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Abstract

The Estrada index of a graph G is defined as EE(G) =
∑n

i=1 eλi , where λ1,

λ2, . . . , λn are the eigenvalues of the adjacency matrix of G. In this paper, we
characterize the unique bipartite graph with maximum Estrada index among bi-
partite graphs with given matching number and given vertex-connectivity, edge-
connectivity, respectively.
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1 Introduction

Let G be a simple graph on n vertices. The eigenvalues of G are the eigenvalues of

its adjacency matrix, which are denoted by λ1 ≥ λ2 ≥ . . . ≥ λn. The Estrada index of G,

put forward by Estrada [7], is defined as

EE(G) =
n∑

i=1

eλi .

The Estrada index has multiple applications in a large variety of problems, for example, it

has been successfully employed to quantify the degree of folding of long-chain molecules,
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especially proteins [8, 9, 10], and it is a useful tool to measure the centrality of complex

(reaction, metabolic, communication, social, etc.) networks [11, 12]. There is also a

connection between the Estrada index and the extended atomic branching of molecules

[13]. Besides these applications, the Estrada index has also been extensively studied in

mathematics, see [16, 18, 20, 21, 22]. Ilić and Stevanović [16] obtained the unique tree with

minimum Estrada index among the set of trees with a given maximum degree. Zhang,

Zhou and Li [20] determined the unique tree with maximum Estrada indices among the

set of trees with a given matching number. In [4], Du and Zhou characterized the unique

unicyclic graph with maximum Estrada index. Wang et al. [19] determined the unique

graph with maximum Estrada index among bicyclic graphs with fixed order, and Zhu et

al. [23] determined the unique graph with maximum Estrada index among tricyclic graphs

with fixed order. More mathematical properties on the Estrada index can be founded in

[14].

A graph is bipartite if its vertex set can be partitioned into two subsets X and Y so

that every edge has one end in X and the other end in Y . We denote a bipartite graph G

with bipartition (X,Y ) by G[X,Y ]. If G[X,Y ] is simple and every vertex in X is joined

to every vertex in Y , then G is called a complete bipartite graph. Up to isomorphism,

there is a unique complete bipartite graph with parts of sizes m and n, denoted Km,n.

For an edge subset A of the complement of G, we use G+A to denote the graph obtained

from G by adding the edges in A.

A matching in a graph is a set of pairwise nonadjacent edges. If M is a matching, the

two ends of each edge of M are said to be matched under M , and each vertex incident

with an edge of M is said to be covered by M . A maximum matching is one which covers

as many vertices as possible. The number of edges in a maximum matching of a graph

G is called the matching number of G and denoted by α′(G). Let Mn,p be the set of

bipartite graphs on n vertices with α′(G) = p.

A cut vertex(edge) of a graph is a vertex(edge) whose removal increases the number

of components of the graph. A(An) vertex(edge) cut of a graph is a set of vertices(edges)

whose removal disconnects the graph. The connectivity(edge-connectivity) of a graph G

is defined as

κ(G) = min{|S| : S is a vertex cut of G}, κ′(G) = min{|S| : S is an edge cut of G}.

Let Cn,s(Dn,s) denote the set of bipartite graphs on n vertices with κ(G) = s(κ′(G) = s).

For other undefined terminology and notation we refer to Bondy and Murty [1].

In [5], Du, Zhou and Xing determined the graphs with maximum Estrada indices

among graphs with given number of cut vertices, connectivity, and edge connectivity,
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respectively. In this paper, we consider bipartite graphs, and characterize the unique

bipartite graph with maximum Estrada indices among Mn,p, Cn,s and Dn,s, respectively.

2 Preliminaries

Denote by Mk(G) the k-th spectral moment of a graph G, i.e., Mk(G) =
∑n

i=1 λk
i .

It is well-known [3] that Mk(G) is equal to the number of closed walks of length k in G.

