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Abstract

Let G be a graph with degree sequence d1, d2, . . . , dn. Given a positive
integer p, denote by ep(G) =

∑n
i=1 dp

i . Caro and Yuster introduced a Turán-
type problem for ep(G): given an integer p, how large can ep(G) be if G has
no subgraph of a particular type. They got some results for the subgraph
of particular type to be a clique of order r + 1 and a cycle of even length,
respectively. Denote by exp(n,H) the maximum value of ep(G) taken over
all graphs with n vertices that do not contain H as a subgraph. Clearly,
ex1(n,H) = 2ex(n,H), where ex(n,H) denotes the classical Turán number.
In this paper, we consider exp(n,C5) and prove that for any positive integer p

and sufficiently large n, there exists a constant c = c(p) such that the following
holds: if exp(n,C5) = ep(G) for some C5-free graph G of order n, then G is
a complete bipartite graph having one vertex class of size cn + o(n) and the
other (1− c)n + o(n).
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1 Introduction

All graphs considered here are finite, undirected, and have no loops or multiple

edges. For standard graph-theoretic notation and terminology, the reader is referred

to [1]. Denote by ex(n,H) the classical Turán number, i.e., the maximum number of
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edges among all graphs with n vertices that do not contain H as a subgraph. Denote

by Tr(n) the r-partite Turán graph of order n, namely, ex(n,Kr+1) = e(Tr(n)).

Given a graph G whose degree sequence is d1, . . . , dn, and for a positive integer p,

let ep(G) =
n∑

i=1

di
p. Caro and Yuster [4] introduced a Turán-type problem for ep(G):

given an integer, how large can ep(G) be if G has no subgraph of a particular type.

Denote by exp(n,H) the maximum value of ep(G) taken over all graphs with n vertices

that do not contain H as a subgraph. Clearly, ex1(n,H) = 2ex(n,H). It is interesting

to determine the value of exp(n,H) and the corresponding extremal graphs. In [4],

Caro and Yuster considered Kr+1-free graphs and proved that

exp(n,Kr+1) = ep(Tr(n)) (1)

for 1 ≤ p ≤ 3.

Therefore, it is interesting to find the values of p for which equality (1) holds

and determine the asymptotic value of exp(n,Kr+1) for large n. In [2], Bollobás and

Nikiforov showed that for every real p (1 ≤ p < r) and sufficiently large n, if G is

a graph of order n and has no clique of order r + 1, then exp(n,Kr+1) = ep(Tr(n)),

and for every p ≥ r + d√2re and sufficiently large n, exp(n,Kr+1) > (1 + ε)ep(Tr(n))

for some positive ε = ε(r). In [3], Bollobás and Nikiforov proved that if ep(G) >

(1 − 1/r)pnp+1 + C, then G contains more than Cnr−p

p26r(r+1)+1rr cliques of order r + 1.

Using this statement, they strengthened the Erdös–Stone theorem by using ep(G)

instead of the number of edges.

When considering cycles as the forbidden subgraphs, Caro and Yuster [4] deter-

mined the value of ex2(n,C∗) for sufficiently large n, where C∗ denotes the family

of cycles with even length. And they also characterized the unique extremal graphs.

In [7], Nikiforov proved that for any graph G with n vertices, if G does not contain

C2k+2, then for every p ≥ 2, ep(G) ≤ knp + O(np−1/2). Since the graph Kk+Kn−k,

i.e., the join of Kk and Kn−k contains no C2k+2, that gives exp(n,C2k+2), hence

exp(n,C2k+2) = knp(1 + o(1)), which settles a conjecture of Caro and Yuster. Cheng

et al. [5] determined the extremal values of the sum of degree squares of bipartite

graphs, i.e., p = 2.

In this paper, we will study exp(n,C5). For a fixed (r + 1)-chromatic graph H,

Bollobás and Nikiforov [3] showed that for every r ≥ 2 and p > 0, exp(n,H) =

exp(n,Kr+1) + o(np+1). This gives us that exp(n,C5) = exp(n,K3) + o(np+1). Our

main result is the following theorem.

Theorem 1 For any positive integer p and sufficiently large n, there exists a constant

c = c(p) such that the following holds: if exp(n,C5) = ep(G) for some C5-free graph
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G of order n, then G is a complete bipartite graph having one vertex class of size

cn + o(n) and the other of size (1− c)n + o(n).

