THE RAINBOW VERTEX CONNECTIVITIES OF SMALL CUBIC GRAPHS

ZAI PING LU AND YING BIN MA

Abstract

A vertex colored path is vertex-rainbow if its internal vertices have distinct colors. For a connected graph G with connectivity $\kappa(G)$ and an integer k with $1 \leq k \leq \kappa(G)$, the rainbow vertex k-connectivity of G is the minimum number of colors required to color the vertices of G such that any two vertices of G are connected by k internally vertex disjoint vertex-rainbow paths. In this paper, we determine the rainbow vertex k-connectivities of all small cubic graphs of order 8 or less.

Keywords. Vertex-coloring, vertex-rainbow path, rainbow vertex k-connectivity.

1. INTRODUCTION

All graphs considered in this paper are simple, finite and undirected. We follow the notation and terminology of [1] for those not described here. Recall that the connectivity of a connected graph G is $\kappa(G)=\max \{k$: G is k-connected\}. Let G be a connected graph with connectivity $\kappa(G)$. Throughout the paper, let k be an integer satisfying $1 \leq k \leq \kappa(G)$. For convenience, a set of internally vertex disjoint paths will be called disjoint.

For a graph G, we denote by $V(G)$ and $E(G)$ the vertex set and edge set of G, respectively. An edge-coloring of a graph G is a mapping from $E(G)$ to some finite set of colors. A path in an edge colored graph is said to be a rainbow path if no two edges on the path share the same color. The rainbow k-connectivity of a connected graph G, denoted by $r c_{k}(G)$, is the minimum number of colors needed in an edge-coloring of G such that any two distinct vertices of G are connected by k disjoint rainbow paths. The function $r c_{k}(G)$ was introduced by Chartrand et al.(see [2] for $k=1$, and [3] for general k). Since then, a considerable amount of research has been carried out towards the study of $r c_{k}(G)$, see [8] for a survey on this topic.

[^0]Similar to the concept of rainbow k-connectivity, Krivelevich and Yuster [6] (2009), Liu et al.[9](2013) proposed the concept of rainbow vertex k-connectivity. A vertex-coloring of a graph G is a mapping from $V(G)$ to some finite set of colors. A vertex colored path is vertex-rainbow if its internal vertices have distinct colors. A vertex-coloring of a connected graph G, not necessarily proper, is rainbow vertex k-connected if any two vertices of G are connected by k disjoint vertex-rainbow paths. The rainbow vertex k-connectivity of G, denoted by $r v c_{k}(G)$, is the minimum integer t so that there exists a rainbow vertex k-connected coloring of G, using t colors. For convenience, we write $\operatorname{rvc}(G)$ for $r v c_{1}(G)$. By Menger's theorem[10], $r c_{k}(G)$ and $r v c_{k}(G)$ are well defined if and only if G is a connected graph satisfying $1 \leq k \leq \kappa(G)$.

Let G be a connected graph. Note that $\operatorname{rvc}(G)=0$ if and only if G is a complete graph. Let $\operatorname{diam}(G)$ denote the diameter of G. Then $\operatorname{rvc}(G) \geq$ $\operatorname{diam}(G)-1$ with equality if $k=1$ and $\operatorname{diam}(G)=1$ or 2 . For $u, v \in$ $V(G)$, let $d_{k}(u, v)$ be the minimum possible length of the longest path in a set of k disjoint $u-v$ paths. The k-diameter of G is $\operatorname{diam}_{k}(G)=$ $\max _{u, v \in V(G)} d_{k}(u, v)$. Hence $\operatorname{diam}_{1}(G)=\operatorname{diam}(G)$. An easy observation is that $r v c_{k}(G) \geq \operatorname{diam}_{k}(G)-1$. If $k \geq 2$, then $r v c_{k}(G) \geq 1$, and equality holds if G is a complete graph with at least three vertices.