Then

EE(G) =
n∑

i=1

∞∑

k=0

λk
i

k!
=

∞∑

k=0

Mk(G)

k!
. (1)

For n-vertex graphs G1 and G2, if Mk(G1) ≤ Mk(G2) for all positive integers k, then by

Eq.(1) we have that EE(G1) ≤ EE(G2) with equality if and only if Mk(G1) = Mk(G2)

for all positive integers k.

Let k be a positive integer. For u, v ∈ V (G), let Wk(G; u, v) denote the set of

(u, v)-walks of length k in G, and let Mk(G; u, v) = |Wk(G; u, v)|. For convenience, let

Wk(G; u) = Wk(G; u, u) and Mk(G; u) = Mk(G; u, u).

For graphs G1 and G2 with u1, v1 ∈ V (G1) and u2, v2 ∈ V (G2), if Mk(G1; u1, v1) ≤
Mk(G2; u2, v2) for all positive integers k, then we write(G1; u1, v1) ¹ (G2; u2, v2), and if

(G1; u1, v1) ¹ (G2; u2, v2) and there is a positive integer k0 such that Mk0(G1; u1, v1) <

Mk0(G2; u2, v2), then we write (G1; u1, v1) ≺ (G2; u2, v2). For convenience, we write

(G1; u1) ¹ (G2; u2) for (G1; u1, u1) ¹ (G2; u2, u2), and (G1; u1) ≺ (G2; u2) for (G1; u1, u1) ≺
(G2; u2, u2).

Lemma 2.1 [15] Let G be a graph. Then for any edge e 6∈ E(G), one has EE(G + e) >

EE(G).

Lemma 2.2 [14] If a graph G is bipartite, and if n0 is the nullity (=the multiplicity of

its eigenvalue zero) of G, then

EE(G) = n0 + 2
∑
+

cosh(λi), (2)

where cosh stands for the hyperbolic cosine [cosh(x) = (ex + e−x)/2], whereas
∑

+ denotes

summation over all positive eigenvalues of the corresponding graph.

As is well known [2] that the spectrum of a complete bipartite graph Kn1,n2 is
√

n1n2,

−√n1n2, 0(n1 + n2 − 2 times). By the definition, we have
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Lemma 2.3 [14]

EE(Kn1,n2) = n1 + n2 − 2 + 2cosh(
√

n1n2).

By the monotonicity of f(x) = cosh(x), it is obvious that

Corollary 2.4

EE(K1,n−1) < EE(K2,n−2) < . . . < EE(Kbn
2
c,dn

2
e). (3)

Lemma 2.5 Let G be a non-trivial graph with u, v ∈ V (G) such that NG(u) = NG(v).

Then for any k ≥ 0, one has

Mk(G; u) = Mk(G; v) = Mk(G; u, v) = Mk(G; v, u).

Proof. For any walk W ∈ Wk(G; u, u), let f(W ) be the walk obtained from W by

replacing its first and last vertex u by v. This is practical since NG(u) = NG(v). Ob-

viously, f(W ) ∈ Wk(G; v, v) and f is a bijection from Wk(G; u, u) to Wk(G; v, v), and

so Mk(G; u) = Mk(G; v). We can similarly construct a bijection from Wk(G; u, u) to

Wk(G; u, v) or Wk(G; v, u). So we have

Mk(G; u) = Mk(G; v) = Mk(G; u, v) = Mk(G; v, u),

as desired.

Lemma 2.6 Let Kn1,n2 be the complete bipartite graph with X = {x1, x2, . . . , xn1} and

Y = {y1, y2, . . . , yn2}. For any k > 0, one has that for any 1 ≤ i, j ≤ n1 and 1 ≤ r, s ≤ n2,

M2k(G; xi, xj) = nk−1
1 nk

2 , M2k(G; yr, ys) = nk−1
2 nk

1. (4)

Furthermore, M2k(G) = 2(n1n2)
k.

