On locally primitive graphs of order $18p^*$

Hua HAN^{1,2} Zaiping LU¹

Abstract In this paper, we investigate locally primitive bipartite regular connected graphs of order 18*p*. It is shown that such a graph is either arc-transitive or isomorphic to one of the Gray graph and the Tutte 12-cage.

Keywords Locally primitive graph, arc-transitive graph, normal cover, quasiprimitive group
2000 MR Subject Classification 05C25, 20B25

1 Introduction

All graphs in this paper are assumed to be finite and simple.

Let Γ be a graph. We use $V\Gamma$, $E\Gamma$ and $\operatorname{Aut}\Gamma$ to denote the vertex set, edge set and automorphism group of Γ , respectively. Then the graph Γ is said to be *vertex-transitive* or *edge-transitive* if some subgroup G of $\operatorname{Aut}\Gamma$ (denoted by $G \leq \operatorname{Aut}\Gamma$) acts transitively on $V\Gamma$ or $E\Gamma$, respectively. Recall that an arc in Γ is an ordered pair of adjacent vertices. Then the graph Γ is called *arc-transitive* if some $G \leq \operatorname{Aut}\Gamma$ acts transitively on the set of arcs of Γ . The graph Γ is said to be *locally primitive* if, for some subgroup $G \leq \operatorname{Aut}\Gamma$ and each $v \in V\Gamma$, the stabilizer G_v induces a primitive permutation group $G_v^{\Gamma(v)}$ on the neighborhood $\Gamma(v)$, the set of neighbors, of v in Γ . For convenience, such subgroups G are called *vertex-transitive*, *edge-transitive*, *arc-transitive* and *locally primitive* groups of Γ , respectively.

Studying of locally primitive graphs is one of the main themes in algebraic graph theory, which stems from a conjecture on bonding the stabilizers of locally primitive arc-transitive graphs [32, Conjecture 12]. The reader may consult [4, 9, 10, 11, 12, 14, 21, 22, 23, 24, 28, 29, 31] for some known results in this area.

In this paper, we aim at determining the arc-transitivity of certain locally primitive graphs. Let Γ be a connected graph and G be a locally primitive group on Γ . It is easily shown that G acts transitively on $E\Gamma$, and so Γ is edge-transitive. If G is vertex-transitive then Γ is necessarily an arc-transitive graph. Thus, for our purpose, we always assume that Γ is regular but G is not vertex-transitive. Then Γ is a bipartite graphs with two bipartition subsets being the G-orbits on $V\Gamma$. Giudici et al. [14] established a reduction for studying locally primitive bipartite graphs, which was successfully applied in [23] to the characterization of locally primitive graphs of order twice a prime power. In this paper we concentrate our

Manuscript received

¹Center for Combinatorics, LPMC-TJKLC, Nankai University, Tianjin 300071, P. R. China

E-mail: hh1204@mail.nankai.edu.cn (Hua HAN), lu@nankai.edu.cn (Zaiping LU)

 $^{^2\}mathrm{College}$ of science, Tianjin University of Technology, Tianjin 300384, P. R. China

^{*}Project supported by the National Natural Science Foundation of China (No. 11271267, No. 11371204).

attention on analyzing the locally primitive graphs of order 18p. Our main result is stated as follows.

Theorem 1.1 Let Γ be a connected regular graph of order 18p, where p is a prime. Assume that Γ is locally primitive. Then Γ is either arc-transitive or isomorphic to one of the Gray graph and the Tutte 12-cage.

2 Preliminaries

Let Γ be a graph and let $G \leq \operatorname{Aut}\Gamma$. Assume that G is edge-transitive but not vertex-transitive; in this case, we call G semisymmetric if Γ is regular. Then Γ is a bipartite graph with two bipartition subsets being the G-orbits on $V\Gamma$. Moreover, Γ is arc-transitive provided that Γ has an automorphism interchanging two of its bipartition subsets. For a given vertex $u \in V\Gamma$, the stabilizer G_u acts transitively on $\Gamma(u)$. Take $w \in \Gamma(u)$. Then each vertex of Γ can be written as u^g or w^g for some $g \in G$. Then two vertices u^g and w^h are adjacent in Γ if and only if u and $w^{hg^{-1}}$ are adjacent, i.e., $hg^{-1} \in G_w G_u$. Moreover, it is well-known and easily shown that Γ is connected if and only if $\langle G_u, G_w \rangle = G$. In particular, the next simple fact follows.

Lemma 2.1 Let Γ be a connected graph and $G \leq \operatorname{Aut}\Gamma$. Assume that G is edge-transitive but not vertex-transitive. Let $\{u, w\}$ be an edge of Γ . Then

- (1) G_u and G_w contain no nontrivial normal subgroups in common; and
- (2) $r \leq \max\{|\Gamma(u)|, |\Gamma(w)|\}$ for each prime divisor r of $|G_u|$.

Moreover, Γ is arc-transitive if one of the following conditions holds:

- (3) G has an automorphism σ of order 2 with $G_u^{\sigma} = G_w$.
- (4) G has an abelian subgroup acting regularly on both bipartition subsets of Γ .

Proof. Since Γ is connected, $\langle G_u, G_w \rangle = G \leq \operatorname{Aut}\Gamma$. Then part (1) follows.

Let r be a prime divisor of $|G_u|$ with $r > \max\{|\Gamma(u)|, |\Gamma(w)|\}$, and let R be a Sylow rsubgroup of G_u . Then R fixes $\Gamma(u)$ point-wise, and so $R \leq G_{w'}$ for each $w' \in \Gamma(u)$. Take Q be a Sylow r-subgroup of G_w with $Q \geq R$. Then Q fixes $\Gamma(w)$ point-wise, hence $Q \leq G_u$. Thus R = Q. By the connectedness of Γ , for each $v \in V\Gamma$, it is easily shown that R is a Sylow r-subgroup of G_v . Thus R fixes $V\Gamma$ point-wise, and so R=1 as $R \leq \operatorname{Aut}\Gamma$. Then part (2) follows.

Suppose that G has an automorphism σ of order 2 with $G_u^{\sigma} = G_w$. Define a bijection $\iota : V\Gamma \to V\Gamma$ by $(u^g)^{\iota} = w^{g^{\sigma}}$ and $(w^h)^{\iota} = u^{h^{\sigma}}$. It is easy to check that $\iota \in \operatorname{Aut}\Gamma$ and ι interchanges two bipartition subsets of Γ . This implies that Γ is arc-transitive.

Suppose that G has a subgroup R which is regular on both bipartition subsets of Γ . Then each vertex in $V\Gamma$ can be written uniquely as u^x or w^y for some $x, y \in R$. Set $S = \{s \in R \mid w^s \in \Gamma(u)\}$. Then u^x and w^y are adjacent if and only if $yx^{-1} \in S$. If R is abelian, then it is easily shown that $u^x \mapsto w^{x^{-1}}, w^x \mapsto u^{x^{-1}}, \forall x \in R$ is an automorphism of Γ , which leads to the arc-transitivity of Γ .

Let G be a finite transitive permutation group on a set Ω . The orbits of G on the cartesian product $\Omega \times \Omega$ are the *orbitals* of G, and the diagonal orbital $\{(\alpha, \alpha)^g \mid g \in G\}$ is said to be trivial. For a *G*-orbital Δ and $\alpha \in \Omega$, the set $\Delta(\alpha) = \{\beta \mid (\alpha, \beta) \in \Delta\}$ is a G_{α} -orbit on Ω and called a *suborbit* of *G* at α . The *rank* of *G* on Ω is the number of *G*-orbitals, which equals to the number of G_{α} -orbits on Ω for any given $\alpha \in \Omega$. A *G*-orbital Δ is called *self-paired* if $(\beta, \alpha) \in \Delta$ for some $(\alpha, \beta) \in \Delta$, while the suborbit $\Delta(\alpha)$ is said to be *self-paired*. For a *G*-orbital Δ , the *paired orbital* Δ^* is defined as $\{(\beta, \alpha) \mid (\alpha, \beta) \in \Delta\}$. Then a *G*-orbital Δ is self-paired if and only if $\Delta^* = \Delta$. For a non-trivial *G*-orbital Δ , the *orbital bipartite graph* $B(G, \Omega, \Delta)$ is the graph on two copies of Ω , say $\Omega \times \{1, 2\}$, such that $\{(\alpha, 1), (\beta, 2)\}$ is an edge if and only if $(\alpha, \beta) \in \Delta$. Then $B(G, \Omega, \Delta)$ is *G*-semisymmetric, where *G* acts on $\Omega \times \{1, 2\}$ as follows:

$$(\alpha, i)^g = (\alpha^g, i), g \in G, i = 1, 2.$$

If Δ is self-paired, then $(\alpha, 1) \leftrightarrow (\alpha, 2), \alpha \in \Omega$ gives an automorphism of $B(G, \Omega, \Delta)$, which yields that $B(G, \Omega, \Delta)$ is G-arc-transitive. The next lemma indicates it is possible that $B(G, \Omega, \Delta)$ is arc-transitive even if Δ is not self-paired.

Lemma 2.2 Let X be a permutation group on Ω and G is a transitive subgroup of X with index |X : G| = 2. Let Δ be a G-orbital. If $\Delta \cup \Delta^*$ is an X-orbital, then $B(G, \Omega, \Delta)$ is arc-transitive.

Proof. Assume that $\Delta \cup \Delta^*$ is an X-orbital. To show $\Gamma := B(G, \Omega, \Delta)$ is arc-transitive, it suffices to find an automorphism of Γ which interchanges two bipartition subsets of Γ . Take $x \in X \setminus G$. It is easily shown that $\Delta^x = \Delta^*$ and $(\Delta^*)^x = \Delta$. Define $\hat{x} : \Omega \times \{0, 1\} \to \Omega \times \{0, 1\}; (\alpha, 0) \mapsto (\alpha^x, 1), (\beta, 1) \mapsto (\beta^x, 0)$. It is easy to check $\hat{x} \in \operatorname{Aut}\Gamma$, and so the lemma follows. \Box Moreover, the next lemma is easily shown, see also [14]

Moreover, the next lemma is easily shown, see also [14].

Lemma 2.3 Assume that Γ is a connected G-semisymmetric graph of valency at least 2 with bipartition subsets U and W, and that, for an edge $\{u, w\} \in E\Gamma$, two stabilizers G_u and G_w are conjugate in G. Then there is a bijection $\iota : U \leftrightarrow W$ such that $G_u = G_{\iota(u)}$ and $\{u, \iota(u)\} \notin E\Gamma$ for all $u \in U$. Moreover, $\Delta = \{(u, \iota^{-1}(w)) \mid \{u, w\} \in E\Gamma, u \in U, w \in W\}$ is a G-orbital on U. In particular, $\Gamma \cong B(G, U, \Delta)$, and ι extends to an automorphism of Γ if and only if Δ is self-paired.

Remark on Lemma 2.3. Let Γ and $G \leq \operatorname{Aut}\Gamma$ be as in Lemma 2.3. Then $\{G_u \mid u \in U\} = \{G_w \mid w \in W\}$, and so $\bigcap_{u \in U} G_u = \bigcap_{w \in W} G_w = 1$ as $G \leq \operatorname{Aut}\Gamma$. Thus G is faithful on both parts of Γ . Take $u \in U$ and $w \in W$ with $G_u = G_w$. Then $u^g \leftrightarrow w^g$, $g \in G$ gives a bijection meeting the requirement of Lemma 2.3. Thus one can define l^2 bijections ι , where l is the number of the points in U fixed by a stabilizer G_u . By [7, Theorem 4.2A], $l = |N_G(G_u) : G_u|$.

