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Abstract

Gutman and Wagner proposed the concept of the matching energy (ME)
and pointed out that the chemical applications of ME go back to the
1970s. Let G be a simple graph of order n and µ1, µ2, . . . , µn be the
roots of its matching polynomial. The matching energy of G is defined
to be the sum of the absolute values of µi (i = 1, 2, . . . , n). Gutman and
Cvetkoić determined the tricyclic graphs on n vertices with maximal
number of matchings by a computer search for small values of n and
by an induction argument for the rest. Based on this result, in this
paper, we characterize the graphs with the maximal value of matching
energy among all tricyclic graphs, and completely determine the tricyclic
graphs with the maximal matching energy. We prove our result by using
Coulson-type integral formula of matching energy, which is similar as
the method to comparing the energies of two quasi-order incomparable
graphs.

1 Introduction

In this paper, all graphs under our consideration are finite, connected, undirected and

simple. For more notations and terminologies that will be used in the sequel, we refer

to [2]. Let G be such a graph, and let n and m be the number of its vertices and
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edges, respectively. A matching in a graph G is a set of pairwise nonadjacent edges. A

matching M is called a k-matching if the size of M is k. Denote by m(G, k) the number

of k-matchings of G, where m(G, 1) = m and m(G, k) = 0 for k > bn
2
c or k < 0. In

addition, define m(G, 0) = 1. The matching polynomial of graph G is defined as

α(G) = α(G, x) =
∑

k≥0

(−1)km(G, k)xn−2k.

In 1977, Gutman [4] proposed the concept of graph energy. The energy of G is

defined as the sum of the absolute values of its eigenvalues, namely,

E(G) =
n∑

i=1

|λi|,

where λ1, λ2, . . . , λn denote the eigenvalues of G. The theory of graph energy is well

developed. The graph energy has been rather widely studied by theoretical chemists

and mathematicians. For details, we refer the book on graph energy [24] and reviews

[8, 10]. Recently, Gutman and Wagner [13] defined the matching energy of a graph G

based on the zeros of its matching polynomial [3, 5].

Definition 1.1 Let G be a simple graph with order n, and µ1, µ2, . . . , µn be the zeros

of its matching polynomial. Then,

ME(G) =
n∑

i=1

|µi|. (1.1)

Moreover, Gutman and Wagner [13] pointed out that the matching energy is a quantity

of relevance for chemical applications. They arrived at the simple relation:

TRE(G) = E(G)−ME(G),

where TRE(G) is the so-called “topological resonance energy” of G. About the chemical

applications of matching energy, for more details see [1, 11,12].

An important tool of graph energy is the Coulson-type integral formula [4] (with

regard to G be a tree T ):

E(T ) =
2

π

∫ ∞

0

1

x2
ln

[ ∑

k≥0

m(T, k)x2k
]
dx, (1.2)



which is valid for any tree T (or, more generally, for any forest). Being similar to

Eq.(1.2), the matching energy also has a beautiful formula as follows [13].

Proposition 1.2 Let G be a simple graph of order n, and m(G, k) be the number of

its k-matchings, k = 0, 1, 2, . . . , bn
2
c. The matching energy of G is given by

ME = ME(G) =
2

π

∫ ∞

0

1

x2
ln

[ ∑

k≥0

m(G, k)x2k
]
dx. (1.3)

Combining Eq.(1.2) with Eq.(1.3), it immediately follows that: if G is a forest, then

its matching energy coincides with its energy.

Formula (1.2) implies that the energy of a tree is a monotonically increasing function

of any m(T, k). In particular, if T
′
and T

′′
are two trees for which m(T

′
, k) ≥ m(T

′′
, k)

holds for all k ≥ 1, then E(T
′
) ≥ E(T

′′
). If, in addition, m(T

′
, k) > m(T

′′
, k) for at

least one k, then E(T
′
) > E(T

′′
). Obviously, by Formula (1.3) and the monotonicity

of the logarithm function, the result is also valid for ME. Thus, we can define a

quasi-order “º” as follows: If two graphs G1 and G2 have the same order and size,

then

G1 º G2 ⇐⇒ m(G1, k) ≥ m(G2, k) for 1 ≤ k ≤
⌊n

2

⌋
. (1.4)

And if G1 º G2 we say that G1 is m-greater than G2 or G2 is m-smaller than G1. If

G1 º G2 and G2 º G1, the graphs G1 and G2 are said to be m-equivalent, denote it by

G1 ∼ G2. If G1 º G2, but the graphs G1 and G2 are not m-equivalent (i.e., there exists

some k such that m(G1, k) > m(G2, k)), then we say that G1 is strictly m-greater than

G2, write G1 Â G2. If neither G1 º G2 nor G2 º G1, the two graphs G1 and G2 are

said to be m-incomparable and we denote this by G1#G2.