Proof. Let W = u1(= xi)u2 . . . u2ku2k+1(= xj) ∈ W2k(G; xi, xj) be an (xi, xj)-walk of

length 2k. Since G is a complete bipartite graph, it is straightforward that u2r+1 ∈
{x1, x2, . . . , xn1} and u2r ∈ {y1, y2, . . . , yn2} for r = 1, 2, . . . (k − 1). Moreover, we know

that each u2r−1 can be arbitrarily chosen from X and each u2r can be arbitrarily chosen

from Y . Hence, for fixed xi and xj there are nk−1
1 nk

2 walks of length 2k between them, that

is, M2k(G; xi, xj) = nk−1
1 nk

2 for any 1 ≤ i, j ≤ n1. Similarly, we can obtain M2k(G; yt, yr) =

nk−1
2 nk

1 for any 1 ≤ t, r ≤ n2. By the definition of W2k(G), we have

M2k(G) =

n1∑
i=1

M2k(G; xi) +

n2∑
j=1

M2k(G; yj) = 2(n1n2)
k.
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The proof is complete.

Let S1 = {v1, v2, . . . , vs} be an independent set of G1 and S2 = {u1, u2, . . . , us} an

independent set of G2. We denote G1 ∪s G2 as the graph obtained from G1 and G2 by

identifying vi with ui for each i (1 ≤ i ≤ s). We denote the identified vertex set in G1∪sG2

by S. Likewise, we can also get G′
1∪s G′

2 from G′
1 and G′

2, where the two independent sets

that should be identified are S ′1 = {v′1, v′2, . . . , v′s} and S ′2 = {u′1, u′2, . . . , u′s}, respectively.

Lemma 2.7 Let G = G1 ∪s G2 and G′ = G′
1 ∪s G′

2 be the graphs of order n defined as

above satisfying the following conditions:

1. For any k > 0,

Mk(G1) ≤ Mk(G
′
1) , Mk(G2) ≤ Mk(G

′
2); (5)

2. For any 1 ≤ i, j ≤ s,

(G1; vi, vj) ¹ (G′
1; v

′
i, v

′
j) , (G2; ui, uj) ¹ (G′

2; u
′
i, u

′
j). (6)

Then for any k > 0, Mk(G) ≤ Mk(G
′). Furthermore, EE(G) ≤ EE(G′), with equality

holds if and only if all the equalities in (5) and (6) hold.

Proof. For any k > 0, let Wk(G) denote the set of closed walks of length k in G, we can

see that

Wk(G) = Wk(G1) ∪Wk(G2) ∪W 3
k (G), (7)

where W 3
k (G) is the set of closed walks of length k in G containing both vertices in G1 \S1

and vertices in G2 \ S2. Similarly, one has

Wk(G
′) = Wk(G

′
1) ∪Wk(G

′
2) ∪W 3

k (G′), (8)

where W 3
k (G′) is the set of closed walks of length k in G′ containing both vertices in

G′
1 \ S ′1 and vertices in G′

2 \ S ′2.

By (5), we know that |Wk(G1)| ≤ |Wk(G
′
1)| and |Wk(G2)| ≤ |Wk(G

′
2)|. We only need

to show that |W 3
k (G)| ≤ |W 3

k (G′)|. In fact, there exists an injection from W 3
k (G) to

W 3
k (G′). In the following, we will construct such an injection.

For any 1 ≤ i, j ≤ s, by (6) we know that for any l > 0,

Ml(G1; vi, vj) ≤ Ml(G
′
1; v

′
i, v

′
j) , Ml(G2; ui, uj) ≤ Ml(G

′
2; u

′
i, u

′
j). (9)

So there exist an injection f l
i,j from Wl(G1; vi, vj) to Wl(G

′
1; v

′
i, v

′
j), and an injection gl

i,j

from Wl(G2; ui, uj) to Wl(G
′
2; u

′
i, u

′
j) for any 1 ≤ i, j ≤ s and any l > 0, We will omit the
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subscript of f l
i,j and gl

i,j if there is no confusion about the first and last vertices of the

walks we considered.

