
Characterization of graphs with rainbow connection

number m− 2 and m− 3∗

Xueliang Li, Yuefang Sun, Yan Zhao

Center for Combinatorics and LPMC-TJKLC

Nankai University, Tianjin 300071, P.R. China

E-mails: lxl@nankai.edu.cn, syf@cfc.nankai.edu.cn, zhaoyan2010@mail.nankai.edu.cn

Abstract

A path in an edge-colored graph, where adjacent edges may be colored the same,
is a rainbow path if no two edges of it are colored the same. A nontrivial connected
graph G is rainbow connected if there is a rainbow path connecting any two ver-
tices, and the rainbow connection number of G, denoted by rc(G), is the minimum
number of colors that are needed in order to make G rainbow connected. Chartrand
et al. obtained that G is a tree if and only if rc(G) = m, and it is easy to see that
G is not a tree if and only if rc(G) ≤ m− 2, where m is the number of edges of G.
So there is an interesting problem: Characterize the graphs G with rc(G) = m− 2.
In this paper, we resolve down this problem. Furthermore, we also characterize the
graphs G with rc(G) = m− 3.
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1 Introduction

All graphs in this paper are finite, undirected and simple. We follow the terminology

and notation of Bondy and Murty [1]. Let G be a nontrivial connected graph on which

is defined a coloring c : E(G) → {1, 2, · · · , `}, ` ∈ N, of the edges of G, where adjacent

edges may be colored the same. A path is a rainbow path if no two edges of it are

colored the same. An edge-colored graph G is rainbow connected if any two vertices

are connected by a rainbow path. Clearly, if a graph is rainbow connected, it must
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be connected. Conversely, any connected graph has a trivial edge-coloring that makes

it rainbow connected; just color each edge with a distinct color. Thus, we define the

rainbow connection number of a connected graph G, denoted by rc(G), as the smallest

number of colors that are needed in order to make G rainbow connected. If G1 is a

connected spanning subgraph of G, then rc(G) ≤ rc(G1). Chartrand et al. [3] obtained

that rc(G) = 1 if and only if G is complete, and that rc(G) = m if and only if G is a

tree, as well as that a cycle with k > 3 vertices has rainbow connection number dk
2
e, and

a triangle has rainbow connection number 1. Also notice that, clearly, rc(G) ≥ diam(G),

where diam(G) denotes the diameter of G. For more information on rainbow connections,

we refer to [4, 6]. In an edge-colored graph G, we use c(e) to denote the color of edge e

and for a subgraph G2 of G, c(G2) denotes the set of colors of edges in G2.

Since rc(G) = m if and only if G is a tree, rc(G) 6= m − 1 and G is not a tree if

and only if rc(G) ≤ m − 2 (Observation 3 below), then there is an interesting problem:

Characterize the graphs with rc(G) = m − 2. In this paper, we resolve this problem.

Furthermore, we also characterize the graphs G with rc(G) = m− 3.

We use V (G), E(G) for the set of vertices and edges of G, respectively. A pendant edge

of G is an edge incident to a vertex of degree 1. The girth of G, denoted by g(G), is the

length of a smallest cycle in G. A block of G is a maximal connected subgraph of G that

does not have any cut vertex. So every block of a nontrivial connected graph is either a

K2 or a 2-connected subgraph. All the blocks of a graph G form a block decomposition of

G. A rooted tree T (x) is a tree T with a specified vertex x, called the root of T . Let L(x)

denote the set of leaves of T (x) and |L(x)| = l(x). If T (x) is a trivial tree, then l(x) = 0.

We let Pn and Cn be the path and cycle with n vertices, respectively. And xPy denotes

a path from x to y. Let [t] = {1, · · · , t} denote the set of the first t natural numbers. For

a set S, |S| denotes the cardinality of S.

2 Some basic results

We first give an observation which will be useful in the sequel.

Observation 1. [5] If G is a connected graph and {Ei}i∈[t] is a partition of the edge set

of G into connected subgraphs Gi = G[Ei], then

rc(G) ≤
t∑

i=1

rc(Gi).

