On locally primitive graphs of order $18 p^{*}$

Hua HAN ${ }^{1,2}$ Zaiping LU 1

Abstract

In this paper, we investigate locally primitive bipartite regular connected graphs of order $18 p$. It is shown that such a graph is either arc-transitive or isomorphic to one of the Gray graph and the Tutte 12 -cage.

Keywords Locally primitive graph, arc-transitive graph, normal cover, quasiprimitive group
2000 MR Subject Classification 05C25, 20B25

1 Introduction

All graphs in this paper are assumed to be finite and simple.
Let Γ be a graph. We use $V \Gamma, E \Gamma$ and $A u t \Gamma$ to denote the vertex set, edge set and automorphism group of Γ, respectively. Then the graph Γ is said to be vertex-transitive or edge-transitive if some subgroup G of Aut Γ (denoted by $G \leq A u t \Gamma$) acts transitively on $V \Gamma$ or $E \Gamma$, respectively. Recall that an arc in Γ is an ordered pair of adjacent vertices. Then the graph Γ is called arc-transitive if some $G \leq \operatorname{Aut} \Gamma$ acts transitively on the set of arcs of Γ. The graph Γ is said to be locally primitive if, for some subgroup $G \leq$ Aut Γ and each $v \in V \Gamma$, the stabilizer G_{v} induces a primitive permutation group $G_{v}^{\Gamma(v)}$ on the neighborhood $\Gamma(v)$, the set of neighbors, of v in Γ. For convenience, such subgroups G are called vertex-transitive, edge-transitive, arc-transitive and locally primitive groups of Γ, respectively.

Studying of locally primitive graphs is one of the main themes in algebraic graph theory, which stems from a conjecture on bonding the stabilizers of locally primitive arc-transitive graphs [32, Conjecture 12]. The reader may consult [4, 9, 10, 11, 12, 14, 21, 22, 23, 24, 28, 29, 31] for some known results in this area.

In this paper, we aim at determining the arc-transitivity of certain locally primitive graphs. Let Γ be a connected graph and G be a locally primitive group on Γ. It is easily shown that G acts transitively on $E \Gamma$, and so Γ is edge-transitive. If G is vertex-transitive then Γ is necessarily an arc-transitive graph. Thus, for our purpose, we always assume that Γ is regular but G is not vertex-transitive. Then Γ is a bipartite graphs with two bipartition subsets being the G-orbits on $V \Gamma$. Giudici et al. [14] established a reduction for studying locally primitive bipartite graphs, which was successfully applied in [23] to the characterization of locally primitive graphs of order twice a prime power. In this paper we concentrate our

[^0]attention on analyzing the locally primitive graphs of order $18 p$. Our main result is stated as follows.

Theorem 1.1 Let Γ be a connected regular graph of order $18 p$, where p is a prime. Assume that Γ is locally primitive. Then Γ is either arc-transitive or isomorphic to one of the Gray graph and the Tutte 12-cage.

2 Preliminaries

Let Γ be a graph and let $G \leq \operatorname{Aut} \Gamma$. Assume that G is edge-transitive but not vertex-transitive; in this case, we call G semisymmetric if Γ is regular. Then Γ is a bipartite graph with two bipartition subsets being the G-orbits on $V \Gamma$. Moreover, Γ is arc-transitive provided that Γ has an automorphism interchanging two of its bipartition subsets. For a given vertex $u \in V \Gamma$, the stabilizer G_{u} acts transitively on $\Gamma(u)$. Take $w \in \Gamma(u)$. Then each vertex of Γ can be written as u^{g} or w^{g} for some $g \in G$. Then two vertices u^{g} and w^{h} are adjacent in Γ if and only if u and $w^{h g^{-1}}$ are adjacent, i.e., $h g^{-1} \in G_{w} G_{u}$. Moreover, it is well-known and easily shown that Γ is connected if and only if $\left\langle G_{u}, G_{w}\right\rangle=G$. In particular, the next simple fact follows.

Lemma 2.1 Let Γ be a connected graph and $G \leq$ Aut Γ. Assume that G is edge-transitive but not vertex-transitive. Let $\{u, w\}$ be an edge of Γ. Then
(1) G_{u} and G_{w} contain no nontrivial normal subgroups in common; and
(2) $r \leq \max \{|\Gamma(u)|,|\Gamma(w)|\}$ for each prime divisor r of $\left|G_{u}\right|$.

Moreover, Γ is arc-transitive if one of the following conditions holds:
(3) G has an automorphism σ of order 2 with $G_{u}^{\sigma}=G_{w}$.
(4) G has an abelian subgroup acting regularly on both bipartition subsets of Γ.

Proof. Since Γ is connected, $\left\langle G_{u}, G_{w}\right\rangle=G \leq \operatorname{Aut} \Gamma$. Then part (1) follows.
Let r be a prime divisor of $\left|G_{u}\right|$ with $r>\max \{|\Gamma(u)|,|\Gamma(w)|\}$, and let R be a Sylow r subgroup of G_{u}. Then R fixes $\Gamma(u)$ point-wise, and so $R \leq G_{w^{\prime}}$ for each $w^{\prime} \in \Gamma(u)$. Take Q be a Sylow r-subgroup of G_{w} with $Q \geq R$. Then Q fixes $\Gamma(w)$ point-wise, hence $Q \leq G_{u}$. Thus $R=Q$. By the connectedness of Γ, for each $v \in V \Gamma$, it is easily shown that R is a Sylow r-subgroup of G_{v}. Thus R fixes $V \Gamma$ point-wise, and so $R=1$ as $R \leq$ Aut Γ. Then part (2) follows.

Suppose that G has an automorphism σ of order 2 with $G_{u}^{\sigma}=G_{w}$. Define a bijection $\iota: V \Gamma \rightarrow V \Gamma$ by $\left(u^{g}\right)^{\iota}=w^{g^{\sigma}}$ and $\left(w^{h}\right)^{\iota}=u^{h^{\sigma}}$. It is easy to check that $\iota \in$ Aut Γ and ι interchanges two bipartition subsets of Γ. This implies that Γ is arc-transitive.

Suppose that G has a subgroup R which is regular on both bipartition subsets of Γ. Then each vertex in $V \Gamma$ can be written uniquely as u^{x} or w^{y} for some $x, y \in R$. Set $S=\{s \in R \mid$ $\left.w^{s} \in \Gamma(u)\right\}$. Then u^{x} and w^{y} are adjacent if and only if $y x^{-1} \in S$. If R is abelian, then it is easily shown that $u^{x} \mapsto w^{x^{-1}}, w^{x} \mapsto u^{x^{-1}}, \forall x \in R$ is an automorphism of Γ, which leads to the arc-transitivity of Γ.

Let G be a finite transitive permutation group on a set Ω. The orbits of G on the cartesian product $\Omega \times \Omega$ are the orbitals of G, and the diagonal orbital $\left\{(\alpha, \alpha)^{g} \mid g \in G\right\}$ is said to be
trivial. For a G-orbital Δ and $\alpha \in \Omega$, the set $\Delta(\alpha)=\{\beta \mid(\alpha, \beta) \in \Delta\}$ is a G_{α}-orbit on Ω and called a suborbit of G at α. The rank of G on Ω is the number of G-orbitals, which equals to the number of G_{α}-orbits on Ω for any given $\alpha \in \Omega$. A G-orbital Δ is called self-paired if $(\beta, \alpha) \in \Delta$ for some $(\alpha, \beta) \in \Delta$, while the suborbit $\Delta(\alpha)$ is said to be self-paired. For a G-orbital Δ, the paired orbital Δ^{*} is defined as $\{(\beta, \alpha) \mid(\alpha, \beta) \in \Delta\}$. Then a G-orbital Δ is self-paired if and only if $\Delta^{*}=\Delta$. For a non-trivial G-orbital Δ, the orbital bipartite graph $B(G, \Omega, \Delta)$ is the graph on two copies of Ω, say $\Omega \times\{1,2\}$, such that $\{(\alpha, 1),(\beta, 2)\}$ is an edge if and only if $(\alpha, \beta) \in \Delta$. Then $B(G, \Omega, \Delta)$ is G-semisymmetric, where G acts on $\Omega \times\{1,2\}$ as follows:

$$
(\alpha, i)^{g}=\left(\alpha^{g}, i\right), g \in G, i=1,2 .
$$

If Δ is self-paired, then $(\alpha, 1) \leftrightarrow(\alpha, 2), \alpha \in \Omega$ gives an automorphism of $B(G, \Omega, \Delta)$, which yields that $B(G, \Omega, \Delta)$ is G-arc-transitive. The next lemma indicates it is possible that $B(G, \Omega, \Delta)$ is arc-transitive even if Δ is not self-paired.

Lemma 2.2 Let X be a permutation group on Ω and G is a transitive subgroup of X with index $|X: G|=2$. Let Δ be a G-orbital. If $\Delta \cup \Delta^{*}$ is an X-orbital, then $B(G, \Omega, \Delta)$ is arc-transitive.

Proof. Assume that $\Delta \cup \Delta^{*}$ is an X-orbital. To show $\Gamma:=B(G, \Omega, \Delta)$ is arc-transitive, it suffices to find an automorphism of Γ which interchanges two bipartition subsets of Γ. Take $x \in X \backslash G$. It is easily shown that $\Delta^{x}=\Delta^{*}$ and $\left(\Delta^{*}\right)^{x}=\Delta$. Define $\hat{x}: \Omega \times\{0,1\} \rightarrow \Omega \times\{0,1\} ;(\alpha, 0) \mapsto$ $\left(\alpha^{x}, 1\right),(\beta, 1) \mapsto\left(\beta^{x}, 0\right)$. It is easy to check $\hat{x} \in \operatorname{Aut} \Gamma$, and so the lemma follows.

Moreover, the next lemma is easily shown, see also [14].
Lemma 2.3 Assume that Γ is a connected G-semisymmetric graph of valency at least 2 with bipartition subsets U and W, and that, for an edge $\{u, w\} \in E \Gamma$, two stabilizers G_{u} and G_{w} are conjugate in G. Then there is a bijection $\iota: U \leftrightarrow W$ such that $G_{u}=G_{\iota(u)}$ and $\{u, \iota(u)\} \notin E \Gamma$ for all $u \in U$. Moreover, $\Delta=\left\{\left(u, \iota^{-1}(w)\right) \mid\{u, w\} \in E \Gamma, u \in U, w \in W\right\}$ is a G-orbital on U. In particular, $\Gamma \cong B(G, U, \Delta)$, and ι extends to an automorphism of Γ if and only if Δ is self-paired.
Remark on Lemma 2.3. Let Γ and $G \leq$ Aut Γ be as in Lemma 2.3. Then $\left\{G_{u} \mid u \in U\right\}=$ $\left\{G_{w} \mid w \in W\right\}$, and so $\cap_{u \in U} G_{u}=\cap_{w \in W} G_{w}=1$ as $G \leq$ Aut Γ. Thus G is faithful on both parts of Γ. Take $u \in U$ and $w \in W$ with $G_{u}=G_{w}$. Then $u^{g} \leftrightarrow w^{g}, g \in G$ gives a bijection meeting the requirement of Lemma 2.3. Thus one can define l^{2} bijections ι, where l is the number of the points in U fixed by a stabilizer G_{u}. By [7, Theorem 4.2A], $l=\left|\mathrm{N}_{G}\left(G_{u}\right): G_{u}\right|$.

Let G be a finite transitive permutation group on Ω. Let $N=\left\{x_{1}=1, x_{2}, \cdots, x_{n}\right\}$ be a group of order n lying in the center $\mathbf{Z}(G)$ of G. Then N is normal in G, and N is semiregular on Ω, that is, $N_{\alpha}=1$ for all $\alpha \in \Omega$. Denote by $\bar{\alpha}$ the N-orbit containing $\alpha \in \Omega$ and by $\bar{\Omega}$ the set of all N-orbits. Then G induces a transitive permutation group \bar{G} on $\bar{\Omega}$. Take a \bar{G}-orbital $\bar{\Delta}$ and $(\bar{\alpha}, \bar{\beta}) \in \bar{\Delta}$. Noting that $G_{\bar{\alpha}}=N \times G_{\alpha}$, it follows that $\bar{\Delta}(\bar{\alpha})=\left\{(\bar{\beta})^{h} \mid h \in G_{\alpha}\right\}$. Set

$$
\Delta_{i}(\alpha)=\left\{\beta^{x_{i} h} \mid h \in G_{\alpha}\right\}, 1 \leq i \leq n
$$

Then all $\Delta_{i}(\alpha)$ are suborbits of G at α, which are not necessarily distinct. It is easily shown that $N \times G_{\alpha}$ acts transitively on $\Omega_{1}:=\left\{\beta^{x_{i} h} \mid 1 \leq i \leq n, h \in G_{\alpha}\right\}$. It follows that all G_{α}-orbits
on Ω_{1} have the same length divided by $|\bar{\Delta}(\bar{\alpha})|$. For each i, let Δ_{i} be the G-orbital corresponding to $\Delta_{i}(\alpha)$.