For any W ∈ W 3
k (G), we call a maximal G1 walk of W a 1-block, and a maximal G2

walk of W a 2-block. From the definition, we have that the ends of a 1-block and a 2-block

are both contained in S. Since W 3
k (G) is the set of closed walks of length k in G1 and

contains both vertices in G1 \ S1 and vertices in G2 \ S2, there exist at least one 1-block

and one 2-block, and the 1-blocks and 2-blocks appear one by one alternately with equal

number. Hence we can decompose W as follows:

W = (B0)B1B2B3B4 . . . Br,where r is (odd)even,

where B2i−1 is a 1-block of length l2i−1, and B2i is a 2-block of length l2i. We define a

map ϕ from W ∈ W 3
k (G) to ϕ(W ) as follows:

ϕ(W ) = (gl0(B0))f
l1(B1)g

l2(B2)f
l3(B3)g

l4(B4) . . . .

Then ϕ(W ) is a closed walk in W 3
k (G′). Since both f l

i,j and gl
i,j are injection, we can easily

deduce that ϕ is an injection. Thus, |W 3
k (G)| ≤ |W 3

k (G′)|, with equality holds if and only

if for any 1 ≤ i, j ≤ s and any l > 0, f l
i,j and gl

i,j are bijections, that is, all the qualities

in (6) hold. Hence, we have

Mk(G) = |Wk(G1)|+ |Wk(G2)|+ |W 3
k (G)|

≤ |Wk(G
′
1)|+ |Wk(G

′
2)|+ |W 3

k (G′)|
= Mk(G

′).

Therefore, the result follows.

3 Maximum Estrada index of bipartite graphs with

a given matching number

A covering of a graph G is a vertex subset K ⊆ V (G) such that each edge of G has

at least one end in the set K. The number of vertices in a minimum covering of a graph

G is called the covering number of G and denoted by β(G).

Lemma 3.1 (The König-Egerváry Theorem, [6, 17]). In any bipartite graph, the number

of edges in a maximum matching is equal to the number of vertices in a minimum covering.
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Let G = G[X,Y ] be a bipartite graph such that G ∈Mn,p. From Lemma 3.1, we know

that β(G) = p. Let S be a minimum covering of G and X1 = S∩X, Y1 = S∩Y . Without

loss of generality, suppose that |X1| ≥ |Y1| in the following analysis. Set X2 = X \ X1,

Y2 = Y \ Y1. We have that E(X2, Y2) = ∅ since S is a covering of G.

Let G∗[X,Y ] be a bipartite graph with the same vertex set as G such that E(G∗) =

{xy : x ∈ X1, y ∈ Y } ∪ {xy : x ∈ X2, y ∈ Y1}. Obviously, G is a subgraph of G∗. From

Lemma 2.1, we know that

EE(G) ≤ EE(G∗), (10)

with equality holds if and only if G ∼= G∗. Let

G∗∗ = G∗ − {uv : u ∈ X2, v ∈ Y1}+ {uw : u ∈ X2, w ∈ X1},

Then we have the following conclusion:

X1 Y1 X1 Y1

Y2 X2 Y2 X2

G
∗

G
∗∗

Figure 1. G∗ and G∗∗

Lemma 3.2 Let G∗ and G∗∗ be the graph defined above (see Figure 1). Then one has

EE(G∗) ≤ EE(G∗∗), (11)

with equality holds if and only if G∗ ∼= G∗∗.

