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Abstract. A regular graph is said to be semisymmetric if it is edge-transitive but
not vertex-transitive. In this paper, we give a complete list of connected semisym-
metric cubic graph of square-free order, which consists of one single graph of order
210 and four infinite families of such graphs.

1. introduction

All graphs in this paper are assumed to be simple and finite.
A graph Γ = (V,E) with vertex set V and edge set E is said to be vertex-transitive

or edge-transitive if its automorphism group AutΓ acts transitively on V and E,
respectively. A regular graph is said to be semisymmetric if it is edge-transitive but
not vertex-transitive. Recall that an arc in a graph Γ is an ordered pair of adjacent
vertices. Then a graph Γ is said to be arc-transitive if Γ is vertex-transitive and AutΓ

acts transitively on the set of all arcs in Γ .
The class of semisymmetric graphs was introduced by Folkman [7] who constructed

several infinite families of such graphs and posed eight open problems which spurred
the interest in this topic, see [5, 6, 10, 12, 15, 16, 17, 18] for example. This paper
deals with semisymmetric cubic graphs of square-free order.

It is well-known that a vertex- and edge-transitive graph of odd valency must be
arc-transitive. Thus an edge-transitive cubic graph is either arc-transitive or semisym-
metric. In a recent paper [14], the arc-transitive cubic graphs of square-free order were
classified. This motivates us to classify the semisymmetric cubic graphs of square-
free order, and thus we can get a complete list of edge-transitive cubic graphs of
square-free order. Our main result is stated as follows.

Theorem 1.1. Let Γ = (V,E) be a connected semisymmetric cubic graph of square-

free order. Then Γ is described in Table 1, where {u, w} ∈ E and p is a prime.

A := AutΓ Au Aw Γ Remark
S7 S4×Z2 D8×S3 Example 3.1 |V | = 210
Zm:Z2

3 Z3 Z3 Example 3.2 |V | = 6m, m ≥ 91
PGL(2, p) S4 D24 Example 3.3 p ≡ ±11 (mod 24)
PSL(2, p) S4 D24 Example 3.4 p ≡ ±23 (mod 48)
Z3×PSL(2, p) A4 D12 Example 3.5 p ≡ ±11 (mod 24)

Table 1. Semisymmetric cubic graphs of square-free order.

This work was supported partially by the NSF of China.
1

*Manuscript



2 LIU AND LU

2. Preliminaries

For a graph Γ = (V,E) and a subgroup G ≤ AutΓ , we call Γ a G-edge-transitive

or a G-vertex-transitive graph if G acts transitively on the edge set E or the vertex
set V , respectively. The graph Γ is said to be G-semisymmetric if it is regular and
G-edge-transitive but not G-vertex-transitive.

Let Γ = (V,E) be a G-semisymmetric. Then G is a bipartite graph with bipartition
subsets, say U and W , being the G-orbits on V . For v ∈ V , the vertex-stabilizer Gv

acts transitively on the set Γ (v) of neighbors of v in Γ . Take an edge {u, w} ∈ E
with u ∈ U and w ∈ W . Then each vertex of Γ can be written as ux or wy for some
x, y ∈ G. Thus two vertices ux and wy are adjacent in Γ if and only if u and wyx−1

are adjacent, i.e., yx−1 ∈ GwGu. Moreover, it is well-known and easily shown that Γ
is connected if and only if 〈Gu, Gw〉 = G. Define a map by ux 7→ Gux and wy 7→ Gwy.
Then it is easily shown that this map is an isomorphism from Γ to a bipartite graph
defined as follows.

Let G be a finite group and L, R ≤ G. The bi-coset graph B(G,L,R) is defined
with bipartition subsets [G : L] = {Lx | x ∈ G} and [G : R] = {Ry | y ∈ G}
such that Lx and Ry are adjacent if and only if yx−1 ∈ RL. Then, considering the
right multiplication on [G : L] and [G : R], the group G induces an edge-transitive

subgroup Ĝ of AutB(G,L,R). The following facts on bi-coset graphs are well-known,
see [5] for example.