The relation ∼ is an equivalence relation in any set of graphs γ. The corresponding

equivalence classes will be called matching equivalence classes (of the set γ). The

relation º induces a partial ordering of the set γ/ ∼. An equivalence class is said

to be the greatest if it is greater than any of other class. A class is maximal if there

is no other class greater than it. The graphs belonging to greatest (resp. maximal)



matching equivalence classes will be said to be m-greatest(resp. m-maximal) in the set

considered.

According to Eq.(1.3) and Eq.(1.4), we have

G1 º G2 =⇒ ME(G1) ≥ ME(G2)

and

G1 Â G2 =⇒ ME(G1) > ME(G2).

It follows that the m-greatest graphs must have greatest matching energy, and the

m-maximal graphs must have greater matching energy than other graphs not to be

m-maximal.

A connected simple graph with n vertices and n, (n + 1), (n + 2) edges are called

unicyclic, bicyclic, tricyclic graphs, respectively. Denote by Bn the set of all connected

bicyclic graphs of order n, and by Tn the set of all connected tricyclic graphs on n

vertices. Let S∗n denote the graph obtained by joining one pendant vertex of Sn to its

other two pendant vertices, respectively. Similarly, let S∗∗n be the graph obtained by

joining one pendent vertex of Sn to its another three pendent vertices, respectively.

Let Kn−4
4 denote the graph obtained by attaching (n − 4) pendent vertices to one of

the four vertices of K4. Of course, S∗∗n , Kn−4
4 ∈ Tn (as shown in Fig. 1.1). Denote by

Cn the cycle graph of order n and Pn the path graph of order n, and let P k,`
n be the

graph obtained by connecting two cycles Ck and C` with a path Pn−k−`.

S
∗∗

n

· · ·
.

.

.

K
n−4

4

Figure 1.1: Tricyclic graphs with minimal matching energy.

As the research of extremal graph energy is an amusing work (for some newest

literatures see [14–18, 22]), the study on extremal matching energy is also interesting.



In [13], the authors gave some elementary results on the matching energy and obtained

that ME(S+
n ) ≤ ME(G) ≤ ME(Cn) for any unicyclic graph G, where S+

n is the graph

obtained by adding a new edge to the star Sn. In [20], Ji et al. proved that for G ∈ Bn

with n ≥ 10 and n = 8, ME(S∗n) ≤ ME(G) ≤ ME(P 4,n−4
n ). In [19], the authors

characterize the connected graphs (and bipartite graph) of order n having minimum

matching energy with m (n + 2 ≤ m ≤ 2n − 4) (n ≤ m ≤ 2n − 5) edges. Especially,

among all tricyclic graphs of order n ≥ 5, ME(G) ≥ ME(S∗∗n ), with equality if and

only if G ∼= S∗∗n or G ∼= Kn−4
4 . For more results on the matching energy, we refer

to [21, 23]. In this paper, we characterize the graphs with the maximal matching

energy among all tricyclic graphs, and completely determine the tricyclic graphs with

the maximal matching energy.

2 Main Results

In the 1980s, Gutman determined the unicyclic [6], bicyclic [7], tricyclic [9] graphs with

maximal matchings, i.e., graphs that are extremal with regard to the quasi-ordering

º. We introduce the result on tricyclic graphs, which will be used in our proof.

Lemma 2.1 ( [9]) In the set of all tricyclic graphs with n vertices (n ≥ 4) the greatest

matching equivalence class exists only for n = 4, 5, 6, 7, 8 and 9. For n ≥ 10 there

exist two maximal matching equivalence classes. All these equivalence classes possess

a unique element, except for n = 9, when the number of m-greatest graph is two. The

corresponding graphs are presented in Fig. 2.2.

Our results are obtained based on the result of Lemma 2.1.