Let G be a finite transitive permutation group on Ω . Let $N = \{x_1 = 1, x_2, \dots, x_n\}$ be a group of order n lying in the center $\mathbf{Z}(G)$ of G. Then N is normal in G, and N is semiregular on Ω , that is, $N_{\alpha} = 1$ for all $\alpha \in \Omega$. Denote by $\bar{\alpha}$ the N-orbit containing $\alpha \in \Omega$ and by $\bar{\Omega}$ the set of all N-orbits. Then G induces a transitive permutation group \bar{G} on $\bar{\Omega}$. Take a \bar{G} -orbital $\bar{\Delta}$ and $(\bar{\alpha}, \bar{\beta}) \in \bar{\Delta}$. Noting that $G_{\bar{\alpha}} = N \times G_{\alpha}$, it follows that $\bar{\Delta}(\bar{\alpha}) = \{(\bar{\beta})^h \mid h \in G_{\alpha}\}$. Set

$$\Delta_i(\alpha) = \{\beta^{x_i h} \mid h \in G_\alpha\}, \ 1 \le i \le n.$$

Then all $\Delta_i(\alpha)$ are suborbits of G at α , which are not necessarily distinct. It is easily shown that $N \times G_\alpha$ acts transitively on $\Omega_1 := \{\beta^{x_i h} \mid 1 \leq i \leq n, h \in G_\alpha\}$. It follows that all G_α -orbits on Ω_1 have the same length divided by $|\overline{\Delta}(\overline{\alpha})|$. For each *i*, let Δ_i be the *G*-orbital corresponding to $\Delta_i(\alpha)$.

Lemma 2.4 Let $G, N, \overline{\Delta}$ and Δ_i be as above.

- (1) All $\Delta_i(\alpha)$ are suborbits of G of the same length divisible by $|\bar{\Delta}(\bar{\alpha})|$.
- (2) If $\overline{\Delta}$ is self-paired then, for each *i*, there is some *j* such that $\Delta_i(\alpha) = \Delta_i^*(\alpha)$.
- (3) $B(G, \Omega, \Delta_i) \cong B(G, \Omega, \Delta_j)$ for $1 \le i, j \le n$.

Proof. Part (1) of this lemma follows from the argument above the lemma.

Assume that $\overline{\Delta}$ is self-paired. Then there is some $g \in G$ such that $(\overline{\alpha}, \overline{\beta})^g = (\overline{\beta}, \overline{\alpha})$. Thus, for each *i*, there are some *i'* and *j'* such that $(\alpha, \beta^{x_i})^g = (\beta^{x_{j'}}, \alpha^{x_{i'}}) = (\beta^{x_{i'}^{-1}x_{j'}}, \alpha)^{x_{i'}}$. Setting $x_{i'}^{-1}x_{j'} = x_j$, we have $(\alpha, \beta^{x_i})^g = (\beta^{x_j}, \alpha)^{x_{i'}}$. Then $\Delta_i = \Delta_j^*$.

For each *i*, define $f_i : \Omega \times \{1, 2\} \to \Omega \times \{1, 2\}$ by $f_i(\delta, 1) = (\delta, 1)$ and $f_i(\delta, 2) = (\delta^{x_i}, 2)$, where $\delta \in \Omega$. It is easily shown that f_i is an isomorphism from $B(G, \Omega, \Delta_1)$ to $B(G, \Omega, \Delta_i)$. Thus part (3) of this lemma follows.

Let Γ be a *G*-semisymmetric graph. Suppose that *G* has a normal subgroup *N* which acts intransitively on at least one of the bipartition subsets of Γ . Then we define the *quotient graph* Γ_N to have vertices the *N*-orbits on $V\Gamma$, and two *N*-orbits *B* and *B'* are adjacent in Γ_N if and only if some $v \in B$ and some $v' \in B'$ are adjacent in Γ . It is easy to see that the quotient Γ_N is a regular graph if and only if all *N*-orbits have the same length. Moreover, if Γ_N is regular then its valency is a divisor of that of Γ . The graph Γ is called a *normal cover* of Γ_N (with respect to *G* and *N*) if Γ_N and Γ have the same valency, which yields that *N* is the kernel of *G* acting the *N*-orbits (vertices of Γ_N). Thus, if Γ is a normal cover of Γ_N then the quotient group G/N can be identified with a subgroup of $\operatorname{Aut}\Gamma_N$, and so Γ_N is *G*/*N*-semisymmetric.

Corollary 2.1 Let Γ and $G \leq \operatorname{Aut}\Gamma$ be as in Lemma 2.3. Let $N \leq \mathbf{Z}(G)$. Then N is intransitive and semiregularly on both U and W. Assume further that |N| is odd and that Γ_N is the orbital bipartite graph of some self-paired orbital of \overline{G} , where \overline{G} is the subgroup of $\operatorname{Aut}\Gamma_N$ induced by G. Then Γ is arc-transitive.

Proof. Recall that G is faithful on both U and W, see the remark after Lemma 2.3. Since $N \leq \mathbf{Z}(G)$, every subgroup of N is normal in G, so $N_v \leq G_v^g = G_{v^g}$ for $v \in V\Gamma$ and $g \in G$. It follows that $N_v = 1$, so N is semiregular on both U and W. Suppose that N is transitive on one of U and W, say U. Then $G = NG_u$ for $u \in U$, and so G_u is normal in G as $N \leq \mathbf{Z}(G)$. It follows that G_u fixes every vertex in U, so $G_u = 1$, which contradicts the transitivity of G_u on $\Gamma(u)$.

By Lemma 2.3, there is bijection $\iota : U \leftrightarrow W$ such that, for $u \in U$, the subset $\iota^{-1}(\Gamma(u))$ is a suborbit of G at u. By the remark after Lemma 2.3, we may choose ι such that it maps each N-orbit on U to some N-orbit on W. Thus ι induces a bijection $\bar{\iota}$ on $V\Gamma_N$ interchanging two bipartition subsets U_N and W_N of Γ_N , where U_N and W_N denote respectively the sets of N-orbits on U and W. Moreover, it is easily shown that $\bar{G}_{\bar{v}} = \bar{G}_{\bar{\iota}(\bar{v})}$ for any N-orbit \bar{v} , and that $\iota^{-1}(\Gamma(u)) = \{u'^h \mid h \in G_u\}$ for $u' \in U$ such that $\bar{u}' \in \bar{\iota}^{-1}(\Gamma_N(\bar{u}))$.

Assume Γ_N is the orbital bipartite graph of some self-paired orbital of \overline{G} . Then, again by Lemma 2.3, $\overline{\iota} \in \operatorname{Aut}\Gamma_N$ and $\overline{\iota}^{-1}(\Gamma_N(\overline{u}))$ is a self-paired suborbit of \overline{G} at \overline{u} . If |N| is odd then,

4

by Lemma 2.4, Γ is isomorphic to the orbital bipartite graph of some self-paired orbital of G on U, and hence Γ is arc-transitive.

Recall that, for a group G acts transitively on a set Ω , a block B is a non-empty subset of Ω such that $B = B^g$ or $B \cap B^g = \emptyset$ for every $g \in G$.

Lemma 2.5 Let Γ be a connected graph, and let $G \leq \operatorname{Aut}\Gamma$ such that G is locally primitive but not vertex-transitive. Assume that U and W are G-orbits on $V\Gamma$ and that B is a block of G on W. Then either B = W, or $|\Gamma(u) \cap B| \leq 1$ for each $u \in U$.

Proof. Note that for each $u \in U$ either $\Gamma(u) \cap B = \emptyset$ or $\Gamma(u) \cap B$ is a block of G_u on $\Gamma(u)$. Since G_u acts primitively on $\Gamma(u)$, we know that either $|\Gamma(u) \cap B| \leq 1$ or $\Gamma(u) \subseteq B$. Suppose that $\Gamma(u) \subseteq B$ for some $u \in U$. Take $w \in B$ and $v \in \Gamma(w)$. Since G is edge-transitive, there is $g \in G$ with $v^g = u$ and $w^g \in \Gamma(u) \subseteq B$. Then $w \in B^{g^{-1}} \cap B$, and so $B = B^{g^{-1}}$. Thus $\Gamma(v) = (\Gamma(u))^{g^{-1}} \subseteq B^{g^{-1}} = B$. It follows that Γ has a connected component with vertex set $(\bigcup_{w \in B} \Gamma(w)) \cup B$. This yields B = W.

Lemma 2.6 Let Γ and G be as in Lemma 2.5. Let U and W be the G-orbits on $V\Gamma$. Suppose that G has a normal subgroup N which acts transitively on U. Then

- (1) Γ_N is a $|\Gamma(u)|$ -star, where $u \in U$; or
- (2) Γ is N-edge-transitive; or
- (3) N is regular on both U and W.

Proof. If N is intransitive on W, then part (1) follows from [14, Lemma 5.5]. Thus we assume that N is transitive on W. Take $u \in U$. If N_u is transitive on $\Gamma(u)$ then Γ is N-edge-transitive, and so (2) holds. Suppose that N_u is not transitive on $\Gamma(u)$. Since N_u is normal in G_u and G is locally primitive, N_u fixes $\Gamma(u)$ point-wise. Thus $N_w \geq N_u$ for each $w \in \Gamma(u)$. If N_w is transitive on $\Gamma(w)$ then Γ is N-edge-transitive, and so (2) holds. Thus we may suppose further that $N_w \leq N_{u'}$ for each $u' \in \Gamma(w)$. By the connectedness of Γ , we conclude that $N_u = N_w = 1$. Then (3) follows.

Recall that a quasiprimitive group is a permutation group with all minimal normal subgroups transitive. By [14, Theorem 1.1 and Lemma 5.1], the next lemma holds.

Lemma 2.7 Let Γ and G be as in Lemma 2.5. Suppose that N is a normal subgroup of G which is intransitive on both bipartition subsets of Γ . Then Γ is a normal cover of Γ_N and Γ_N is G/N-locally primitive. If further N is maximal among the normal subgroups of G which are intransitive on both bipartition subsets of Γ , then either Γ_N is a complete bipartite graph, or G/N acts faithfully on both parts and is quasiprimitive on at least one the bipartition subsets of Γ_N .

For a finite group G, denote by soc(G) the subgroup generated by all minimal normal subgroups of G, which is called the *socle* of G. The next result describes the basic structural information for quasiprimitive permutation groups, refer to [30].

Lemma 2.8 Let G be a finite quasiprimitive permutation group on Ω . Then G has at most two minimal normal subgroups, and one of the following statements holds.

- (1) $|\Omega| = p^d$, $\operatorname{soc}(G) \cong \mathbb{Z}_p^d$ and $\operatorname{soc}(G)$ is the unique minimal normal subgroup of G, where $d \ge 1$ and p is a prime; in this case, G is primitive on Ω ;
- (2) $\operatorname{soc}(G) = T^l$ for $l \ge 1$ and a nonabelian simple group T, and either $\operatorname{soc}(G)$ is the unique minimal normal subgroup of G, or $\operatorname{soc}(G) = M \times N$ for two minimal normal subgroups M and N of G with $|M| = |N| = |\Omega|$.