Lemma 2.1. Let Γ = B(G,L,R) be the bi-coset graph defined as above. Then

(1) Γ is Ĝ-edge-transitive;

(2) Γ is connected if and only if 〈L,R〉 = G, in this case, G ∼= Ĝ when L ∩ R
contains no non-trivial normal subgroups of G;

(3) Γ is regular if and only if |R| = |L|, and so Γ has valency |L : (L ∩ R)|.

Let Γ = (V,E) be a connected G-semisymmetric cubic graph. Then, for an edge
{u, w} ∈ E, the pair (Gu, Gw) is known by [9]. In particular, setting Guw = Gu ∩Gw,
the following result holds.

Theorem 2.2. Let Γ = (V,E) be a connected cubic G-semisymmetric graph of order

2n. Then |Gu| = |Gw| = 3 · 2i and |G| = 3n · 2i, where {u, w} ∈ E and 0 ≤ i ≤ 7. In

particular, Guw is a Sylow 2-subgroup of G if further n is odd.

Let U and V be the G-orbits on V , and take a normal subgroup N �G. Suppose
that N is intransitive on both U and W . For v ∈ V , we denote by v̄ the N -orbit
containing v. Set U = {ū | u ∈ U} and W = {w̄ | w ∈ W}. The normal quotient

ΓN is defined as the graph on U ∪W with edge set {{ū, w̄} | {u, w} ∈ E}. Then the
following lemma holds, see [8] or [16].

Lemma 2.3. Let Γ = (V,E) be a connected G-semisymmetric cubic graph with

bipartition subsets U and W . Let N�G. Then one of the following statements holds.

(1) N is semiregular on both U and W , G induces a subgroup X of AutΓN such

that X ∼= G/N and ΓN is a connected X-semisymmetric cubic graph.

(2) N acts transitively on at least one of U and W .
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3. Examples

In this section we construct the graphs involved in Theorem 1.1.
By [3], there is a unique semisymmetric cubic graph S210 of order 210, which has

automorphism group S7. We next construct this graph as the incidence graph of an
incidence structure.

Example 3.1. Consider the complete graph K7. A k-matching in K7 is a set of k
edges such that no two have a vertex in common. Let U and W be the sets of 3- and
2-matchings in K7, respectively. Then |U | = |W | = 105. Define a bipartite graph Γ

on U ∪ W such u ∈ U and w ∈ W are adjacent if and only if w is contained in u.
Then Γ is an S7-edge-transitive cubic graph of order 210, and so Γ ∼= S210 by [2, 3].

Malnič et al. [17] constructed an infinite family of semisymmetric cubic graph
from the Zn-cover of K3,3. Using bi-coset graphs, we reconstruct here some members
appearing in our main result.

Example 3.2. Let F = 〈a1〉×〈a2〉× · · ·×〈at〉 with t ≥ 2 and 〈ai〉 ∼= Zpi for 1 ≤ i ≤ t,
where pi’s are distinct primes with pi ≡ 1 (mod 3). Then Aut(F ) is abelian and has
a subgroup isomorphic to Z

t
3. For each i, take an integer ri such that r2i + ri + 1 ≡

0 (mod pi). Then Aut(F ) has a subgroup 〈σ, τ〉 ∼= Z
2
3 such that aσi = arii and aτi = a

r
ei
i

i

for 1 ≤ i ≤ t, where ei = 1 or 2.
Let G = F :〈σ, τ〉, the semidirect product of F and 〈σ, τ〉. Then G ∼= Zm:Z

2
3, where

m = p1p2 · · · pt. Take L = 〈σ〉 and R = 〈aτ〉, where a = a1a2 · · · at. Then the bi-coset
graph B(G,L,R) is a connected G-edge-transitive cubic graph of order 6m.

