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Abstract. A vertex colored path is vertex-rainbow if its internal
vertices have distinct colors. For a connected graph G with connec-
tivity κ(G) and an integer k with 1 ≤ k ≤ κ(G), the rainbow vertex
k-connectivity of G is the minimum number of colors required to col-

or the vertices of G such that any two vertices of G are connected
by k internally vertex disjoint vertex-rainbow paths. In this paper,
we determine the rainbow vertex k-connectivities of all small cubic

graphs of order 8 or less.
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k-connectivity.

1. introduction

All graphs considered in this paper are simple, finite and undirected.
We follow the notation and terminology of [1] for those not described here.
Recall that the connectivity of a connected graph G is κ(G)=max{k :
G is k-connected}. Let G be a connected graph with connectivity κ(G).
Throughout the paper, let k be an integer satisfying 1 ≤ k ≤ κ(G). For
convenience, a set of internally vertex disjoint paths will be called disjoint.

For a graph G, we denote by V (G) and E(G) the vertex set and edge
set of G, respectively. An edge-coloring of a graph G is a mapping from
E(G) to some finite set of colors. A path in an edge colored graph is said
to be a rainbow path if no two edges on the path share the same color. The
rainbow k-connectivity of a connected graph G, denoted by rck(G), is the
minimum number of colors needed in an edge-coloring of G such that any
two distinct vertices of G are connected by k disjoint rainbow paths. The
function rck(G) was introduced by Chartrand et al.(see [2] for k = 1, and
[3] for general k). Since then, a considerable amount of research has been
carried out towards the study of rck(G), see [8] for a survey on this topic.
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Similar to the concept of rainbow k-connectivity, Krivelevich and Yuster[6]
(2009), Liu et al.[9](2013) proposed the concept of rainbow vertex k-connect-
ivity. A vertex-coloring of a graph G is a mapping from V (G) to some
finite set of colors. A vertex colored path is vertex-rainbow if its internal
vertices have distinct colors. A vertex-coloring of a connected graph G,
not necessarily proper, is rainbow vertex k-connected if any two vertices
of G are connected by k disjoint vertex-rainbow paths. The rainbow ver-
tex k-connectivity of G, denoted by rvck(G), is the minimum integer t so
that there exists a rainbow vertex k-connected coloring of G, using t colors.
For convenience, we write rvc(G) for rvc1(G). By Menger’s theorem[10],
rck(G) and rvck(G) are well defined if and only if G is a connected graph
satisfying 1 ≤ k ≤ κ(G).

Let G be a connected graph. Note that rvc(G) = 0 if and only if G is a
complete graph. Let diam(G) denote the diameter of G. Then rvc(G) ≥
diam(G) − 1 with equality if k = 1 and diam(G) = 1 or 2. For u, v ∈
V (G), let dk(u, v) be the minimum possible length of the longest path
in a set of k disjoint u − v paths. The k-diameter of G is diamk(G) =
maxu,v∈V (G)dk(u, v). Hence diam1(G) = diam(G). An easy observation is
that rvck(G) ≥ diamk(G) − 1. If k ≥ 2, then rvck(G) ≥ 1, and equality
holds if G is a complete graph with at least three vertices.

Krivelevich and Yuster [6] proved that if G is a connected graph with
n vertices and minimum degree δ, then rvc(G) < 11n/δ. It was shown[4]
that the computation of rvc(G) is NP-hard. It was proved in [7] that
rvc(G) = n − 2 if and only if G is a path of order n. In [9], Liu et al.
determined the precise values of rvck(G) when G is a cycle, a wheel, and a
complete multipartite graph. The foregoing results motivate us to consider
the rainbow vertex connectivities of some special graph classes.

In [5], Fujie-Okamoto et al. investigated the rainbow connectivities of
all small cubic graphs of order 8 or less. In this paper, we determine
the rainbow vertex connectivities of all small cubic graphs of order 8 or
less. Suppose that G is a connected cubic graph of order n ≤ 8. Since
3n =

∑
v∈V (G) deg(v) = 2|E(G)| implies that n is even, we have n = 4, 6, 8.

If n = 4, then G = K4. If n = 6, then the complement graph Ḡ is 2-regular,
so that Ḡ = 2C3 or C6. This gives G = K3,3 or K3�K2, where � denotes
Cartesian product. If n = 8, then we obtain five connected cubic graphs by
[11], which are depicted in Figure 1.

It is easy to verify that rvc(K4) = 0, and rvc2(K4) = rvc3(K4) = 1. It
was also shown in [9] that rvc(K3,3) = 1, and rvc2(K3,3) = rvc3(K3,3) = 2.

Our main result is stated as follows.