2 Proof of Theorem 1

When p = 1, it is a well-known result of the classical Turán problem. So in the

following we assume p ≥ 2. Throughout the paper, let G be the extremal graph

satisfying that exp(n,C5) = ep(G). Observe that T2(n) contains no C5, and we have

ep(T2(n)) =
⌊n

2

⌋(⌈n

2

⌉)p

+
⌈n

2

⌉(⌊n

2

⌋)p

=

(
1

2

)p

np+1+o
(
np+1

)
.

By the definition of exp(n,C5), we have ep(G) ≥ ep(T2(n)). Hence, the coefficient of

np+1 in ep(G) must be at least
(

1
2

)p
.

Lemma 1 For every integer p and sufficiently large n, if ep(G) = exp(n,C5), then

∆(G) = an + o(n), where the constant a = a(p) ≥ 1
2
.

Proof. Suppose ∆(G) = o(n), we then have ep(G) ≤ n · [∆(G)]p = n ·o(np) = o(np+1),

a contradiction. Let ∆(G) = an + o(n). Then we have ep(G) ≤ n · (an)p + o(np+1) =

apnp+1 + o(np+1), which implies a ≥ 1
2
.

In order to describe the structure of the extremal graph G, we introduce some

classes of graphs and a graph operation on two or more graphs. Let Sk denote the

set of graphs of order k as shown in Figure 1. And graphs S1, S2, S3 are also shown

in Figure 1. Each of these graphs has a labeled vertex, i.e., the cross vertex as shown

in Figure 1.

Let S = {S1, S2, S3}, S∗ = S ∪ S4 ∪ S6 ∪ · · · , for all possible integer k. When we

say “attaching” two graphs in S∗, it means that we identify the labeled vertices in

each graph. Note that this attaching operation could be applied on more than two

graphs. Before the proof, we recall a classical result of Erdös and Gallai [6].

Lemma 2 If a graph of order n has more than kn/2 edges, then it contains a path

of order k + 2.

Proof of Theorem 1: We will consider the following two cases.

Case 1. For any vertex u with maximum degree in G, there is no edge in G[NG(u)].

In this case, we can construct a complete bipartite graph H, which satisfies that

ep(H) ≥ ep(G). The complete bipartite graph H = (X,Y ) can be constructed as
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Figure 1: The illustration of Sk and Si.

follows: X = (V (G) \ NG(u)) ∪ {u} and Y = NG(u). It is easy to check that

dH(v) ≥ dG(v) for any vertex v ∈ V (G), hence ep(H) ≥ ep(G). Since G is the

extremal graph, we can deduce that G itself is isomorphic to H.

Case 2. There exists a vertex v with maximum degree in G, such that there is at

least one edge in G[NG(v)].

Let u be such a vertex with maximum degree. By Lemma 1, we assume that

dG(u) = an + o(n), where a ≥ 1
2
. Let A denote the set {u}⋃

NG(u), and B denote

V (G) \ ({u}⋃
NG(u)), respectively. Since G is C5-free, we have that G[A] is also

C5-free. Then we can get that G[A] must be constructed by attaching some graphs

in S∗, and moreover, u is just the vertex identified by labeled vertices. For example,

G[A] may be isomorphic to the graph as shown in Figure 2.

Figure 2: An example of G[A].

In fact, considering the edges between A and B, we can obtain the following two

observations. Note that the vertices in B can only be adjacent to the unlabeled

vertices, since all of neighbors of u are in A. Without loss of generality, suppose G[A]
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is constructed by attaching ti Si’s, i = 1, 2, 3 and rk Sk’s, for possible k. Observe

that if w ∈ B, then w cannot be adjacent to two graphs among all ti Si’s, and rk

Sk’s, except one case that the two graphs are S1 and S1.

Observation 1 For any vertex w in B, the edges between w and A can only be one

of the following four cases:

(a) w is not adjacent to any vertex in A.

(b) w is adjacent to some unlabeled vertices of S1’s;

(c) w is adjacent to one or two unlabeled vertices of exactly one S2;

(d) w is adjacent to only one graph F among all ti Si’s, and rk Sk’s. Moreover,

w is adjacent to exactly one unlabeled vertex in F .

Observation 2 For any edge w1w2 in G[B], the edges between w1 (w2) and A can

only be one of the following two cases:

(a) w1 and w2 are adjacent to the same unlabeled vertex in exactly one graph

among all ti Si’s and rk Sk’s;

(b) one of w1 and w2, say w1, is adjacent to no vertices in A, w2 is adjacent to

vertices in A as described of Observation 1.

With the aid of the above two observations and the assumption of G, we can

prove the following claim.

Claim 1 G[A] is isomorphic to the graph obtained by attaching one S2 and dG(u)−2

S1’s.