Lemma 2.4 Let $G, N, \bar{\Delta}$ and Δ_{i} be as above.
(1) All $\Delta_{i}(\alpha)$ are suborbits of G of the same length divisible by $|\bar{\Delta}(\bar{\alpha})|$.
(2) If $\bar{\Delta}$ is self-paired then, for each i, there is some j such that $\Delta_{i}(\alpha)=\Delta_{j}^{*}(\alpha)$.
(3) $B\left(G, \Omega, \Delta_{i}\right) \cong B\left(G, \Omega, \Delta_{j}\right)$ for $1 \leq i, j \leq n$.

Proof. Part (1) of this lemma follows from the argument above the lemma.
Assume that $\bar{\Delta}$ is self-paired. Then there is some $g \in G$ such that $(\bar{\alpha}, \bar{\beta})^{g}=(\bar{\beta}, \bar{\alpha})$. Thus, for each i, there are some i^{\prime} and j^{\prime} such that $\left(\alpha, \beta^{x_{i}}\right)^{g}=\left(\beta^{x_{j^{\prime}}}, \alpha^{x_{i^{\prime}}}\right)=\left(\beta^{x_{i^{\prime}} x_{j^{\prime}}}, \alpha\right)^{x_{i^{\prime}}}$. Setting $x_{i^{\prime}}^{-1} x_{j^{\prime}}=x_{j}$, we have $\left(\alpha, \beta^{x_{i}}\right)^{g}=\left(\beta^{x_{j}}, \alpha\right)^{x_{i}{ }^{\prime}}$. Then $\Delta_{i}=\Delta_{j}^{*}$.

For each i, define $f_{i}: \Omega \times\{1,2\} \rightarrow \Omega \times\{1,2\}$ by $f_{i}(\delta, 1)=(\delta, 1)$ and $f_{i}(\delta, 2)=\left(\delta^{x_{i}}, 2\right)$, where $\delta \in \Omega$. It is easily shown that f_{i} is an isomorphism from $B\left(G, \Omega, \Delta_{1}\right)$ to $B\left(G, \Omega, \Delta_{i}\right)$. Thus part (3) of this lemma follows.

Let Γ be a G-semisymmetric graph. Suppose that G has a normal subgroup N which acts intransitively on at least one of the bipartition subsets of Γ. Then we define the quotient graph Γ_{N} to have vertices the N-orbits on $V \Gamma$, and two N-orbits B and B^{\prime} are adjacent in Γ_{N} if and only if some $v \in B$ and some $v^{\prime} \in B^{\prime}$ are adjacent in Γ. It is easy to see that the quotient Γ_{N} is a regular graph if and only if all N-orbits have the same length. Moreover, if Γ_{N} is regular then its valency is a divisor of that of Γ. The graph Γ is called a normal cover of Γ_{N} (with respect to G and N) if Γ_{N} and Γ have the same valency, which yields that N is the kernel of G acting the N-orbits (vertices of Γ_{N}). Thus, if Γ is a normal cover of Γ_{N} then the quotient group G / N can be identified with a subgroup of Aut Γ_{N}, and so Γ_{N} is G / N-semisymmetric.

Corollary 2.1 Let Γ and $G \leq \mathrm{Aut} \Gamma$ be as in Lemma 2.3. Let $N \leq \mathbf{Z}(G)$. Then N is intransitive and semiregularly on both U and W. Assume further that $|N|$ is odd and that Γ_{N} is the orbital bipartite graph of some self-paired orbital of \bar{G}, where \bar{G} is the subgroup of Aut Γ_{N} induced by G. Then Γ is arc-transitive.

Proof. Recall that G is faithful on both U and W, see the remark after Lemma 2.3. Since $N \leq \mathbf{Z}(G)$, every subgroup of N is normal in G, so $N_{v} \leq G_{v}^{g}=G_{v^{g}}$ for $v \in V \Gamma$ and $g \in G$. It follows that $N_{v}=1$, so N is semiregular on both U and W. Suppose that N is transitive on one of U and W, say U. Then $G=N G_{u}$ for $u \in U$, and so G_{u} is normal in G as $N \leq \mathbf{Z}(G)$. It follows that G_{u} fixes every vertex in U, so $G_{u}=1$, which contradicts the transitivity of G_{u} on $\Gamma(u)$.

By Lemma 2.3, there is bijection $\iota: U \leftrightarrow W$ such that, for $u \in U$, the subset $\iota^{-1}(\Gamma(u))$ is a suborbit of G at u. By the remark after Lemma 2.3, we may choose ι such that it maps each N-orbit on U to some N-orbit on W. Thus ι induces a bijection $\bar{\iota}$ on $V \Gamma_{N}$ interchanging two bipartition subsets U_{N} and W_{N} of Γ_{N}, where U_{N} and W_{N} denote respectively the sets of N-orbits on U and W. Moreover, it is easily shown that $\bar{G}_{\bar{v}}=\bar{G}_{\bar{\iota}(\bar{v})}$ for any N-orbit \bar{v}, and that $\iota^{-1}(\Gamma(u))=\left\{u^{\prime h} \mid h \in G_{u}\right\}$ for $u^{\prime} \in U$ such that $\bar{u}^{\prime} \in \bar{\iota}^{-1}\left(\Gamma_{N}(\bar{u})\right)$.

Assume Γ_{N} is the orbital bipartite graph of some self-paired orbital of \bar{G}. Then, again by Lemma 2.3, $\bar{\iota} \in \operatorname{Aut} \Gamma_{N}$ and $\bar{\iota}^{-1}\left(\Gamma_{N}(\bar{u})\right)$ is a self-paired suborbit of \bar{G} at \bar{u}. If $|N|$ is odd then,
by Lemma 2.4, Γ is isomorphic to the orbital bipartite graph of some self-paired orbital of G on U, and hence Γ is arc-transitive.

Recall that, for a group G acts transitively on a set Ω, a block B is a non-empty subset of Ω such that $B=B^{g}$ or $B \cap B^{g}=\emptyset$ for every $g \in G$.

Lemma 2.5 Let Γ be a connected graph, and let $G \leq$ Aut Γ such that G is locally primitive but not vertex-transitive. Assume that U and W are G-orbits on $V \Gamma$ and that B is a block of G on W. Then either $B=W$, or $|\Gamma(u) \cap B| \leq 1$ for each $u \in U$.

Proof. Note that for each $u \in U$ either $\Gamma(u) \cap B=\emptyset$ or $\Gamma(u) \cap B$ is a block of G_{u} on $\Gamma(u)$. Since G_{u} acts primitively on $\Gamma(u)$, we know that either $|\Gamma(u) \cap B| \leq 1$ or $\Gamma(u) \subseteq B$. Suppose that $\Gamma(u) \subseteq B$ for some $u \in U$. Take $w \in B$ and $v \in \Gamma(w)$. Since G is edge-transitive, there is $g \in G$ with $v^{g}=u$ and $w^{g} \in \Gamma(u) \subseteq B$. Then $w \in B^{g^{-1}} \cap B$, and so $B=B^{g^{-1}}$. Thus $\Gamma(v)=(\Gamma(u))^{g^{-1}} \subseteq B^{g^{-1}}=B$. It follows that Γ has a connected component with vertex set $\left(\cup_{w \in B} \Gamma(w)\right) \cup B$. This yields $B=W$.

Lemma 2.6 Let Γ and G be as in Lemma 2.5. Let U and W be the G-orbits on $V \Gamma$. Suppose that G has a normal subgroup N which acts transitively on U. Then
(1) Γ_{N} is a $|\Gamma(u)|$-star, where $u \in U$; or
(2) Γ is N-edge-transitive; or
(3) N is regular on both U and W.

Proof. If N is intransitive on W, then part (1) follows from [14, Lemma 5.5]. Thus we assume that N is transitive on W. Take $u \in U$. If N_{u} is transitive on $\Gamma(u)$ then Γ is N-edge-transitive, and so (2) holds. Suppose that N_{u} is not transitive on $\Gamma(u)$. Since N_{u} is normal in G_{u} and G is locally primitive, N_{u} fixes $\Gamma(u)$ point-wise. Thus $N_{w} \geq N_{u}$ for each $w \in \Gamma(u)$. If N_{w} is transitive on $\Gamma(w)$ then Γ is N-edge-transitive, and so (2) holds. Thus we may suppose further that $N_{w} \leq N_{u^{\prime}}$ for each $u^{\prime} \in \Gamma(w)$. By the connectedness of Γ, we conclude that $N_{u}=N_{w}=1$. Then (3) follows.

Recall that a quasiprimitive group is a permutation group with all minimal normal subgroups transitive. By [14, Theorem 1.1 and Lemma 5.1], the next lemma holds.

Lemma 2.7 Let Γ and G be as in Lemma 2.5. Suppose that N is a normal subgroup of G which is intransitive on both bipartition subsets of Γ. Then Γ is a normal cover of Γ_{N} and Γ_{N} is G / N-locally primitive. If further N is maximal among the normal subgroups of G which are intransitive on both bipartition subsets of Γ, then either Γ_{N} is a complete bipartite graph, or G / N acts faithfully on both parts and is quasiprimitive on at least one the bipartition subsets of Γ_{N}.

For a finite group G, denote by $\operatorname{soc}(G)$ the subgroup generated by all minimal normal subgroups of G, which is called the socle of G. The next result describes the basic structural information for quasiprimitive permutation groups, refer to [30].

Lemma 2.8 Let G be a finite quasiprimitive permutation group on Ω. Then G has at most two minimal normal subgroups, and one of the following statements holds.
(1) $|\Omega|=p^{d}, \operatorname{soc}(G) \cong \mathbb{Z}_{p}^{d}$ and $\operatorname{soc}(G)$ is the unique minimal normal subgroup of G, where $d \geq 1$ and p is a prime; in this case, G is primitive on Ω;
(2) $\operatorname{soc}(G)=T^{l}$ for $l \geq 1$ and a nonabelian simple group T, and either $\operatorname{soc}(G)$ is the unique minimal normal subgroup of G, or $\operatorname{soc}(G)=M \times N$ for two minimal normal subgroups M and N of G with $|M|=|N|=|\Omega|$.

3 The quasiprimitive case

Let Γ be a G-locally primitive regular graph of order $18 p$, where $G \leq \operatorname{Aut} \Gamma$ and p is a prime. Assume that G is intransitive on $V \Gamma$. Then Γ is a bipartite graph with two bipartition subsets being G-orbits, say U and W.

Assume next that G acts faithfully on both U and W, and that G is quasiprimitive on one of U and W. If G acts primitively on one of U and W then, by [18], Γ is either arc-transitive or isomorphic to one of the Gray graph and the Tutte 12-cage. Thus we assume in the following that neither G^{U} nor G^{W} is a primitive permutation group. Then, by Lemma 2.8, N:= $\operatorname{soc}(G)$ is the direct product of some isomorphic non-abelian simple groups. In particular, G is insoluble, and so Γ is not a cycle.

Without loss of generality, we assume that G is quasiprimitive on U. Recall that G^{U} is not primitive. Take a maximal block $B(\neq U)$ of G on U. Then $|B|$ is a proper divisor of $|U|=9 p$ and $\left|G_{B}: G_{u}\right|=\left|N_{B}: N_{u}\right|=|B|$ for each $u \in B$. Set $\mathcal{B}=\left\{B^{g} \mid g \in G\right\}$. Then $|\mathcal{B}|=\frac{9 p}{|B|}$, and G acts primitively on \mathcal{B}. Since G is quasiprimitive on U, we know that G acts faithfully on \mathcal{B}. Thus we may view G as a primitive permutation group (on \mathcal{B}) of degree $\frac{9 p}{|B|}$.

Lemma $3.1|B|=3$ or 9 .