Theorem 1.1. (a) rvc(K3�K2) = 1, rvc2(K3�K2) = 2, rvc3(K3�K2)
= 3.

(b) (i) rvc(Q3) = rvc2(Q3) = 2, rvc3(Q3) = 4.
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(ii) rvc(M8) = 1, rvc2(M8) = 3, rvc3(M8) = 4.
(iii) rvc(F1) = 2, rvc2(F1) = 3, rvc3(F1) = 5.
(iv) rvc(F2) = 2, rvc2(F2) = 4.
(v) rvc(F3) = 1, rvc2(F3) = 3, rvc3(F3) = 4.

Q3 :

F3 :

M8 :

F2 :
F1 :

Figure 1: Connected cubic graphs of order 8.

2. Proof of Theorem 1.1

By proving the following lemma, we determine the rainbow vertex con-
nectivities of K3�K2.

Lemma 2.1. Let G = K3�K2. Then rvc(G) = 1, rvc2(G) = 2 and
rvc3(G) = 3.

Proof. Let V (G) = {u1, u2, u3} ∪ {v1, v2, v3} such that uiuj , vivj , uivi ∈
E(G), where 1 ≤ i, j ≤ 3 with i ̸= j. Since diam(G) = 2, we have rvc(G) =
1. It is not hard to see that diam2(G) = 3. Thus rvc2(G) ≥ 2. By giving
ui color 1 and vi color 2 for 1 ≤ i ≤ 3, this is a vertex-coloring of G with
rvc2(G) ≤ 2.

Suppose rvc3(G) = 2. Assign a rainbow vertex 3-connected coloring c
with colors 1 and 2 to G. Since one of the three vertex-rainbow paths be-
tween v1 and v2 must be v1u1u2v2, this implies c(u1) ̸= c(u2). By the same
argument, we obtain that c(u2) ̸= c(u3) and c(u1) ̸= c(u3), a contradiction.
Thus rvc3(G) ≥ 3. The following coloring c′ with colors 1, 2 and 3 induces
a vertex-coloring of G with rvc3(G) ≤ 3 : c′(u1) = c′(v3) = 1, c′(u2) =
c′(v1) = 2 and c′(u3) = c′(v2) = 3. �

We now consider the rainbow vertex connectivities of the five connected
cubic graphs as depicted in Figure 1.
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Recall that the 3-dimensional cube Q3 is a cubic graph of diameter 3
and connectivity 3. Hence rvc3(Q3) ≥ rvc2(Q3) ≥ rvc(Q3) ≥ 2. Assigning
a vertex-coloring to Q3 with colors 1 and 2 as Figure 2(a), we can easily
check that any two distinct vertices of Q3 are connected by two disjoint
vertex-rainbow paths. Thus rvc2(Q3) = rvc(Q3) = 2. Now we only need to
determine rvc3(Q3)(see Figure 2(b)).
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Figure 2: The rainbow vertex 2-connectivity of Q3.

Lemma 2.2. rvc3(Q3) = 4.

Proof. Let c be a rainbow vertex 3-connected coloring of Q3.
(i) Without loss of generality, consider u1 and u2. Since in any set of

three disjoint u1 − u2 paths, one path contains v1 and v2, we must have
c(v1) ̸= c(v2). By symmetry, any two adjacent vertices of Q3 must be
colored by distinct colors.

(ii) Since one of the three vertex-rainbow u1−v2 paths must be u1u4v4v3v2
or u1u4u3v3v2, this implies c(u4) ̸= c(v3). By symmetry, for any distinct
vertices u, v of Q3 satisfying d(u, v) = 2, we obtain c(u) ̸= c(v).

Combining (i) and (ii), we conclude that c(u1), c(u2), c(u3), c(u4) are
distinct, so that rvc3(Q3) ≥ 4. Now, define the vertex-coloring c′ on Q3 as
follows: c′(v1) = c′(u3) = 1, c′(v3) = c′(u1) = 2, c′(v2) = c′(u4) = 3, and
c′(v4) = c′(u2) = 4. It is easy to verify that the vertex-coloring c′ is rainbow
vertex 3-connected. Therefore, rvc3(Q3) ≤ 4. �

Recall that M8 is the Möbius ladder of order 8, or the Wagner graph.
Since diam(M8) = 2, it follows that rvc(M8) = 1. Observe that κ(M8) = 3.
This implies that we need to consider rvc2(M8) and rvc3(M8)(see Figure
3(a)).

Lemma 2.3. rvc2(M8) = 3 and rvc3(M8) = 4.

Proof. First, it is easy to see that diam2(M8) = 3, so that rvc2(M8) ≥ 2.
Suppose rvc2(M8) = 2. Let c be a rainbow vertex 2-connected coloring with
colors 1 and 2. One of the following must occur.