We now give a necessary condition for an edge-colored graph to be rainbow connected.

If G is rainbow connected under some edge-coloring, then for any two cut edges (if they

exist) e1 = u1u2 and e2 = v1v2, there must exist some 1 ≤ i, j ≤ 2, such that any ui − vj

path must contain edge e1, e2. So we have:
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Observation 2. If G is rainbow connected under some edge-coloring c where e1 and e2

are any two cut edges, then c(e1) 6= c(e2).

For a connected graph G, if it is a tree, then rc(G) = m; if it contains a unique cycle

of length k, then we give the cycle a rainbow coloring using dk
2
e colors (if the cycle is

a triangle, we just need one color) and color each other edge with a fresh color. Then

by Observation 1, we have rc(G) ≤ (m − k) + dk
2
e ≤ m − 2. So we have the following

observation.

Observation 3. Let G be a connected graph with m edges. Then rc(G) 6= m − 1 and

G is not a tree if and only if rc(G) ≤ m − 2. Moreover, if G contains a cycle of length

k(k ≥ 4), then rc(G) ≤ m− bk
2
c.

For a connected graph G, if it contains two edge-disjoint 2-connected subgraphs B1 and

B2, then by Observation 3, we give B1 and B2 a rainbow coloring using |E(B1)| − 2 and

|E(B2)| − 2 colors, respectively, and color each other edge with a fresh color. Then by

Observation 1, we have rc(G) ≤ m− 4. So the following lemma holds.

Lemma 1. Let G be a connected graph with m edges. If it contains two edge-disjoint

2-connected subgraphs, then rc(G) ≤ m− 4.

To subdivide an edge e is to delete e, add a new vertex x, and join x to the ends

of e. Any graph derived from a graph G by a sequence of edge subdivisions is called a

subdivision of G. Given a rainbow coloring of G, if we subdivide an edge e = uv of G by

xu and xv, then we assign xu the same color as e and assign xv a new color, which also

make the subdivision of G rainbow connected. Hence, the following lemma holds.

Lemma 2. Let G be a connected graph, and H be a subdivision of G. Then rc(H) ≤
rc(G) + |E(H)| − |E(G)|.

The Θ-graph is a graph consisting of three internally disjoint paths with common end

vertices and of lengths a, b, and c, respectively, such that a ≤ b ≤ c. Then a + b + c = m.

Lemma 3. Let G be a Θ-graph with m edges. If m = 5, then rc(G) = m− 3; otherwise,

rc(G) ≤ m− 4.

Proof. Let the three internally disjoint paths be P1, P2, P3 with the common end vertices

u and v, and the lengths of P1, P2, P3 be a, b, c, respectively, where a ≤ b ≤ c. If m = 5,

we color uP1v with color 1, uP2v with colors 1, 2, and uP3v with colors 2, 1. The resulting

coloring makes G rainbow connected. Thus, rc(G) ≤ m−3. Since diam(G) = 2, it follows

that rc(G) = m − 3. For m ≥ 6, we first consider the graph Θ1 with a = 1, b = 2 and

c = 3. We color uP1v with color 1, uP2v with colors 1, 1, and uP3v with colors 2, 1, 2.

Next we consider the graph Θ2 with a = 2, b = 2 and c = 2. We color uP1v with colors

1,2, uP2v with colors 2, 1, and uP3v with colors 2, 2. The resulting colorings make Θ1 and

Θ2 rainbow connected. For a general Θ-graph G with m ≥ 6, it is a subdivision of Θ1 or

Θ2, hence by Lemma 2, rc(G) ≤ m− 4.
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3 Characterizing unicyclic graphs with rc(G) = m− 2

and m− 3

In this section we first give an observation about unicyclic graphs which will be used

frequently. Let G be a connected unicyclic graph with the unique cycle C = v1v2 · · · vsv1.

For brevity, orient C clockwise. Then G has the structure as follows: a tree, denoted by

T (vi), is attached at each vertex vi of C. Note that, T (vi) may be trivial. Let i 6= j.