Lipschutz and Xu [15] constructed two infinite families of semisymmetric cubic
graphs from groups PSL(2, p) and PGL(2, p).

Example 3.3. Let G = PGL(2, p) for prime p with p ≡ ±11 (mod 24). Then G has
a Sylow 2-subgroup isomorphic to D8, a subgroup isomorphic to S4 and a subgroup
isomorphic to D24, see [1]. Take S4

∼= L < G and D24
∼= R < G. Then, by [15], the

bi-coset graph B(G,L,R) is a connected semisymmetric cubic graph of order p(p2−1)
12

.

Example 3.4. Let G = PSL(2, p) for a prime p with p ≡ ±23 (mod 48). Then G has
a Sylow 2-subgroup isomorphic to D8, a subgroup isomorphic to S4 and a subgroup
isomorphic to D24, see [11, II.8.27]. Take S4

∼= L < G and D24
∼= R < G. Then, by

[15], B(G,L,R) is a connected semisymmetric cubic graph of order p(p2−1)
24

.

Finally, we constructed a new family of edge-transitive graphs which are covers of
the graphs constructed as in Example 3.3.

Example 3.5. Let G = M×T , where M = 〈c〉 ∼= Z3 and T = PSL(2, p) for prime
p with p ≡ ±11 (mod 24). Take A4

∼= L1 < G and D12
∼= R < G. Set L1 = P :〈d〉

for P ∼= Z
2
2 and 〈d〉 ∼= Z3. Let L = P :〈cd〉. Then B(G,L,R) is a connected G-edge-

transitive cubic graph of order p(p2−1)
4

.

Remark The graphs in Examples 3.2 and 3.5 are semisymmetric, which will be
proved at the end of Section 4.
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4. The proof of Theorem 1.1

In this section we always assume that Γ = (V,E) is a connected G-semisymmetric
cubic graph of square-free order 2n. Then |G| = 3n · 2i for i ≤ 7; in particular, |G| is
not divisible by 33 or r2, where r is a prime no less than 5.

Let U and W be the G-orbits on V . Then |U | = |W | = n is odd and square-free.
If G is unfaithful on one of U and W then it is easily shown that Γ ∼= K3,3, and so Γ

is arc-transitive. If n = 3 then |G| is divisible by 9, and so G is unfaithful on both U
and W , hence Γ ∼= K3,3 is arc-transitive.

Therefore, in the following, we assume further that G is faithful on both U and W ;
in particular, |U | = |W | > 3. For a prime p, we use Op(G) to denote the maximal
normal p-subgroup of G. Then we have a simple observation as follows.

Lemma 4.1. O2(G) = 1 and |Op(G)| = 1 or p, where p is an odd prime.

Proof. This lemma is trivial for p ≥ 5. Thus we let p = 2 or 3 in the following.
Note that Op(G) fixes both U and W set-wise. Since Op(G) � G, all Op(G)-orbits
on U has the same length which is a divisor of |U | = n. Thus each Op(G)-orbit on
U has length 1 or 3, and so either Op(G) = 1, or O3(G) ∼= Z3 or Z

2
3. If O3(G) is

transitive on one of U and W , then |U | = |W | = 3, a contradiction. Then O3(G)
acts intransitively on both U and W . By Lemma 2.3, O3(G) is semiregular on U ,
and hence O3(G) ∼= Z3. �

Lemma 4.2. Assume that G is soluble. Then one of the following holds.

(1) G has a cyclic normal subgroup of order n, and Γ is arc-transitive.

(2) G ∼= Zm:Z
2
3 and Γ is constructed as in Example 3.2.