Proof. It is easy to see that $|B|=3,9$ or p. Suppose that $|B|=p$. Then $|\mathcal{B}|=9$ and, by $[7$, Appendix B], $N=\operatorname{soc}(G)=\mathrm{A}_{9}$ or $\operatorname{PSL}(2,8)$. If $N=\mathrm{A}_{9}$ then $N_{B} \cong \mathrm{~A}_{8}$ and $p \leq 7$; however A_{8} has no subgroups of index p, a contradiction. Thus $N=\operatorname{PSL}(2,8), N_{B} \cong \mathbb{Z}_{2}^{3}: \mathbb{Z}_{7}$ and $p=7$, and so $N_{u} \cong \mathbb{Z}_{2}^{3}$ and $|U|=63$, where $u \in B$. Since Γ is G-locally primitive, G_{u} induces a primitive permutation group $G_{u}^{\Gamma(u)}$. If $G=N$ then $G_{u}^{\Gamma(u)} \cong \mathbb{Z}_{2}$, yielding that Γ is a cycle, a contradiction. It follows that $G=\mathrm{P} \Sigma \mathrm{L}(2,8) \cong \mathrm{PSL}(2,8): \mathbb{Z}_{3}$ and $\left|G_{v}\right|=24$, where v is an arbitrary vertex of Γ. Checking the subgroups of $\operatorname{PSL}(2,8)$ in the Atlas [6], we know that N has no proper subgroups of index dividing 21. It implies that N is transitive on W, and so G is also quasiprimitive on W. By the information given for $\mathrm{P} \Sigma \mathrm{L}(2,8)$ in $[6], G_{v} \cong \mathbb{Z}_{2}^{3}: \mathbb{Z}_{3} \cong \mathbb{Z}_{2} \times \mathrm{A}_{4}$ for each $v \in V \Gamma$. Then either $G_{v}^{\Gamma(v)} \cong \mathbb{Z}_{3}$ and Γ is cubic, or $G_{v}^{\Gamma(v)} \cong \mathrm{A}_{4}$ and Γ has valency 4 . Take $\{u, w\} \in E \Gamma$. Then $G_{u w} \cong \mathbb{Z}_{2}^{3}$ or \mathbb{Z}_{6}. It follows that G_{u} and G_{w} have the same center, which contradicts Lemma 2.1.

Therefore, G is a primitive permutation group (on \mathcal{B}) of degree p or $3 p$. For further argument, we list in Tables 1 and 2 the insoluble primitive groups of degree p and of degree $3 p$, respectively. Noting that N_{B} has a subgroup of index $|B|=9$ or 3 , it is easy to check that $N=\mathrm{A}_{6}$ or $\operatorname{PSL}(n, q)$. Suppose that $N=\mathrm{A}_{6}$. Then $|B|=3$ and $p=5$. It follows that G_{u} is a 2-group. Since Γ is G-locally primitive, $G_{u}^{\Gamma(u)} \cong \mathbb{Z}_{2}$. Then Γ is a cycle, a contradiction. Thus the next lemma follows.

Degree p	11	11	23	p	$\frac{q^{n}-1}{q-1}$
Socle	$\operatorname{PSL}(2,11)$	M_{11}	M_{23}	$\mathrm{~A}_{p}$	$\operatorname{PSL}(n, q)$
Stabilizer	A_{5}	M_{10}	M_{22}	$\mathrm{~A}_{p-1}$	
Action					1 - or $(n-1)$-subspaces
Remark					prime $n \geq 3$ or $(n, q)=\left(2,2^{2^{s}}\right)$

Table 1. Insoluble transitive groups of prime degree (refer to [2, Table 7.4]).

Lemma 3.2 Either $|B|=9$ and $N=\operatorname{PSL}(n, q)$ with n prime, or $|B|=3$ and $N=\operatorname{PSL}(3, q)$ with $q \equiv 1(\bmod 3)$.

Degree $3 p$	Socle	Action	Remark
6	$\mathrm{~A}_{5}$	cosets of D_{10}	
15	$\mathrm{~A}_{6}$	2-subsets or partitions	
21	$\mathrm{~A}_{7}$	2-subsets	
21	$\operatorname{PSL}(3,2)$	$(1,2)$-flags	
57	$\operatorname{PSL}(2,19)$	cosets of A_{5}	two actions
15	$\mathrm{~A}_{7}$	cosets of PSL(2, 7)	two actions
$3 p$	$\mathrm{~A}_{3 p}$		
15	$\operatorname{PSL}(4,2)$	1- or 3-subspaces	
$2^{f}+1$	$\operatorname{PSL}\left(2,2^{f}\right)$	1-subspaces	odd prime f
$\frac{q^{3}-1}{q-1}$	$\operatorname{PSL}(3, q)$	1- or 2-subspaces	$q \equiv 1(\bmod 3)$

Table 2. Insoluble primitive groups of degree $3 p$ (refer to [16]).

Let \mathbb{F}_{q} be the Galois field of order q, and let \mathbb{F}_{q}^{n} be the n-dimensional linear space of row vectors over \mathbb{F}_{q}. Denote by \mathcal{P} and \mathcal{H}, respectively, the sets of 1 -subspaces and $(n-1)$-subspaces of \mathbb{F}_{q}^{n}. Then the action of $N=\operatorname{SL}(n, q) / \mathbf{Z}(\operatorname{SL}(n, q))$ on \mathcal{B} is equivalent to one of the actions of N on \mathcal{P} and on \mathcal{H} induced by

$$
\left(x_{1}, x_{2}, \cdots, x_{n}\right) \mathbf{A}=\left(\Sigma_{i=1}^{n} a_{i 1} x_{i}, \Sigma_{i=1}^{n} a_{i 2} x_{i}, \cdots, \Sigma_{i=1}^{n} a_{i n} x_{i}\right),
$$

where $\mathbf{A}=\left(a_{i j}\right)_{n \times n} \in \operatorname{SL}(n, q)$. Let σ be the inverse-transpose automorphism of $\operatorname{SL}(n, q)$, that is,

$$
\sigma: \mathrm{SL}(n, q) \rightarrow \mathrm{SL}(n, q), \mathbf{a} \mapsto\left(\mathbf{a}^{\prime}\right)^{-1}
$$

Then σ gives an automorphism of N of order 2. Define

$$
\iota: \mathcal{P} \rightarrow \mathcal{H},\left\langle\left(x_{1}, x_{2}, \cdots, x_{n}\right)\right\rangle \mapsto\left\{\left(y_{1}, y_{2}, \cdots, y_{n}\right) \mid \Sigma_{i=1}^{n} x_{i} y_{i}=0\right\}
$$

Then

$$
(\iota(\langle\mathbf{v}\rangle))^{\mathbf{A}}=\iota(\langle\mathbf{v} \mathbf{A}\rangle), \forall \mathbf{A} \in \mathrm{SL}(n, q),\langle\mathbf{v}\rangle \in \mathcal{P}
$$

For $1 \leq i \leq n$, let \mathbf{e}_{i} be the vector with the i th entry 1 and other entries 0 . Then

$$
(\mathrm{SL}(n, q))_{\left\langle\mathbf{e}_{1}\right\rangle}=Q: H \text { and }(\mathrm{SL}(n, q))_{\left\langle\mathbf{e}_{i} \mid 2 \leq i \leq n\right\rangle}=Q^{\sigma}: H,
$$

where

$$
\begin{gathered}
Q=\left\{\left.\left(\begin{array}{cc}
1 & \mathbf{0} \\
\mathbf{b}^{\prime} & \mathbf{I}_{n-1}
\end{array}\right) \right\rvert\, \mathbf{b} \in \mathbb{F}_{q}^{n-1}\right\}, \\
H=\left\{\left.\left(\begin{array}{cc}
a & \mathbf{0} \\
\mathbf{0}^{\prime} & \mathbf{A}
\end{array}\right) \right\rvert\, \mathbf{A} \in \mathrm{GL}(n-1, q), a^{-1}=\operatorname{det}(\mathbf{A})\right\} .
\end{gathered}
$$

For a subgroup X of $\mathrm{SL}(n, q)$, we denote \bar{X} to be the image of X in N, that is, $\bar{X}=$ $X / \mathbf{Z}(\operatorname{SL}(n, q))$. Then the following lemma holds.

Lemma 3.3 If $B \in \mathcal{B}$ then N_{B} is conjugate in N to one of $\bar{Q}: \bar{H}$ and $\bar{Q}^{\sigma}: \bar{H}$.
The following simple fact may be shown by simple calculations.
Lemma 3.4 Set $\mathbb{F}_{q} \backslash\{0\}=\langle\eta\rangle$ and

$$
L=\left\{\left.\left(\begin{array}{cc}
1 & \mathbf{0} \\
\mathbf{0}^{\prime} & \mathbf{A}
\end{array}\right) \right\rvert\, \mathbf{A} \in \mathrm{SL}(n-1, q)\right\} .
$$

Then $\bar{Q}: \bar{L}$ acts transitively on $\mathcal{P} \backslash\left\langle\mathbf{e}_{1}\right\rangle$, and has two orbits on \mathcal{H} with length $\frac{q^{n-1}-1}{q-1}$ and q^{n-1}, respectively. Moreover, for each divisor m of $q-1, Q: H$ has a unique subgroup containing $Q: L$ and having index m, which is

$$
\left\{\left.\left(\begin{array}{cc}
a & \mathbf{0} \\
\mathbf{b}^{\prime} & \mathbf{A}
\end{array}\right) \right\rvert\, \mathbf{b} \in \mathbb{F}_{q}^{n-1}, \mathbf{A} \in \mathrm{GL}(n-1, q), a^{-1}=\operatorname{det}(\mathbf{A}) \in\left\langle\eta^{m}\right\rangle\right\} .
$$

Lemma 3.5 Write $q=r^{f}$ for a prime r and an integer $f \geq 1$. Assume that $|B|=9$ for $B \in \mathcal{B}$. Then the following statements hold:
(1) $(n, q) \neq(2,2),(2,3),(3,2),(3,3)$;
(2) n is an odd prime with $q \not \equiv 1(\bmod n)$;
(3) n is the smallest prime divisor of $n f$.

Proof. By Lemma 3.2, $N=\operatorname{PSL}(n, q)$ for a prime n. Since 9 is a divisor of $|N|$ and N is simple, $(n, q) \neq(2,2),(2,3),(3,2)$.

Suppose that $N=\operatorname{PSL}(3,3)$. Then $p=13, G=N,\left|G_{B}\right|=2^{4} \cdot 3^{3}$ and $\left|G_{u}\right|=48$. Take $w \in \Gamma(u)$. Since Γ is regular, $\left|G_{u}\right|=48=\left|G_{w}\right|$. Checking the subgroups of $\operatorname{SL}(3,3)$ (refer to [6]), we have $G_{u} \cong G_{w} \cong 2 \mathrm{~S}_{4} \cong \mathrm{GL}(2,3)$. Since Γ is G-locally primitive, $G_{u}^{\Gamma(u)} \cong \mathrm{S}_{4} \cong G_{w}^{\Gamma(w)}$ and Γ has valency 4 . Thus $G_{u w} \cong \mathrm{D}_{12}$. It follows that G_{u} and G_{w} have the same center isomorphic to \mathbb{Z}_{2}, which contradicts Lemma 2.1. Thus part (1) follows.

Suppose that $n=2$. Then, since $p=\frac{r^{n f}-1}{r^{f}-1}$ is a prime, $r=2$ and $f=2^{s}$ for some integer $s \geq 1$. Thus $N_{B} \cong \mathbb{Z}_{2}^{2^{s}}: \mathbb{Z}_{2^{2 s}-1}$, and hence $N_{u} \cong \mathbb{Z}_{2}^{2^{s}}: \mathbb{Z}_{\frac{2^{2 s}-1}{9}}$. But $2^{2^{s}}-1$ is not divisible by 9 , a contradiction. This implies that n is an odd prime. If $q \equiv 1(\bmod n)$ then $p=\sum_{i=0}^{n-1} q^{i} \equiv 0(\bmod n)$, a contradiction. Then part (2) follows.