Theorem 2.2 Let G ∈ Tn with n ≥ 5. Then for n = 5, ME(G) ≤ ME(G5); for

n = 6, ME(G) ≤ ME(G6); for n = 7, ME(G) ≤ ME(G7); for n = 8, ME(G) ≤
ME(G8); for n = 9, ME(G) ≤ ME(G9

(1)) = ME(G9
(2)); for n = 10, ME(G) ≤

ME(G10
(2)); for n = 11, ME(G) ≤ ME(G11

(2)); for n = 12, ME(G) ≤ ME(G12
(2)); for

n = 13, ME(G) ≤ ME(G13
(2)); for n ≥ 14, ME(G) ≤ ME(Gn

(2)), with equality if and
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Figure 2.2: The tricyclic graphs with a maximal number of matchings.

only if G ∼= Gn
(2), where G5, G6, G7, G8, G9

(1), G9
(2), G10

(2), G11
(2), G12

(2), G13
(2), Gn

(2) are the

graphs shown in Fig. 2.2.

We will prove our theorem by using Coulson-type integral formula of matching

energy Eq.(1.3), which is similar as the method to comparing the energies of two

quasi-order incomparable graphs [14–18,22]. The following lemmas are needed.

Lemma 2.3 ( [25]) For any real number X > −1, we have

X

1 + X
≤ ln(1 + X) ≤ X. (2.1)

Let G be a simple graph. Let e be an edge of G connecting the vertices vr and vs.

By G(e/j) we denote the graph obtained by inserting j (j ≥ 0) new vertices (of degree

two) on the edge e. Hence if G has n vertices, then G(e/j) has n + j vertices; if j = 0,

then G(e/j) = G; if j > 0, then the vertices vr and vs are not adjacent in G(e/j).

There is such a result on the number of k-matchings of the graph G(e/j).



Lemma 2.4 ( [9]) For all j ≥ 0,

m(G(e/j + 2), k) = m(G(e/j + 1), k) + m(G(e/j), k − 1).

We will divide Theorem 2.2 into the following two theorems according to the values

of n.

Theorem 2.5 Let G ∈ Tn with n ≥ 5. Then:

for n = 5, ME(G) ≤ ME(G5); for n = 6, ME(G) ≤ ME(G6); for n = 7, ME(G) ≤
ME(G7); for n = 8, ME(G) ≤ ME(G8); for n = 9, ME(G) ≤ ME(G9

(1)) =

ME(G9
(2)); for n = 10, ME(G) ≤ ME(G10

(2)); for n = 11, ME(G) ≤ ME(G11
(2));

for n = 12, ME(G) ≤ ME(G12
(2)); for n = 13, ME(G) ≤ ME(G13

(2)), where G5, G6,

G7, G8, G9
(1), G9

(2), G10
(2), G11

(2), G12
(2), G13

(2) are the graphs shown in Fig. 2.2. In each

case, the equality holds if and only if G is isomorphic to the corresponding graph with

maximal matching energy.

Proof. Let G be a graph in Tn with n vertices.

For n = 5, 6, 7, 8, by Lemma 2.1, Gn is the m-greatest graph. We have known that

the m-greatest graphs must have greatest matching energy. Hence if G � Gn, then

ME(G) < ME(Gn).

When n = 9, G9
(1) and G9

(2) are m-equivalent, that is, m(G9
(1), k) = m(G9

(2), k) for

all k. Then by Eq.(1.3), we have ME(G9
(1)) = ME(G9

(2)). Moreover, if G � G9
(1) and

G � G9
(2), then ME(G) < ME(G9

(1)) = ME(G9
(2)) since (G9

(1) ∼ G9
(2)) Â G by Lemma

2.1.

When n = 10, both G10
(1) and G10

(2) are m-maximal. Thus, if G � G10
(1) and G � G10

(2),

then ME(G) < ME(G10
(1)) as well as ME(G) < ME(G10

(2)). In addition, we have

m(G10
(1), 0) = 1, m(G10

(1), 1) = 12, m(G10
(1), 2) = 48, m(G10

(1), 3) = 76, m(G10
(1), 4) = 42,

m(G10
(1), 5) = 5 and m(G10

(2), 0) = 1, m(G10
(2), 1) = 12, m(G10

(2), 2) = 48, m(G10
(2), 3) = 75,

m(G10
(2), 4) = 42, m(G10

(2), 5) = 6. Make use of Eq.(1.3), by computer-aided calcula-

tions, we get ME(G10
(1)) = 13.8644 and ME(G10

(2)) = 13.9042. Therefore, ME(G) <

ME(G10
(1)) < ME(G10

(2)).