If ei = xiyi(ej = xjyj) is a pendant edge which belongs to a tree T (vi)(T (vj)). Then

there is a unique path xiPivi(xjPjvj) from xi(xj) to vi(vj). Since vi and vj divide C into

two segments viCvj and vjCvi, there are exactly two paths between xi and xj in G. Let

c = {1, 2, · · · , `} be an edge coloring of G. Since each edge in G \E(C) is a cut edge, by

Observation 2, they must obtain distinct colors. It is easy to see that |c(xiPivi)∩c(C)| ≤ 1.

In the process of coloring, we always first color G \ E(C) with [t] colors, then color C,

where t = |E(G) \ E(C)|. Thus, after coloring E(G) \ E(C), the unique path xiPivi can

be viewed as a pendant edge and every T (vi) will be a star with the center vertex vi.

Suppose |c(xiPivi) ∩ c(C)| = 1 and |c(xjPjvj) ∩ c(C)| = 1, then we can adjust the colors

of cut edges such that c(ei) = 1 and c(ej) = 2. Thus, 1, 2 ∈ viCvj or 1, 2 ∈ vjCvi, namely,

1,2 can only be assigned in the same path from vi to vj. Moreover, another path from vi

to vj should be rainbow. We summarize the above argument into an observation.

Observation 4. Let G be a connected unicyclic graph with the unique cycle C =

v1v2 · · · vsv1, and let c = {1, 2, · · · , `} be an edge coloring of G. Let p ∈ T (vi) and

q, r ∈ T (vj).

(i) If p, q ∈ C, then they are in the same path from vi to vj and the other path from vi

to vj should be rainbow.

(ii) If q, r are in the unique path from a vertex x of V (G) \ V (C) to vj, then q and r

can not both belong to C.

In this section we only deal with unicyclic graphs. According to the girth of G, we

introduce some graph classes and discuss them by some lemmas. Note that, l(vi) is the

number of leaves of the tree attached at the vertex vi from the unique cycle of G.

Let i be an integer with 1 ≤ i ≤ 3 and the addition is performed modulo 3. Let G =

{G : m = n, g(G) = 3}, G1 = {G : G ∈ G, l(vi) ≥ 1, l(vi+1) ≥ 1, l(vi+2) ≥ 1, or l(vi) ≥ 3},
G2 = {G : G ∈ G, l(vi) = 0, l(vi+1) ≤ 2, l(vi+2) ≤ 2}. Obviously, G = G1 ∪ G2.

Lemma 4. Let G be a graph belonging to G. If G ∈ G1, then rc(G) = m − 3; otherwise

rc(G) = m− 2.

Proof. Let the unique cycle of G be C = v1v2v3v1. Suppose G ∈ G1, by Observation 2,

each edge of G \ E(C) must obtain a distinct color, color them with a set [m − 3] of

colors. We consider two cases. Without loss of generality, first suppose that ei = xiyi
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is a pendant edge in T (vi) that is assigned color i, where 1 ≤ i ≤ 3. Set c(v1v2) = 3,

c(v2v3) = 1, c(v3v1) = 2. Next suppose that ej = xjyj is a pendant edge of T (v1) that is

assigned color j, where 1 ≤ j ≤ 3. Color E(C) with 1,2,3, respectively. It is easy to show

that these two colorings are rainbow, and in these two cases, rc(G) = m− 3.

If G ∈ G2, by Observation 3, rc(G) ≤ m− 2. By Observation 4, we know that at most

two colors for G \ E(C) can be assigned to C. Thus, we need a fresh color for C, and it

follows that rc(G) ≥ m− 2. Therefore, rc(G) = m− 2.

Let i be an integer with 1 ≤ i ≤ 4 and the addition is performed modulo 4. Set

H = {G : m = n, g(G) = 4}. Then H = H1 ∪ H2 ∪ H3, where H1 = {G : G ∈ H, l(vi) =

l(vi+2) = 0, l(vi+1) ≤ 1, l(vi+3) ≤ 1}, H2 = {G : G ∈ H, l(vi) ≥ 4, or l(vi) ≥ 1, l(vi+1) ≥
2, l(vi+2) ≥ 1}, and H3 is the set of the rest unicyclic graphs with girth 4.