3 The quasiprimitive case

Let Γ be a *G*-locally primitive regular graph of order 18*p*, where $G \leq \operatorname{Aut}\Gamma$ and *p* is a prime. Assume that *G* is intransitive on $V\Gamma$. Then Γ is a bipartite graph with two bipartition subsets being *G*-orbits, say *U* and *W*.

Assume next that G acts faithfully on both U and W, and that G is quasiprimitive on one of U and W. If G acts primitively on one of U and W then, by [18], Γ is either arc-transitive or isomorphic to one of the Gray graph and the Tutte 12-cage. Thus we assume in the following that neither G^U nor G^W is a primitive permutation group. Then, by Lemma 2.8, N := soc(G) is the direct product of some isomorphic non-abelian simple groups. In particular, G is insoluble, and so Γ is not a cycle.

Without loss of generality, we assume that G is quasiprimitive on U. Recall that G^U is not primitive. Take a maximal block $B \ (\neq U)$ of G on U. Then |B| is a proper divisor of |U| = 9p and $|G_B : G_u| = |N_B : N_u| = |B|$ for each $u \in B$. Set $\mathcal{B} = \{B^g \mid g \in G\}$. Then $|\mathcal{B}| = \frac{9p}{|B|}$, and G acts primitively on \mathcal{B} . Since G is quasiprimitive on U, we know that G acts faithfully on \mathcal{B} . Thus we may view G as a primitive permutation group (on \mathcal{B}) of degree $\frac{9p}{|B|}$.

Lemma 3.1 |B| = 3 or 9.

Proof. It is easy to see that |B| = 3, 9 or p. Suppose that |B| = p. Then $|\mathcal{B}| = 9$ and, by [7, Appendix B], $N = \operatorname{soc}(G) = A_9$ or PSL(2,8). If $N = A_9$ then $N_B \cong A_8$ and $p \leq 7$; however A_8 has no subgroups of index p, a contradiction. Thus $N = \operatorname{PSL}(2,8)$, $N_B \cong \mathbb{Z}_2^3:\mathbb{Z}_7$ and p = 7, and so $N_u \cong \mathbb{Z}_2^3$ and |U| = 63, where $u \in B$. Since Γ is G-locally primitive, G_u induces a primitive permutation group $G_u^{\Gamma(u)}$. If G = N then $G_u^{\Gamma(u)} \cong \mathbb{Z}_2$, yielding that Γ is a cycle, a contradiction. It follows that $G = \operatorname{PSL}(2,8) \cong \operatorname{PSL}(2,8):\mathbb{Z}_3$ and $|G_v| = 24$, where v is an arbitrary vertex of Γ . Checking the subgroups of $\operatorname{PSL}(2,8)$ in the Atlas [6], we know that N has no proper subgroups of index dividing 21. It implies that N is transitive on W, and so G is also quasiprimitive on W. By the information given for $\operatorname{PSL}(2,8)$ in [6], $G_v \cong \mathbb{Z}_2^3:\mathbb{Z}_3 \cong \mathbb{Z}_2 \times A_4$ for each $v \in V\Gamma$. Then either $G_v^{\Gamma(v)} \cong \mathbb{Z}_3$ and Γ is cubic, or $G_v^{\Gamma(v)} \cong A_4$ and Γ has valency 4. Take $\{u, w\} \in E\Gamma$. Then $G_{uw} \cong \mathbb{Z}_2^3$ or \mathbb{Z}_6 . It follows that G_u and G_w have the same center, which contradicts Lemma 2.1.

Therefore, G is a primitive permutation group (on \mathcal{B}) of degree p or 3p. For further argument, we list in Tables 1 and 2 the insoluble primitive groups of degree p and of degree 3p, respectively. Noting that N_B has a subgroup of index |B| = 9 or 3, it is easy to check that $N = A_6$ or PSL(n,q). Suppose that $N = A_6$. Then |B| = 3 and p = 5. It follows that G_u is a 2-group. Since Γ is G-locally primitive, $G_u^{\Gamma(u)} \cong \mathbb{Z}_2$. Then Γ is a cycle, a contradiction. Thus the next lemma follows.

Degree p	11	11	23	p	$\frac{q^n - 1}{q - 1}$
Socle	PSL(2, 11)	M_{11}	M_{23}	\mathbf{A}_p	$\mathrm{PSL}(n,q)$
Stabilizer	A_5	M_{10}	M_{22}	A_{p-1}	
Action					1- or $(n-1)$ -subspaces
Remark					prime $n \ge 3$ or $(n, q) = (2, 2^{2^s})$

Table 1. Insoluble transitive groups of prime degree (refer to [2, Table 7.4]).

Lemma 3.2 Either |B| = 9 and N = PSL(n, q) with n prime, or |B| = 3 and N = PSL(3, q) with $q \equiv 1 \pmod{3}$.

Degree $3p$	Socle	Action	Remark
6	A_5	cosets of D_{10}	
15	A_6	2-subsets or partitions	
21	A_7	2-subsets	
21	PSL(3,2)	(1,2)-flags	
57	PSL(2, 19)	cosets of A_5	two actions
15	A ₇	cosets of $PSL(2,7)$	two actions
3p	A_{3p}		
15	PSL(4,2)	1- or 3-subspaces	
$2^{f} + 1$	$\mathrm{PSL}(2,2^f)$	1-subspaces	odd prime f
$\frac{q^3-1}{q-1}$	$\mathrm{PSL}(3,q)$	1- or 2-subspaces	$q\equiv 1({\rm mod}3)$

Table 2. Insoluble primitive groups of degree 3p (refer to [16]).

Let \mathbb{F}_q be the Galois field of order q, and let \mathbb{F}_q^n be the *n*-dimensional linear space of row vectors over \mathbb{F}_q . Denote by \mathcal{P} and \mathcal{H} , respectively, the sets of 1-subspaces and (n-1)-subspaces of \mathbb{F}_q^n . Then the action of $N = \mathrm{SL}(n,q)/\mathbb{Z}(\mathrm{SL}(n,q))$ on \mathcal{B} is equivalent to one of the actions of N on \mathcal{P} and on \mathcal{H} induced by

$$(x_1, x_2, \cdots, x_n)\mathbf{A} = (\sum_{i=1}^n a_{i1}x_i, \sum_{i=1}^n a_{i2}x_i, \cdots, \sum_{i=1}^n a_{in}x_i),$$

where $\mathbf{A} = (a_{ij})_{n \times n} \in \mathrm{SL}(n,q)$. Let σ be the inverse-transpose automorphism of $\mathrm{SL}(n,q)$, that is,

$$\sigma : \mathrm{SL}(n,q) \to \mathrm{SL}(n,q), \mathbf{a} \mapsto (\mathbf{a}')^{-1}.$$

Then σ gives an automorphism of N of order 2. Define

$$\iota: \mathcal{P} \to \mathcal{H}, \langle (x_1, x_2, \cdots, x_n) \rangle \mapsto \{ (y_1, y_2, \cdots, y_n) \mid \sum_{i=1}^n x_i y_i = 0 \}.$$

Then

$$(\iota(\langle \mathbf{v} \rangle))^{\mathbf{A}} = \iota(\langle \mathbf{v} \mathbf{A} \rangle), \, \forall \mathbf{A} \in \mathrm{SL}(n,q), \, \langle \mathbf{v} \rangle \in \mathcal{P}$$

For $1 \leq i \leq n$, let \mathbf{e}_i be the vector with the *i*th entry 1 and other entries 0. Then

$$(\mathrm{SL}(n,q))_{\langle \mathbf{e}_i\rangle} = Q{:}H \text{ and } (\mathrm{SL}(n,q))_{\langle \mathbf{e}_i|2 \leq i \leq n\rangle} = Q^{\sigma}{:}H,$$

where

$$Q = \left\{ \left(\begin{array}{cc} 1 & \mathbf{0} \\ \mathbf{b}' & \mathbf{I}_{n-1} \end{array} \right) \middle| \mathbf{b} \in \mathbb{F}_q^{n-1} \right\},$$
$$H = \left\{ \left(\begin{array}{cc} a & \mathbf{0} \\ \mathbf{0}' & \mathbf{A} \end{array} \right) \middle| \mathbf{A} \in \mathrm{GL}(n-1,q), a^{-1} = \mathrm{det}(\mathbf{A}) \right\}.$$

For a subgroup X of SL(n,q), we denote \overline{X} to be the image of X in N, that is, $\overline{X} = X/\mathbb{Z}(SL(n,q))$. Then the following lemma holds.

Lemma 3.3 If $B \in \mathcal{B}$ then N_B is conjugate in N to one of $\overline{Q}:\overline{H}$ and $\overline{Q}^{\sigma}:\overline{H}$.

The following simple fact may be shown by simple calculations.

Lemma 3.4 Set $\mathbb{F}_q \setminus \{0\} = \langle \eta \rangle$ and

$$L = \left\{ \left(\begin{array}{cc} 1 & \mathbf{0} \\ \mathbf{0}' & \mathbf{A} \end{array} \right) \middle| \mathbf{A} \in \mathrm{SL}(n-1,q) \right\}.$$

Then $\overline{Q}:\overline{L}$ acts transitively on $\mathcal{P} \setminus \langle \mathbf{e}_1 \rangle$, and has two orbits on \mathcal{H} with length $\frac{q^{n-1}-1}{q-1}$ and q^{n-1} , respectively. Moreover, for each divisor m of q-1, Q:H has a unique subgroup containing Q:L and having index m, which is

$$\left\{ \left(\begin{array}{cc} a & \mathbf{0} \\ \mathbf{b}' & \mathbf{A} \end{array} \right) \middle| \mathbf{b} \in \mathbb{F}_q^{n-1}, \mathbf{A} \in \mathrm{GL}(n-1,q), a^{-1} = \det(\mathbf{A}) \in \langle \eta^m \rangle \right\}.$$

Lemma 3.5 Write $q = r^f$ for a prime r and an integer $f \ge 1$. Assume that |B| = 9 for $B \in \mathcal{B}$. Then the following statements hold:

- (1) $(n,q) \neq (2,2), (2,3), (3,2), (3,3);$
- (2) n is an odd prime with $q \not\equiv 1 \pmod{n}$;
- (3) n is the smallest prime divisor of nf.

Proof. By Lemma 3.2, N = PSL(n,q) for a prime n. Since 9 is a divisor of |N| and N is simple, $(n,q) \neq (2,2), (2,3), (3,2).$

Suppose that N = PSL(3,3). Then p = 13, G = N, $|G_B| = 2^4 \cdot 3^3$ and $|G_u| = 48$. Take $w \in \Gamma(u)$. Since Γ is regular, $|G_u| = 48 = |G_w|$. Checking the subgroups of SL(3,3) (refer to [6]), we have $G_u \cong G_w \cong 2S_4 \cong GL(2,3)$. Since Γ is G-locally primitive, $G_u^{\Gamma(u)} \cong S_4 \cong G_w^{\Gamma(w)}$ and Γ has valency 4. Thus $G_{uw} \cong D_{12}$. It follows that G_u and G_w have the same center isomorphic to \mathbb{Z}_2 , which contradicts Lemma 2.1. Thus part (1) follows.