For n = 11, 12, 13, both Gn
(1) and Gn

(2) are m-maximal. Similarly, by the help of

computer, we get ME(G11
(1)) = 14.9384, ME(G11

(2)) = 14.9466, ME(G12
(1)) = 16.3946,

ME(G12
(2)) = 16.5052, ME(G13

(1)) = 17.5097, ME(G13
(2)) = 17.5678, respectively. There-

fore, if G � Gn
(2), then we have ME(G) ≤ ME(Gn

(1)) < ME(Gn
(2)).

The proof of the theorem is complete.

Theorem 2.6 Let G ∈ Tn with n ≥ 14. Then ME(G) ≤ ME(Gn
(2)), with equality if

and only if G ∼= Gn
(2), where Gn

(2) is the graph shown in Fig. 2.2.

Proof. By Lemma 2.1, both Gn
(1) and Gn

(2) are m-maximal. The m-maximal graphs

must have greater matching energy than other graphs not to be m-maximal. Thus, if

G � Gn
(1) and G � Gn

(2), then ME(G) < ME(Gn
(1)) and ME(G) < ME(Gn

(2)). It is

sufficient to show that ME(Gn
(1)) < ME(Gn

(2)). We will make full use of the definition

of matching polynomial and Eq.(1.3).

Assume that |G(e/j + 2)| = n, then|G(e/j + 1)| = n − 1 and |G(e/j)| = n − 2.

According to Lemma 2.4, we have

α(G(e/j + 2), x) =
∑

k≥0

(−1)km(G(e/j + 2), k)xn−2k

=
∑

k≥0

(−1)km(G(e/j + 1), k)xn−2k +
∑

k≥0

(−1)km(G(e/j), k − 1)xn−2k

= x
∑

k≥0

(−1)km(G(e/j + 1), k)x(n−1)−2k

−
∑

k≥0

(−1)k−1m(G(e/j), k − 1)x(n−2)−2(k−1)

= xα(G(e/j + 1), x)− α(G(e/j), x).

By the definition of G(e/j), clearly, Gn
(1) = G(1)(e/n− 7) and Gn

(2) = G(2)(e/n− 11),

where G(1) and G(2) are the graphs shown in Fig. 2.3. Therefore, both α(Gn
(1), x) and

α(Gn
(2), x) satisfy the recursive formula

f(n, x) = xf(n− 1, x)− f(n− 2, x).

The general solution of this linear homogeneous recurrence relation is

f(n, x) = C1(x)(Y1(x))n + C2(x)(Y2(x))n,
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Figure 2.3: The fundamental graphs for constructing Gn
(1) and Gn

(2).

where Y1(x) = x+
√

x2−4
2

, Y2(x) = x−√x2−4
2

. By some elementary calculations, we can

easily obtain the values of Ci(x) (i = 1, 2) as follows.

In the following, we first consider α(Gn
(1), x). It is easy to calculate the number of

k-matchings of G(1) and G(1)(e/1): m(G(1), 0) = 1, m(G(1), 1) = 9, m(G(1), 2) = 21,

m(G(1), 3) = 11, m(G(1), k) = 0 for k ≥ 4; m(G(1)(e/1), 0) = 1, m(G(1)(e/1), 1) = 10,

m(G(1)(e/1), 2) = 29, m(G(1)(e/1), 3) = 26, m(G(1)(e/1), 4) = 5, m(G(1)(e/1), k) = 0

for k ≥ 5. Then by Lemma 2.4, we can calculate the values of m(G(1)(e/j), k) for all

j ≥ 2 and k ≥ 0. Thus, take the initial values as:

α(G(1)(e/4), x) = x11 − 13x9 + 59x7 − 114x5 + 89x3 − 21x

= C1(x)(Y1(x))11 + C2(x)(Y2(x))11;

α(G(1)(e/5), x) = x12 − 14x10 + 71x8 − 162x6 + 165x4 − 63x2 + 5

= C1(x)(Y1(x))12 + C2(x)(Y2(x))12.