If $n f=6$ and $r=2$ then $p=\frac{q^{n}-1}{q-1}=21$ or 63 , a contradiction. Thus, by Zsigmondy's Theorem (refer to [20, p. 508]), there is a prime which divides $r^{n f}-1$ but not divides $r^{i}-1$ for all $1 \leq i \leq n f-1$. Clearly, such a prime is p. Suppose that f has a prime divisor s such that $s<n$. Then $q^{n}-1$ has a divisor $r^{\frac{n f}{s}}-1$. By Zsigmondy's Theorem, either $\left(r, \frac{n f}{s}\right)=(2,6)$, or $r^{\frac{n f}{s}}-1$ has a prime divisor which does not divide $r^{f}-1$. The latter case yields that $\frac{q^{n}-1}{q-1}$ has
two (distinct) prime divisors, a contradiction. Thus $\left(r, \frac{n f}{s}\right)=(2,6)$, yielding that $n=3$ and $f=4$. Then $p=\frac{q^{n}-1}{q-1}=\frac{2^{12}-1}{2^{4}-1}=273$, a contradiction. Then part (3) follows.

Lemma 3.6 Let $B \in \mathcal{B}$. If $(n, q)=(3,8)$ then $|B|=9$ and Γ is arc-transitive and of valency 8 or 64 .

Proof. Assume that $(n, q)=(3,8)$. Then $N \cong \mathrm{SL}(3,8), p=73$ and $|G: N|=1$ or 3 . By Lemma $3.2,|B|=9$. Without loss of generality, we assume that $N=\operatorname{SL}(3,8)$ and choose B such that $N_{B}=P: H$, where $P \cong \mathbb{Z}_{2}^{6}$ and H is defined as above Lemma 3.3.

Since N_{B} is transitive on B, it is easily shown that P acts trivially on B, and so H acts transitively on B. Then $\left|H: H_{u}\right|=9$. Note that $H \cong \operatorname{GL}(2,8) \cong \mathbb{Z}_{7} \times \operatorname{PSL}(2,8)$. Checking the subgroups of $\operatorname{PSL}(2,8)$, we conclude that the action of H on B is equivalent to the action of H on the 1 -subspaces of \mathbb{F}_{8}^{2}. Then, without loss of generality, we may assume that H_{u} is conjugate to

$$
\left\{\left.\left(\begin{array}{ccc}
a_{1} & 0 & 0 \\
0 & a_{2} & 0 \\
0 & b & a_{3}
\end{array}\right) \right\rvert\, a_{1}, a_{2}, a_{3}, b \in \mathbb{F}_{8}, a_{1} a_{2} a_{3}=1\right\} .
$$

Recall that a $(1,2)$-flag of \mathbb{F}_{8}^{3} is a pair $\left\{V_{1}, V_{2}\right\}$ of a 1 -subspace and a 2 -subspace with the 1-subspace contained in the 2-subspace. Since $P \leq N_{u}$, we have $N_{u}=N_{u} \cap(P H)=P H_{u} \cong$ $\mathbb{Z}_{2}^{6}:\left(\mathbb{Z}_{2}^{3}: \mathbb{Z}_{7}^{2}\right)$. It is easily shown that N_{u} is the stabilizer of some $(1,2)$-flag $\left\{V_{1}, V_{2}\right\}$ in N. It follows that the action of N on U is equivalent to the action of N on the set \mathcal{F} of (1,2)-flags of \mathbb{F}_{8}^{3}.

Now we show that the actions of N on U and W are equivalent. Note that $|G: N|=1$ or 3. Thus, since W is a G-orbit, either N is transitive on W or N has 3 orbits on W. Checking the subgroups of $\operatorname{SL}(3,8)$, we know that N has no subgroups of index 219. It follows that N is transitive on W. Note that $N=\operatorname{SL}(3,8)$ has no subgroups of indices 3,9 and 219 . It follows that a maximal block of N on W has size 9 . Then a similar argument as above implies the action of N on W is also equivalent to that on \mathcal{F}. Moreover, Γ is N-edge-transitive by Lemma 2.6.

Identifying U with \mathcal{F}, by Lemma $2.3, \Gamma \cong B(N, \mathcal{F}, \Delta)$, where Δ is an N-orbital on \mathcal{F}. Without loss of generality, choose u to be the flag $\left\{\left\langle\mathbf{e}_{3}\right\rangle,\left\langle\mathbf{e}_{2}, \mathbf{e}_{3}\right\rangle\right\}$. Calculation shows that $\Delta(u)$ is one of the following 5 suborbits:
(i) $\left\{\left\{\left\langle\mathbf{e}_{2}+a \mathbf{e}_{3}\right\rangle,\left\langle\mathbf{e}_{2}, \mathbf{e}_{3}\right\rangle\right\} \mid a \in \mathbb{F}_{8}\right\}$ and $\left\{\left\{\left\langle\mathbf{e}_{3}\right\rangle,\left\langle\mathbf{e}_{3}, \mathbf{e}_{1}+a \mathbf{e}_{2}\right\rangle\right\} \mid a \in \mathbb{F}_{8}\right\}$, which are self-paired and of length 2^{3};
(ii) $\left\{\left\{\left\langle\mathbf{e}_{2}+a \mathbf{e}_{3}\right\rangle,\left\langle\mathbf{e}_{1}+b \mathbf{e}_{2}, \mathbf{e}_{2}+a \mathbf{e}_{3}\right\rangle\right\} \mid a, b \in \mathbb{F}_{8}\right\}$ and $\left\{\left\{\left\langle\mathbf{e}_{1}+a \mathbf{e}_{2}+b \mathbf{e}_{3}\right\rangle,\left\langle\mathbf{e}_{1}+a \mathbf{e}_{2}, \mathbf{e}_{3}\right\rangle\right\} \mid\right.$ $\left.a, b \in \mathbb{F}_{8}\right\}$, which are paired to each other and of length 2^{6};
(iii) $\left\{\left\{\left\langle\mathbf{e}_{1}+a \mathbf{e}_{2}+b \mathbf{e}_{3}\right\rangle,\left\langle\mathbf{e}_{1}+a \mathbf{e}_{2}+b \mathbf{e}_{3}, \mathbf{e}_{2}+c \mathbf{e}_{3}\right\rangle\right\} \mid a, b, c \in \mathbb{F}_{8}\right\}$, which is self-paired and of length 2^{9}.
Suppose that $\Delta(u)$ is the suborbit in (iii). Then Γ has valency 2^{9}. Recall that $|G: N|=1$ or 3 , and $N_{u}=P H_{u} \cong \mathbb{Z}_{2}^{6}:\left(\mathbb{Z}_{2}^{3}: \mathbb{Z}_{7}^{2}\right)$. It follows that G_{u} / N_{u} is cyclic, and hence G_{u} is soluble. Since Γ is G-locally primitive, $G_{u}^{\Gamma(u)}$ is a soluble primitive permutation group of degree 2^{9}. In particular, $\operatorname{soc}\left(G_{u}^{\Gamma(u)}\right) \cong \mathbb{Z}_{2}^{9}$ and $\operatorname{soc}\left(G_{u}^{\Gamma(u)}\right)$ is the unique minimal normal subgroup of $G_{u}^{\Gamma(u)}$. Thus $N_{u}^{\Gamma(u)} \geq \operatorname{soc}\left(G_{u}^{\Gamma(u)}\right)$ as N_{u} induces a normal transitive subgroup of $G^{\Gamma(u)}$. However, the unique Sylow 2-subgroup of N_{u} is non-abelian and has order 2^{9}, a contradiction.

If $\Delta(u)$ is described in (i) then Γ has valency 8 and, by Lemma $2.3, \Gamma$ is arc-transitive.
Assume that $\Delta(u)$ is one of the suborbits in (ii). Then Γ has valency 64 . Let σ is the inverse-transpose automorphism of $N=\mathrm{SL}(3,8)$. Then \mathcal{F} is σ-invariant. Consider that action $N:\langle\sigma\rangle$ on \mathcal{F} and take $\mathbf{a} \in \mathrm{SL}(3,8)$ with

$$
\mathbf{a}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

Then $(N\langle\sigma\rangle)_{u}=N_{u}:\langle\sigma \mathbf{a}\rangle$, which interchanges the two suborbits in (ii). It follows from Lemma 2.2 that Γ is arc-transitive.

Lemma 3.7 Assume that $(n, q) \neq(3,8)$. Then there is $u \in U$ with $N_{u} \geq \bar{Q}: \bar{L}$ or $\bar{Q}^{\sigma}: \bar{L}$, where σ is the inverse-transpose automorphism of $\operatorname{SL}(n, q), \bar{Q}$ and \bar{L} are described as in Lemmas 3.3 and 3.4. In particular, $q \equiv 1(\bmod |B|)$.

Proof. Recall that the action of $N=\operatorname{SL}(n, q) / \mathbf{Z}(\mathrm{SL}(n, q))$ on \mathcal{B} is equivalent to one of the actions of N on \mathcal{P} and on \mathcal{H}. Without loss of generality, we may choose $B \in \mathcal{B}$ such that $N_{B}=R: \bar{H}$, where $R=\bar{Q}$ or \bar{Q}^{σ}, and \bar{H} is described as in Lemma 3.3. Set $q=r^{f}$ for some prime r and integer $f \geq 1$. Then R is a nontrivial r-group.

Take $u \in B$. Then $\left|N_{B}: N_{u}\right|=|B|=3$ or 9 . Suppose that $R \not \leq N_{u}$. Noting that $R N_{u}$ is a subgroup of N_{B} as R is normal in N_{B}, it follows that $\left|R:\left(R \cap N_{u}\right)\right|=\left|\left(R N_{u}\right): N_{u}\right|=3$ or 9 . In particular, R is a 3 -group, and hence $|B|=9$ by Lemma 3.2. Then, by Lemma 3.5, n and $q-1$ are coprime, and so $\mathbf{Z}(\operatorname{SL}(n, q))=1$. Thus $N \cong \operatorname{SL}(n, q)$ and $R \cong Q \cong \mathbb{Z}_{3}^{(n-1) f}$. Assume that $\left|\left(R N_{u}\right): N_{u}\right|=9$. Then $N_{B}=R N_{u}$. It implies that $R \cap N_{u}$ is normal in N_{B}. Then $N_{u}>R \cap N_{u}=\left\langle\left(R \cap N_{u}\right)^{x} \mid x \in N_{B}\right\rangle=R$, yielding $R \cap N_{u}=1$. It follows that $R \cong \mathbb{Z}_{3}^{2}$. By Lemma 3.5, we conclude that $n=3$ and $f=1$, that is, $(n, q)=(3,3)$, a contradiction. Thus $\left|N_{B}:\left(R N_{u}\right)\right|=3$. Noting that $\mathrm{GL}\left(n-1,3^{f}\right) \cong H \cong \bar{H} \cong N_{B} / R$, it follows that $\mathrm{GL}\left(n-1,3^{f}\right)$ has a subgroup of index 3 . Note that $\operatorname{GL}\left(n-1,3^{f}\right)=\mathbb{Z}_{3^{f}-1} \cdot\left(\operatorname{PSL}\left(n-1,3^{f}\right) \cdot \mathbb{Z}_{d}\right.$, where d is the largest common divisor of $n-1$ and $3^{f}-1$. It implies that $\operatorname{PSL}\left(n-1,3^{f}\right)$ has a subgroup of index 3. Then $n=3$ and $f=1$, a contradiction. Therefore, R is contained in N_{u}.

Since $R: \bar{L}$ is normal in N_{B}, we know that $\bar{L} N_{u}=(R: \bar{L}) N_{u}$ is a subgroup of N_{B}. Suppose that $R: \bar{L} \not \leq N_{u}$. Then $\left|\bar{L}:\left(\bar{L} \cap N_{u}\right)\right|=\left|\left(\bar{L} N_{u}\right): N_{u}\right|=3$ or 9 . Let Z be the center of \bar{L}. Then $\bar{L} / Z \cong \operatorname{PSL}(n-1, q)$ and $\left|\bar{L} / Z:\left(\bar{L} \cap N_{u}\right) Z / Z\right|$ divides 9 . By Lemma 3.2 and $3.5, n \geq 3$ and $(n, q) \neq(3,2),(3,3)$. Thus \bar{L} / Z is simple, and hence it has no subgroups of order 3. Suppose that $\left|\bar{L} / Z:\left(\bar{L} \cap N_{u}\right) Z / Z\right|=9$. Then \bar{L} / Z has a primitive permutation representation of degree 9. By [7, Appendix B], we conclude that $\bar{L} / Z \cong \operatorname{PSL}(2,8)$. Then $(n, q)=(3,8)$, a contradiction. It follows that $\left|\bar{L} / Z:\left(\bar{L} \cap N_{u}\right) Z / Z\right|=1$, that is, $\bar{L}=\left(\bar{L} \cap N_{u}\right) Z$. Consider the commutator subgroups of L and \bar{L}. By [19, Chapter II, 6.10], $L^{\prime}=L$, hence $\bar{L}=\bar{L}^{\prime}=\left(\bar{L} \cap N_{u}\right)^{\prime} \leq \bar{L} \cap N_{u} \neq N_{u}$, a contradiction. Therefore, the first part of this lemma follows.