Proof. Let F be the Fitting subgroup of G. Then F = Op1(G)× · · ·×Opt(G) for
prime divisors p1, · · · , pt of |G|. By Lemma 4.1, F is cyclic, |F | is odd and square-
free. In particular, Aut(F ) is abelian. Since G is soluble, CG(F ) ≤ F , and so
CG(F ) = F . Thus G/F = NG(F )/CG(F ) . Aut(F ). Then G/F ia abelian. It is
easily shown that F is semiregular on both U and W . For v ∈ U ∪ W , we have
FGv/F = Gv/(F ∩Gv) ∼= Gv. Then Gv is abelian, and so Gv

∼= Z3 by [9].
(1) Assume first that F is transitive on U . Then F is transitive on W . Thus F

is regular on both U and W . Take an edge {u, w} ∈ E with u ∈ U and w ∈ W .
Then each vertex of Γ can be written uniquely as ux or wy for x, y ∈ F . Define a
map θ : V → V ; ux 7→ wx−1

, wy 7→ uy−1

. Then θ is a bijection on V . Moreover,
since F is abelian, {ux, wy} ∈ E if and only if {u, wx−1y} = {u, wyx−1

} ∈ E, i.e.,

{uy−1

, wx−1

} ∈ E. This says that θ is an automorphism of Γ interchanging U and W .
Thus Γ is arc-transitive, and part (1) of this lemma follows.

(2) Assume that F is intransitive on U . Then F is intransitive on W . By Lemma
2.3, the quotient graph ΓF is a X-semisymmetric cubic graph, where X ∼= G/F is
abelian. Let u ∈ U . Then both F :Gu and F :Gw are normal in G.

Clearly, F :Gu is not semiregular on U . By Lemma 2.3, F :Gu is transitive on W .
Then it follows that FGu is regular on W . Then |W | = |FGu| = 3|F | and, since |W |

is square-free, |F | is coprime to 3. Thus ΓF has order 2 |W |
|F |

= 6, and so ΓF
∼= K3,3.

Since X is abelian and ΓF is X-semisymmetric, we have G/F ∼= X ∼= Z
2
3, and hence

G = F :Y , where Y ∼= Z
2
3 with Gu < Y . Set Gu = 〈σ〉 and Y = 〈σ, τ〉. Then
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Gw = 〈aτ〉 for some a ∈ F . Since Γ is connected, F :〈σ, τ〉 = F :Y = G = 〈Gu, Gw〉 =
〈σ, aτ〉 ≤ 〈a, σ, τ〉 = 〈a〉〈σ, τ〉. It follows that F = 〈a〉, and so G = 〈a〉:〈σ, τ〉.

Let M be the center of F :Gu. Then M � G, and so M ≤ F by the choice of
F . Thus FGu = M×(N :Gu) with F = M×N . Note that NGu is a Hall subgroup
of FGu. It follows that NGu is a characteristic subgroup of FGu, and so NGu is
normal in G as FGu � G. Clearly, NGu is neither semiregular nor transitive on U .
Again by Lemma 2.3, NGu is transitive on W . Recall that FGu is regular on W .
Then FGu = NGu, and so M = 1, that is, FGu = 〈a〉:〈σ〉 has trivial center. Choose
integers k1, k2, · · · , kt such that 1 =

∑t

i=1 ki
∏

j 6=i pj . Set ai = aki
∏

j 6=i pj for 1 ≤ i ≤ t.

Then ai has order pi, a = a1a2 · · · at and 〈a〉 = 〈a1〉×〈a2〉× · · ·×〈at〉. Noting that each
〈ai〉 is normal in 〈a〉:〈σ〉, we have aσi = arii for some integer ri. Clearly, ri 6≡ 1 (mod pi)

as 〈a〉:〈σ〉 has trivial center. Since σ has order 3, we have a = aσ
3

= a
r3
1

1 a
r3
2

2 · · · a
r3t
t . It

follows that r2i + ri + 1 ≡ 0 (mod pi) for 1 ≤ i ≤ t.
Note that the above argument is available for FGw. Then FGw has trivial center.