It is easy to check that Y1(x) + Y2(x) = x and Y1(x) · Y2(x) = 1. Therefore, by solving

the two equalities above, we get

C1(x) =
Y1(x)α(G(1)(e/5), x)− α(G(1)(e/4), x)

(Y1(x))13 − (Y1(x))11

and

C2(x) =
Y2(x)α(G(1)(e/5), x)− α(G(1)(e/4), x)

(Y2(x))13 − (Y2(x))11
.

Define

A1(x) =
Y1(x)α(G(1)(e/5), x)− α(G(1)(e/4), x)

(Y1(x))13 − (Y1(x))11
.

A2(x) =
Y2(x)α(G(1)(e/5), x)− α(G(1)(e/4), x)

(Y2(x))13 − (Y2(x))11
.



Then we have α(Gn
(1), x) = A1(x)(Y1(x))n + A2(x)(Y2(x))n.

Now we consider α(Gn
(2), x). Similarly, we get: m(G(2), 0) = 1, m(G(2), 1) = 13,

m(G(2), 2) = 59, m(G(2), 3) = 112, m(G(2), 4) = 84, m(G(2), 5) = 20, m(G(2), k) = 0 for

k ≥ 6; m(G(2)(e/1), 0) = 1, m(G(2)(e/1), 1) = 14, m(G(2)(e/1), 2) = 71, m(G(2)(e/1), 3) =

161, m(G(2)(e/1), 4) = 164, m(G(2)(e/1), 5) = 68, m(G(2)(e/1), 6) = 8, m(G(2)(e/1), k) =

0 for k ≥ 7. Then calculate the values of m(G(2)(e/j), k) for all j ≥ 2 and k ≥ 0 by

using Lemma 2.4. We can then take the initial values as:

α(G(2), x) = x11 − 13x9 + 59x7 − 112x5 + 84x3 − 20x

= C1(x)(Y1(x))11 + C2(x)(Y2(x))11;

α(G(2)(e/1), x) = x12 − 14x10 + 71x8 − 161x6 + 164x4 − 68x2 + 8

= C1(x)(Y1(x))12 + C2(x)(Y2(x))12.

Therefore, we obtain that:

C1(x) =
Y1(x)α(G(2)(e/1), x)− α(G(2), x)

(Y1(x))13 − (Y1(x))11

and

C2(x) =
Y2(x)α(G(2)(e/1), x)− α(G(2), x)

(Y2(x))13 − (Y2(x))11
.

Define

B1(x) =
Y1(x)α(G(2)(e/1), x)− α(G(2), x)

(Y1(x))13 − (Y1(x))11
.

B2(x) =
Y2(x)α(G(2)(e/1), x)− α(G(2), x)

(Y2(x))13 − (Y2(x))11
.

Then we have α(Gn
(2), x) = B1(x)(Y1(x))n + B2(x)(Y2(x))n.

From the expression of α(G, x), we have

α(G, ix) =
∑

k≥0

(−1)km(G, k)(ix)n−2k = in
∑

k≥0

m(G, k)xn−2k = (ix)n
∑

k≥0

m(G, k)x−2k,



where i2 = −1. Thus, by Eq.(1.3), we get

ME(Gn
(1))−ME(Gn

(2)) =
2

π

∫ ∞

0

1

x2
ln

[ ∑

k≥0

m(Gn
(1), k)x2k

]
dx

− 2

π

∫ ∞

0

1

x2
ln

[ ∑

k≥0

m(Gn
(2), k)x2k

]
dx

=
2

π

∫ ∞

0

1

x2
ln

∑
k≥0

m(Gn
(1), k)x2k

∑
k≥0

m(Gn
(2), k)x2k

dx

=
2

π

∫ ∞

0

ln

∑
k≥0

m(Gn
(1), k)x−2k

∑
k≥0

m(Gn
(2), k)x−2k

dx

=
2

π

∫ ∞

0

ln
α(Gn

(1), ix)

α(Gn
(2), ix)

dx

=
2

π

∫ ∞

0

ln
A1(ix)(Y1(ix))n + A2(ix)(Y2(ix))n

B1(ix)(Y1(ix))n + B2(ix)(Y2(ix))n
dx.