Proof. Let G1 = G∗[X1, Y2], G2 = G∗[X,Y1], and G′
1 = G∗∗[X1, Y2], G′

2 = G∗∗[X1, X2 ∪
Y1]. We can see that G1 = G′

1, G2
∼= K|X1|+|X2|,|Y1| and G′

2
∼= K|X1|,|Y1|+|X2|. Further-

more, G∗ = G1 ∪|X1| G2, and G∗∗ = G′
1 ∪|X1| G′

2 with S1 = S2 = S ′1 = S ′2 = X1 =

{x1, x2 . . . , x|X1|}.
By Lemma 2.6, we have

M2k(G2) = 2(|X1|+ |X2|)k|Y1|k , M2k(G
′
2) = 2|X1|k(|X2|+ |Y1|)k.
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Since |X1| ≥ |Y1|, we have M2k(G2) ≤ M2k(G
′
2). Furthermore, as both G2 and G′

2 are

bipartite graphs, one has M2k−1(G2) = M2k−1(G
′
2) = 0 for any k > 0. Now condition 1 of

Lemma 2.7 is satisfied.

For any xi, xj ∈ X1, by Lemma 2.6 we know that for any l > 0,

M2l(G2; xi, xj) = (|X1|+ |X2|)l−1|Y1|l = |Y1|((|X1|+ |X2|)|Y1|)l−1,

M2l(G
′
2; xi, xj) = |X1|l−1(|X2|+ |Y1|)l = (|X2|+ |Y1|)(|X1|(|X2|+ |Y1|))l−1.

As |X1| ≥ |Y1|, we have (|X1|+ |X2|)|Y1| ≤ |X1|(|X2|+ |Y1|). Hence

M2l(G2; xi, xj) ≤ M2l(G
′
2; xi, xj),

with equality holds if and only if |X2| = 0. Together with M2l−1(G2; xi, xj) = M2l−1(G
′
2; xi, xj)

= 0, condition 2 of Lemma 2.7 is satisfied. So we have EE(G∗) ≤ EE(G∗∗), with equality

holds if and only if |X2| = 0, i.e., G∗ ∼= G∗∗.

By (10) and (11), together with Corollary 2.4, it is straightforward to see that

Theorem 3.3 Among the graphs in Mn,p, Kp,n−p is the unique graph with maximum

Estrada index.

4 Maximum Estrada index of bipartite graphs with

a given connectivity(resp. edge connectivity)

For two complete bipartite graphs K|X1|,|Y1| with bipartition (X1, Y1) and K|X2|,|Y2|
with bipartition (X2, Y2), we define a graph Os ∨1 (K|X1|,|Y1| ∪ K|X2|,|Y2|), where ∪ is the

union of two graphs, Os (s ≥ 1) is an empty graph of order s and ∨1 is a graph operation

that joins all the vertices in Os to the vertices of X1 and X2 (see Figure. 2), respectively.

X1

Y1 Os

X2

Y2 Os

X2

Y2

X1

Figure 2. Os ∨1 (K|X1|,|Y1| ∪K|X2|,|Y2|) and Os ∨1 (K1 ∪K|X2|,|Y2|)
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Lemma 4.1 For an n-vertex bipartite graph Os ∨1 (K1 ∪Kp,q) with p < q + s and q ≥ 0,

one has EE(Os ∨1 (K1 ∪Kp,q)) < EE(Os ∨1 (K1 ∪Kq+s,p−s)).

Proof. Let us denote Os ∨1 (K1 ∪ Kp,q) by G and Os ∨1 (K1 ∪ Kq+s,p−s) by G′. When

there is no scope for confusion, let Os = {a1, a2, · · · , as} and V (K1) = {u} in both G and

G′.

Let G1 = G[{u}, Os], G2 = G − {u}, we can see that G = G1 ∪s G2. Similarly, let

G′
1 = G′[{u}, Os], G′

2 = G′ − {u}, then G′ = G′
1 ∪s G′

2.

It is obvious that G1
∼= G′

1
∼= K1,s, G2

∼= Ks+q,p and G′
2
∼= Ks+p−s,q+s. Thus for any

k > 0, Mk(G1) = Mk(G
′
1) and for any 1 ≤ i, j ≤ s, (G1; ai, aj) ¹ (G′

1; ai, aj). From

Lemma 2.6, we know that Mk(G2) = Mk(G
′
2) for any k > 0.