Krivelevich and Yuster [6] proved that if G is a connected graph with n vertices and minimum degree δ, then $\operatorname{rvc}(G)<11 n / \delta$. It was shown[4] that the computation of $\operatorname{rvc}(G)$ is NP-hard. It was proved in [7] that $\operatorname{rvc}(G)=n-2$ if and only if G is a path of order n. In [9], Liu et al. determined the precise values of $r v c_{k}(G)$ when G is a cycle, a wheel, and a complete multipartite graph. The foregoing results motivate us to consider the rainbow vertex connectivities of some special graph classes.

In [5], Fujie-Okamoto et al. investigated the rainbow connectivities of all small cubic graphs of order 8 or less. In this paper, we determine the rainbow vertex connectivities of all small cubic graphs of order 8 or less. Suppose that G is a connected cubic graph of order $n \leq 8$. Since $3 n=\sum_{v \in V(G)} \operatorname{deg}(v)=2|E(G)|$ implies that n is even, we have $n=4,6,8$. If $n=4$, then $G=K_{4}$. If $n=6$, then the complement graph \bar{G} is 2-regular, so that $\bar{G}=2 C_{3}$ or C_{6}. This gives $G=K_{3,3}$ or $K_{3} \square K_{2}$, where \square denotes Cartesian product. If $n=8$, then we obtain five connected cubic graphs by [11], which are depicted in Figure 1.

It is easy to verify that $r v c\left(K_{4}\right)=0$, and $r v c_{2}\left(K_{4}\right)=r v c_{3}\left(K_{4}\right)=1$. It was also shown in [9] that $\operatorname{rvc}\left(K_{3,3}\right)=1$, and $r v c_{2}\left(K_{3,3}\right)=r v c_{3}\left(K_{3,3}\right)=2$.

Our main result is stated as follows.

Theorem 1.1. (a) $r v c\left(K_{3} \square K_{2}\right)=1, r v c_{2}\left(K_{3} \square K_{2}\right)=2, r v c_{3}\left(K_{3} \square K_{2}\right)$ $=3$.
(b) (i) $\operatorname{rvc}\left(Q_{3}\right)=r v c_{2}\left(Q_{3}\right)=2, r v c_{3}\left(Q_{3}\right)=4$.
(ii) $\operatorname{rvc}\left(M_{8}\right)=1, r v c_{2}\left(M_{8}\right)=3, r v c_{3}\left(M_{8}\right)=4$.
(iii) $\operatorname{rvc}\left(F_{1}\right)=2, r v c_{2}\left(F_{1}\right)=3, r v c_{3}\left(F_{1}\right)=5$.
(iv) $\operatorname{rvc}\left(F_{2}\right)=2, r v c_{2}\left(F_{2}\right)=4$.
(v) $\operatorname{rvc}\left(F_{3}\right)=1, r v c_{2}\left(F_{3}\right)=3, r v c_{3}\left(F_{3}\right)=4$.

Figure 1: Connected cubic graphs of order 8.

2. Proof of Theorem 1.1

By proving the following lemma, we determine the rainbow vertex connectivities of $K_{3} \square K_{2}$.

Lemma 2.1. Let $G=K_{3} \square K_{2}$. Then $\operatorname{rvc}(G)=1, r v c_{2}(G)=2$ and $r v c_{3}(G)=3$.

Proof. Let $V(G)=\left\{u_{1}, u_{2}, u_{3}\right\} \cup\left\{v_{1}, v_{2}, v_{3}\right\}$ such that $u_{i} u_{j}, v_{i} v_{j}, u_{i} v_{i} \in$ $E(G)$, where $1 \leq i, j \leq 3$ with $i \neq j$. Since $\operatorname{diam}(G)=2$, we have $\operatorname{rvc}(G)=$ 1. It is not hard to see that $\operatorname{diam}_{2}(G)=3$. Thus $r v c_{2}(G) \geq 2$. By giving u_{i} color 1 and v_{i} color 2 for $1 \leq i \leq 3$, this is a vertex-coloring of G with $r v c_{2}(G) \leq 2$.