Let X and Y be the pre-images of N_{B} and N_{u} in $\operatorname{SL}(n, q)$. Then $|X: Y|=\left|N_{B}: N_{u}\right|=|B|$. Moreover $X=Q: H$ or $Q^{\sigma}: H$ and $Y \geq Q: L$ or $Q^{\sigma}: L$, respectively. It follows that $|B|$ is divisor of $|H: L|=q-1$. Then $q \equiv 1(\bmod |B|)$.

Theorem 3.1 Γ is an arc-transitive graph, and one of the following holds.
(1) $N=\operatorname{PSL}(3,8), p=73$ and Γ has valency 8 or 64 ;
(2) $N=\operatorname{PSL}(n, q), p=\frac{q^{n}-1}{q-1}$ and Γ has valency q^{n-1}, where $q \equiv 1(\bmod 9), n \geq 5$ and (n, q) satisfies Lemma 3.5;
(3) $N=\operatorname{PSL}(3, q), 3 p=q^{2}+q+1$ and Γ has valency q^{2}, where $q \equiv 1(\bmod 3)$.

Proof. By Lemmas 3.2 and $3.5, N=\operatorname{soc}(G)=\operatorname{PSL}(n, q)$ for some odd prime n. If $(n, q)=(3,8)$ then part (1) of the theorem follows from Lemma 3.6. Thus we assume that $(n, q) \neq(3,8)$ in the following. Write $q=r^{f}$ for a prime r and an integer $f \geq 1$.

Case 1. Assume that $|B|=9$. Then $|\mathcal{B}|=p=\frac{q^{n}-1}{q-1}$ is a prime. By Lemma 3.7, $q \equiv 1(\bmod 3)$, and so $n<p=\Sigma_{i=0}^{n-1} q^{i} \equiv n(\bmod 3)$. It follows that $n \neq 3$. By Lemmas $3.5, n f$ has no prime divisors less that 5 . Note that $|G: N|$ divides $n f$ and G is transitive on W. It follows that the number of N-orbits on W is a divisor of $n f$. It implies that N is transitive on W, and hence G is quasiprimitive on W.

Recall that G is faithful and imprimitive on W. Take a maximal block C of G on W, and set $\mathcal{C}=\left\{C^{g} \mid g \in G\right\}$. Then G acts primitively on \mathcal{C}.

Since $n \geq 5$, checking Table 2, we conclude that G has no primitive permutation representation of degree $3 p$. Then $|C| \neq 3$. In addition, G has no subgroups of index 9 , and so $|C| \neq p$. It follows that $|C|=9$ and $|\mathcal{C}|=p$. Then the argument for the actions of N on \mathcal{B} and on U is available for the actions on \mathcal{C} and on W. This allows us to view \mathcal{B} as a copy of \mathcal{P} and \mathcal{C} a copy of \mathcal{P} or \mathcal{H}.

Choose $B \in \mathcal{B}$ and $C \in \mathcal{C}$ such that $N_{B}=\bar{Q}: \bar{H}$ and $N_{C}=N_{B}$ or N_{B}^{σ}. Then, by Lemmas 3.4 and 3.7, $\bar{Q}: \bar{L} \leq N_{u}=X / \mathbf{Z}(\operatorname{SL}(n, q))$ and $N_{w}=N_{u}$ or N_{u}^{σ}, where $u \in B, w \in C$ and X is a subgroup of $\mathrm{SL}(n, q)$ consists matrices of the following form:

$$
\left(\begin{array}{cc}
a & \mathbf{0} \\
\mathbf{b}^{\prime}, & \mathbf{A}
\end{array}\right), \mathbf{b} \in \mathbb{F}_{q}^{n-1}, \mathbf{A} \in \operatorname{GL}(n-1, q), a^{-1}=\operatorname{det}(\mathbf{A}) \in\left\langle\eta^{9}\right\rangle
$$

Note Γ is G-locally primitive and N is not regular on both U and W. By Lemma 2.6, Γ is N-edge-transitive. Then $\Gamma(u)$ is an N_{u}-orbit on W. Thus, for an N_{u}-orbit \mathcal{C}^{\prime} on \mathcal{C}, either $\Gamma(u)=\cup_{C^{\prime} \in \mathcal{C}^{\prime}}\left(\Gamma(u) \cap C^{\prime}\right)$, or $\Gamma(u) \cap C^{\prime}=\emptyset$ for each $C^{\prime} \in \mathcal{C}^{\prime}$.

Suppose that $N_{C}=N_{B}$. Then both B and C are corresponding to $\left\langle\mathbf{e}_{1}\right\rangle$. By Lemma 3.4, for each $u \in B$, the stabilizer N_{u} is transitive on $\mathcal{C} \backslash\{C\}$. Thus either $\Gamma(u) \subseteq C$ or $\Gamma(u)=$ $\cup_{C^{\prime} \in \mathcal{C} \backslash\{C\}} \Gamma(u) \cap C^{\prime}$. Note that N_{u} fixes C point-wise as $N_{u}=N_{w}$ is normal in $N_{B}=N_{C}$, where $w \in C$. Then $\Gamma(u)=\cup_{C^{\prime} \in \mathcal{C} \backslash\{C\}} \Gamma(u) \cap C^{\prime}$. Choose $C^{\prime} \in \mathcal{C}$ corresponding to $\left\langle\mathbf{e}_{2}\right\rangle$, and take $w^{\prime} \in C^{\prime}$. Let Y_{1} and Y_{2} be the pre-images of $N_{u} \cap N_{C^{\prime}}$ and $N_{u} \cap N_{w^{\prime}}$, respectively. Then

$$
\begin{gathered}
Y_{1}=\left\{\left.\left(\begin{array}{ccc}
a & 0 & \mathbf{0} \\
0 & b & \mathbf{0} \\
\mathbf{b}_{1}^{\prime} & \mathbf{b}_{2}^{\prime} & \mathbf{a}_{1}
\end{array}\right) \right\rvert\, \mathbf{a}_{1} \in \mathrm{GL}(n-2, q), a^{-1}=b \operatorname{det}\left(\mathbf{a}_{1}\right) \in\left\langle\eta^{9}\right\rangle\right\}, \\
Y_{2}=\left\{\left.\left(\begin{array}{ccc}
a & 0 & \mathbf{0} \\
0 & b & \mathbf{0} \\
\mathbf{b}_{1}^{\prime} & \mathbf{b}_{2}^{\prime} & \mathbf{a}_{1}
\end{array}\right) \right\rvert\, \mathbf{a}_{1} \in \mathrm{GL}(n-2, q), a b \operatorname{det}\left(\mathbf{a}_{1}\right)=1, a, b \in\left\langle\eta^{9}\right\rangle\right\} .
\end{gathered}
$$

It follows that $\left|\left(N_{u} \cap N_{C^{\prime}}\right):\left(N_{u} \cap N_{w^{\prime}}\right)\right|=\left|Y_{1}: Y_{2}\right|=|9|=\left|C^{\prime}\right|$, and so $N_{u} \cap N_{C^{\prime}}$ is transitive on C^{\prime}. Then $C^{\prime} \subset \Gamma(u)$, which contradicts Lemma 2.5.

Now let $N_{C}=N_{B}^{\sigma}$. Then B and C are corresponding to $\left\langle\mathbf{e}_{1}\right\rangle$ and $\left\langle\mathbf{e}_{i} \mid 2 \leq i \leq n\right\rangle$, respectively. By Lemma $3.4, N_{u}$ has two orbits \mathcal{C}_{1} and \mathcal{C}_{2} on \mathcal{C}, where \mathcal{C}_{1} has length $\frac{q^{n-1}-1}{q-1}$
and contains C_{1} corresponding to $\left.\left\langle\mathbf{e}_{i} \mid 1 \leq i \leq n-1\right\rangle\right\rangle$, and \mathcal{C}_{2} has length q^{n-1} and contains C_{2} corresponding to $\left.\left\langle\mathbf{e}_{i} \mid 2 \leq i \leq n\right\rangle\right\rangle$. Calculation shows that $\left|\left(N_{u} \cap N_{C_{1}}\right):\left(N_{u} \cap N_{w_{1}}\right)\right|=9$ and $N_{u} \cap N_{C_{2}}=N_{u} \cap N_{w_{2}}$, where $w_{1} \in C_{1}$ and $w_{2} \in C_{2}$. If $\Gamma(u) \subseteq \cup_{C^{\prime} \in \mathcal{C}_{1}} C^{\prime}$ then we get a similar contradiction as above. Thus $\Gamma(u) \subseteq \cup_{C^{\prime} \in \mathcal{C}_{2}} C^{\prime}$, and $\Gamma(u)$ is one of the 9 -orbits of N_{u} on $\cup_{C^{\prime} \in \mathcal{C}_{2}} C^{\prime}$. Note that $N_{u}^{\sigma}=N_{w}$ for $w \in C_{2}$. Then Γ is arc-transitive by Lemma 2.1, and part (2) follows.

Case 2. Assume that $|B|=3$. Then $N=\operatorname{PSL}(3, q)$ with $q=r^{f} \equiv 1(\bmod 3)$. In particular, $|N|$ has at least 4 distinct prime divisors, refer to [15, pp. 12].

Let W_{1} be an arbitrary N-orbit on W. Take $w \in W_{1}$. Then $\left|W_{1}\right|=\left|N: N_{w}\right|=3,9, p, 3 p$ or $9 p$. Since N is simple, N has no subgroups of index 3. By [7, Appendix B], N has no subgroups of index 9. By Table 1, N has no primitive permutation representations of prime degree, hence N has no subgroups of index p. Thus $\left|W_{1}\right|=3 p$ or $9 p$. Suppose that $\left|W_{1}\right|=3 p$. Then N has exactly three orbits on W. Since N is normal in G, each N-orbit on W is a block of G. By Lemma 2.5, $\left|\Gamma(u) \cap W_{1}\right| \leq 1$ for $u \in U$, yielding $|\Gamma(u)| \leq 3$. By Lemma 2.1, $\left|G_{u}\right|=2^{s} \cdot 3^{t}$ for some integer $s, t \geq 0$. Then $|G|=2^{s} \cdot 3^{t+2} \cdot p$. Thus $|N|$ has at most 3 distinct prime divisors, a contradiction. Then $\left|W_{1}\right|=9 p$, that is, N is transitive on W.

Take a maximal block C of G on W, and $\operatorname{set} \mathcal{C}=\left\{C^{g} \mid g \in G\right\}$. Then G acts primitively on \mathcal{C}. Recall that N has no subgroups of indices 3,9 and p. It implies that $|\mathcal{C}|=3 p$. Then part (3) of this theorem follows from an analogous argument given in Case 1.

4 The proof of Theorem 1.1

Let Γ be a G-locally primitive regular graph of order $18 p$, where $G \leq$ Aut Γ and p is a prime. Assume that G is intransitive on $V \Gamma$. Let U and W be the G-orbits on $V \Gamma$. If G acts unfaithfully on one of U and W, then Γ is the complete bipartite graph $\mathrm{K}_{9 p, 9 p}$, and hence Γ is arc-transitive. Thus we assume that G is faithful on both U and W. By the argument in Section 3, we assume further that G has non-trivial normal subgroups which are intransitive on both U and W. Let M be maximal one of such normal subgroups of G. Denote by \widetilde{U} and \widetilde{W} be the sets of M-orbits on U and W, respectively. For each $v \in V \Gamma$, denote by \tilde{v} the M-orbit containing v.

By Lemma 2.7, Γ is a normal cover of Γ_{M}. Then M is semiregular on both U and W; in particular $|M|=3,9, p$ or $3 p$ and $|\widetilde{U}|=|\widetilde{W}|=\frac{9 p}{|M|}=3 p, p, 9$ or 3 , respectively. Note that M is the kernel of G acting on $V \Gamma_{M}=\widetilde{U} \cup \widetilde{W}$. Then we identify $X:=G / M$ with a subgroup group of Aut Γ_{M}. Then Γ_{M} is X-locally primitive.