Moreover, by Lemma 2.6 we have that for any l > 0 and 1 ≤ i, j ≤ s,

M2l(G2; ai, aj) = (s + q)l−1pl < (s + q)lpl−1 = M2l(G
′
2; ai, aj).

Together with M2l−1(G2; ai, aj) = 0 = M2l−1(G
′
2; ai, aj), we have (G2; ai, aj) ≺ (G′

2; ai, aj).

Hence, by Lemma 2.7 we have EE(G) < EE(G′), as desired.

Lemma 4.2 For an n-vertex bipartite graph Os ∨1 (K1 ∪ Kp,q) with p > q + s + 1 and

q > 0, one has EE(Os ∨1 (K1 ∪Kp,q)) < EE(Os ∨1 (K1 ∪Kp−1,q+1)).

Proof. Let X be an eigenvector of Os ∨1 (K1 ∪Kp,q) corresponding to the eigenvalue λ.

By the eigenvalue-equations, for any v ∈ V (Os ∨1 (K1 ∪Kp,q)),

λxv =
∑

u:uv∈E(Os∨1(K1∪Kp,q))

xu,

where xv is the component of X corresponding to vertex v.

Thus, for any eigenvalue of Os ∨1 (K1 ∪Kp,q) with λ 6= 0, one has xu = xv if N(u) =

N(v). So, we can assume that

xv =





x1, v ∈ X1;

x2, v ∈ Os;

x3, v ∈ X2;

x4, v ∈ Y2.

Then we know that the eigenvalue of Os∨1 (K1∪Kp,q) which is not equal to 0 satisfies:




λx1 = sx2,

λx2 = x1 + px3,

λx3 = sx2 + qx4,

λx4 = px3.

(12)
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As the root of (12) is also the root of

λ4 − λ2(s + pq + ps) + pqs = 0, (13)

then we have that

EE(G) = n− 4 + 2cosh(λ1) + 2cosh(λ2),

where λ1, λ2 are the different positive roots of (13). We may assume that r = λ1 > λ2

and k = λ1λ2 =
√

pqs. Then r >
√

k > 0, and we can get

EE(Os ∨1 (K1 ∪Kp,q)) = f(r, k) = n− 4 + 2cosh(r) + 2cosh(k/r). (14)

Then we have
∂f(r, k)

∂r
= (er − e−r)− k

r2
(ek/r − e−k/r) > 0, (15)

and
∂f(r, k)

∂k
=

1

r
(ek/r − e−k/r) > 0. (16)

Let k′ =
√

(p− 1)(q + 1)s. As pqs− (p− 1)(q + 1)s = s(q + 1− p) < 0, we have k < k′.

On the other hand, let

g(λ, p, q, s) = λ4 − λ2(s + pq + ps) + pqs,

and r′ be the maximum root of g(λ, p − 1, q + 1, s) , we will show r′ > r. In fact, as

g(r, p, q, s)− g(r, p− 1, q + 1, s) = (p− q− s− 1)r2− (p− s− 1)s ≥ r2− (p− s− 1)s > 0,

we have g(r, p − 1, q + 1, s) < 0. Together with g(∞, p − 1, q + 1, s) > 0, we can get

r′ > r. Thus, by (15) and (16) we have f(r, k) < f(r′, k′), i.e., EE(Os ∨1 (K1 ∪Kp,q)) <

EE(Os ∨1 (K1 ∪Kp−1,q+1)).

Lemma 4.3 For s ≤ n−3
2

, one has EE(Ks,n−s) < EE(Os ∨1 (K1 ∪Kn−s−2,1)).

Proof. By Lemma 2.3, we have EE(Ks,n−s) = n−2+2cosh(
√

s(n− s)). As in the proof

of Lemma 4.2, one has

EE(Os ∨1 (K1 ∪Kn−s−2,1)) = n− 4 + 2cosh(λ1) + 2cosh(λ2),

where λ1 and λ2 are the different positive roots of

f(λ) = λ4 − λ2(s + (n− s− 2) + (n− s− 2)s) + (n− s− 2)s.