(2.2)

By the definition of Y1(x) and Y2(x), we have Y1(ix) = x+
√

x2+4
2

i and Y2(ix) =

x−√x2+4
2

i. Now we define Z1(x) = −iY1(x) = x+
√

x2+4
2

, Z2(x) = −iY2(x) = x−√x2+4
2

,

and

f1 = iα(G(1)(e/4), ix) = x11 + 13x9 + 59x7 + 114x5 + 89x3 + 21x

f2 = α(G(1)(e/5), ix) = x12 + 14x10 + 71x8 + 162x6 + 165x4 + 63x2 + 5

g1 = iα(G(2), ix) = x11 + 13x9 + 59x7 + 112x5 + 84x3 + 20x

g2 = α(G(2)(e/1), ix) = x12 + 14x10 + 71x8 + 161x6 + 164x4 + 68x2 + 8.

Then we have Y1(ix) = iZ1(x) and Y2(ix) = iZ2(x). Moreover, It follows that

A1(ix) =
iZ1(x)f2 + if1

(iZ1(x))13 − (iZ1(x))11
=

Z1(x)f2 + f1

(Z1(x))11((Z1(x))2 + 1)

A2(ix) =
iZ2(x)f2 + if1

(iZ2(x))13 − (iZ2(x))11
=

Z2(x)f2 + f1

(Z2(x))11((Z2(x))2 + 1)

B1(ix) =
iZ1(x)g2 + ig1

(iZ1(x))13 − (iZ1(x))11
=

Z1(x)g2 + g1

(Z1(x))11((Z1(x))2 + 1)

B2(ix) =
iZ2(x)g2 + ig1

(iZ2(x))13 − (iZ2(x))11
=

Z2(x)g2 + g1

(Z2(x))11((Z2(x))2 + 1)
.



Note that Y1(ix)·Y2(ix) = 1, Z1(x)·Z2(x) = −1, Z1(x)+Z2(x) = x and Z1(x)−Z2(x) =
√

x2 + 4. We will distinguish with two cases.

Case 1. n is odd.

Now we have

ln
A1(ix)(Y1(ix))n+2 + A2(ix)(Y2(ix))n+2

B1(ix)(Y1(ix))n+2 + B2(ix)(Y2(ix))n+2
− ln

A1(ix)(Y1(ix))n + A2(ix)(Y2(ix))n

B1(ix)(Y1(ix))n + B2(ix)(Y2(ix))n

= ln

(
1 +

K0(x)

H0(n, x)

)
,

where

K0(x) = (A1(ix)B2(ix)− A2(ix)B1(ix))((Y1(ix))2 − (Y2(ix))2) = (f2g1 − f1g2)x

= −x18 − 19x16 − 146x14 − 588x12 − 1342x10 − 1750x8 − 1253x6 − 460x4 − 68x2,

and

H0(n, x) = (A1(ix)(Y1(ix))n + A2(ix)(Y2(ix))n)(B1(ix)(Y1(ix))n+2 + B2(ix)(Y2(ix))n+2)

= α(Gn
(1), ix) · α(Gn+2

(2) , ix)

=

(
in

∑

k≥0

m(Gn
(1), k)xn−2k

)(
in+2

∑

k≥0

m(Gn+2
(2) , k)xn+2−2k

)

= i2n+2

(∑

k≥0

m(Gn
(1), k)xn−2k

)(∑

k≥0

m(Gn+2
(2) , k)xn+2−2k

)
.

Obviously, K0(x) < 0. Moreover, since n is odd, we have i2n+2 = 1, it follows that

H0(n, x) is a polynomial such that each term is of positive even degree of x and all

coefficients are positive, i.e., H0(n, x) > 0. Hence, K0(x)
H0(n,x)

< 0, which deduces that

ln(1 + K0(x)
H0(n,x)

) < ln 1 = 0 for x > 0 and odd n. So, the integrand of Eq.(2.2) is

monotonically decreasing on n. Therefore, for n ≥ 14,

∫ ∞

0

ln
α(Gn

(1), ix)

α(Gn
(2), ix)

dx ≤
∫ ∞

0

ln
α(G15

(1), ix)

α(G15
(2), ix)

dx =

∫ ∞

0

ln
α(G(1)(e/8), ix)

α(G(2)(e/4), ix)
dx.

By computer-aided calculations, we get ME(G(1)(e/8)) = 20.0728 and ME(G(2)(e/4)) =

20.1086. And then

∫ ∞

0

ln
α(G(1)(e/8), ix)

α(G(2)(e/4), ix)
dx =

π

2

(
ME(G(1)(e/8))−ME(G(2)(e/4))

)
= −0.05639 < 0.