Next we finish the proof of Theorem 1.1 in two subsections depending on whether or not Γ_{M} is a bipartite complete graph.

4.1

In this subsection we assume that Γ_{M} is a complete bipartite graph, that is, $\Gamma_{M} \cong \mathrm{~K}_{\frac{9 p}{|M|}, \frac{9 p}{|M|}}$. Let $u \in U$ and $w \in W$. Then $X_{\tilde{u}}$ and $X_{\tilde{w}}$ acts primitively on \widetilde{W} and \widetilde{U}, respectively. Thus X acts primitively on both \widetilde{U} and \widetilde{W}. Moreover, $\left|X_{\tilde{u}}: X_{\tilde{u} \tilde{w}}\right|=\frac{9 p}{|M|}=\left|X: X_{\tilde{u}}\right|$, and so $\frac{81 p^{2}}{|M|^{2}}$ is a divisor of $|X|$.

Lemma 4.1 Assume that X is faithful on one of \widetilde{U} and \widetilde{W}. Then Γ is an arc-transitive graph of order 36 and valency 6 .

Proof. Without loss of generality, we may assume that X is faithful on \widetilde{W}. Then both X and $X_{\tilde{u}}$ are primitive permutation groups on \widetilde{W}. If $|M|=3 p$ then $X \cong \mathbb{Z}_{3}$ or S_{3}, and hence X is intransitive on the edges of Γ_{M}, a contradiction. If $|M|=9$ then p^{2} is a divisor of X; however each permutation group of degree prime p has order indivisible by p^{2}, a contradiction. If $|M|=p$ then $\operatorname{soc}(X)$ and $\operatorname{soc}\left(X_{\tilde{u}}\right)$ are one of $\mathrm{A}_{9}, \operatorname{PSL}(2,8)$ or \mathbb{Z}_{3}^{2}, yielding $9=|\widetilde{U}|=\left|X: X_{\tilde{u}}\right| \neq 9$, a contradiction.

Now let $|M|=3$. Then $M \cong \mathbb{Z}_{3}$ and $|\widetilde{W}|=3 p$. Since $9 p^{2}$ is a divisor of $|X|$, checking Table 2 implies that $\operatorname{soc}(X)=\mathrm{A}_{3 p}$ or A_{5}. Note $\left|X: X_{\tilde{u}}\right|=3 p$ and $\left|X_{\tilde{u}}: X_{\tilde{u} \tilde{w}}\right|=3 p$. It follows that $p=2, \Gamma_{M} \cong \mathrm{~K}_{6,6}, \operatorname{soc}(X) \cong \mathrm{A}_{6}$ and $\operatorname{soc}\left(X_{\tilde{u}}\right) \cong \mathrm{A}_{5}$.

By $\operatorname{soc}(X) \cong \mathrm{A}_{6}$, we know that X is isomorphic to a subgroup of $\operatorname{Aut}\left(\mathrm{A}_{6}\right)=\mathrm{A}_{6} \cdot \mathbb{Z}_{2}^{2}$. In particular, $|X: \operatorname{soc}(X)|$ is a divisor of 4 . Since $\operatorname{soc}(X)$ is normal in X, all $\operatorname{soc}(X)$-orbits on \widetilde{U} have that same length dividing $3 p$. Thus the number of $\operatorname{soc}(X)$-orbits on \widetilde{U} is a common divisor of 4 and $3 p$. It follows that $\operatorname{soc}(X)$ acts transitively on \widetilde{U}. In addition $\operatorname{soc}(X)$ is transitive \widetilde{W} as X is faithful and primitive on \widetilde{W}. Then Γ_{M} is $\operatorname{soc}(X)$-edge-transitive by Lemma 2.6. In particular, $\operatorname{soc}(X)_{\tilde{u}}$ and $\operatorname{soc}(X)_{\tilde{w}}$ acts transitively on \widetilde{W} and \widetilde{U}, respectively. Checking the subgroups of A_{6}, we conclude that $\operatorname{soc}(X)_{\tilde{u}} \cong \operatorname{soc}(X)_{\tilde{w}} \cong \mathrm{~A}_{5}$, and $\operatorname{soc}(X)_{\tilde{u}}$ and $\operatorname{soc}(X)_{\tilde{w}}$ are not conjugate in $\operatorname{soc}(X)$. It is easy to see that Γ is $\operatorname{soc}(X)$-locally primitive.

Let H be the pre-image of $\operatorname{soc}(X)$ in G. Then $H=M \cdot \operatorname{soc}(X), M=\mathbf{Z}(H)$ and Γ is H-locally primitive. Let H^{\prime} be the commutator subgroup of H. Suppose that $H^{\prime} \neq H$. Then $H=M \times H^{\prime}$ and $H^{\prime} \cong \mathrm{A}_{6}$. Thus H^{\prime} is normal in H and intransitive on both U and W. By Lemma 2.7, H^{\prime} is semiregular on $V \Gamma$, which is impossible. Therefore, $H=H^{\prime}$. By the information given in [6], we know that H has an automorphism σ of order 2 with $H_{\tilde{u}}^{\sigma}=H_{\tilde{w}}$ for suitable $\tilde{u} \in \widetilde{U}$ and $\tilde{w} \in \widetilde{W}$. Noting that $H_{\tilde{u}}=M \times H_{u^{\prime}}$ and $H_{\tilde{w}}=M \times H_{w^{\prime}}$ for arbitrary $u^{\prime} \in \tilde{u}$ and $w^{\prime} \in \tilde{w}$, it follows that $H_{u^{\prime}}^{\sigma}=H_{w^{\prime}}$. Then, by Lemma 2.1, Γ is an arc-transitive graph.

Lemma 4.2 Assume that X acts unfaithfully on both \widetilde{U} and \widetilde{W}. Then Γ has valency 2, 3 or p, and Γ is either arc-transitive or isomorphic to the Gray graph.

Proof. Let Y_{1} and Y_{2} be the corresponding kernels. Then $Y_{1} \cap Y_{2}=1$ and $Y_{1} Y_{2}=Y_{1} \times Y_{2}$. Since X acts primitively on both \widetilde{U} and \widetilde{W}, we conclude that Y_{1} and Y_{2} act transitively on \widetilde{W} and \widetilde{U}, respectively. It follows that $\operatorname{soc}\left(X / Y_{i}\right) \leq Y_{1} Y_{2} / Y_{3-i}$, where $i=1,2$. Checking primitive permutation groups of degree $\frac{9 p}{|M|}$, we conclude that $Y_{1} \times Y_{2}$ contains a normal subgroup $Y=$ $T_{1} \times T_{2}$ which is transitive on $E \Gamma_{M}$ such that $Y_{i} \geq T_{i} \cong \operatorname{soc}\left(X / Y_{i}\right)$ and one of the following conditions holds:
(i) $p=2$ and Γ_{M} is a 4-cycle;
(ii) $|M|=9, p \geq 5, \Gamma_{M} \cong \mathrm{~K}_{p, p}, T_{1}=\operatorname{soc}\left(Y_{1}\right) \cong T_{2}=\operatorname{soc}\left(Y_{2}\right)$ and T_{1} is simple;
(iii) $\Gamma_{M} \cong \mathrm{~K}_{3,3}, T_{1}=\operatorname{soc}\left(Y_{1}\right) \cong T_{2}=\operatorname{soc}\left(Y_{2}\right) \cong \mathbb{Z}_{3}$;
(iv) $\Gamma_{M} \cong \mathrm{~K}_{9,9}, T_{1} \cong T_{2} \cong \mathbb{Z}_{3}^{2} ;$
(v) $|M|=3$ or $p, T_{1}=\operatorname{soc}\left(Y_{1}\right) \cong T_{2}=\operatorname{soc}\left(Y_{2}\right)$ and T_{1} is non-abelian simple.

Let N be the pre-image of Y in G. Then Γ is N-edge-transitive. In particular, N is not regular on U and W. Noting that N is faithful on both U and W, it follows that N is not abelian.

If (i) occurs then Γ_{M} is a cycle, and so Γ is arc-transitive.
Assume that (ii) occurs. Then Y has a subgroup which has order p and acts regularly on both \widetilde{U} and \widetilde{W}. Thus N has a subgroup $M . \mathbb{Z}_{p}$ acting regularly on both U and W. By the Sylow Theorem, it is easily shown that $N . \mathbb{Z}_{p} \cong \mathbb{Z}_{3}^{2} \times \mathbb{Z}_{p}$ or $\mathbb{Z}_{9} \times \mathbb{Z}_{p}$. It follows from Lemma 2.1 that Γ is vertex-transitive, hence Γ is arc-transitive.

Assume that (iii) occurs. Then $|M|=3 p$ and $N=M . \mathbb{Z}_{3}^{2}$. If $p=3$ then either Γ is arctransitive or, by [26] or [27], Γ is isomorphic to the Gray graph. Assume that $p=2$. Then M has a characteristic subgroup $K \cong \mathbb{Z}_{3}$, and hence K is normal in N. It is easily shown that Γ is a normal cover of Γ_{K} with respect to N and K. Thus Γ_{K} is a cubic edge-transitive graph of order 12. However, by [3, 5], there are no such graphs, a contradiction. Thus assume that $p \geq 5$. Then M has a unique Sylow p-subgroup. Let P be the unique Sylow p-subgroup of M. Then $P \cong \mathbb{Z}_{p}$ and P is normal in N. Since Γ is cubic, Γ is N-locally primitive. Thus Γ is a normal cover of Γ_{P}, and hence Γ_{P} is an N / P-edge-transitive cubic graph of order 18. Write $N=P: Q$, where Q is a Sylow 3-subgroup of N. Then $Q \cong N / P$ is non-abelian.

Let S be the Sylow 3-subgroup of $\mathrm{C}_{N}(P)$. Then S is normal in N. It is easily shown that S fixes both U and W set-wise, and so S is intransitive on both U and W as $|U|=|W|=9 p$ and $p \neq 3$. Then S is semiregular on both U and W, and so $|S|=1,3$ or 9 ; in particular, S is ablelian. It implies that $P S=P \times S$ is abelian and semiregular on both U and W. Assume $|S|=3$. Since S is normal in Q, it implies that S lies in the center of Q. Note that $Q / S=Q / Q \cap \mathrm{C}_{N}(P) \cong Q \mathrm{C}_{N}(P) / \mathrm{C}_{N}(P) \leq N / \mathrm{C}_{N}(P) \lesssim \operatorname{Aut}(P) \cong \mathbb{Z}_{p-1}$. Then Q / S is cyclic. It follows that Q is abelian, a contradiction. Therefore $|S|=9$, and hence $P S$ is regular on both U and W. Thus Γ is arc-transitive by Lemma 2.1.

Next we finish the proof by excluding (iv) and (v).
Suppose that (iv) occurs. Write $N=P: Q$, where Q is a Sylow 3 -subgroup of N. Then $Q \cong \mathbb{Z}_{3}^{4}$. Let S be the Sylow 3-subgroup of $\mathrm{C}_{N}(P)$. Then S is normal in N. Since N is non-abelian, $Q \neq S$. Consider the quotient $N / \mathrm{C}_{N}(P)$. We conclude that $S \cong \mathbb{Z}_{3}^{3}$. Since Γ is bipartite, it is easily shown that S fixes the bipartition of Γ. If $p \neq 3$ then S is neither transitive nor semiregular on both U and W, which contradicts Lemma 2.7. Thus $p=3$, and so $|V \Gamma|=54$ and $|\operatorname{Aut} \Gamma|$ is divisible by 3^{5}. By $[3,5]$, there exists no such a cubic edge-transitive graph, a contradiction.