Lemma 5. Let G be a graph belonging to H. If G ∈ H1, then rc(G) = m− 2; if G ∈ H2,

then rc(G) = m− 4; if G ∈ H3, then rc(G) = m− 3.

Proof. Let the unique cycle of G be C = v1v2v3v4v1. By Observation 2, each edge of

G \E(C) must obtain a distinct color, this costs m− 4 colors, thus rc(G) ≥ m− 4. Color

G\E(C) with a set [m−4] of colors. Suppose G ∈ H1. By Observation 3, rc(G) ≤ m−2.

By Observation 4, we know that at least two colors different from c(G \E(C)) should be

assigned to C, so it follows that rc(G) ≥ m− 2. Hence, rc(G) = m− 2.

Suppose G ∈ H2. First let ei = xiyi be a pendant edge in T (v1) that is assigned color

i, where 1 ≤ i ≤ 4. Color E(C) with 1,2,3,4, respectively. Next suppose that ej = xjyj is

a pendant edge that is assigned color j such that 1 ∈ T (v1), 2, 3 ∈ T (v2) and 4 ∈ T (v3),

where 1 ≤ j ≤ 4. Set c(v1v2) = 4, c(v2v3) = 1, c(v3v4) = 3, c(v1v4) = 2. It is easy to show

that these two colorings are rainbow, and in these two cases, rc(G) = m− 4.

If G ∈ H3, by Observation 4, we check one by one that at least one color different

from c(G \ E(C)) should be assigned to C, thus rc(G) ≥ m − 3. If e1 and e2 are two

pendant edges in a tree (say T (v1)) that are assigned colors 1 and 2, respectively, then

set c(v1v2) = m− 3, c(v2v3) = 1, c(v3v4) = 2, c(v1v4) = m− 3. By symmetry, it remains

to consider the case that l(v1) = l(v2) = l(v3) = 1. Suppose that ei = xiyi is a pendant

edge in T (vi) that is assigned color i, where 1 ≤ i ≤ 3. Set c(v1v2) = 3, c(v2v3) = 1,

c(v3v4) = m− 3, c(v1v4) = 2. It is easy to show that these two colorings are rainbow, and

in these two cases, rc(G) = m− 3.

Let i be an integer with 1 ≤ i ≤ 5 and the addition is performed modulo 5. Set

J = {G : m = n, g(G) = 5} and J = J1 ∪ {C5} ∪ J2, where J1 = {G : G ∈ J , l(vi) ≤
2, l(vi+2) ≤ 1, l(vi+1) = l(vi+3) = l(vi+4) = 0 or l(vi) ≤ 1, l(vi+1) ≤ 1, l(vi+2) ≤ 1, l(vi+3) =

l(vi+4) = 0}, and J2 is the set of the rest unicyclic graphs with girth 5.

Lemma 6. Let G be a graph belonging to J . If G is isomorphic to a cycle C5, then

rc(G) = m− 2. If G ∈ J1, then rc(G) = m− 3. If G ∈ J2, then rc(G) ≤ m− 4.
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Proof. Let the unique cycle of G be C = v1v2v3v4v5v1. If G is isomorphic to a cycle C5,

it is easy to see that rc(G) = m − 2. Suppose G ∈ J1. Suppose e1 is a pendant edge

of T (v1) that is assigned color 1. Set c(v1v2) = m − 4, c(v2v3) = m − 3, c(v3v4) = 1,

c(v4v5) = m− 4, c(v1v5) = m− 3. Thus rc(G) ≤ m− 3. On the other hand, since it costs

m−5 colors for G\E(C), and by Observation 4, we know that at least two colors different

from c(G \ E(C)) should be assigned to C, it follows that rc(G) ≥ m − 3. Therefore,

rc(G) = m− 3.