Suppose $r v c_{3}(G)=2$. Assign a rainbow vertex 3 -connected coloring c with colors 1 and 2 to G. Since one of the three vertex-rainbow paths between v_{1} and v_{2} must be $v_{1} u_{1} u_{2} v_{2}$, this implies $c\left(u_{1}\right) \neq c\left(u_{2}\right)$. By the same argument, we obtain that $c\left(u_{2}\right) \neq c\left(u_{3}\right)$ and $c\left(u_{1}\right) \neq c\left(u_{3}\right)$, a contradiction. Thus $r v c_{3}(G) \geq 3$. The following coloring c^{\prime} with colors 1,2 and 3 induces a vertex-coloring of G with $r v c_{3}(G) \leq 3: c^{\prime}\left(u_{1}\right)=c^{\prime}\left(v_{3}\right)=1, c^{\prime}\left(u_{2}\right)=$ $c^{\prime}\left(v_{1}\right)=2$ and $c^{\prime}\left(u_{3}\right)=c^{\prime}\left(v_{2}\right)=3$.

We now consider the rainbow vertex connectivities of the five connected cubic graphs as depicted in Figure 1.

Recall that the 3-dimensional cube Q_{3} is a cubic graph of diameter 3 and connectivity 3 . Hence $r v c_{3}\left(Q_{3}\right) \geq r v c_{2}\left(Q_{3}\right) \geq r v c\left(Q_{3}\right) \geq 2$. Assigning a vertex-coloring to Q_{3} with colors 1 and 2 as Figure 2(a), we can easily check that any two distinct vertices of Q_{3} are connected by two disjoint vertex-rainbow paths. Thus $r v c_{2}\left(Q_{3}\right)=r v c\left(Q_{3}\right)=2$. Now we only need to determine $r v c_{3}\left(Q_{3}\right)$ (see Figure 2(b)).

(a)

(b)

Figure 2: The rainbow vertex 2-connectivity of Q_{3}.

Lemma 2.2. $r v c_{3}\left(Q_{3}\right)=4$.
Proof. Let c be a rainbow vertex 3-connected coloring of Q_{3}.
(i) Without loss of generality, consider u_{1} and u_{2}. Since in any set of three disjoint $u_{1}-u_{2}$ paths, one path contains v_{1} and v_{2}, we must have $c\left(v_{1}\right) \neq c\left(v_{2}\right)$. By symmetry, any two adjacent vertices of Q_{3} must be colored by distinct colors.
(ii) Since one of the three vertex-rainbow $u_{1}-v_{2}$ paths must be $u_{1} u_{4} v_{4} v_{3} v_{2}$ or $u_{1} u_{4} u_{3} v_{3} v_{2}$, this implies $c\left(u_{4}\right) \neq c\left(v_{3}\right)$. By symmetry, for any distinct vertices u, v of Q_{3} satisfying $d(u, v)=2$, we obtain $c(u) \neq c(v)$.

Combining (i) and (ii), we conclude that $c\left(u_{1}\right), c\left(u_{2}\right), c\left(u_{3}\right), c\left(u_{4}\right)$ are distinct, so that $r v c_{3}\left(Q_{3}\right) \geq 4$. Now, define the vertex-coloring c^{\prime} on Q_{3} as follows: $c^{\prime}\left(v_{1}\right)=c^{\prime}\left(u_{3}\right)=1, c^{\prime}\left(v_{3}\right)=c^{\prime}\left(u_{1}\right)=2, c^{\prime}\left(v_{2}\right)=c^{\prime}\left(u_{4}\right)=3$, and $c^{\prime}\left(v_{4}\right)=c^{\prime}\left(u_{2}\right)=4$. It is easy to verify that the vertex-coloring c^{\prime} is rainbow vertex 3 -connected. Therefore, $r v c_{3}\left(Q_{3}\right) \leq 4$.