Suppose that (v) occurs. Note that $(N / M) /\left(\mathrm{C}_{N}(M) / M\right) \cong N / \mathrm{C}_{N}(M) \lesssim \operatorname{Aut}(M) \cong \mathbb{Z}_{p-1}$ or \mathbb{Z}_{2}. Since $Y=N / M$ is the direct product of two isomorphic non-abelian simple groups, it follows that $N / M=\mathrm{C}_{N}(M) / M$, and so $N=\mathrm{C}_{N}(M)$. Then M is the center of N. Take $u \in U$. Then $N_{\tilde{u}}=M \times N_{u}$, and so $N_{u} \cong N_{\tilde{u}} / M=Y_{\tilde{u}}=\left(T_{2}\right)_{\tilde{u}} \times T_{1}$. Then N_{u} acts transitively on \widetilde{W}, and hence $N_{\tilde{u}}$ acts transitively on W. Note that N_{u} has a normal subgroup $K \cong\left(T_{2}\right)_{\tilde{u}}$ which acts trivially on \widetilde{W}. Then K fixes set-wise each M-orbit on W. It is easily shown that K is normal in $N_{\tilde{u}}$. It follows that all K-orbits on W have the same length. Thus either K acts trivially on W, or K acts transitively on each M-orbit on W. The latter case implies that $\Gamma \cong \mathrm{K}_{9 p, 9 p}$, a contradiction. Thus $K=1$ as G is faithful on both U and W, and so $\left(T_{2}\right)_{\tilde{u}}=1$. Noting that T_{2} is transitive on \widetilde{U}, it follows that $\left|T_{2}\right|=\left|T_{2}:\left(T_{2}\right)_{\tilde{u}}\right|=|\widetilde{U}|=9$ or $3 p$, which
contradicts that T_{2} is simple.

4.2

Now we assume that Γ_{M} is not a complete bipartite. Then X acts faithfully on both \widetilde{U} and \widetilde{W}. By Lemma 2.7, X is quasiprimitive on one of \widetilde{U} and \widetilde{W}. Recall that $|\widetilde{U}|=|\widetilde{W}|=\frac{9 p}{|M|}=3 p, p, 9$ or 3 .

Lemma $4.3|\widetilde{U}|=|\widetilde{W}| \neq 9$.
Proof. Suppose that $|\widetilde{U}|=|\widetilde{W}|=9$. Without loss of generality, we assume that X is quasiprimitive on \widetilde{U}. Then it is easily shown that X is primitive on \widetilde{U}. Thus $\operatorname{soc}(X)$ is isomorphic to one of $\mathrm{A}_{9}, \operatorname{PSL}(2,8)$ or \mathbb{Z}_{3}^{2}. Let $N \leq G$ with $N / M=\operatorname{soc}(X)$.

Assume that $\operatorname{soc}(X) \cong \operatorname{PSL}(2,8)$. Then X is 3 -transitive on both \widetilde{U} and \widetilde{W}. It follows that $\Gamma_{M} \cong \mathrm{~K}_{9,9}-9 \mathrm{~K}_{2}$, and that Γ is N-locally primitive. Moreover, it is easily shown that M is the center of N. By [6], $\operatorname{PSL}(2,8)$ has Schur Multiplier 1. This implies that $N=M \times K$ with $\operatorname{PSL}(2,8) \cong K<N$. Thus N has a normal subgroup K acting neither transitively nor semiregularly on each of U and W, which contradicts Lemma 2.7.

Assume that $\operatorname{soc}(X) \cong \mathrm{A}_{9}$. A similar argument as above implies that $\Gamma_{M} \cong \mathrm{~K}_{9,9}-9 \mathrm{~K}_{2}$ and Γ is N-locally primitive. Moreover, N is a central extension of M by A_{9}. If $p \neq 2$ then, noting that A_{9} has Schur Multiplier \mathbb{Z}_{2}, we have $N=M \times K$ for $K<N$ with $K \cong \mathrm{~A}_{9}$, which yields a similar contradiction as above. Suppose that $p=2$. Take $u \in \widetilde{U}$. Then $N_{\tilde{u}}=M \times N_{u}$, and so $N_{u} \cong N_{\tilde{u}} / M \cong \mathrm{~A}_{8}$. Noting that $M \cong \mathbb{Z}_{2}$ and $N_{\tilde{u}}$ contains a Sylow 2-subgroup of N, it follows from Gaschtz' Theorem (see $[1,10.4]$) that the extension $N=M \cdot \operatorname{soc}(X)$ splits over M, that is, $N=M \times K$ for $K<N$ with $K \cong \mathrm{~A}_{9}$, again a contradiction.

Assume that $\operatorname{soc}(X) \cong \mathbb{Z}_{3}^{2}$. Then $X \lesssim \operatorname{AGL}(2,3)$ and, for some $\tilde{u} \in \widetilde{W}$, the stabilizer $X_{\tilde{u}}$ is isomorphic to an irreducible subgroup of $\mathrm{GL}(2,3)$. By [13, Theorem 2], there are no semisymmetric graphs of order 18. It follows from [17, Lemma 2.5] that $\operatorname{soc}(X)$ acts transitively on \widetilde{W}. Thus $\operatorname{soc}(X)$ is regular on both \widetilde{U} and \widetilde{W}. By [25], $X_{\tilde{u}}$ acts faithfully on the neighbors of \tilde{u}. In addition, since Γ_{M} is X-locally primitive, $X_{\tilde{u}}$ is a primitive permutation group on $\Gamma_{M}(\tilde{u})$. However, it is easy to check that GL $(2,3)$ has no irreducible subgroups satisfying the conditions for $X_{\tilde{u}}$, a contradiction.

Lemma 4.4 If $|\widetilde{U}|=|\widetilde{W}|=3$ or p, then Γ is arc-transitive.
Proof. If $|\widetilde{U}|=2$ then $X \cong \mathbb{Z}_{2}$ and Γ_{M} is 4-cycle, which is impossible. If $|\widetilde{U}|=3$ then $X \cong \mathrm{~S}_{3}$ and Γ_{M} is 6 -cycle, and hence Γ is a cycle. Thus we assume that $|\widetilde{U}|=p \geq 5$. Then $|M|=9$, and either $X=G / M \leq \mathbb{Z}_{p}: \mathbb{Z}_{p-1}$ or X is a permutation group with $\operatorname{soc}(X)$ listed in Table 1. In particular, G has a subgroup $R=M . \mathbb{Z}_{p}$ which acts regularly on both U and W. By the Sylow Theorem, it is easily shown that $R \cong M \times P$, where P is a Sylow p-subgroup of R. Then R is abelian, and hence Γ is arc-transitive by Lemma 2.1.

Finally, we deal with the case where $|\widetilde{U}|=3 p \neq 9$, that is, $p \neq 3$ and $M \cong \mathbb{Z}_{3}$.
Lemma 4.5 Assume that $|\widetilde{U}|=3 p \neq 9$. Then Γ is arc-transitive.
Proof. Without loss of generality, we assume that $X=G / M$ is a quasiprimitive group on \widetilde{U}. Since $|\widetilde{U}|=3 p \neq 9$, by Lemma $2.8, \operatorname{soc}(X)$ is insoluble.

Case 1. Assume that $X=G / M$ is primitive on \widetilde{U}. Then X is known as in Table 2. Since $\operatorname{soc}(X)$ is non-abelian simple, it has no proper subgroups of index less than 5 . Suppose that $\operatorname{soc}(X)$ is not primitive on \widetilde{W}. Then either each $\operatorname{soc}(X)$-orbit on \widetilde{W} has length $p, \operatorname{or} \operatorname{soc}(X)$ is transitive on \widetilde{W} with a block of size 3 ; moreover, $p>3$ in both cases. Thus, for these two cases, $\operatorname{soc}(X)$ can be viewed as a transitive permutation group of prime degree. Checking Table 1 and 2, we conclude that $\operatorname{soc}(X) \cong \mathrm{A}_{7}$ and $\operatorname{soc}(X)_{\alpha} \cong \mathrm{A}_{6}$, where α is either an M-orbit on \widetilde{W} or a block of $\operatorname{soc}(X)$ with size 3 on \widetilde{W}. For the former case, $3 p=|\widetilde{W}|=\left|X: X_{\alpha}\right| \leq \mid X$: $\operatorname{soc}(X)_{\alpha}\left|\leq\left|\mathrm{S}_{7}: \mathrm{A}_{6}\right|=14\right.$, a contradiction; for the latter case, A_{6} has a subgroup of index 3, which is impossible. It follows that $\operatorname{soc}(X)$ is primitive on both \widetilde{U} and \widetilde{W}; in particular, Γ_{M} is $\operatorname{soc}(X)$-edge-transitive.

Let $N \leq G$ with $N / M=\operatorname{soc}(X)$. Clearly, N is normal in G and Γ is N-edge-transitive. Moreover, it is easily shown that M is the center of N.

Subcase 1.1. Assume that the extension $N=M \cdot \operatorname{soc}(X)$ splits over M, that is, $N=M \times K$ for $\operatorname{soc}(X) \cong K<N$. Then K is a normal subgroup of G, and K acts primitively on both \widetilde{U} and \widetilde{W}. Since K is a non-abelian simple group, its order has at least three distinct prime divisor. It follows that K is not semiregular on both U and W. Then K is transitive on one of U and W. This implies that $9 p$ is a divisor of $|K|$, and so K is not isomorphic to one of A_{5}, $\operatorname{PSL}(3,2)$ and $\operatorname{PSL}\left(2,2^{f}\right)$.

Without loss of generality, assume that K is transitive on U. Then, for $u \in U$, the stabilizer $K_{\tilde{u}}$ is transitive on the M-orbit \tilde{u}. Thus $3=|M|=|\tilde{u}|=\left|K_{\tilde{u}}: K_{u}\right|$, and so K has a subgroup of index 3. Noting that $N_{\tilde{u}}=M K_{\tilde{u}}$, it implies that $K_{\tilde{u}} \cong N_{\tilde{u}} / M=\operatorname{soc}(X)_{\tilde{u}}$. Checking the subgroups of $\operatorname{soc}(X)_{\tilde{u}}$, we know that either $K \cong \operatorname{soc}(X)=\mathrm{A}_{6}$ and $p=5$, or $K \cong \operatorname{soc}(X)=\operatorname{PSL}(3, q)$ and $3 p=q^{2}+q+1$, where q is a power of a prime with $q \equiv 1(\bmod 3)$.

Assume that $\operatorname{soc}(X)=\mathrm{A}_{6}$. Then Γ has order 90. Suppose that K is intransitive on W. Then K has three orbits on W, and so Γ is cubic by Lemma 2.6. Thus Γ is a semisymmetric cubic graph by [5, Theorem 5.2]. Again by [5], there is no semisymmetric cubic graphs of order 90, a contradiction. Then K is also transitive on W. By Lemma 2.6, Γ is K-edge-transitive. Checking the subgroups of A_{6}, we know that $K_{u} \cong \mathrm{D}_{8}$ for $u \in U$. It follows that Γ has valency 4 or 8 . Since Γ is G-locally primitive, $G_{u}^{\Gamma(u)}$ is a primitive group of degree 4 or 8 . Since $K_{u}^{\Gamma(u)}$ is a transitive normal subgroup of $G_{u}^{\Gamma(u)}$, it follows that Γ has valency 4 . Then Γ_{M} has valency 4. Consider the actions of $\operatorname{soc}(X)$ on \widetilde{U} and \widetilde{W}. If these two actions are equivalent then Γ_{M} has valency 6 or 8 ; otherwise, Γ_{M} has valency 3 or 12 . This is a contradiction.

Assume that $\operatorname{soc}(X)=\operatorname{PSL}(3, q)$. Then Γ_{M} has valency $q^{2}, q+1$ or $q^{2}+q$. If K is intransitive on W then K has three orbits on W, and hence Γ is cubic by Lemma 2.6, a contradiction. Thus K is also transitive on W, and so Γ is K-edge-transitive. Arguing similarly as in the proof of Theorem 3.1, we conclude that Γ is arc-transitive and has valency q^{2}.

Subcase 1.2. Assume that the extension $N=M \cdot \operatorname{soc}(X)$ does not split over M. Then, checking the Schur multipliers of the simple groups in Table 2, we conclude that $N=3 . \mathrm{A}_{6}$ with $p=5$ or 2 , or $N=3 . \mathrm{A}_{7}$ with $p=5$ or 7 , or $N=\operatorname{SL}(3, q)$ with $3 \mid q-1$.

Let $N=\operatorname{SL}(3, q)$ with $3 \mid q-1$. Using the notation defined above Lemma 3.3, we identify \widetilde{U} with \mathcal{P} and \widetilde{W} with \mathcal{P} or \mathcal{H}. Then there are $\tilde{u} \in \widetilde{U}$ and $\tilde{w} \in \widetilde{W}$ such that

$$
N_{\tilde{u}}=\left\{\left.\left(\begin{array}{cc}
a & \mathbf{0} \\
\mathbf{b}^{\prime} & \mathbf{A}
\end{array}\right) \right\rvert\, \mathbf{b} \in \mathbb{F}_{q}^{2}, \mathbf{A} \in \mathrm{GL}(2, q), a^{-1}=\operatorname{det}(\mathbf{A})\right\}
$$

and $N_{\tilde{w}}=N_{\tilde{u}}$ or $N_{\tilde{u}}^{\sigma}$. By Lemma 3.4 and a similar argument in the proof of Theorem 3.1, it is easily shown that Γ is an arc-transitive graph of valency q^{2}.