Suppose G ∈ J2. Without loss of generality, we consider the following three cases. If

l(vi) ≥ 3 for some i with 1 ≤ i ≤ 5, then we may suppose that e1, e2 and e3 are the three

pendant edges of T (v1) that are assigned colors 1,2,3, respectively. Set c(v1v2) = m − 4,

c(v2v3) = 3, c(v3v4) = 2, c(v4v5) = 1, c(v1v5) = m− 4. If l(vi) = 2, then we may suppose

that e1, e2 are the two pendant edges of T (v1) that are assigned colors 1,2, respectively,

and e3 is a pendant edge of T (v2) that is assigned color 3. Set c(v1v2) = m−4, c(v2v3) = 1,

c(v3v4) = 2, c(v4v5) = m − 4, c(v1v5) = 3. It remains to consider the case that l(vi) ≤ 1

for each i. Without loss of generality, let l(v1) = l(v2) = l(v4) = 1. Suppose that

ei is a pendant edge that is assigned color i such that e1 ∈ T (v1), e2 ∈ T (v2) and

e3 ∈ T (v4), where 1 ≤ i ≤ 3. Set c(v1v2) = 3, c(v2v3) = m − 4, c(v3v4) = 1, c(v4v5) = 2,

c(v1v5) = m − 4. It is easy to show that these three colorings are rainbow, and in these

three cases, rc(G) ≤ m− 4.

Let i be an integer with 1 ≤ i ≤ 6 and the addition is performed modulo 6. Set

L = {G : m = n, g(G) = 6} and L = L1 ∪L2, where L1 = {G : G ∈ L, l(vi) ≤ 1, l(vi+3) ≤
1, l(vi+1) = l(vi+2) = l(vi+4) = l(vi+5) = 0}, L2 is the set of the rest unicyclic graphs with

girth 6.

Lemma 7. Let G be a graph belonging to L. If G ∈ L1, then rc(G) = m − 3; otherwise

rc(G) ≤ m− 4.

Proof. Let the unique cycle of G be C = v1v2v3v4v5v6v1. By Observation 2, each edge

of G \ E(C) must obtain a distinct color, this costs m − 6 colors, thus rc(G) ≥ m − 6.

Color G \ E(C) with a set [m − 6] of colors. Suppose G ∈ L1. Set c(v1v2) = m − 5,

c(v2v3) = m − 4, c(v3v4) = m − 3, c(v4v5) = m − 5, c(v5v6) = m − 4, c(v1v6) = m − 3.

By Observation 2, rc(G) ≤ m − 3. On the other hand, by Observation 4, we know that

at least three colors different from c(G \ E(C)) should be assigned to C, it follows that

rc(G) ≥ m− 3. Therefore, rc(G) = m− 3.

Suppose G ∈ L2. If l(vi) ≥ 2, then we may suppose that e1 and e2 are the two

pendant edges of T (v1) that are assigned colors 1,2, respectively. Set c(v1v2) = m − 5,

c(v2v3) = m − 4, c(v3v4) = 1, c(v4v5) = 2, c(v5v6) = m − 5, c(v1v6) = m − 4. It remains

to consider the case that l(vi) ≤ 1 for each i. Suppose l(v1) = l(v2) = 1. Let e1 and e2 be

the two pendant edges that are assigned colors 1,2, respectively, such that e1 ∈ T (v1) and

e2 ∈ T (v2). Set c(v1v2) = m−5, c(v2v3) = m−4, c(v3v4) = 1, c(v4v5) = 2, c(v5v6) = m−5,

c(v1v6) = m− 4. Without loss of generality, let l(v1) = l(v3) = 1. Suppose that e1 and e2
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are the two pendant edges that are assigned colors 1,2, respectively, such that e1 ∈ T (v1)

and e2 ∈ T (v3). Set c(v1v2) = m − 5, c(v2v3) = m − 4, c(v3v4) = 1, c(v4v5) = m − 5,

c(v5v6) = m − 4, c(v1v6) = 2. It is easy to show that these three colorings are rainbow,

and in these three cases, rc(G) ≤ m− 4.

4 Characterizing graphs with rc(G) = m− 2 and m− 3

Now we are ready to characterize the graphs with rc(G) = m− 2 and rc(G) = m− 3.