Proof. Let A = {S ∈ {S2, S3, S
k} : S ⊆ G[A] and some unlabeled vertex v in S

has degree dG(v) = O(n)}. By the previous observations, we have |A| = o(n), since

|A| = an+o(n), |B| = (1−a)n+o(n) and the number of edges between the vertices in

A and B will be no more than 2|B|. So
∑

v∈V (S), S∈A
dG

p (v) = o(np+1). Therefore, the

vertices in A have no contribution to the value of the coefficient of np+1 in ep(G). In

order to maximize the value of ep(G), G[A] must consist of as many S1’s as possible.

Since we assume that there exists at least one edge in G[A], G[A] must be isomorphic

to the graph obtained by attaching of one S2 and dG(u)− 2 S1’s. ¤

Let A1 denote the set of all the unlabeled vertices in S1 contained in G[A].

From Claim 1, the extremal graph in Case 1 satisfies the description in Claim

1. We construct two graphs G′ and G∗ to characterize the extremal graph G in
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detail. Let V (G′) = V (G∗) = V (G), both G′ and G∗ satisfy the assumption of Case

2 and the description of Claim 1, i.e., in both G′ and G∗, let u be the vertex with

maximum degree dG(u), there exist edges in G[NG′(u)] and G[NG∗(u)]. Without

loss of generality, let A = {u}⋃
NG′(u) = {u}⋃

NG∗(u), and let B = V (G′) \
({u}⋃

NG′(u)) = V (G∗) \ ({u}⋃
NG∗(u)). Observe that G′[A] and G∗[A] satisfy the

description of Claim 1. Hence, we can still use notation A1 to denote the set of all

the unlabeled vertices in S1 contained in G′[A], and the same set in G∗[A].

The difference between G′ and G∗ is as follows. For G′, G′[B] is empty, every

vertex in B is adjacent to every vertex in A1 and there is no edge between A\A1 and

B. And for G∗, there are two vertices in B, say w1, w2, such that G∗[B] is a complete

bipartite graph with one class {w1, w2}, every vertex in B \ {w1, w2} is adjacent to

every vertex in A1, there is no edge between A \A1 and B, and also no edge between

A1 and {w1, w2}.
The next claim characterizes the extremal graph G in Case 2. Since we only

consider the case when n is sufficiently large, from the preceding discussions, we can

assume that dG(u) = an instead of an + o(n) to simplify the calculation.

Claim 2 ep(G) is equal to either ep(G
′) or ep(G

∗).

Proof. Firstly, we calculate ep(G
′) and ep(G

∗). For any vertex v ∈ A1, dG′(v) =

(1 − a)n; for any vertex v ∈ A \ (A1 ∪ {u}), dG′(v) = 2; and for any vertex v in B,

dG′(v) = an− 2. Hence,

ep(G
′) = (an)p+2× 2p+(an−2)[(1−a)n]p+[(1−a)n−1](an−2)p.

Similarly, Observe that for any vertex v ∈ A1, dG∗(v) = (1 − a)n − 2, and for any

vertex v ∈ A\(A1∪{u}), dG∗(v) = 2, also we have dG∗(u) = an, dG∗(wi) = (1−a)n−3,

i = 1, 2, and for any vertex w in B\{w1, w2}, dG∗(w) = an. It is easy to calculate that

ep(G
∗) = [(1− a) n− 2] (an)p + (an− 2) [(1− a) n− 2]p + 2[(1− a) n− 3]p + 2× 2p.

We assume ep(G) > ep(G
′). Then, there must exist some vertex v satisfying

dG(v) > dG′(v). Note that for each vertex v ∈ A1, the degree of v is at most (1−a)n,

we only need to consider such two cases.

Case 1. There exists some vertex v ∈ B, such that dG(v) > dG′(v), and for each

vertex v′ ∈ A, dG(v′) is no larger than dG′(v
′).

Let B1 = NG(v)∩B. In the following, we will consider the following two subcases.

Subcase 1.1. |NG(v) ∩A| = xn and |B1| = yn, where 0 ≤ x < a, 0 < y ≤ 1− a,

x + y ≤ a, and if x = 0, |NG(v) ∩ A| ≥ 2.
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Firstly, we know that G[B1] contains no path of order 4, since otherwise, there

will exist one C5 including v.