Recall that M_{8} is the Möbius ladder of order 8, or the Wagner graph. Since $\operatorname{diam}\left(M_{8}\right)=2$, it follows that $\operatorname{rvc}\left(M_{8}\right)=1$. Observe that $\kappa\left(M_{8}\right)=3$. This implies that we need to consider $r v c_{2}\left(M_{8}\right)$ and $r v c_{3}\left(M_{8}\right)$ (see Figure $3(a)$).

Lemma 2.3. $r v c_{2}\left(M_{8}\right)=3$ and $r v c_{3}\left(M_{8}\right)=4$.
Proof. First, it is easy to see that $\operatorname{diam}_{2}\left(M_{8}\right)=3$, so that $r v c_{2}\left(M_{8}\right) \geq 2$. Suppose $r v c_{2}\left(M_{8}\right)=2$. Let c be a rainbow vertex 2-connected coloring with colors 1 and 2. One of the following must occur.
(i) $c\left(u_{2 i-1}\right)=1$ and $c\left(u_{2 i}\right)=2$, where $1 \leq i \leq 4$. However, there is no set of two disjoint vertex-rainbow $u_{1}-u_{5}$ paths, a contradiction.
(ii) There exist two adjacent vertices, without loss of generality, u_{1} and u_{2} satisfying $c\left(u_{1}\right)=c\left(u_{2}\right)$. However, there is no set of two disjoint vertexrainbow $u_{5}-u_{6}$ paths, another contradiction.

By (i) and (ii), we have $r v c_{2}\left(M_{8}\right) \geq 3$. Since there exists a rainbow vertex 2 -connected coloring with three colors shown in Figure $3(b)$, this implies that $r v c_{2}\left(M_{8}\right)=3$.

Next, we show that $r v c_{3}\left(M_{8}\right)=4$. Since there exists a rainbow vertex 3 -connected coloring with four colors(see Figure $3(c)$), we have $3 \leq$ $r v c_{3}\left(M_{8}\right) \leq 4$. Now we only need to prove that $r v c_{3}\left(M_{8}\right) \neq 3$. To the contrary, suppose there exists a rainbow vertex 3 -connected coloring c of M_{8}, using colors 1,2 and 3 .

Let $C=u_{1} u_{2} \cdots u_{8} u_{1}$ be a Hamiltonian cycle in M_{8} and consider two adjacent vertices u and v of C. By symmetry, assume that $u=u_{1}$ and $v=u_{2}$. If $c\left(u_{1}\right)=c\left(u_{2}\right)$, then there is no set of three disjoint vertex-rainbow paths between u_{3} and u_{8}, a contradiction. Hence any two adjacent vertices of C must be colored differently. Therefore, there must exist three vertices u, v, w of C such that $c(u) \neq c(v), c(v) \neq c(w)$ and $c(u)=c(w)$, where $u v, v w \in E(C)$. Without loss of generality, assume that $c\left(u_{1}\right)=1, c\left(u_{2}\right)=2$ and $c\left(u_{3}\right)=1$. We have $c\left(u_{4}\right), c\left(u_{8}\right) \in\{2,3\}, c\left(u_{5}\right), c\left(u_{6}\right), c\left(u_{7}\right) \in\{1,2,3\}$ and $c\left(u_{i}\right) \neq c\left(u_{i+1}\right)$ for $4 \leq i \leq 7$.