Suppose that n = 2. Then, since $p = \frac{r^{nf}-1}{r^{f}-1}$ is a prime, r = 2 and $f = 2^s$ for some integer $s \ge 1$. Thus $N_B \cong \mathbb{Z}_2^{2^s}:\mathbb{Z}_{2^{2^s}-1}$, and hence $N_u \cong \mathbb{Z}_2^{2^s}:\mathbb{Z}_{\frac{2^s}{2^s}-1}$. But $2^{2^s}-1$ is not divisible by 9, a contradiction. This implies that n is an odd prime. If $q \equiv 1 \pmod{n}$ then $p = \sum_{i=0}^{n-1} q^i \equiv 0 \pmod{n}$, a contradiction. Then part (2) follows.

If nf = 6 and r = 2 then $p = \frac{q^n - 1}{q - 1} = 21$ or 63, a contradiction. Thus, by Zsigmondy's Theorem (refer to [20, p. 508]), there is a prime which divides $r^{nf} - 1$ but not divides $r^i - 1$ for all $1 \le i \le nf - 1$. Clearly, such a prime is p. Suppose that f has a prime divisor s such that s < n. Then $q^n - 1$ has a divisor $r^{\frac{nf}{s}} - 1$. By Zsigmondy's Theorem, either $(r, \frac{nf}{s}) = (2, 6)$, or $r^{\frac{nf}{s}} - 1$ has a prime divisor which does not divide $r^f - 1$. The latter case yields that $\frac{q^n - 1}{q - 1}$ has

8

two (distinct) prime divisors, a contradiction. Thus $(r, \frac{nf}{s}) = (2, 6)$, yielding that n = 3 and f = 4. Then $p = \frac{q^n - 1}{q - 1} = \frac{2^{12} - 1}{2^4 - 1} = 273$, a contradiction. Then part (3) follows.

Lemma 3.6 Let $B \in \mathcal{B}$. If (n,q) = (3,8) then |B| = 9 and Γ is arc-transitive and of valency 8 or 64.

Proof. Assume that (n,q) = (3,8). Then $N \cong SL(3,8)$, p = 73 and |G : N| = 1 or 3. By Lemma 3.2, |B| = 9. Without loss of generality, we assume that N = SL(3,8) and choose B such that $N_B = P:H$, where $P \cong \mathbb{Z}_2^6$ and H is defined as above Lemma 3.3.

Since N_B is transitive on B, it is easily shown that P acts trivially on B, and so H acts transitively on B. Then $|H : H_u| = 9$. Note that $H \cong \operatorname{GL}(2,8) \cong \mathbb{Z}_7 \times \operatorname{PSL}(2,8)$. Checking the subgroups of $\operatorname{PSL}(2,8)$, we conclude that the action of H on B is equivalent to the action of H on the 1-subspaces of \mathbb{F}_8^2 . Then, without loss of generality, we may assume that H_u is conjugate to

$$\left\{ \left. \left(\begin{array}{ccc} a_1 & 0 & 0 \\ 0 & a_2 & 0 \\ 0 & b & a_3 \end{array} \right) \right| a_1, a_2, a_3, b \in \mathbb{F}_8, a_1 a_2 a_3 = 1 \right\}.$$

Recall that a (1, 2)-flag of \mathbb{F}_8^3 is a pair $\{V_1, V_2\}$ of a 1-subspace and a 2-subspace with the 1-subspace contained in the 2-subspace. Since $P \leq N_u$, we have $N_u = N_u \cap (PH) = PH_u \cong \mathbb{Z}_2^6:(\mathbb{Z}_2^3:\mathbb{Z}_7^2)$. It is easily shown that N_u is the stabilizer of some (1, 2)-flag $\{V_1, V_2\}$ in N. It follows that the action of N on U is equivalent to the action of N on the set \mathcal{F} of (1, 2)-flags of \mathbb{F}_8^3 .

Now we show that the actions of N on U and W are equivalent. Note that |G:N| = 1 or 3. Thus, since W is a G-orbit, either N is transitive on W or N has 3 orbits on W. Checking the subgroups of SL(3,8), we know that N has no subgroups of index 219. It follows that N is transitive on W. Note that N = SL(3,8) has no subgroups of indices 3, 9 and 219. It follows that a maximal block of N on W has size 9. Then a similar argument as above implies the action of N on W is also equivalent to that on \mathcal{F} . Moreover, Γ is N-edge-transitive by Lemma 2.6.

Identifying U with \mathcal{F} , by Lemma 2.3, $\Gamma \cong B(N, \mathcal{F}, \Delta)$, where Δ is an N-orbital on \mathcal{F} . Without loss of generality, choose u to be the flag $\{\langle \mathbf{e}_3 \rangle, \langle \mathbf{e}_2, \mathbf{e}_3 \rangle\}$. Calculation shows that $\Delta(u)$ is one of the following 5 suborbits:

- (i) $\{\{\langle \mathbf{e}_2 + a\mathbf{e}_3 \rangle, \langle \mathbf{e}_2, \mathbf{e}_3 \rangle\} \mid a \in \mathbb{F}_8\}$ and $\{\{\langle \mathbf{e}_3 \rangle, \langle \mathbf{e}_3, \mathbf{e}_1 + a\mathbf{e}_2 \rangle\} \mid a \in \mathbb{F}_8\}$, which are self-paired and of length 2^3 ;
- (ii) $\{\{\langle \mathbf{e}_2 + a\mathbf{e}_3 \rangle, \langle \mathbf{e}_1 + b\mathbf{e}_2, \mathbf{e}_2 + a\mathbf{e}_3 \rangle\} \mid a, b \in \mathbb{F}_8\}$ and $\{\{\langle \mathbf{e}_1 + a\mathbf{e}_2 + b\mathbf{e}_3 \rangle, \langle \mathbf{e}_1 + a\mathbf{e}_2, \mathbf{e}_3 \rangle\} \mid a, b \in \mathbb{F}_8\}$, which are paired to each other and of length 2^6 ;
- (iii) $\{\{\langle \mathbf{e}_1 + a\mathbf{e}_2 + b\mathbf{e}_3\rangle, \langle \mathbf{e}_1 + a\mathbf{e}_2 + b\mathbf{e}_3, \mathbf{e}_2 + c\mathbf{e}_3\rangle\} \mid a, b, c \in \mathbb{F}_8\}$, which is self-paired and of length 2⁹.

Suppose that $\Delta(u)$ is the suborbit in (iii). Then Γ has valency 2^9 . Recall that |G:N| = 1or 3, and $N_u = PH_u \cong \mathbb{Z}_2^6:(\mathbb{Z}_2^3:\mathbb{Z}_7^2)$. It follows that G_u/N_u is cyclic, and hence G_u is soluble. Since Γ is G-locally primitive, $G_u^{\Gamma(u)}$ is a soluble primitive permutation group of degree 2^9 . In particular, $\operatorname{soc}(G_u^{\Gamma(u)}) \cong \mathbb{Z}_2^9$ and $\operatorname{soc}(G_u^{\Gamma(u)})$ is the unique minimal normal subgroup of $G_u^{\Gamma(u)}$. Thus $N_u^{\Gamma(u)} \ge \operatorname{soc}(G_u^{\Gamma(u)})$ as N_u induces a normal transitive subgroup of $G^{\Gamma(u)}$. However, the unique Sylow 2-subgroup of N_u is non-abelian and has order 2^9 , a contradiction. If $\Delta(u)$ is described in (i) then Γ has valency 8 and, by Lemma 2.3, Γ is arc-transitive.

Assume that $\Delta(u)$ is one of the suborbits in (ii). Then Γ has valency 64. Let σ is the inverse-transpose automorphism of N = SL(3, 8). Then \mathcal{F} is σ -invariant. Consider that action $N:\langle \sigma \rangle$ on \mathcal{F} and take $\mathbf{a} \in SL(3, 8)$ with

$$\mathbf{a} = \left(\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{array} \right).$$

Then $(N\langle\sigma\rangle)_u = N_u:\langle\sigma\mathbf{a}\rangle$, which interchanges the two suborbits in (ii). It follows from Lemma 2.2 that Γ is arc-transitive.

Lemma 3.7 Assume that $(n,q) \neq (3,8)$. Then there is $u \in U$ with $N_u \geq \overline{Q}:\overline{L}$ or $\overline{Q}^{\sigma}:\overline{L}$, where σ is the inverse-transpose automorphism of SL(n,q), \overline{Q} and \overline{L} are described as in Lemmas 3.3 and 3.4. In particular, $q \equiv 1 \pmod{|B|}$.

Proof. Recall that the action of $N = \operatorname{SL}(n,q)/\mathbb{Z}(\operatorname{SL}(n,q))$ on \mathcal{B} is equivalent to one of the actions of N on \mathcal{P} and on \mathcal{H} . Without loss of generality, we may choose $B \in \mathcal{B}$ such that $N_B = R:\overline{\mathcal{H}}$, where $R = \overline{Q}$ or \overline{Q}^{σ} , and $\overline{\mathcal{H}}$ is described as in Lemma 3.3. Set $q = r^f$ for some prime r and integer $f \geq 1$. Then R is a nontrivial r-group.

Take $u \in B$. Then $|N_B : N_u| = |B| = 3$ or 9. Suppose that $R \not\leq N_u$. Noting that RN_u is a subgroup of N_B as R is normal in N_B , it follows that $|R : (R \cap N_u)| = |(RN_u) : N_u| = 3$ or 9. In particular, R is a 3-group, and hence |B| = 9 by Lemma 3.2. Then, by Lemma 3.5, n and q-1 are coprime, and so $\mathbb{Z}(SL(n,q)) = 1$. Thus $N \cong SL(n,q)$ and $R \cong Q \cong \mathbb{Z}_3^{(n-1)f}$. Assume that $|(RN_u) : N_u| = 9$. Then $N_B = RN_u$. It implies that $R \cap N_u$ is normal in N_B . Then $N_u > R \cap N_u = \langle (R \cap N_u)^x \mid x \in N_B \rangle = R$, yielding $R \cap N_u = 1$. It follows that $R \cong \mathbb{Z}_3^2$. By Lemma 3.5, we conclude that n = 3 and f = 1, that is, (n,q) = (3,3), a contradiction. Thus $|N_B : (RN_u)| = 3$. Noting that $GL(n-1,3^f) \cong H \cong \overline{H} \cong N_B/R$, it follows that $GL(n-1,3^f)$ has a subgroup of index 3. Note that $GL(n-1,3^f) = \mathbb{Z}_{3^f-1}$. (PSL $(n-1,3^f).\mathbb{Z}_d$, where d is the largest common divisor of n-1 and 3^f-1 . It implies that PSL $(n-1,3^f)$ has a subgroup of index 3. Then n = 3 and f = 1, a contradiction. Therefore, R is contained in N_u .