THE RAINBOW VERTEX CONNECTIVITIES OF SMALL CUBIC GRAPHS 5

(i) c(u2i−1) = 1 and c(u2i) = 2, where 1 ≤ i ≤ 4. However, there is no
set of two disjoint vertex-rainbow u1 − u5 paths, a contradiction.

(ii) There exist two adjacent vertices, without loss of generality, u1 and
u2 satisfying c(u1) = c(u2). However, there is no set of two disjoint vertex-
rainbow u5 − u6 paths, another contradiction.

By (i) and (ii), we have rvc2(M8) ≥ 3. Since there exists a rainbow
vertex 2-connected coloring with three colors shown in Figure 3(b), this
implies that rvc2(M8) = 3.

Next, we show that rvc3(M8) = 4. Since there exists a rainbow ver-
tex 3-connected coloring with four colors(see Figure 3(c)), we have 3 ≤
rvc3(M8) ≤ 4. Now we only need to prove that rvc3(M8) ̸= 3. To the con-
trary, suppose there exists a rainbow vertex 3-connected coloring c of M8,
using colors 1, 2 and 3.

Let C = u1u2 · · ·u8u1 be a Hamiltonian cycle in M8 and consider two
adjacent vertices u and v of C. By symmetry, assume that u = u1 and
v = u2. If c(u1) = c(u2), then there is no set of three disjoint vertex-rainbow
paths between u3 and u8, a contradiction. Hence any two adjacent vertices
of C must be colored differently. Therefore, there must exist three vertices
u, v, w of C such that c(u) ̸= c(v), c(v) ̸= c(w) and c(u) = c(w), where
uv, vw ∈ E(C). Without loss of generality, assume that c(u1) = 1, c(u2) = 2
and c(u3) = 1. We have c(u4), c(u8) ∈ {2, 3}, c(u5), c(u6), c(u7) ∈ {1, 2, 3}
and c(ui) ̸= c(ui+1) for 4 ≤ i ≤ 7.

Since the coloring c is rainbow vertex 3-connected, we have, for all
1 ≤ i ≤ 8, the three disjoint vertex-rainbow ui − ui+4 paths are either
{uiui+4, uiui+1 · · ·ui+4, uiui−1 · · ·ui−4} or {uiui+4, uiui+1ui+5ui+4, uiui−1

ui+3ui+4}, with all indices taken modulo 8. By considering the pair {u4, u8},
we have c(u5), c(u7) ∈ {2, 3}. By considering the pair {u1, u5}, we have
(c(u4), c(u8)) ̸= (2, 2), and we may assume that c(u4) = 3, which implies
c(u5) = 2. If c(u6) = 3, then by considering the pair {u3, u7}, we have
c(u8) = 2, but then, c(u7) = 1, a contradiction. Hence c(u6) = 1, and
(c(u4), c(u5), c(u6), c(u7), c(u8)) ∈ {(3, 2, 1, 2, 3), (3, 2, 1, 3, 2)}. But then,
there is no set of three disjoint vertex-rainbow u3 − u4 paths, a final con-
tradiction.

Hence rvc3(M8) ̸= 3, implying that rvc3(M8) = 4. �

We now determine the rainbow vertex connectivities of the graph F1

depicted in Figure 4(a). Notice that κ(F1) = 3.

Lemma 2.4. rvc(F1) = 2, rvc2(F1) = 3 and rvc3(F1) = 5.

Proof. Evidently, there exists a rainbow vertex connected coloring depicted
in Figure 4(b), which follows that rvc(F1) ≤ 2. Since diam(F1) = 3, this
implies rvc(F1) ≥ 2, and so rvc(F1) = 2.
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Figure 3: The rainbow vertex 2 and 3-connectivity of M8.

Next, we prove that rvc2(F1) = 3. Considering the two vertices w1 and
w2, any set of two disjoint w1 −w2 paths contains a path of length at least
4. Thus rvc2(F1) ≥ 3. On the other hand, Figure 4(c) provides a rainbow
vertex 2-connected coloring with three colors. Hence rvc2(F1) = 3.

Finally, we show that rvc3(F1) = 5. Let c be a rainbow vertex 3-
connected coloring with k colors. The following statements must occur.

(i) c(v1), c(v2), c(v3) are distinct. (Consider vertex-rainbow w1−w2 path-
s.)

(ii) c(w2) ̸= c(v2). (Consider vertex-rainbow w1 − v1 paths.)
(iii) c(w1) ̸= c(v2). (Consider vertex-rainbow w2 − v3 paths.)
(iv) c(w1), c(w2), c(v3) are distinct, and c(w1), c(w2), c(v1) are distinct.