Since the coloring c is rainbow vertex 3 -connected, we have, for all $1 \leq i \leq 8$, the three disjoint vertex-rainbow $u_{i}-u_{i+4}$ paths are either $\left\{u_{i} u_{i+4}, u_{i} u_{i+1} \cdots u_{i+4}, u_{i} u_{i-1} \cdots u_{i-4}\right\}$ or $\left\{u_{i} u_{i+4}, u_{i} u_{i+1} u_{i+5} u_{i+4}, u_{i} u_{i-1}\right.$ $\left.u_{i+3} u_{i+4}\right\}$, with all indices taken modulo 8. By considering the pair $\left\{u_{4}, u_{8}\right\}$, we have $c\left(u_{5}\right), c\left(u_{7}\right) \in\{2,3\}$. By considering the pair $\left\{u_{1}, u_{5}\right\}$, we have $\left(c\left(u_{4}\right), c\left(u_{8}\right)\right) \neq(2,2)$, and we may assume that $c\left(u_{4}\right)=3$, which implies $c\left(u_{5}\right)=2$. If $c\left(u_{6}\right)=3$, then by considering the pair $\left\{u_{3}, u_{7}\right\}$, we have $c\left(u_{8}\right)=2$, but then, $c\left(u_{7}\right)=1$, a contradiction. Hence $c\left(u_{6}\right)=1$, and $\left(c\left(u_{4}\right), c\left(u_{5}\right), c\left(u_{6}\right), c\left(u_{7}\right), c\left(u_{8}\right)\right) \in\{(3,2,1,2,3),(3,2,1,3,2)\}$. But then, there is no set of three disjoint vertex-rainbow $u_{3}-u_{4}$ paths, a final contradiction.

Hence $r v c_{3}\left(M_{8}\right) \neq 3$, implying that $r v c_{3}\left(M_{8}\right)=4$.

We now determine the rainbow vertex connectivities of the graph F_{1} depicted in Figure $4(a)$. Notice that $\kappa\left(F_{1}\right)=3$.

Lemma 2.4. $\operatorname{rvc}\left(F_{1}\right)=2, r v c_{2}\left(F_{1}\right)=3$ and $r v c_{3}\left(F_{1}\right)=5$.
Proof. Evidently, there exists a rainbow vertex connected coloring depicted in Figure $4(b)$, which follows that $\operatorname{rvc}\left(F_{1}\right) \leq 2$. Since $\operatorname{diam}\left(F_{1}\right)=3$, this implies $\operatorname{rvc}\left(F_{1}\right) \geq 2$, and so $\operatorname{rvc}\left(F_{1}\right)=2$.

Figure 3: The rainbow vertex 2 and 3 -connectivity of M_{8}.

Next, we prove that $r v c_{2}\left(F_{1}\right)=3$. Considering the two vertices w_{1} and w_{2}, any set of two disjoint $w_{1}-w_{2}$ paths contains a path of length at least 4. Thus $r v c_{2}\left(F_{1}\right) \geq 3$. On the other hand, Figure $4(c)$ provides a rainbow vertex 2 -connected coloring with three colors. Hence $r v c_{2}\left(F_{1}\right)=3$.

Finally, we show that $r v c_{3}\left(F_{1}\right)=5$. Let c be a rainbow vertex 3 connected coloring with k colors. The following statements must occur.
(i) $c\left(v_{1}\right), c\left(v_{2}\right), c\left(v_{3}\right)$ are distinct. (Consider vertex-rainbow $w_{1}-w_{2}$ paths.)
(ii) $c\left(w_{2}\right) \neq c\left(v_{2}\right)$. (Consider vertex-rainbow $w_{1}-v_{1}$ paths.)
(iii) $c\left(w_{1}\right) \neq c\left(v_{2}\right)$. (Consider vertex-rainbow $w_{2}-v_{3}$ paths.)
(iv) $c\left(w_{1}\right), c\left(w_{2}\right), c\left(v_{3}\right)$ are distinct, and $c\left(w_{1}\right), c\left(w_{2}\right), c\left(v_{1}\right)$ are distinct. (Consider vertex-rainbow $v_{1}-v_{2}$ paths and $v_{2}-v_{3}$ paths, respectively.)

Combining (i), (ii), (iii) and (iv), we obtain that $c\left(v_{1}\right), c\left(v_{2}\right), c\left(v_{3}\right), c\left(w_{1}\right)$, $c\left(w_{2}\right)$ are distinct. Thus $k \geq 5$, implying that $r v c_{3}\left(F_{1}\right) \geq 5$. On the other hand, there exists a rainbow vertex 3 -connected coloring with five colors shown in Figure $4(d)$. It follows that $r v c_{3}\left(F_{1}\right)=5$.