By Lemma 2, we have that the number of edges in G[B1], denote by e(G[B1]), is

no more than 2yn/2 = yn. Hence, e(G[B1]) =
∑

v∈B1

dG[B1](v) ≤ 2yn. We will calculate

the maximum possible value of ep(G). We assume that there is one vertex in B1 with

degree dG[B1] = yn− 1 and the remaining vertices in B1 with degree dG[B1] = 1. For

each vertex in B1, we can assume that it is adjacent to each vertex in B \B1. (Note

that the vertices in B1 cannot be adjacent to the vertices in A from the previous

observations.) Suppose that all the vertices in B \B1 reach the maximum degree an

in G. We can see that such a situation can maximize the value of ep(G), and it may

be much larger than the exact value of ep(G). We then have

ep(G) ≤ (an)p+2× 2p+(an)p+ [(1−a) n−2−yn] (an)p

+ (an−2) [(1−a) n−yn]p+ (yn−1) [(1−a) n−yn]p+[(1−a) n−2]p.

Expanding the right hand side of the inequality above, the coefficient of np+1 is

(1−a−y) ap+a(1−a−y)p+y(1−a−y)p= (y+a) (1−a−y)p+ (1−a−y) ap.

Since from the previous calculation we know that the coefficient of np+1 in ep(G
′) is

a(1−a)p+ap (1−a), to derive a construction to our assumption, it is sufficient to show

that

(y+a) (1−a−y)p+ (1−a−y) ap < a(1−a)p+ap (1−a)

for sufficiently large n. Let

f(a, y) = a(1−a)p+ap (1−a)− [(y+a) (1−a−y)p+ (1−a−y) ap] .

We will show that f(a, y) > 0. We first suppose that 1−a
2

< y < 1−a, i.e., 1−a−y <

y < a. Then, we have

f(a, y) = a(1−a)p−y(1−a−y)p−a(1−a−y)p+apy

> a(1−a)p−y(1−a−y)p−ayp+apy

> ayp−y(1−a−y)p−ayp+apy = yap−y(1−a−y)p > 0.
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Now we suppose 0 < y ≤ 1−a
2

. In this case, we have

f(a, y) = a(1−a)p− (y+a) (1−a−y)p+apy

≥ a(1−a)p+apy−1+a

2
(1−a−y)p

= a(1−a)p+apy−1+a

2
(1−a)p+

1+a

2
(1−a)p−1+a

2
(1−a−y)p

= apy+
a−1

2
(1−a)p+

1+a

2
[(1−a)p−(1−a−y)p]

> apy+
a−1

2
(1−a)p+

1+a

2
yp > apy+

a−1

2
(1−a)p+

1−a

2
yp

= apy+
1−a

2
[yp−(1−a)p] ≥ y [ap+yp−(1−a)p] > 0.

Hence, we have proved that f(a, y) > 0.

Subcase 1.2. |NG(v) ∩ A| = an− o(n) and |B1| = o(n).

With similar methods, we have

ep(G) ≤ (an)p+2× 2p+(an)p+ [(1−a) n−2−o(n)] (an)p

+ (an−2) [(1−a) n−o(n)]p+ (o(n)−1) [(1−a) n−o(n)]p+[(1−a) n−2]p.

Similarly, there are two cases when we compare the values of ep(G) and ep(G
′).

• The o(n) part of |NG(v) ∩ A|, denoted by ω, satisfies that ω → +∞.

Observe that np < ωnp < np+1. So we need to consider the coefficient of ωnp. By

expanding the expression of ep(G), it is clear that the coefficient is −ap+(1−a)p≤0,

which implies ep(G) ≤ ep(G
′), a contradiction.

• The o(n) part of |NG(v) ∩ A| is a constant.

Let o(n) = c, c ≥ 1. We will prove in that subcase, G is isomorphic to G∗. Now

we consider the structure of G. If a vertex in B \ B1 has degree an, then at least

two of its neighbors in B will be not adjacent to any vertices in A. So in order to

maximize the number of vertices whose degree is O(n), we suppose that as many as

possible vertices in B \ B1 have degree an, all of them have only two neighbors in

B. It is not difficult to get that if they share two common neighbors in B, we will

have a larger value of ep(G). Furthermore, let these two common neighbors be both

in B1, and there are no other vertices in B1, we can get the maximum value of ep(G)

in that situation. And we can see that c is equal to 2 in such case. Moreover, G is

isomorphic to G∗.

Subcase 1.3. |NG(v) ∩ A| = 1.