So
∫∞

0
ln

α(Gn
(1)

,ix)

α(Gn
(2)

,ix)
dx < 0. That is,

ME(Gn
(1))−ME(Gn

(2)) =
2

π

∫ ∞

0

ln
α(Gn

(1), ix)

α(Gn
(2), ix)

dx < 0.

Therefore, ME(Gn
(1)) < ME(Gn

(2)) when n is odd.

Case 2. n is even.

Since x > 0, when n −→∞, we have

A1(ix)(Y1(ix))n + A2(ix)(Y2(ix))n

B1(ix)(Y1(ix))n + B2(ix)(Y2(ix))n
−→ A1(ix)

B1(ix)
.

Then we have

ln
A1(ix)(Y1(ix))n + A2(ix)(Y2(ix))n

B1(ix)(Y1(ix))n + B2(ix)(Y2(ix))n
− ln

A1(ix)

B1(ix)
= ln

(
1 +

K1(n, x)

H1(n, x)

)
,

where

K1(n, x) = A2(ix) ·B1(ix) · (Y2(ix))n − A1(ix) ·B2(ix) · (Y2(ix))n

=
(f2g1 − f1g2)(Z2(x))n

√
x2 + 4

· in

=
(−x17 − 19x15 − 146x13 − 588x11 − 1342x9 − 1750x7 − 1253x5 − 460x3 − 68x)√

x2 + 4

· (Z2(x))n · in,
and

H1(n, x) = A1(ix) ·B1(ix) · (Y1(ix))n + A1(ix) ·B2(ix) · (Y2(ix))n

= A1(ix)(B1(ix) · (Y1(ix))n + B2(ix) · (Y2(ix))n) = A1(ix)α(Gn
(2), ix)

= in · Z1(x)f2 + f1

(Z1(x))11((Z1(x))2 + 1)
·
∑

k≥0

m(Gn
(2), k)xn−2k.

Since n is even, (Z2(x))n > 0. Hence K1(n, x)/in is a polynomial of x with all

coefficients being negative, namely, we always have K1(n, x)/in < 0. On the other

hand, since x > 0, we have Z1(x) = x+
√

x2+4
2

> 0, f1 > 0, f2 > 0 and m(Gn
(2), k) > 0 for

all 0 ≤ k ≤ bn
2
c. Hence H1(n, x)/in is a polynomial of x such that all the coefficients are

positive. Therefore, K1(n,x)
H1(n,x)

< 0 for all x > 0 and even n. Then ln(1+K1(n,x)
H1(n,x)

) < ln 1 = 0,

i.e.,

ln
A1(ix)(Y1(ix))n + A2(ix)(Y2(ix))n

B1(ix)(Y1(ix))n + B2(ix)(Y2(ix))n
< ln

A1(ix)

B1(ix)
.



Thus, we have proved that the integrand of Eq.(2.2) is less than the corresponding

limit function when n is even. Furthermore, since

1 +
A1(ix)−B1(ix)

B1(ix)
=

A1(ix)

B1(ix)
=

Z1(x)f2 + f1

Z1(x)g2 + g1

> 0,

we have A1(ix)−B1(ix)
B1(ix)

> −1. Then by Lemma 2.3, ln A1(ix)
B1(ix)

≤ A1(ix)−B1(ix)
B1(ix)

. By some

computer-aided calculations, we obtain that
∫∞

0
A1(ix)−B1(ix)

B1(ix)
dx = −0.09693. It means

that ∫ ∞

0

ln
A1(ix)

B1(ix)
dx ≤

∫ ∞

0

A1(ix)−B1(ix)

B1(ix)
dx < 0.

Thus,

π

2
(ME(Gn

(1))−ME(Gn
(2))) =

∫ ∞

0

ln
A1(ix)(Y1(ix))n + A2(ix)(Y2(ix))n

B1(ix)(Y1(ix))n + B2(ix)(Y2(ix))n
dx

<

∫ ∞

0

ln
A1(ix)

B1(ix)
dx < 0,

i.e., ME(Gn
(1)) < ME(Gn

(2)) when n is even.

Therefore, for all n ≥ 14, we can always show that

ME(Gn
(1)) < ME(Gn

(2)),

the proof is thus complete.
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