Since $R:\overline{L}$ is normal in N_B , we know that $\overline{L}N_u = (R:\overline{L})N_u$ is a subgroup of N_B . Suppose that $R:\overline{L} \leq N_u$. Then $|\overline{L} : (\overline{L} \cap N_u)| = |(\overline{L}N_u) : N_u| = 3$ or 9. Let Z be the center of \overline{L} . Then $\overline{L}/Z \cong PSL(n-1,q)$ and $|\overline{L}/Z : (\overline{L} \cap N_u)Z/Z|$ divides 9. By Lemma 3.2 and 3.5, $n \geq 3$ and $(n,q) \neq (3,2), (3,3)$. Thus \overline{L}/Z is simple, and hence it has no subgroups of order 3. Suppose that $|\overline{L}/Z : (\overline{L} \cap N_u)Z/Z| = 9$. Then \overline{L}/Z has a primitive permutation representation of degree 9. By [7, Appendix B], we conclude that $\overline{L}/Z \cong PSL(2,8)$. Then (n,q) = (3,8), a contradiction. It follows that $|\overline{L}/Z : (\overline{L} \cap N_u)Z/Z| = 1$, that is, $\overline{L} = (\overline{L} \cap N_u)Z$. Consider the commutator subgroups of L and \overline{L} . By [19, Chapter II, 6.10], L' = L, hence $\overline{L} = \overline{L}' = (\overline{L} \cap N_u)' \leq \overline{L} \cap N_u \neq N_u$, a contradiction. Therefore, the first part of this lemma follows.

Let X and Y be the pre-images of N_B and N_u in SL(n,q). Then $|X:Y| = |N_B:N_u| = |B|$. Moreover X = Q:H or $Q^{\sigma}:H$ and $Y \ge Q:L$ or $Q^{\sigma}:L$, respectively. It follows that |B| is divisor of |H:L| = q - 1. Then $q \equiv 1 \pmod{|B|}$.

Theorem 3.1 Γ is an arc-transitive graph, and one of the following holds.

10

- (1) N = PSL(3, 8), p = 73 and Γ has valency 8 or 64;
- (2) $N = PSL(n,q), p = \frac{q^n 1}{q 1}$ and Γ has valency q^{n-1} , where $q \equiv 1 \pmod{9}, n \ge 5$ and (n,q) satisfies Lemma 3.5;
- (3) $N = PSL(3,q), 3p = q^2 + q + 1$ and Γ has valency q^2 , where $q \equiv 1 \pmod{3}$.

Proof. By Lemmas 3.2 and 3.5, N = soc(G) = PSL(n,q) for some odd prime n. If (n,q) = (3,8) then part (1) of the theorem follows from Lemma 3.6. Thus we assume that $(n,q) \neq (3,8)$ in the following. Write $q = r^f$ for a prime r and an integer $f \geq 1$.

Case 1. Assume that |B| = 9. Then $|\mathcal{B}| = p = \frac{q^n - 1}{q - 1}$ is a prime. By Lemma 3.7, $q \equiv 1 \pmod{3}$, and so $n . It follows that <math>n \neq 3$. By Lemmas 3.5, nf has no prime divisors less that 5. Note that |G:N| divides nf and G is transitive on W. It follows that the number of N-orbits on W is a divisor of nf. It implies that N is transitive on W, and hence G is quasiprimitive on W.

Recall that G is faithful and imprimitive on W. Take a maximal block C of G on W, and set $\mathcal{C} = \{C^g \mid g \in G\}$. Then G acts primitively on \mathcal{C} .

Since $n \geq 5$, checking Table 2, we conclude that G has no primitive permutation representation of degree 3p. Then $|C| \neq 3$. In addition, G has no subgroups of index 9, and so $|C| \neq p$. It follows that |C| = 9 and $|\mathcal{C}| = p$. Then the argument for the actions of N on \mathcal{B} and on U is available for the actions on \mathcal{C} and on W. This allows us to view \mathcal{B} as a copy of \mathcal{P} and \mathcal{C} a copy of \mathcal{P} or \mathcal{H} .

Choose $B \in \mathcal{B}$ and $C \in \mathcal{C}$ such that $N_B = \overline{Q}:\overline{H}$ and $N_C = N_B$ or N_B^{σ} . Then, by Lemmas 3.4 and 3.7, $\overline{Q}:\overline{L} \leq N_u = X/\mathbb{Z}(\mathrm{SL}(n,q))$ and $N_w = N_u$ or N_u^{σ} , where $u \in B$, $w \in C$ and X is a subgroup of $\mathrm{SL}(n,q)$ consists matrices of the following form:

$$\begin{pmatrix} a & \mathbf{0} \\ \mathbf{b}', & \mathbf{A} \end{pmatrix}$$
, $\mathbf{b} \in \mathbb{F}_q^{n-1}$, $\mathbf{A} \in \mathrm{GL}(n-1,q)$, $a^{-1} = \det(\mathbf{A}) \in \langle \eta^9 \rangle$.

Note Γ is *G*-locally primitive and *N* is not regular on both *U* and *W*. By Lemma 2.6, Γ is *N*-edge-transitive. Then $\Gamma(u)$ is an N_u -orbit on *W*. Thus, for an N_u -orbit \mathcal{C}' on \mathcal{C} , either $\Gamma(u) = \bigcup_{C' \in \mathcal{C}'} (\Gamma(u) \cap C')$, or $\Gamma(u) \cap C' = \emptyset$ for each $C' \in \mathcal{C}'$.

Suppose that $N_C = N_B$. Then both B and C are corresponding to $\langle \mathbf{e}_1 \rangle$. By Lemma 3.4, for each $u \in B$, the stabilizer N_u is transitive on $\mathcal{C} \setminus \{C\}$. Thus either $\Gamma(u) \subseteq C$ or $\Gamma(u) = \bigcup_{C' \in \mathcal{C} \setminus \{C\}} \Gamma(u) \cap C'$. Note that N_u fixes C point-wise as $N_u = N_w$ is normal in $N_B = N_C$, where $w \in C$. Then $\Gamma(u) = \bigcup_{C' \in \mathcal{C} \setminus \{C\}} \Gamma(u) \cap C'$. Choose $C' \in \mathcal{C}$ corresponding to $\langle \mathbf{e}_2 \rangle$, and take $w' \in C'$. Let Y_1 and Y_2 be the pre-images of $N_u \cap N_{C'}$ and $N_u \cap N_{w'}$, respectively. Then

$$Y_{1} = \left\{ \begin{pmatrix} a & 0 & \mathbf{0} \\ 0 & b & \mathbf{0} \\ \mathbf{b}_{1}^{\prime} & \mathbf{b}_{2}^{\prime} & \mathbf{a}_{1} \end{pmatrix} \middle| \mathbf{a}_{1} \in \operatorname{GL}(n-2,q), a^{-1} = b \det(\mathbf{a}_{1}) \in \langle \eta^{9} \rangle \right\},$$

$$Y_{2} = \left\{ \begin{pmatrix} a & 0 & \mathbf{0} \\ 0 & b & \mathbf{0} \\ \mathbf{b}_{1}^{\prime} & \mathbf{b}_{2}^{\prime} & \mathbf{a}_{1} \end{pmatrix} \middle| \mathbf{a}_{1} \in \operatorname{GL}(n-2,q), ab \det(\mathbf{a}_{1}) = 1, a, b \in \langle \eta^{9} \rangle \right\}.$$

It follows that $|(N_u \cap N_{C'}) : (N_u \cap N_{w'})| = |Y_1 : Y_2| = |9| = |C'|$, and so $N_u \cap N_{C'}$ is transitive on C'. Then $C' \subset \Gamma(u)$, which contradicts Lemma 2.5.

Now let $N_C = N_B^{\sigma}$. Then *B* and *C* are corresponding to $\langle \mathbf{e}_1 \rangle$ and $\langle \mathbf{e}_i | 2 \leq i \leq n \rangle$, respectively. By Lemma 3.4, N_u has two orbits C_1 and C_2 on C, where C_1 has length $\frac{q^{n-1}-1}{q-1}$

and contains C_1 corresponding to $\langle \mathbf{e}_i \mid 1 \leq i \leq n-1 \rangle$, and C_2 has length q^{n-1} and contains C_2 corresponding to $\langle \mathbf{e}_i \mid 2 \leq i \leq n \rangle$. Calculation shows that $|(N_u \cap N_{C_1}) : (N_u \cap N_{w_1})| = 9$ and $N_u \cap N_{C_2} = N_u \cap N_{w_2}$, where $w_1 \in C_1$ and $w_2 \in C_2$. If $\Gamma(u) \subseteq \bigcup_{C' \in C_1} C'$ then we get a similar contradiction as above. Thus $\Gamma(u) \subseteq \bigcup_{C' \in C_2} C'$, and $\Gamma(u)$ is one of the 9-orbits of N_u on $\bigcup_{C' \in C_2} C'$. Note that $N_u^{\sigma} = N_w$ for $w \in C_2$. Then Γ is arc-transitive by Lemma 2.1, and part (2) follows.

Case 2. Assume that |B| = 3. Then N = PSL(3, q) with $q = r^f \equiv 1 \pmod{3}$. In particular, |N| has at least 4 distinct prime divisors, refer to [15, pp. 12].

Let W_1 be an arbitrary N-orbit on W. Take $w \in W_1$. Then $|W_1| = |N : N_w| = 3, 9, p, 3p$ or 9p. Since N is simple, N has no subgroups of index 3. By [7, Appendix B], N has no subgroups of index 9. By Table 1, N has no primitive permutation representations of prime degree, hence N has no subgroups of index p. Thus $|W_1| = 3p$ or 9p. Suppose that $|W_1| = 3p$. Then N has exactly three orbits on W. Since N is normal in G, each N-orbit on W is a block of G. By Lemma 2.5, $|\Gamma(u) \cap W_1| \leq 1$ for $u \in U$, yielding $|\Gamma(u)| \leq 3$. By Lemma 2.1, $|G_u| = 2^s \cdot 3^t$ for some integer $s, t \geq 0$. Then $|G| = 2^s \cdot 3^{t+2} \cdot p$. Thus |N| has at most 3 distinct prime divisors, a contradiction. Then $|W_1| = 9p$, that is, N is transitive on W.

Take a maximal block C of G on W, and set $C = \{C^g \mid g \in G\}$. Then G acts primitively on C. Recall that N has no subgroups of indices 3, 9 and p. It implies that |C| = 3p. Then part (3) of this theorem follows from an analogous argument given in Case 1.

4 The proof of Theorem 1.1

Let Γ be a *G*-locally primitive regular graph of order 18p, where $G \leq \operatorname{Aut}\Gamma$ and p is a prime. Assume that *G* is intransitive on $V\Gamma$. Let *U* and *W* be the *G*-orbits on $V\Gamma$. If *G* acts unfaithfully on one of *U* and *W*, then Γ is the complete bipartite graph $\mathsf{K}_{9p,9p}$, and hence Γ is arc-transitive. Thus we assume that *G* is faithful on both *U* and *W*. By the argument in Section 3, we assume further that *G* has non-trivial normal subgroups which are intransitive on both *U* and *W*. Let *M* be maximal one of such normal subgroups of *G*. Denote by \widetilde{U} and \widetilde{W} be the sets of *M*-orbits on *U* and *W*, respectively. For each $v \in V\Gamma$, denote by \tilde{v} the *M*-orbit containing *v*.

By Lemma 2.7, Γ is a normal cover of Γ_M . Then M is semiregular on both U and W; in particular |M| = 3, 9, p or 3p and $|\widetilde{U}| = |\widetilde{W}| = \frac{9p}{|M|} = 3p, p, 9$ or 3, respectively. Note that M is the kernel of G acting on $V\Gamma_M = \widetilde{U} \cup \widetilde{W}$. Then we identify X := G/M with a subgroup group of Aut Γ_M . Then Γ_M is X-locally primitive.