(Consider vertex-rainbow v1 − v2 paths and v2 − v3 paths, respectively.)
Combining (i), (ii), (iii) and (iv), we obtain that c(v1), c(v2), c(v3), c(w1),

c(w2) are distinct. Thus k ≥ 5, implying that rvc3(F1) ≥ 5. On the other
hand, there exists a rainbow vertex 3-connected coloring with five colors
shown in Figure 4(d). It follows that rvc3(F1) = 5. �
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u3 v3

w1

v2
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12
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4

1
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2

2

3

5

3

(d)

Figure 4: The rainbow vertex connectivities of F1.

Now, we are in a position to determine the rainbow vertex connectivities
of the graph F2 in Figure 5(a). Since F2 has connectivity 2, we only consider
rvc(F2) and rvc2(F2).
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Lemma 2.5. rvc(F2) = 2 and rvc2(F2) = 4.

Proof. Since diam(F2) = 3, this implies rvc(F2) ≥ diam(F2) − 1 = 2.
Observe that Figure 5(b) shows a rainbow vertex connected coloring. Thus
rvc(F2) = 2.

For u1 and v1, any set of two disjoint u1 − v1 paths consists of a path
of length 1 and a path of length at least 5. It follows that rvc2(F2) ≥
diam2(F2)−1 = 4. Since there exists a rainbow vertex 2-connected coloring
depicted in Figure 5(c), we have rvc2(F2) = 4. �
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Figure 5: The rainbow vertex 1 and 2-connectivity of F2.

Finally, we determine the rainbow vertex connectivities of the graph F3

as shown in Figure 6(a). Since diam(F3) = 2, it follows that rvc(F3) = 1.
Note that κ(F3) = 3, we need to consider rvc2(F3) and rvc3(F3).

Lemma 2.6. rvc2(F3) = 3 and rvc3(F3) = 4.

Proof. First, we prove that rvc2(F3) = 3. Considering u2 and v2, any
set of two disjoint u2 − v2 paths contains a path of length at least 4. Thus
rvc2(F3) ≥ 3. On the other hand, it is easy to check that the vertex-coloring
depicted in Figure 6(b) is rainbow vertex 2-connected, which follows that
rvc2(F3) = 3.

Next, we show that rvc3(F3) = 4. Since there exists a rainbow ver-
tex 3-connected coloring, using four colors(see Figure 6(c)), we have 3 ≤
rvc3(F3) ≤ 4. Now we only need to prove that rvc3(F3) ̸= 3. To the con-
trary, suppose there exists a rainbow vertex 3-connected coloring c with
colors 1, 2 and 3. For every pair {vi, vj}, where i ̸= j and 1 ≤ i, j ≤ 3, we
have that viuiwujvj is a vertex-rainbow path for some w ∈ {w1, w2}. Hence
c(ui) ̸= c(uj). Without loss of generality, assume that c(u1) = 1, c(u2) = 2
and c(u3) = 3. Considering the pairs {ui, uj}, where i ̸= j and 1 ≤ i, j ≤ 3,
gives that c(v1), c(v2), c(v3) are distinct. By considering the pair {u2, v2},
u2w

′u1v1v2 and u2w
′′u3v3v2 must be two vertex-rainbow paths, where
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{w′, w′′} = {w1, w2}. Hence c(u1) ̸= c(v1) and c(u3) ̸= c(v3). Furthermore,
we obtain c(u2) ̸= c(v2) by considering the three disjoint vertex-rainbow
paths between u1 and v1.

u1

v1

u2

w1

u3

v3

w2

v2

(a)

1

2

31

3

2
2 2

(b)

1

1

2

2

43

4

3

(c)

Figure 6: The rainbow vertex 2 and 3-connectivity of F3.

With the above arguments, we have that (c(v1), c(v2), c(v3)) = (2, 3, 1) or
(3, 1, 2). By the obvious symmetry of F3, it suffices to consider (c(v1), c(v2),
c(v3)) = (2, 3, 1). Consider the two pairs vertices {u2, wi} with 1 ≤ i ≤ 2.
Since there exist three disjoint vertex-rainbow u2 − wi paths, we obtain
c(u3) ̸= c(wi). Hence c(w1), c(w2) ∈ {1, 2}. However, there is no set of
three disjoint vertex-rainbow u2 − v2 paths, a contradiction.

Therefore, rvc3(F3) ̸= 3, and so rvc3(F3) = 4. �

By Lemmas 2.1, 2.2, 2.3, 2.4, 2.5 and 2.6, Theorem 1.1 is immediate.
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