{p+1}$, i.e., $e_{p}\left(G_{2}\right)<$ $e_{p}\left(G_{1}\right)$.

In conclusion, if $e x_{p}\left(n, C_{5}\right)=e_{p}(G)$ for some C_{5}-free graph G of order n, then G is isomorphic to G_{1}. Hence G is a complete bipartite graph. Moreover, the size of one class is $c n+o(n)$ and the other is $(1-c) n+o(n)$, where c maximizes the function $f(x)=x(1-x)^{p}+x^{p}(1-x)$ in $\left[\frac{1}{2}, 1\right]$.

References

[1] B. Bollobás, Modern Graph Theory, GTM 184, Springer-Verlag, New York, 1998.
[2] B. Bollobás, V. Nikiforov, Degree powers in graphs with forbidden subgraphs, Electron. J. Comb. 11(2004), R42.
[3] B. Bollobás, V. Nikiforov, Degree powers in graphs: the Erdös-Stone Theorem, Comb. Probab. Comput. 21(2012), 89-105.
[4] Y. Caro, R. Yuster, A Turán type problem concerning the powers of the degrees of a graph, Electron. J. Comb. 7(2000), R47.
[5] T.C. Edwin Cheng, Y. Guo, S. Zhang, Yongjun Du, Extreme values of the sum of squares of degrees of bipartite graphs, Discrete Math. 309(2009), 1557-1564.
[6] P. Erdös, T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar. 10(1959), 337-356.
[7] V. Nikiforov, Degree powers in graphs with a forbidden even cycle, Electron. J. Comb. 16(2009), R107.

[^0]: *Supported by NSFC and the " 973 " program.
 ${ }^{\dagger}$ Corresponding author.