Next we finish the proof of Theorem 1.1 in two subsections depending on whether or not Γ_M is a bipartite complete graph.

4.1

In this subsection we assume that Γ_M is a complete bipartite graph, that is, $\Gamma_M \cong \mathsf{K}_{\frac{9p}{|M|},\frac{9p}{|M|}}$. Let $u \in U$ and $w \in W$. Then $X_{\tilde{u}}$ and $X_{\tilde{w}}$ acts primitively on \widetilde{W} and \widetilde{U} , respectively. Thus X acts primitively on both \widetilde{U} and \widetilde{W} . Moreover, $|X_{\tilde{u}} : X_{\tilde{u}\tilde{w}}| = \frac{9p}{|M|} = |X : X_{\tilde{u}}|$, and so $\frac{81p^2}{|M|^2}$ is a divisor of |X|.

Lemma 4.1 Assume that X is faithful on one of \widetilde{U} and \widetilde{W} . Then Γ is an arc-transitive graph of order 36 and valency 6.

Proof. Without loss of generality, we may assume that X is faithful on \widetilde{W} . Then both X and $X_{\widetilde{u}}$ are primitive permutation groups on \widetilde{W} . If |M| = 3p then $X \cong \mathbb{Z}_3$ or S_3 , and hence X is intransitive on the edges of Γ_M , a contradiction. If |M| = 9 then p^2 is a divisor of X; however each permutation group of degree prime p has order indivisible by p^2 , a contradiction. If |M| = p then $\operatorname{soc}(X)$ and $\operatorname{soc}(X_{\widetilde{u}})$ are one of A₉, PSL(2,8) or \mathbb{Z}_3^2 , yielding $9 = |\widetilde{U}| = |X : X_{\widetilde{u}}| \neq 9$, a contradiction.

Now let |M| = 3. Then $M \cong \mathbb{Z}_3$ and |W| = 3p. Since $9p^2$ is a divisor of |X|, checking Table 2 implies that $\operatorname{soc}(X) = A_{3p}$ or A_5 . Note $|X : X_{\tilde{u}}| = 3p$ and $|X_{\tilde{u}} : X_{\tilde{u}\tilde{w}}| = 3p$. It follows that p = 2, $\Gamma_M \cong \mathsf{K}_{6,6}$, $\operatorname{soc}(X) \cong A_6$ and $\operatorname{soc}(X_{\tilde{u}}) \cong A_5$.

By $\operatorname{soc}(X) \cong A_6$, we know that X is isomorphic to a subgroup of $\operatorname{Aut}(A_6) = A_6.\mathbb{Z}_2^2$. In particular, $|X : \operatorname{soc}(X)|$ is a divisor of 4. Since $\operatorname{soc}(X)$ is normal in X, all $\operatorname{soc}(X)$ -orbits on \widetilde{U} have that same length dividing 3p. Thus the number of $\operatorname{soc}(X)$ -orbits on \widetilde{U} is a common divisor of 4 and 3p. It follows that $\operatorname{soc}(X)$ acts transitively on \widetilde{U} . In addition $\operatorname{soc}(X)$ is transitive \widetilde{W} as X is faithful and primitive on \widetilde{W} . Then Γ_M is $\operatorname{soc}(X)$ -edge-transitive by Lemma 2.6. In particular, $\operatorname{soc}(X)_{\widetilde{u}}$ and $\operatorname{soc}(X)_{\widetilde{w}}$ acts transitively on \widetilde{W} and \widetilde{U} , respectively. Checking the subgroups of A_6 , we conclude that $\operatorname{soc}(X)_{\widetilde{u}} \cong \operatorname{soc}(X)_{\widetilde{w}} \cong A_5$, and $\operatorname{soc}(X)_{\widetilde{u}}$ and $\operatorname{soc}(X)_{\widetilde{w}}$ are not conjugate in $\operatorname{soc}(X)$. It is easy to see that Γ is $\operatorname{soc}(X)$ -locally primitive.

Let H be the pre-image of $\operatorname{soc}(X)$ in G. Then $H = M.\operatorname{soc}(X)$, $M = \mathbb{Z}(H)$ and Γ is H-locally primitive. Let H' be the commutator subgroup of H. Suppose that $H' \neq H$. Then $H = M \times H'$ and $H' \cong A_6$. Thus H' is normal in H and intransitive on both U and W. By Lemma 2.7, H' is semiregular on $V\Gamma$, which is impossible. Therefore, H = H'. By the information given in [6], we know that H has an automorphism σ of order 2 with $H^{\sigma}_{\tilde{u}} = H_{\tilde{w}}$ for suitable $\tilde{u} \in \tilde{U}$ and $\tilde{w} \in \widetilde{W}$. Noting that $H_{\tilde{u}} = M \times H_{u'}$ and $H_{\tilde{w}} = M \times H_{w'}$ for arbitrary $u' \in \tilde{u}$ and $w' \in \tilde{w}$, it follows that $H^{\sigma}_{u'} = H_{w'}$. Then, by Lemma 2.1, Γ is an arc-transitive graph.

Lemma 4.2 Assume that X acts unfaithfully on both \widetilde{U} and \widetilde{W} . Then Γ has valency 2, 3 or p, and Γ is either arc-transitive or isomorphic to the Gray graph.

Proof. Let Y_1 and Y_2 be the corresponding kernels. Then $Y_1 \cap Y_2 = 1$ and $Y_1Y_2 = Y_1 \times Y_2$. Since X acts primitively on both \widetilde{U} and \widetilde{W} , we conclude that Y_1 and Y_2 act transitively on \widetilde{W} and \widetilde{U} , respectively. It follows that $\operatorname{soc}(X/Y_i) \leq Y_1Y_2/Y_{3-i}$, where i = 1, 2. Checking primitive permutation groups of degree $\frac{9p}{|M|}$, we conclude that $Y_1 \times Y_2$ contains a normal subgroup $Y = T_1 \times T_2$ which is transitive on $E\Gamma_M$ such that $Y_i \geq T_i \cong \operatorname{soc}(X/Y_i)$ and one of the following conditions holds:

- (i) p = 2 and Γ_M is a 4-cycle;
- (ii) $|M| = 9, p \ge 5, \Gamma_M \cong \mathsf{K}_{p,p}, T_1 = \mathsf{soc}(Y_1) \cong T_2 = \mathsf{soc}(Y_2)$ and T_1 is simple;
- (iii) $\Gamma_M \cong \mathsf{K}_{3,3}, T_1 = \mathsf{soc}(Y_1) \cong T_2 = \mathsf{soc}(Y_2) \cong \mathbb{Z}_3;$
- (iv) $\Gamma_M \cong \mathsf{K}_{9,9}, T_1 \cong T_2 \cong \mathbb{Z}_3^2;$
- (v) |M| = 3 or $p, T_1 = \operatorname{soc}(Y_1) \cong T_2 = \operatorname{soc}(Y_2)$ and T_1 is non-abelian simple.

Let N be the pre-image of Y in G. Then Γ is N-edge-transitive. In particular, N is not regular on U and W. Noting that N is faithful on both U and W, it follows that N is not abelian.

If (i) occurs then Γ_M is a cycle, and so Γ is arc-transitive.

Assume that (ii) occurs. Then Y has a subgroup which has order p and acts regularly on both \widetilde{U} and \widetilde{W} . Thus N has a subgroup $M.\mathbb{Z}_p$ acting regularly on both U and W. By the Sylow Theorem, it is easily shown that $N.\mathbb{Z}_p \cong \mathbb{Z}_3^2 \times \mathbb{Z}_p$ or $\mathbb{Z}_9 \times \mathbb{Z}_p$. It follows from Lemma 2.1 that Γ is vertex-transitive, hence Γ is arc-transitive.

Assume that (iii) occurs. Then |M| = 3p and $N = M.\mathbb{Z}_3^2$. If p = 3 then either Γ is arctransitive or, by [26] or [27], Γ is isomorphic to the Gray graph. Assume that p = 2. Then Mhas a characteristic subgroup $K \cong \mathbb{Z}_3$, and hence K is normal in N. It is easily shown that Γ is a normal cover of Γ_K with respect to N and K. Thus Γ_K is a cubic edge-transitive graph of order 12. However, by [3, 5], there are no such graphs, a contradiction. Thus assume that $p \ge 5$. Then M has a unique Sylow p-subgroup. Let P be the unique Sylow p-subgroup of M. Then $P \cong \mathbb{Z}_p$ and P is normal in N. Since Γ is cubic, Γ is N-locally primitive. Thus Γ is a normal cover of Γ_P , and hence Γ_P is an N/P-edge-transitive cubic graph of order 18. Write N = P:Q, where Q is a Sylow 3-subgroup of N. Then $Q \cong N/P$ is non-abelian.

Let S be the Sylow 3-subgroup of $C_N(P)$. Then S is normal in N. It is easily shown that S fixes both U and W set-wise, and so S is intransitive on both U and W as |U| = |W| = 9pand $p \neq 3$. Then S is semiregular on both U and W, and so |S| = 1, 3 or 9; in particular, S is ablelian. It implies that $PS = P \times S$ is abelian and semiregular on both U and W. Assume |S| = 3. Since S is normal in Q, it implies that S lies in the center of Q. Note that $Q/S = Q/Q \cap C_N(P) \cong QC_N(P)/C_N(P) \leq N/C_N(P) \leq Aut(P) \cong \mathbb{Z}_{p-1}$. Then Q/S is cyclic. It follows that Q is abelian, a contradiction. Therefore |S| = 9, and hence PS is regular on both U and W. Thus Γ is arc-transitive by Lemma 2.1.

Next we finish the proof by excluding (iv) and (v).

Suppose that (iv) occurs. Write N = P:Q, where Q is a Sylow 3-subgroup of N. Then $Q \cong \mathbb{Z}_3^4$. Let S be the Sylow 3-subgroup of $C_N(P)$. Then S is normal in N. Since N is non-abelian, $Q \neq S$. Consider the quotient $N/C_N(P)$. We conclude that $S \cong \mathbb{Z}_3^3$. Since Γ is bipartite, it is easily shown that S fixes the bipartition of Γ . If $p \neq 3$ then S is neither transitive nor semiregular on both U and W, which contradicts Lemma 2.7. Thus p = 3, and so $|V\Gamma| = 54$ and $|\operatorname{Aut}\Gamma|$ is divisible by 3^5 . By [3, 5], there exists no such a cubic edge-transitive graph, a contradiction.

Suppose that (v) occurs. Note that $(N/M)/(C_N(M)/M) \cong N/C_N(M) \lesssim \operatorname{Aut}(M) \cong \mathbb{Z}_{p-1}$ or \mathbb{Z}_2 . Since Y = N/M is the direct product of two isomorphic non-abelian simple groups, it follows that $N/M = C_N(M)/M$, and so $N = C_N(M)$. Then M is the center of N. Take $u \in U$. Then $N_{\tilde{u}} = M \times N_u$, and so $N_u \cong N_{\tilde{u}}/M = Y_{\tilde{u}} = (T_2)_{\tilde{u}} \times T_1$. Then N_u acts transitively on \widetilde{W} , and hence $N_{\tilde{u}}$ acts transitively on W. Note that N_u has a normal subgroup $K \cong (T_2)_{\tilde{u}}$ which acts trivially on \widetilde{W} . Then K fixes set-wise each M-orbit on W. It is easily shown that K is normal in $N_{\tilde{u}}$. It follows that all K-orbits on W have the same length. Thus either Kacts trivially on W, or K acts transitively on each M-orbit on W. The latter case implies that $\Gamma \cong \mathsf{K}_{9p,9p}$, a contradiction. Thus K = 1 as G is faithful on both U and W, and so $(T_2)_{\tilde{u}} = 1$. Noting that T_2 is transitive on \tilde{U} , it follows that $|T_2| = |T_2 : (T_2)_{\tilde{u}}| = |\widetilde{U}| = 9$ or 3p, which contradicts that T_2 is simple.