Figure 4: The rainbow vertex connectivities of F_{1}.
Now, we are in a position to determine the rainbow vertex connectivities of the graph F_{2} in Figure $5(a)$. Since F_{2} has connectivity 2, we only consider $r v c\left(F_{2}\right)$ and $r v c_{2}\left(F_{2}\right)$.

Lemma 2.5. $\operatorname{rvc}\left(F_{2}\right)=2$ and $r v c_{2}\left(F_{2}\right)=4$.
Proof. Since $\operatorname{diam}\left(F_{2}\right)=3$, this implies $\operatorname{rvc}\left(F_{2}\right) \geq \operatorname{diam}\left(F_{2}\right)-1=2$. Observe that Figure $5(b)$ shows a rainbow vertex connected coloring. Thus $r v c\left(F_{2}\right)=2$.

For u_{1} and v_{1}, any set of two disjoint $u_{1}-v_{1}$ paths consists of a path of length 1 and a path of length at least 5 . It follows that $r v c_{2}\left(F_{2}\right) \geq$ $\operatorname{diam}_{2}\left(F_{2}\right)-1=4$. Since there exists a rainbow vertex 2 -connected coloring depicted in Figure $5(c)$, we have $r v c_{2}\left(F_{2}\right)=4$.

(a)

(b)

(c)

Figure 5: The rainbow vertex 1 and 2-connectivity of F_{2}.

Finally, we determine the rainbow vertex connectivities of the graph F_{3} as shown in Figure $6(a)$. Since $\operatorname{diam}\left(F_{3}\right)=2$, it follows that $\operatorname{rvc}\left(F_{3}\right)=1$. Note that $\kappa\left(F_{3}\right)=3$, we need to consider $r v c_{2}\left(F_{3}\right)$ and $r v c_{3}\left(F_{3}\right)$.
Lemma 2.6. $r v c_{2}\left(F_{3}\right)=3$ and $r v c_{3}\left(F_{3}\right)=4$.
Proof. First, we prove that $r v c_{2}\left(F_{3}\right)=3$. Considering u_{2} and v_{2}, any set of two disjoint $u_{2}-v_{2}$ paths contains a path of length at least 4 . Thus $r v c_{2}\left(F_{3}\right) \geq 3$. On the other hand, it is easy to check that the vertex-coloring depicted in Figure 6(b) is rainbow vertex 2 -connected, which follows that $r v c_{2}\left(F_{3}\right)=3$.

Next, we show that $r v c_{3}\left(F_{3}\right)=4$. Since there exists a rainbow vertex 3 -connected coloring, using four colors(see Figure $6(c)$), we have $3 \leq$ $r v c_{3}\left(F_{3}\right) \leq 4$. Now we only need to prove that $r v c_{3}\left(F_{3}\right) \neq 3$. To the contrary, suppose there exists a rainbow vertex 3 -connected coloring c with colors 1,2 and 3 . For every pair $\left\{v_{i}, v_{j}\right\}$, where $i \neq j$ and $1 \leq i, j \leq 3$, we have that $v_{i} u_{i} w u_{j} v_{j}$ is a vertex-rainbow path for some $w \in\left\{w_{1}, w_{2}\right\}$. Hence $c\left(u_{i}\right) \neq c\left(u_{j}\right)$. Without loss of generality, assume that $c\left(u_{1}\right)=1, c\left(u_{2}\right)=2$ and $c\left(u_{3}\right)=3$. Considering the pairs $\left\{u_{i}, u_{j}\right\}$, where $i \neq j$ and $1 \leq i, j \leq 3$, gives that $c\left(v_{1}\right), c\left(v_{2}\right), c\left(v_{3}\right)$ are distinct. By considering the pair $\left\{u_{2}, v_{2}\right\}$, $u_{2} w^{\prime} u_{1} v_{1} v_{2}$ and $u_{2} w^{\prime \prime} u_{3} v_{3} v_{2}$ must be two vertex-rainbow paths, where
$\left\{w^{\prime}, w^{\prime \prime}\right\}=\left\{w_{1}, w_{2}\right\}$. Hence $c\left(u_{1}\right) \neq c\left(v_{1}\right)$ and $c\left(u_{3}\right) \neq c\left(v_{3}\right)$. Furthermore, we obtain $c\left(u_{2}\right) \neq c\left(v_{2}\right)$ by considering the three disjoint vertex-rainbow paths between u_{1} and v_{1}.