Since a ≥ 1
2
, |B| = (1− a)n− 1, and we assume that dG(v) > dG′(v) = an− 2, we

have that a = 1
2

and |B1| = (1−a)n− 2, i.e., v is adjacent to every vertex in B \ {v}.
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Let NG(v)∩A = {v′}, by Observation 2, the vertices in B can only be adjacent to v′ in

A. To maximize the value of ep(G), let all the vertices in B be adjacent to v′ and G[B]

be a complete graph. Note that every vertex has its maximal possible degree. Hence,

ep(G) ≤ 2 × 2p + (an)p + [(1− a) n]p + (an− 3) + [(1− a) n− 1] [(1− a) n− 1]p =(
1
2

)p+1
np+1 + o (np+1) < ep (T2 (n)), a contradiction.

Case 2. There exists a vertex v ∈ A \ (A1 ∪ {u}) such that dG(v) > dG′(v).

Let A \ (A1 ∪ {u}) = {v1, v2}. Without loss of generality, assume that dG(v1) =

2 + x, dG(v2) = 2 + y. Suppose that w ∈ B is adjacent to v1, from Observation 2, w

can not be adjacent to any vertices in A1, and to avoid 5-cycles, the neighbors of w

in B can not be adjacent to any vertices in A1. Just similar to Case 1, we can derive

that there are two vertices w′, w′′ in B, such that all neighbors of v1 in B is adjacent

to w′, and all neighbors of v2 in B is adjacent to w′′, the set of remaining vertices

in B and {w′, w′′} form a complete bipartite graph. Note that v1 and v2 have no

common neighbors in B in order to avoid 5-cycles and maximize the value of ep(G).

If either x or y is zero, then w′ = w′′. So, if x ≥ 1, y ≥ 1, then,

ep(G) = (2 + x)p + (2 + y)p + (an)p + (x + y) · 2p + (an− 2) [(1− a) n− 2− x− y]p

+ [(1− a) n− 3− x− y] (an)p + [(1− a) n− 3− y]p + [(1− a) n− 3− x]p. (2)

Suppose either x or y is zero, by symmetry, we need only consider the case when

y = 0 and x ≥ 1. In such case, we have

ep (G) = x · 2p + 2p + (2 + x)p + (an)p + (an− 2) [(1− a) n− 1− x]p

+ [(1− a) n− 2− x] (an− 1)p + [(1− a) n− 2]p. (3)

In equation (2), if x or y is O(n), then the coefficient of np+1 is strictly less than

a(1−a)p+ap (1−a). Since the coefficient of np+1 in ep(G
′) is a(1−a)p+ap (1−a), we

have ep(G) < ep(G
′), which contradicts to our assumption. Hence, x and y are both

o(n), and (2 + x)p + (2 + y)p has no contribution to the coefficient of np. Thus, the

coefficient of np in ep(G) is

ap − 2(1− a)p − pa (2 + x + y) (1− a)p−1 − ap (3 + x + y) + 2(1− a)p

= −pa (2 + x + y) (1− a)p−1 − ap (2 + x + y) .

From the expression of ep(G
∗), the coefficient of np in ep(G

∗) is −2pa(1− a)p−1 −
2ap, which is larger than −pa (2 + x + y) (1− a)p−1− ap (2 + x + y). Similarly, when

y = 0, we can deduce that x is o(n). With some calculations, one can see that

the coefficient of np in (3) is less than that in ep(G
∗). Hence, ep(G) < ep(G

∗) for

sufficiently large n, i.e., G can not be the extremal graph, a contradiction.
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Combining all cases above, we have proved this claim. ¤

In the sequel, we will prove that the extremal graph described in Case 2 will

always have a smaller value of ep(·) than the extremal graph in Case 1. Let G1

and G2 be the extremal graph in Case 1 and Case 2, respectively. So we have

ep(G2) = max{ep(G
′), ep(G

∗)}. It is easy to get that, the coefficient of np+1 in the

expression of ep(G2) is a(1−a)p+ap (1−a), which is equal to that of ep(G1). The

coefficient of np in the expression of ep(G
′) is

ap − 2p (1− a) ap−1 − 2(1− a)p − ap = −2p (1−a) ap−1−2(1−a)p < 0.

And the coefficient of np in the expression of ep(G
∗) is −2ap − 2pa(1− a)p−1 < 0.

Therefore, for sufficiently large n, ep(G2) < [a(1−a)p+ap (1−a)] np+1, i.e., ep(G2) <

ep(G1).

In conclusion, if exp(n,C5) = ep(G) for some C5-free graph G of order n, then G

is isomorphic to G1. Hence G is a complete bipartite graph. Moreover, the size of

one class is cn+o(n) and the other is (1− c)n+o(n), where c maximizes the function

f(x) = x(1−x)p+xp (1−x) in
[

1
2
, 1

]
.
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