4.2

Now we assume that Γ_M is not a complete bipartite. Then X acts faithfully on both \widetilde{U} and \widetilde{W} . By Lemma 2.7, X is quasiprimitive on one of \widetilde{U} and \widetilde{W} . Recall that $|\widetilde{U}| = |\widetilde{W}| = \frac{9p}{|M|} = 3p, p, 9$ or 3.

Lemma 4.3 $|\widetilde{U}| = |\widetilde{W}| \neq 9.$

Proof. Suppose that $|\widetilde{U}| = |\widetilde{W}| = 9$. Without loss of generality, we assume that X is quasiprimitive on \widetilde{U} . Then it is easily shown that X is primitive on \widetilde{U} . Thus $\operatorname{soc}(X)$ is isomorphic to one of A₉, PSL(2,8) or \mathbb{Z}_3^2 . Let $N \leq G$ with $N/M = \operatorname{soc}(X)$.

Assume that $\operatorname{soc}(X) \cong \operatorname{PSL}(2,8)$. Then X is 3-transitive on both \widetilde{U} and \widetilde{W} . It follows that $\Gamma_M \cong \mathsf{K}_{9,9} - 9\mathsf{K}_2$, and that Γ is N-locally primitive. Moreover, it is easily shown that M is the center of N. By [6], $\operatorname{PSL}(2,8)$ has Schur Multiplier 1. This implies that $N = M \times K$ with $\operatorname{PSL}(2,8) \cong K < N$. Thus N has a normal subgroup K acting neither transitively nor semiregularly on each of U and W, which contradicts Lemma 2.7.

Assume that $\operatorname{soc}(X) \cong A_9$. A similar argument as above implies that $\Gamma_M \cong K_{9,9} - 9K_2$ and Γ is N-locally primitive. Moreover, N is a central extension of M by A₉. If $p \neq 2$ then, noting that A₉ has Schur Multiplier \mathbb{Z}_2 , we have $N = M \times K$ for K < N with $K \cong A_9$, which yields a similar contradiction as above. Suppose that p = 2. Take $u \in \tilde{U}$. Then $N_{\tilde{u}} = M \times N_u$, and so $N_u \cong N_{\tilde{u}}/M \cong A_8$. Noting that $M \cong \mathbb{Z}_2$ and $N_{\tilde{u}}$ contains a Sylow 2-subgroup of N, it follows from Gaschtz' Theorem (see [1, 10.4]) that the extension $N = M.\operatorname{soc}(X)$ splits over M, that is, $N = M \times K$ for K < N with $K \cong A_9$, again a contradiction.

Assume that $\operatorname{soc}(X) \cong \mathbb{Z}_3^2$. Then $X \leq \operatorname{AGL}(2,3)$ and, for some $\tilde{u} \in W$, the stabilizer $X_{\tilde{u}}$ is isomorphic to an irreducible subgroup of $\operatorname{GL}(2,3)$. By [13, Theorem 2], there are no semisymmetric graphs of order 18. It follows from [17, Lemma 2.5] that $\operatorname{soc}(X)$ acts transitively on \widetilde{W} . Thus $\operatorname{soc}(X)$ is regular on both \widetilde{U} and \widetilde{W} . By [25], $X_{\tilde{u}}$ acts faithfully on the neighbors of \tilde{u} . In addition, since Γ_M is X-locally primitive, $X_{\tilde{u}}$ is a primitive permutation group on $\Gamma_M(\tilde{u})$. However, it is easy to check that $\operatorname{GL}(2,3)$ has no irreducible subgroups satisfying the conditions for $X_{\tilde{u}}$, a contradiction.

Lemma 4.4 If $|\widetilde{U}| = |\widetilde{W}| = 3$ or p, then Γ is arc-transitive.

Proof. If $|\tilde{U}| = 2$ then $X \cong \mathbb{Z}_2$ and Γ_M is 4-cycle, which is impossible. If $|\tilde{U}| = 3$ then $X \cong S_3$ and Γ_M is 6-cycle, and hence Γ is a cycle. Thus we assume that $|\tilde{U}| = p \ge 5$. Then |M| = 9, and either $X = G/M \le \mathbb{Z}_p:\mathbb{Z}_{p-1}$ or X is a permutation group with $\operatorname{soc}(X)$ listed in Table 1. In particular, G has a subgroup $R = M.\mathbb{Z}_p$ which acts regularly on both U and W. By the Sylow Theorem, it is easily shown that $R \cong M \times P$, where P is a Sylow p-subgroup of R. Then R is abelian, and hence Γ is arc-transitive by Lemma 2.1.

Finally, we deal with the case where $|U| = 3p \neq 9$, that is, $p \neq 3$ and $M \cong \mathbb{Z}_3$.

Lemma 4.5 Assume that $|\widetilde{U}| = 3p \neq 9$. Then Γ is arc-transitive.

Proof. Without loss of generality, we assume that X = G/M is a quasiprimitive group on \tilde{U} . Since $|\tilde{U}| = 3p \neq 9$, by Lemma 2.8, soc(X) is insoluble. **Case 1.** Assume that X = G/M is primitive on \widetilde{U} . Then X is known as in Table 2. Since $\operatorname{soc}(X)$ is non-abelian simple, it has no proper subgroups of index less than 5. Suppose that $\operatorname{soc}(X)$ is not primitive on \widetilde{W} . Then either each $\operatorname{soc}(X)$ -orbit on \widetilde{W} has length p, or $\operatorname{soc}(X)$ is transitive on \widetilde{W} with a block of size 3; moreover, p > 3 in both cases. Thus, for these two cases, $\operatorname{soc}(X)$ can be viewed as a transitive permutation group of prime degree. Checking Table 1 and 2, we conclude that $\operatorname{soc}(X) \cong A_7$ and $\operatorname{soc}(X)_{\alpha} \cong A_6$, where α is either an M-orbit on \widetilde{W} or a block of $\operatorname{soc}(X)$ with size 3 on \widetilde{W} . For the former case, $3p = |\widetilde{W}| = |X : X_{\alpha}| \leq |X : \operatorname{soc}(X)_{\alpha}| \leq |S_7:A_6| = 14$, a contradiction; for the latter case, A_6 has a subgroup of index 3, which is impossible. It follows that $\operatorname{soc}(X)$ is primitive on both \widetilde{U} and \widetilde{W} ; in particular, Γ_M is $\operatorname{soc}(X)$ -edge-transitive.

Let $N \leq G$ with N/M = soc(X). Clearly, N is normal in G and Γ is N-edge-transitive. Moreover, it is easily shown that M is the center of N.

Subcase 1.1. Assume that the extension $N = M.\operatorname{soc}(X)$ splits over M, that is, $N = M \times K$ for $\operatorname{soc}(X) \cong K < N$. Then K is a normal subgroup of G, and K acts primitively on both \widetilde{U} and \widetilde{W} . Since K is a non-abelian simple group, its order has at least three distinct prime divisor. It follows that K is not semiregular on both U and W. Then K is transitive on one of U and W. This implies that 9p is a divisor of |K|, and so K is not isomorphic to one of A_5 , $\operatorname{PSL}(3,2)$ and $\operatorname{PSL}(2,2^f)$.

Without loss of generality, assume that K is transitive on U. Then, for $u \in U$, the stabilizer $K_{\tilde{u}}$ is transitive on the *M*-orbit \tilde{u} . Thus $3 = |M| = |\tilde{u}| = |K_{\tilde{u}} : K_u|$, and so K has a subgroup of index 3. Noting that $N_{\tilde{u}} = MK_{\tilde{u}}$, it implies that $K_{\tilde{u}} \cong N_{\tilde{u}}/M = \operatorname{soc}(X)_{\tilde{u}}$. Checking the subgroups of $\operatorname{soc}(X)_{\tilde{u}}$, we know that either $K \cong \operatorname{soc}(X) = A_6$ and p = 5, or $K \cong \operatorname{soc}(X) = \operatorname{PSL}(3, q)$ and $3p = q^2 + q + 1$, where q is a power of a prime with $q \equiv 1 \pmod{3}$.

Assume that $\operatorname{soc}(X) = A_6$. Then Γ has order 90. Suppose that K is intransitive on W. Then K has three orbits on W, and so Γ is cubic by Lemma 2.6. Thus Γ is a semisymmetric cubic graph by [5, Theorem 5.2]. Again by [5], there is no semisymmetric cubic graphs of order 90, a contradiction. Then K is also transitive on W. By Lemma 2.6, Γ is K-edge-transitive. Checking the subgroups of A_6 , we know that $K_u \cong D_8$ for $u \in U$. It follows that Γ has valency 4 or 8. Since Γ is G-locally primitive, $G_u^{\Gamma(u)}$ is a primitive group of degree 4 or 8. Since $K_u^{\Gamma(u)}$ is a transitive normal subgroup of $G_u^{\Gamma(u)}$, it follows that Γ has valency 4. Then Γ_M has valency 4. Consider the actions of $\operatorname{soc}(X)$ on \widetilde{U} and \widetilde{W} . If these two actions are equivalent then Γ_M has valency 6 or 8; otherwise, Γ_M has valency 3 or 12. This is a contradiction.

Assume that $\operatorname{soc}(X) = \operatorname{PSL}(3, q)$. Then Γ_M has valency q^2 , q+1 or q^2+q . If K is intransitive on W then K has three orbits on W, and hence Γ is cubic by Lemma 2.6, a contradiction. Thus K is also transitive on W, and so Γ is K-edge-transitive. Arguing similarly as in the proof of Theorem 3.1, we conclude that Γ is arc-transitive and has valency q^2 .

Subcase 1.2. Assume that the extension $N = M.\operatorname{soc}(X)$ does not split over M. Then, checking the Schur multipliers of the simple groups in Table 2, we conclude that $N = 3.A_6$ with p = 5 or 2, or $N = 3.A_7$ with p = 5 or 7, or $N = \operatorname{SL}(3,q)$ with $3 \mid q = 1$.

Let $N = \mathrm{SL}(3,q)$ with $3 \mid q-1$. Using the notation defined above Lemma 3.3, we identify \widetilde{U} with \mathcal{P} and \widetilde{W} with \mathcal{P} or \mathcal{H} . Then there are $\widetilde{u} \in \widetilde{U}$ and $\widetilde{w} \in \widetilde{W}$ such that

$$N_{\tilde{u}} = \left\{ \left(\begin{array}{cc} a & \mathbf{0} \\ \mathbf{b}' & \mathbf{A} \end{array} \right) \middle| \mathbf{b} \in \mathbb{F}_q^2, \mathbf{A} \in \mathrm{GL}(2,q), a^{-1} = \det(\mathbf{A}) \right\}$$

and $N_{\tilde{u}} = N_{\tilde{u}}$ or $N_{\tilde{u}}^{\sigma}$. By Lemma 3.4 and a similar argument in the proof of Theorem 3.1, it is easily shown that Γ is an arc-transitive graph of valency q^2 .