Let $N=3 . \mathrm{A}_{6}$. If $p=2$ then $\Gamma_{M} \cong \mathrm{~K}_{6,6}-6 \mathrm{~K}_{2}$, and hence Γ is arc-transitive by Lemma 2.4. Now let $p=5$. Then Γ_{M} has valency $6,8,3$ or 12. Take $u \in U$. Then $N_{\tilde{u}}=M \times N_{u}$, and so $N_{u} \cong N_{\tilde{u}} / M=\operatorname{soc}(X)_{\tilde{u}} \cong \mathrm{~S}_{4}$. Since Γ is G-locally primitive, $G_{u}^{\Gamma(u)}$ is a primitive group. Noting that $N_{u}^{\Gamma(u)}$ is a transitive normal subgroup of $G_{u}^{\Gamma(u)}$, it follows that Γ has valency 4 or 3. Since Γ is a normal cover of Γ_{M}, we conclude that Γ has valency 3 . By [5], there is no semisymmetric cubic graphs of order 90 . Thus Γ is arc-transitive.

Let $N=3 . \mathrm{A}_{7}$ with $p=5$ or 7 . Assume first that $\operatorname{soc}(X)$ acts equivalently on \widetilde{U} and \widetilde{W}. Then, by Lemma $2.3, \Gamma_{M}$ is isomorphic to an orbital bipartite graph of $\operatorname{soc}(X)$ on \widetilde{U}. Calculation shows that the suborbits of $\operatorname{soc}(X)$ on \widetilde{U} are all self-paired. Then Γ is arc-transitive by Colloray 2.1. If $p=5$ then $X=\operatorname{soc}(X) \cong \mathrm{A}_{7}, X_{\tilde{u}} \cong \operatorname{PSL}(2,7)$ and Γ_{M} has valency 14; however $\operatorname{PSL}(2,7)$ has no primitive permutation representations of degree 14, a contradiction. Then $p=7$. It is easily shown that Γ has valency 10 .

Assume that the actions of $\operatorname{soc}(X)$ on \widetilde{U} and \widetilde{W} are not equivalent. Then $X=\operatorname{soc}(X)=\mathrm{A}_{7}$ and $X_{\tilde{u}} \cong \operatorname{PSL}(2,7)$, and so $G=N=3 . \mathrm{A}_{7}$. In particular, $p=5$ and Γ_{M} has order 30. Take $\tilde{w} \in \Gamma_{M}(\tilde{u})$. Checking the subgroups of A_{7}, we conclude that $\left|X_{\tilde{u}}:\left(X_{\tilde{u}} \cap X_{\tilde{w}}\right)\right|=7$ or 8 . Then Γ_{M} has valency 7 or 8 , and so does Γ. Verified by GAP, there are two involutions $\sigma_{1}, \sigma_{2} \in \mathrm{~S}_{7}$ such that $\left|X_{\tilde{u}}:\left(X_{\tilde{u}} \cap X_{\tilde{u}}^{\sigma_{1}}\right)\right|=7$ and $\left|X_{\tilde{u}}:\left(X_{\tilde{u}} \cap X_{\tilde{u}}^{\sigma_{2}}\right)\right|=8$. Note that $G_{\tilde{v}}=N \times G_{v}$ and $X_{\tilde{v}} \cong G_{v}$ for $v \in V \Gamma$. Thus we may choose a suitable $w \in \Gamma(u)$ such that $G_{u}^{\sigma}=G_{w}$ for an automorphism of G of order 2. Then Γ is arc-transitive by Lemma 2.1.

Case 2. Assume that $X=G / M$ is quasiprimitive but not primitive on \widetilde{U}. Let B be a maximal block of X on \widetilde{U}. Then $|B|=3$. Set $\mathcal{B}=\left\{B^{x} \mid x \in X\right\}$. Then $|\mathcal{B}|=p$ and X acts faithfully on \mathcal{B}. Thus X is known as in Table 1. Let $\tilde{u} \in B$. Then $\left|X_{B}: X_{u}\right|=|B|=3$. Checking one by one the groups listed in Table 1, we conclude that $\operatorname{soc}(X)=\operatorname{PSL}(n, q)$ with $p=\frac{q^{n}-1}{q-1}$.

Suppose that $n=2$. Then $q=2^{2^{s}}$ for some integer $s \geq 1$, and $N=M \cdot \operatorname{soc}(X) \cong$ $\mathbb{Z}_{3} \times \operatorname{PSL}\left(2,2^{2^{s}}\right)$. It follows that G has a normal subgroup K isomorphic to $\operatorname{PSL}\left(2,2^{2^{s}}\right)$. Note that 9 is not a divisor of $|K|$. It follows that K is intransitive on both U and W. By Lemma 2.7, K is semiregular on U, which is impossible. Then $n \geq 3$.

A similar argument as above implies that $(n, q) \neq(3,2)$. Then, by [15, pp. 12], $|\operatorname{soc}(X)|$ has at least four distinct prime divisors. Noting $|X|=3 p\left|X_{\tilde{u}}\right|$, it follows that $\left|X_{\tilde{u}}\right|$ has an odd prime divisor other than 3. This implies that the valency of Γ_{M} is no less than 5 . If $\operatorname{soc}(X)$ is intransitive on \widetilde{W}, then $\operatorname{soc}(X)$ has exactly three orbits on \widetilde{W}, and so Γ_{M} has valency 3 by Lemma 2.6, a contradiction. Therefore, $\operatorname{soc}(X)$ is transitive on \widetilde{W}, and hence Γ_{M} is $\operatorname{soc}(X)$-edge-transitive. Let $N \leq G$ with $N / M=\operatorname{soc}(X)$. Then N is normal in G and Γ is N -edge-transitive.

It is easily shown that n is an odd prime with $q \not \equiv 1(\bmod n)$, see the proof of Lemma 3.5. Then the Schur Multiplier of $\operatorname{PSL}(n, q)$ is 1 . Recalling $M \cong \mathbb{Z}_{3}$, it yields that $N=M \times K$, where $K \cong \operatorname{PSL}(n, q)$. Clearly, K is a normal subgroup of G. Recalling $\operatorname{soc}(X)$ is transitive on both \widetilde{U} and \widetilde{W}, we conclude that each K-orbit on $V \Gamma$ has length at least $3 p$. Since K is not semiregular and Γ has valency no less than 5 , by Lemma 2.6, we know that Γ is K-edge-transitive. Then the argument in Section 3 implies that Γ is an arc-transitive graph.

Acknowledgement The authors would like to thank the referees for valuable comments and careful reading.

References

[1] Aschbacher, M., Finite group theory, Cambridge University Press, Cambridge, 1993.
[2] Cameron, P. J., Permutation Groups, Cambridge University Press, Cambridge, 1999.
[3] Conder, M. and Dobcsányi, P., Trivalent symmetric graphs on up to 768 vertices, J. Combin. Math. Combin. Comput., 40, 2002, 41-63.
[4] Conder, M. D., Li, C. H. and Praeger, C. E., On the Weiss conjecture for finite locally primitive graphs, Proc. Edinburgh Math. Soc.(2), 43, 2000, 129-138.
[5] Conder, M., Malnič, A., Marušič, D. and Potočnik, P., A census of semisymmetric cubic graphs on up to 768 vertices. J. Algebr. Comb., 23, 2006, 255-294.
[6] Conway, J. H., Curtis, R. T., Noton, S. P., Parker, R. A. and Wilson, R. A., Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
[7] Dixon, J. D. and Mortimer, B., Permutation Groups, Springer-Verlag New York Berlin Heidelberg, 1996.
[8] Du, S. F. and Xu, M. Y., A classification of semisymmetric graphs of order 2pq, Comm. Algebra, 28(6), 2000, 2685-2714.
[9] Fang, X. G., Havas, G. and Praeger, C. E., On the automorphism groups of quasiprimitive almost simple graphs, J. Algebra 222, 1999, 271-283.
[10] Fang, X. G., Ma, X. S. and Wang, J., On locally primitive Cayley graphs of finite simple groups, J. Combin. Theory Ser. A, 118, 2011, 1039-1051.
[11] Fang, X. G. and Praeger, C. E., On graphs admitting arc-transitive actions of almost simple groups, J. Algebra, 205, 1998, 37-52.
[12] Fang, X. G., Praeger, C. E. and Wang, J., Locally primitive Cayley graphs of finite simple groups, Sci. China Ser. A, 44, 2001, 58-66.
[13] Folkman, J., Regular line-symmetric graphs, J. Combin Theory Ser. B, 3, 1967, 215-232.
[14] Giudici, M., Li, C. H. and Praeger, C. E., Analysing finite locally s-arc transitive graphs, Trans. Amer. Math. Soc., 356, 2004, 291-317.
[15] Gorenstein, D., Finite Simple Groups, Plenum Press, New York, 1982.
[16] Han, H. and Lu, Z. P., Semisymmetric graphs of order $6 p^{2}$ and prime valency, Sci. China Math., 55, 2012, 2579-2592.
[17] Han, H. and Lu, Z. P., Affine primitive permutation groups and semisymmetric graphs, Electronic J. Combin., 20(2), 2013, Research Paper 39.
[18] Han, H. and Lu, Z. P., Semisymmetric graphs arising from primitive permutation groups of degree $9 p$, In review.
[19] Huppert, B., Endliche Gruppen I, Springer-Verlag, 1967.
[20] Huppert, B. and Blackburn, N., Finite Groups II, Springer-Verlag, Berlin, 1982.
[21] Iranmanesh, M. A., On finite G-locally primitive graphs and the Weiss conjecture, Bull. Austral. Math. Soc., 70, 2004, 353-356.
[22] Li, C. H., Lou, B. G. and Pan, J. M., Finite locally primitive abelian Cayley graphs, Sci. China Math., 54, 2011, 845-854.
[23] Li, C. H. and Ma, L., Locally primitive graphs and bidirect products of graphs, J. Aust. Math. Soc., 91, 2011, 231-242.
[24] Li, C. H., Pan, J. M. and Ma, L., Locally primitive graphs of prime-power order, J. Aust. Math. Soc., 86, 2009, 111-122.
[25] Lu, Z. P., On the automorphism groups of bi-Cayley graphs, Beijing Daxue Xuebao, 39, 2003, 1-5.
[26] Lu, Z. P., Wang, C. Q. and Xu, M. Y., On Semisymmetric Cubic Graphs of Order $6 p^{2}$, Sci.China Ser.A, 47 (1), 2004, 1-17.
[27] Malnič, A., Marušič, D. and Wang, C. Q., Cubic edge-transitive graphs of order $2 p^{3}$. Discrete Math, 274, 2004, 187-198.
[28] Pan, J. M., Locally primitive normal Cayley graphs of metacyclic groups, Electron. J. Combin., 16, 2009, Research Paper 96.
[29] Praeger, C. E., Imprimitive symmetric graphs, Ars Combin., 19, 1985, A, 149-163.
[30] Praeger, C. E., An o'Nan-Scott theorem for finite quasiprimitive permutation groups and an application to 2-arc transitive graphs, J. London Math. Soc., 47, 1992, 227-239.
[31] Spiga, P., On G-locally primitive graphs of locally twisted wreath type and a conjecture of Weiss, J. Combin. Theory Ser. A, 118, 2011, 2257-2260.
[32] Weiss, R., s-transitive graphs, Algebraic methods in graph theory, Vol. I, II, (Szeged, 1978), 827-847, Colloq. Math. Soc. János Bolyai, 25, North-Holland, Amsterdam, 1981, 827-847.

[^0]: Manuscript received
 ${ }^{1}$ Center for Combinatorics, LPMC-TJKLC, Nankai University, Tianjin 300071, P. R. China
 E-mail: hh1204@mail.nankai.edu.cn (Hua HAN), lu@nankai.edu.cn (Zaiping LU)
 ${ }^{2}$ College of science, Tianjin University of Technology, Tianjin 300384, P. R. China
 *Project supported by the National Natural Science Foundation of China (No. 11271267, No. 11371204).