Note that FGw = 〈a〉:〈aτ〉 = 〈a〉:〈τ〉. Arguing similarly as above, we have aσi = asii
some integer si with s2i + si + 1 ≡ 0 (mod pi), where 1 ≤ i ≤ t.

Note that for each i the equation x2+x+1 ≡ 0 (mod pi) has exactly two solutions.
Thus we may choose si = ri or r

2
i with the restriction that τ 6∈ {σ, σ−1}. Then Γ is

a G-edge-transitive graph constructed as in Example 3.2. �

For the case where G is insoluble, by [2, 3, 18], we can prove the following.

Lemma 4.3. Assume that G is insoluble. Let {u, w} ∈ E. Then either

(1) G, Gu, Gw and AutΓ are listed in Table 2, in particular, Γ is either arc-

transitive or isomorphic one of the graphs given in Examples 3.1, 3.3 and 3.4,
where p is a prime; or

(2) G = Z3×PSL(2, p) for a prime p with p ≡ ±11 (mod 24), and Γ is a graph

constructed in Example 3.5.

G Gu Gw AutΓ Remark Symmetric
A6 S4 S4 PΓL(2, 9) Tutte’s 8-cage Yes
S6 S4×Z2 S4×Z2 PΓL(2, 9) Tutte’s 8-cage Yes
PSL(2, p) D12 D12 PGL(2, p) p ≡ ±11 (mod 24) Yes
PSL(2, p) S4 S4 PGL(2, p) p ≡ ±7 (mod 16) Yes

A7 S4 (Z2
2×Z3).Z2 S7 S210 (see [3]) No

S7 S4×Z2 S3×D8 S7 S210 No
PSL(2, p) A4 D12 PGL(2, p) p ≡ ±11 (mod 24) No
PGL(2, p) S4 D24 PGL(2, p) p ≡ ±11 (mod 24) No
PSL(2, p) S4 D24 PSL(2, p) p ≡ ±23 (mod 48) No

Table 2. Graphs having almost simple automorphism group.

Proof. Let M be the largest soluble normal subgroup of G. If M is transitive on one
of U and W , then G = MGv for some v ∈ U∪W , and so G is soluble, a contradiction.
Thus M is intransitive on both U and W . By Lemma 2.3, M is semiregular on both
U and W and ΓM is a connected X-semisymmetric cubic graph, where X ∼= G/M
is the subgroup of AutΓM induced by G. By the choice of M , we know that X has
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no soluble normal subgroups. For v ∈ V , we denote by v̄ the M-orbit containing v.
Let {u, w} ∈ E with u ∈ U and w ∈ W . Then, by [18, Corollary 1.3], we have the
following table, where p is a prime.

X Xū Xw̄ AutΓM Remark Symmetric
A6 S4 S4 PΓL(2, 9) Tutte’s 8-cage Yes
S6 S4×Z2 S4×Z2 PΓL(2, 9) Tutte’s 8-cage Yes
PSL(2, p) D12 D12 PGL(2, p) p ≡ ±11 (mod 24) Yes
PSL(2, p) S4 S4 PGL(2, p) p ≡ ±7 (mod 16) Yes
A7 S4 (Z2

2×Z3).Z2 S7 S210 No
S7 S4×Z2 S3×D8 S7 S210 No
PSL(2, p) A4 D12 PGL(2, p) p ≡ ±11 (mod 24) No
PGL(2, p) S4 D24 PGL(2, p) p ≡ ±11 (mod 24) No
PSL(2, p) S4 D24 PSL(2, p) p ≡ ±23 (mod 48) No

If M = 1 then part (1) of this lemma holds. Thus we assume next M 6= 1. Note
that M is semiregular on both U and W . Then |M | is square-free and odd. Let U
and W be the sets of M-orbits on U and W , respectively. Then n = |U | = |U ||M | =
|W ||M | = |W |; in particular, |M | is coprime to |U | = |W |.