Let $N = 3.A_6$. If p = 2 then $\Gamma_M \cong \mathsf{K}_{6,6} - 6\mathsf{K}_2$, and hence Γ is arc-transitive by Lemma 2.4. Now let p = 5. Then Γ_M has valency 6, 8, 3 or 12. Take $u \in U$. Then $N_{\tilde{u}} = M \times N_u$, and so $N_u \cong N_{\tilde{u}}/M = \mathsf{soc}(X)_{\tilde{u}} \cong \mathsf{S}_4$. Since Γ is *G*-locally primitive, $G_u^{\Gamma(u)}$ is a primitive group. Noting that $N_u^{\Gamma(u)}$ is a transitive normal subgroup of $G_u^{\Gamma(u)}$, it follows that Γ has valency 4 or 3. Since Γ is a normal cover of Γ_M , we conclude that Γ has valency 3. By [5], there is no semisymmetric cubic graphs of order 90. Thus Γ is arc-transitive.

Let $N = 3.A_7$ with p = 5 or 7. Assume first that $\operatorname{soc}(X)$ acts equivalently on \widetilde{U} and \widetilde{W} . Then, by Lemma 2.3, Γ_M is isomorphic to an orbital bipartite graph of $\operatorname{soc}(X)$ on \widetilde{U} . Calculation shows that the suborbits of $\operatorname{soc}(X)$ on \widetilde{U} are all self-paired. Then Γ is arc-transitive by Colloray 2.1. If p = 5 then $X = \operatorname{soc}(X) \cong A_7$, $X_{\widetilde{u}} \cong \operatorname{PSL}(2,7)$ and Γ_M has valency 14; however $\operatorname{PSL}(2,7)$ has no primitive permutation representations of degree 14, a contradiction. Then p = 7. It is easily shown that Γ has valency 10.

Assume that the actions of $\operatorname{soc}(X)$ on \widetilde{U} and \widetilde{W} are not equivalent. Then $X = \operatorname{soc}(X) = A_7$ and $X_{\widetilde{u}} \cong \operatorname{PSL}(2,7)$, and so $G = N = 3.A_7$. In particular, p = 5 and Γ_M has order 30. Take $\widetilde{w} \in \Gamma_M(\widetilde{u})$. Checking the subgroups of A_7 , we conclude that $|X_{\widetilde{u}} : (X_{\widetilde{u}} \cap X_{\widetilde{w}})| = 7$ or 8. Then Γ_M has valency 7 or 8, and so does Γ . Verified by GAP, there are two involutions $\sigma_1, \sigma_2 \in S_7$ such that $|X_{\widetilde{u}} : (X_{\widetilde{u}} \cap X_{\widetilde{u}}^{\sigma_1})| = 7$ and $|X_{\widetilde{u}} : (X_{\widetilde{u}} \cap X_{\widetilde{u}}^{\sigma_2})| = 8$. Note that $G_{\widetilde{v}} = N \times G_v$ and $X_{\widetilde{v}} \cong G_v$ for $v \in V\Gamma$. Thus we may choose a suitable $w \in \Gamma(u)$ such that $G_u^{\sigma} = G_w$ for an automorphism of G of order 2. Then Γ is arc-transitive by Lemma 2.1.

Case 2. Assume that X = G/M is quasiprimitive but not primitive on \tilde{U} . Let B be a maximal block of X on \tilde{U} . Then |B| = 3. Set $\mathcal{B} = \{B^x \mid x \in X\}$. Then $|\mathcal{B}| = p$ and X acts faithfully on \mathcal{B} . Thus X is known as in Table 1. Let $\tilde{u} \in B$. Then $|X_B : X_u| = |B| = 3$. Checking one by one the groups listed in Table 1, we conclude that $\operatorname{soc}(X) = \operatorname{PSL}(n,q)$ with $p = \frac{q^n - 1}{q - 1}$.

Suppose that n = 2. Then $q = 2^{2^s}$ for some integer $s \ge 1$, and $N = M.\operatorname{soc}(X) \cong \mathbb{Z}_3 \times \operatorname{PSL}(2, 2^{2^s})$. It follows that G has a normal subgroup K isomorphic to $\operatorname{PSL}(2, 2^{2^s})$. Note that 9 is not a divisor of |K|. It follows that K is intransitive on both U and W. By Lemma 2.7, K is semiregular on U, which is impossible. Then $n \ge 3$.

A similar argument as above implies that $(n,q) \neq (3,2)$. Then, by [15, pp. 12], $|\operatorname{soc}(X)|$ has at least four distinct prime divisors. Noting $|X| = 3p|X_{\tilde{u}}|$, it follows that $|X_{\tilde{u}}|$ has an odd prime divisor other than 3. This implies that the valency of Γ_M is no less than 5. If $\operatorname{soc}(X)$ is intransitive on \widetilde{W} , then $\operatorname{soc}(X)$ has exactly three orbits on \widetilde{W} , and so Γ_M has valency 3 by Lemma 2.6, a contradiction. Therefore, $\operatorname{soc}(X)$ is transitive on \widetilde{W} , and hence Γ_M is $\operatorname{soc}(X)$ -edge-transitive. Let $N \leq G$ with $N/M = \operatorname{soc}(X)$. Then N is normal in G and Γ is N-edge-transitive.

It is easily shown that n is an odd prime with $q \not\equiv 1 \pmod{n}$, see the proof of Lemma 3.5. Then the Schur Multiplier of PSL(n,q) is 1. Recalling $M \cong \mathbb{Z}_3$, it yields that $N = M \times K$, where $K \cong PSL(n,q)$. Clearly, K is a normal subgroup of G. Recalling soc(X) is transitive on both \widetilde{U} and \widetilde{W} , we conclude that each K-orbit on $V\Gamma$ has length at least 3p. Since K is not semiregular and Γ has valency no less than 5, by Lemma 2.6, we know that Γ is K-edge-transitive. Then the argument in Section 3 implies that Γ is an arc-transitive graph. **Acknowledgement** The authors would like to thank the referees for valuable comments and careful reading.

References

- [1] Aschbacher, M., Finite group theory, Cambridge University Press, Cambridge, 1993.
- [2] Cameron, P. J., Permutation Groups, Cambridge University Press, Cambridge, 1999.
- [3] Conder, M. and Dobcsányi, P., Trivalent symmetric graphs on up to 768 vertices, J. Combin. Math. Combin. Comput., 40, 2002, 41–63.
- [4] Conder, M. D., Li, C. H. and Praeger, C. E., On the Weiss conjecture for finite locally primitive graphs, Proc. Edinburgh Math. Soc.(2), 43, 2000, 129–138.
- [5] Conder, M., Malnič, A., Marušič, D. and Potočnik, P., A census of semisymmetric cubic graphs on up to 768 vertices. J. Algebr. Comb., 23, 2006, 255–294.
- [6] Conway, J. H., Curtis, R. T., Noton, S. P., Parker, R. A. and Wilson, R. A., Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
- [7] Dixon, J. D. and Mortimer, B., Permutation Groups, Springer-Verlag New York Berlin Heidelberg, 1996.
- [8] Du, S. F. and Xu, M. Y., A classification of semisymmetric graphs of order 2pq, Comm. Algebra, 28(6), 2000, 2685–2714.
- [9] Fang, X. G., Havas, G. and Praeger, C. E., On the automorphism groups of quasiprimitive almost simple graphs, J. Algebra 222, 1999, 271–283.
- [10] Fang, X. G., Ma, X. S. and Wang, J., On locally primitive Cayley graphs of finite simple groups, J. Combin. Theory Ser. A, 118, 2011, 1039–1051.
- [11] Fang, X. G. and Praeger, C. E., On graphs admitting arc-transitive actions of almost simple groups, J. Algebra, 205, 1998, 37–52.
- [12] Fang, X. G., Praeger, C. E. and Wang, J., Locally primitive Cayley graphs of finite simple groups, Sci. China Ser. A, 44, 2001, 58–66.
- [13] Folkman, J., Regular line-symmetric graphs, J. Combin Theory Ser. B, 3, 1967, 215–232.
- [14] Giudici, M., Li, C. H. and Praeger, C. E., Analysing finite locally s-arc transitive graphs, Trans. Amer. Math. Soc., 356, 2004, 291–317.
- [15] Gorenstein, D., Finite Simple Groups, Plenum Press, New York, 1982.
- [16] Han, H. and Lu, Z. P., Semisymmetric graphs of order $6p^2$ and prime valency, Sci. China Math., 55, 2012, 2579–2592.
- [17] Han, H. and Lu, Z. P., Affine primitive permutation groups and semisymmetric graphs, *Electronic J. Combin.*, 20(2), 2013, Research Paper 39.
- [18] Han, H. and Lu, Z. P., Semisymmetric graphs arising from primitive permutation groups of degree 9p, In review.
- [19] Huppert, B., Endliche Gruppen I, Springer-Verlag, 1967.
- [20] Huppert, B. and Blackburn, N., Finite Groups II, Springer-Verlag, Berlin, 1982.
- [21] Iranmanesh, M. A., On finite G-locally primitive graphs and the Weiss conjecture, Bull. Austral. Math. Soc., 70, 2004, 353–356.
- [22] Li, C. H., Lou, B. G. and Pan, J. M., Finite locally primitive abelian Cayley graphs, Sci. China Math., 54, 2011, 845–854.
- [23] Li, C. H. and Ma, L., Locally primitive graphs and bidirect products of graphs, J. Aust. Math. Soc., 91, 2011, 231–242.
- [24] Li, C. H., Pan, J. M. and Ma, L., Locally primitive graphs of prime-power order, J. Aust. Math. Soc., 86, 2009, 111–122.
- [25] Lu, Z. P., On the automorphism groups of bi-Cayley graphs, Beijing Daxue Xuebao, 39, 2003, 1-5.
- [26] Lu, Z. P., Wang, C. Q. and Xu, M. Y., On Semisymmetric Cubic Graphs of Order 6p², Sci. China Ser.A, 47(1), 2004, 1–17.
- [27] Malnič, A., Marušič, D. and Wang, C. Q., Cubic edge-transitive graphs of order 2p³. Discrete Math, 274, 2004, 187–198.

- [28] Pan, J. M., Locally primitive normal Cayley graphs of metacyclic groups, *Electron. J. Combin.*, 16, 2009, Research Paper 96.
- [29] Praeger, C. E., Imprimitive symmetric graphs, Ars Combin., 19, 1985, A, 149–163.
- [30] Praeger, C. E., An o'Nan-Scott theorem for finite quasiprimitive permutation groups and an application to 2-arc transitive graphs, J. London Math. Soc., 47, 1992, 227–239.
- [31] Spiga, P., On G-locally primitive graphs of locally twisted wreath type and a conjecture of Weiss, J. Combin. Theory Ser. A, 118, 2011, 2257–2260.
- [32] Weiss, R., s-transitive graphs, Algebraic methods in graph theory, Vol. I, II, (Szeged, 1978), 827–847, Colloq. Math. Soc. János Bolyai, 25, North-Holland, Amsterdam, 1981, 827-847.