Without loss of generality, we assume that λ1 > λ2. Then we have

f(
√

s(n− s)) = −s(n2 − 3ns− 3n + 2s2 + 3s + 2)

= −s((n− 2s− 3)(n− s) + 2) < 0,
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where “ < ” holds since s ≤ n−3
2

, i.e., n ≥ 2s + 3. Together with f(∞) > 0, we have

λ1 >
√

s(n− s).

Now λ1 >
√

s(n− s), λ2 > 0, then by the monotonicity of cosh(λ), one has cosh(λ1) >

cosh(
√

s(n− s)) and cosh(λ2) > 1. We then deduce

EE(Ks,n−s) < EE(Os ∨1 (K1 ∪Kn−s−2,1)),

as desired.

Lemma 4.4 Let G[X,Y ] be a graph with maximum Estrada index in Cn,s and U be a

minimum vertex cut. If G − U has a nontrivial component G1, then G − U has exactly

two components, and the other component which is distinct from G1 cannot be nontrivial.

Proof. Let G1, G2, . . . , Gk be the components of G − U . Suppose k ≥ 3. Then, we

can add some appropriate (at least one) edges in G between G1, G2, . . . , Gk−1 so that the

resulting graph G′ is still bipartite. It is obvious that G′ ∈ Cn,s. By Lemma 2.1, we have

EE(G′) > EE(G). This contradicts the fact that G has the maximum Estrada index

among graphs in Cn,s, and so we have k = 2.

If both G1 and G2 are nontrivial with bipartition (A,B) and (C, D), respectively. Let

U = U1 ∪ U2 with X = A ∪ C ∪ U1 and Y = B ∪D ∪ U2. Now we construct a graph Ĝ

from G by adding some edges such that Ĝ[A∪U1, B ∪U2] and Ĝ[C ∪U1, D∪U2] are both

complete subgraphs. It is obvious that EE(Ĝ) ≥ EE(G). Note that Ĝ ∈ Cn,s, we can

assume G = Ĝ.

A

B

U1

U2

C \ {u0}

D1

u0 A U1 C \ {u0}
u0

B U2 D1

G G
∗

D \D1

D \D1

Figure 3. G and G∗

If there exists some vertex w in G− U such that dG(w) = s, then forming a complete

bipartite graph within the vertices of G \ w we would get a graph in Cn,s with larger
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Estrada index. Thus, we may assume that each vertex in G−U has a degree greater than

s. We choose a vertex u0 from C and observe that dG(u0) = |U2| + |D| > s. Hence we

have |D| > |U1|.
Now choose a subset D1 of D such that |D1| = |U1|, and let

G∗ = G− {u0x : x ∈ D \D1}+ {bc : b ∈ B, c ∈ C \ {u0}}+ {pq : p ∈ D, q ∈ A}.
It is routine to check that G∗ ∈ Cn,s(see Figure 3). We claim that EE(G) < EE(G∗).

For any k > 0 and W = v1v2 · · · v2k+1(= v1) ∈ W2k(G), let Ψ(W ) is obtained by the

following operation: For any vi = u0, we change u0 to a if {vi−1, vi+1} 6⊆ D1 ∪ U2, where

a is an arbitrary vertex of A.

It is obvious that Ψ(W ) ∈ W2k(G
∗) and Ψ is an injection. Hence we have for any

k > 0, M2k(G) ≤ M2k(G
∗). Together with M2k−1 = M2k−1(G

∗) = 0, we get EE(G) ≤
EE(G∗). Furthermore, as M2(G) = |E(G)| < |E(G∗)|, we know that EE(G) < EE(G∗),

a contradiction. So, we get our conclusion.