Take a normal subgroup Y �G of G such that M ≤ Y and Y/M ∼= soc(X). Then
Y is transitive on both U and W . Since M has square-free order, Aut(M) is soluble.
Since Y/CY (M) = NY (M)/CY (M) . Aut(M), we know that Y/CY (M) is soluble.
Since soc(X) is a nonabelian simple group, we have MCY (M)/M ∼= soc(X), and so
Y = MCY (M) and CY (M)/(M ∩CY (M)) ∼= soc(X). Note that M ∩CY (M) lies in
the center of CY (M) and M ∩CY (M) has odd order. Checking the Schur multiplier
of soc(X) (refer to [13, Theorem 5.14]), We conclude that either M ∩CY (M) = 1, or
M∩CY (M) ∼= Z3 and soc(X) ∼= A6. The latter case yields that |G| = 3n·2i is divisible
27, which is impossible as n is square-free. Then Y = MCY (M) = M×CY (M) and
T := CY (M) ∼= soc(X). Moreover, T is transitive on both U and W .

It is easy to see that T is a characteristic subgroup of Y , and hence T is normal in
G. Clearly, T is not semiregular on both U and W . By Lemma 2.3, T is transitive on
one of U and W . Then there is some v ∈ V such that Tv̄ is transitive on v̄. Consider
that action of M×Tv̄. Then both M and Tv̄ act transitively on v̄, and hence both of
them induce regular permutation groups on v̄, refer to [4, Theorem 4.2 A]. It follows
that Tv̄ has a normal subgroup of odd index |v̄| = |M |. Noting that Tv̄

∼= soc(X)v̄,
we conclude that X ∼= PSL(2, p), M ∼= Z3, v ∈ U , Tv̄

∼= Xv̄
∼= A4, Tv

∼= Z
2
2 and

G = Y = M×T . Moreover, we have D12
∼= Tw̄ = Tw for w ∈ W . It follows that, for

{u, w} ∈ E with u ∈ U and w ∈ W , Gu = P :〈cd〉 ∼= A4 and Gw = Tw
∼= D12, where

Z
2
2
∼= P < T , c ∈ M and d ∈ T have order 3. Thus Γ is isomorphic to a graph given

in Example 3.5, and part (2) of this lemma follows. �

Proof of Theorem 1.1. By the foregoing argument, it suffices to show that the graphs
given in Examples 3.2 and 3.5 are semisymmetric.

Let Γ be a given in Examples 3.2 or 3.5. Let A+ be the subgroup of A := AutΓ

which preserves the bipartition of Γ . Then |A : A+| ≤ 2 and Γ is A+-edge-transitive.
Note that Γ has order more than 6. Then A+ is faithful on both bipartition subsets
of Γ . Let {u, w} be an edge of Γ .
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Suppose first that Γ is given as in Example 3.5. Then A+ & Z3×PSL(2, p). By
Lemma 4.3, the only possibility is A+ ∼= Z3×PSL(2, p). Then Au = A+

u and Aw = A+
w .

Thus Au and Aw are not conjugate in A, and so Γ is not A-vertex-transitive. Then
A+ = A = AutΓ , and so Γ is semisymmetric.

Now let Γ be a graph given in Example 3.2. Then A+ has a cyclic semiregular

subgroup, whose order is m := |U |
3

= p1p2 · · ·pt, where pi’s are distinct primes with
pi ≡ 1 (mod 3). Checking the groups in Lemma 4.2 and 4.3, we conclude that either
A+ = A ∼= Zm:Z

2
3, or A is soluble and Γ is arc-transitive. Suppose that the latter

case occurs. By [14], we have A ∼= D6m:Z3 and A+ ∼= Z3m:Z3. On other hand, by
the construction of Γ , A+ has a subgroup of order 9m which has trivial center. Thus
A+ ∼= Z3m:Z3 has trivial center, which is impossible. Thus the former case holds, that
is, A = A+ ∼= Zm:Z

2
3. Then Theorem 1.1 follows.
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