Figure 6: The rainbow vertex 2 and 3 -connectivity of F_{3}.

With the above arguments, we have that $\left(c\left(v_{1}\right), c\left(v_{2}\right), c\left(v_{3}\right)\right)=(2,3,1)$ or $(3,1,2)$. By the obvious symmetry of F_{3}, it suffices to consider $\left(c\left(v_{1}\right), c\left(v_{2}\right)\right.$, $\left.c\left(v_{3}\right)\right)=(2,3,1)$. Consider the two pairs vertices $\left\{u_{2}, w_{i}\right\}$ with $1 \leq i \leq 2$. Since there exist three disjoint vertex-rainbow $u_{2}-w_{i}$ paths, we obtain $c\left(u_{3}\right) \neq c\left(w_{i}\right)$. Hence $c\left(w_{1}\right), c\left(w_{2}\right) \in\{1,2\}$. However, there is no set of three disjoint vertex-rainbow $u_{2}-v_{2}$ paths, a contradiction.

Therefore, $r v c_{3}\left(F_{3}\right) \neq 3$, and so $r v c_{3}\left(F_{3}\right)=4$.
By Lemmas 2.1, 2.2, 2.3, 2.4, 2.5 and 2.6, Theorem 1.1 is immediate.
Acknowledgement. The authors are very grateful to the referee for helpful comments and suggestions.

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory, Springer, Berlin, 2008.
[2] G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, Rainbow connection in graphs, Math. Bohem. 133(2008), 85-98.
[3] G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, The rainbow connectivity of a graph, Networks 54 (2009), 75 C 81.
[4] L.L. Chen, X.L. Li and Y.T. Shi, The complexity of determining the rainbow vertexconnection of graphs, Theoret Comput Sci. 412(2011), 4531-4535.
[5] F. Fujie-Okamoto, G.L. Johns and P. Zhang, The rainbow connectivities of small cubic graphs, Ars Combin. 105(2012), 129-147.
[6] M. Krivelevich, R. Yuster, The rainbow connection of a graph is (at most) reciprocal to its minimum degree, J. Graph Theory 63(2009), 185-191.
[7] X.L. Li, Y.P. Mao and Y.T. Shi, The strong rainbow vertex-connection of graphs, Util Math., to appear.
[8] X.L. Li, Y.F. Sun, Rainbow Connections of Graphs, Springer, New York, 2012.
[9] H. Liu, A. Mestre and T. Sousa, Rainbow vertex k-connection in graphs, Discrete Appl. Math. 161(2013), 2549-2555.
[10] K. Menger, Zur allgemeinen Kurventheorie, Fund. Math. 10(1927), 96-115.
[11] R. Read, R. Wilson, An Atlas of Graphs, Oxford University Press, New York, 1998.
Z. P. Lu, Center for Combinatorics, LPMC-TJKLC, Nankai University, Tianjin 300071, P. R. China

E-mail address: lu@nankai.edu.cn
Y. B. Ma, Center for Combinatorics, LPMC-TJKLC, Nankai University, Tianjin 300071, P. R. China

E-mail address: mayingbincw@gmail.com

[^0]: Mathematics Subject Classification 2010: 05C15, 05C38, 05C40.
 This work partially supported by the NSFC (No. 11271267 and No.11371204.)
 Corresponding author: Y.B. Ma(E-mail: mayingbincw@gmail.com).