Theorem 4.5 Let Cn,s be the set of bipartite graphs on n vertices with κ(G) = s. Then

1. For s ≤ n−3
2

, the unique graph in Cn,s with the maximum Estrada index is Os ∨1

(K1 ∪Kbn
2
c,dn

2
e−1−s).

2. For n−2
2
≤ s ≤ bn

2
c, the unique graph in Cn,s with the maximum Estrada index is

Ks,n−s.

Proof. Let G be a graph with the maximum Estrada index in Cs,n. Let U be a vertex

cut of G containing s vertices.

we distinguish the following two cases:

Case 1. All the components of G−U are singletons. In this case, we have G = Ks,n−s.

The result already hold for n−2
2
≤ s ≤ bn

2
c. If s ≤ n−3

2
, by Lemma 4.3, EE(Ks,n−s) <

EE(Os ∨1 (K1 ∪Kn−s−2,1)), which contradicts the maximality of G.

Case 2. One component of G− U , say G1, contains at least two vertices. By Lemma

4.4, we know that G−U has exactly two components G1 and G2, with G2
∼= K1. Therefore,

there exist p, q with p + q + s + 1 = n, p ≥ s, q > 0, such that G ∼= Os ∨1 (K1 ∪ Kp,q).

If n−2
2
≤ s ≤ bn

2
c, as p + q + s + 1 = n, p ≥ s, q > 0, we have that s = p = n−2

2
, q = 1,

i.e., G ∼= On−2
2
∨1 (K1 ∪Kn−2

2
,1). By Lemma 3.2, we have that EE(G) < EE(Kn−2

2
, n+2

2
),

which contradicts the maximality of G. If s ≤ n−3
2

, then by Lemma 4.1 and Lemma

4.2, we have q + s ≤ p ≤ q + s + 1, p + q + s + 1 = n. Hence we have p = bn
2
c, i.e.,

G ∼= Os ∨1 (K1 ∪Kbn
2
c,dn

2
e−1−s).

We complete the proof.

12



Corollary 4.6 Let Dn,s be the set of graphs with n vertices and edge-connectivity s. One

has that for s ≤ n−3
2

the unique graph in Dn,s with the maximum Estrada index is Os ∨1

(K1 ∪Kbn
2
c,dn

2
e−1−s), and for n−2

2
≤ s ≤ bn

2
c, the unique graph in Dn,s with the maximum

Estrada index is Ks,n−s.

Proof. As is well known [1] that κ(G) ≤ κ′(G), hence for any G ∈ Dn,s there exists k ≤ s

such that G ∈ Cn,k.

For s ≤ n−3
2

we have that k ≤ n−3
2

. By Theorem 4.5, we have EE(G) ≤ EE(Ok ∨1

(K1∪Kbn
2
c,dn

2
e−1−k). Since Ok∨1 (K1∪Kbn

2
c,dn

2
e−1−k) ⊂ Os∨1 (K1∪Kbn

2
c,dn

2
e−1−s) as k ≤ s,

then EE(G) ≤ EE(Os ∨1 (K1 ∪Kbn
2
c,dn

2
e−1−s)).

For n−2
2
≤ s ≤ bn

2
c, if k ≥ n−2

2
we know that EE(G) ≤ EE(Kk,n−k). By corollary

2.4 , one can easily get EE(G) ≤ EE(Ks,n−s). If k ≤ n−3
2

, we know that EE(G) ≤
EE(Ok ∨1 (K1 ∪Kbn

2
c,dn

2
e−1−k)) < EE(Os ∨1 (K1 ∪Kbn

2
c,dn

2
e−1−s)). By Theorem 4.5, we

have EE(Os ∨1 (K1 ∪Kbn
2
c,dn

2
e−1−s)) ≤ EE(Ks,n−s). The result follows.
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Int. J. Quantum Chem. 106(2006), 823-832.
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D. Cvetković, I. Gutman (Eds.), Selected Topics on Applications of Graph Spectra,

Math. Inst., Beograd, 2011, pp.155-174.
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