Theorem 1. rc(G) = m − 2 if and only if G is isomorphic to a cycle C5 or belongs to

G2 ∪H2.

Proof. Suppose that G is a graph with rc(G) = m−2. By Lemma 1, G contains a unique

2-connected subgraph. By Lemma 3, G contains no Θ-graph as a subgraph. It follows

that G is a unicyclic graph. By Observation 3, the girth of G is at most 5. The cases

that the girth of G is 3,4 and 5 have been discussed in Lemmas 4, 5 and 6, respectively.

We conclude that G must be isomorphic to a graph shown in our theorem.

Conversely, By Lemmas 4, 5 and 6, the result holds.

Let M be a class of graphs where in each graph a path is attached at each vertex of

degree 2 of K4 − e, respectively. Note that, the path may be trivial.

Theorem 2. rc(G) = m − 3 if and only if G is isomorphic to a cycle C7 or belongs to

G1 ∪H3 ∪ J1 ∪ L1 ∪M.

Proof. Suppose that G is a graph with rc(G) = m−3. By Lemma 1, G contains a unique

2-connected subgraph B. Set V (B) = {v1, · · · , vs}, then G has the structure as follows:

a tree, denoted by T (vi), is attached at each vertex vi of B. If B is exactly a cycle, then

by Observation 3, the girth of G is at most 7. The cases that the girth of G is 3,4,5 and

6 have been discussed in Lemmas 4, 5, 6 and 7, respectively. It remains to deal with the

case that the girth of G is 7. If G is not isomorphic to a cycle C7, then suppose that e1 is a

pendant edge of T (v1) that is assigned color 1. Color G\E(B) with a set [m−7] of colors

and set c(v1v2) = m− 6, c(v2v3) = m− 5, c(v3v4) = m− 4, c(v4v5) = 1, c(v5v6) = m− 6,

c(v6v7) = m− 5, c(v1v7) = m− 4. By Observation 1, we have rc(G) ≤ m− 4.

So B is not a cycle. By Lemma 3, G contains no Θ-graph except a K4 − e as a

subgraph. We first claim that B is isomorphic to a K4 − e. If B is isomorphic to a K4,

we first color the edges of G \E(B) with m− 6 colors, then give each edge of B the same

new color, this costs m− 5 colors totally, it is easy to check that this coloring is rainbow,

and in this case, rc(G) ≤ m − 5, a contradiction. Set V (K4 − e) = {v1, v2, v3, v4}, and

E(K4 − e) = {v1v2, v2v3, v3v4, v4v1, v1v3}. If G /∈ M, then l(vi) ≥ 1 or l(vj) ≥ 2 where

i = 1 or 3, j = 2 or 4. If l(v1) ≥ 1, suppose that e1 is a pendant edge of T (v1) that
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is assigned color 1. Assign color 1 to v2v3 and m − 4 to each other edge of K4 − e. If

l(v2) ≥ 2, suppose that e1 and e2 are two pendant edges of T (v2) that are assigned colors

1 and 2, respectively. Set c(v1v2) = c(v2v3) = c(v1v3) = m − 4, c(v3v4) = 1, c(v1v4) = 2.

In both cases, rc(G) ≤ m− 4. We conclude that G must be isomorphic to a graph shown

in our theorem.

Conversely, if G is isomorphic to a cycle C7, then rc(G) = m− 3. If G ∈M, it is easy

to see that at least two new colors different from c(G \ E(B)) should be assigned to B.

Since each edge of G\E(B) must obtain a distinct color, this costs m−5 colors, it follows

that rc(G) ≥ m− 3. Set c(v1v2) = c(v3v4) = c(v1v3) = m− 4, c(v2v3) = c(v1v4) = m− 3,

thus rc(G) ≤ m − 3. Therefore, rc(G) = m − 3. By Lemmas 4, 5, 6 and 7, the result

holds.

Remark: We have also characterized the graphs G with rc(G) = m−4. But, the proof is

similar to the above ones, and very long and tedious, and therefore not written down here.
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