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1 Introduction

All graphs in this paper are assumed to be finite and simple.

Let Γ be a graph. We use V Γ , EΓ and AutΓ to denote the vertex set, edge set and

automorphism group of Γ , respectively. Then the graph Γ is said to be vertex-transitive or

edge-transitive if some subgroup G of AutΓ (denoted by G ≤ AutΓ ) acts transitively on V Γ

or EΓ , respectively. Recall that an arc in Γ is an ordered pair of adjacent vertices. Then the

graph Γ is called arc-transitive if some G ≤ AutΓ acts transitively on the set of arcs of Γ .

The graph Γ is said to be locally primitive if, for some subgroup G ≤ AutΓ and each v ∈ V Γ ,

the stabilizer Gv induces a primitive permutation group G
Γ(v)
v on the neighborhood Γ (v), the

set of neighbors, of v in Γ . For convenience, such subgroups G are called vertex-transitive,

edge-transitive, arc-transitive and locally primitive groups of Γ , respectively.

Studying of locally primitive graphs is one of the main themes in algebraic graph theory,

which stems from a conjecture on bonding the stabilizers of locally primitive arc-transitive

graphs [32, Conjecture 12]. The reader may consult [4, 9, 10, 11, 12, 14, 21, 22, 23, 24, 28, 29, 31]

for some known results in this area.

In this paper, we aim at determining the arc-transitivity of certain locally primitive graphs.

Let Γ be a connected graph and G be a locally primitive group on Γ . It is easily shown

that G acts transitively on EΓ , and so Γ is edge-transitive. If G is vertex-transitive then

Γ is necessarily an arc-transitive graph. Thus, for our purpose, we always assume that Γ

is regular but G is not vertex-transitive. Then Γ is a bipartite graphs with two bipartition

subsets being the G-orbits on V Γ . Giudici et al. [14] established a reduction for studying

locally primitive bipartite graphs, which was successfully applied in [23] to the characterization

of locally primitive graphs of order twice a prime power. In this paper we concentrate our
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attention on analyzing the locally primitive graphs of order 18p. Our main result is stated as

follows.

Theorem 1.1 Let Γ be a connected regular graph of order 18p, where p is a prime. Assume

that Γ is locally primitive. Then Γ is either arc-transitive or isomorphic to one of the Gray

graph and the Tutte 12-cage.

2 Preliminaries

Let Γ be a graph and let G ≤ AutΓ . Assume that G is edge-transitive but not vertex-transitive;

in this case, we call G semisymmetric if Γ is regular. Then Γ is a bipartite graph with two

bipartition subsets being the G-orbits on V Γ . Moreover, Γ is arc-transitive provided that Γ

has an automorphism interchanging two of its bipartition subsets. For a given vertex u ∈ V Γ ,

the stabilizer Gu acts transitively on Γ (u). Take w ∈ Γ (u). Then each vertex of Γ can be

written as ug or wg for some g ∈ G. Then two vertices ug and wh are adjacent in Γ if and only

if u and whg−1

are adjacent, i.e., hg−1 ∈ GwGu. Moreover, it is well-known and easily shown

that Γ is connected if and only if ⟨Gu, Gw⟩ = G. In particular, the next simple fact follows.

Lemma 2.1 Let Γ be a connected graph and G ≤ AutΓ. Assume that G is edge-transitive

but not vertex-transitive. Let {u,w} be an edge of Γ . Then

(1) Gu and Gw contain no nontrivial normal subgroups in common; and

(2) r ≤ max{|Γ (u)|, |Γ (w)|} for each prime divisor r of |Gu|.

Moreover, Γ is arc-transitive if one of the following conditions holds:

(3) G has an automorphism σ of order 2 with Gσ
u = Gw.

(4) G has an abelian subgroup acting regularly on both bipartition subsets of Γ .

Proof. Since Γ is connected, ⟨Gu, Gw⟩ = G ≤ AutΓ . Then part (1) follows.

Let r be a prime divisor of |Gu| with r > max{|Γ (u)|, |Γ (w)|}, and let R be a Sylow r-

subgroup of Gu. Then R fixes Γ (u) point-wise, and so R ≤ Gw′ for each w′ ∈ Γ (u). Take

Q be a Sylow r-subgroup of Gw with Q ≥ R. Then Q fixes Γ (w) point-wise, hence Q ≤ Gu.

Thus R = Q. By the connectedness of Γ , for each v ∈ V Γ , it is easily shown that R is a Sylow

r-subgroup of Gv. Thus R fixes V Γ point-wise, and so R=1 as R ≤ AutΓ . Then part (2)

follows.

Suppose that G has an automorphism σ of order 2 with Gσ
u = Gw. Define a bijection

ι : V Γ → V Γ by (ug)ι = wgσ

and (wh)ι = uhσ

. It is easy to check that ι ∈ AutΓ and ι

interchanges two bipartition subsets of Γ . This implies that Γ is arc-transitive.

Suppose that G has a subgroup R which is regular on both bipartition subsets of Γ . Then

each vertex in V Γ can be written uniquely as ux or wy for some x, y ∈ R. Set S = {s ∈ R |
ws ∈ Γ (u)}. Then ux and wy are adjacent if and only if yx−1 ∈ S. If R is abelian, then it is

easily shown that ux 7→ wx−1

, wx 7→ ux−1

, ∀x ∈ R is an automorphism of Γ , which leads to

the arc-transitivity of Γ .

Let G be a finite transitive permutation group on a set Ω. The orbits of G on the cartesian

product Ω × Ω are the orbitals of G, and the diagonal orbital {(α, α)g | g ∈ G} is said to be
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trivial. For a G-orbital ∆ and α ∈ Ω, the set ∆(α) = {β | (α, β) ∈ ∆} is a Gα-orbit on Ω

and called a suborbit of G at α. The rank of G on Ω is the number of G-orbitals, which equals

to the number of Gα-orbits on Ω for any given α ∈ Ω. A G-orbital ∆ is called self-paired if

(β, α) ∈ ∆ for some (α, β) ∈ ∆, while the suborbit ∆(α) is said to be self-paired. For a G-orbital

∆, the paired orbital ∆∗ is defined as {(β, α) | (α, β) ∈ ∆}. Then a G-orbital ∆ is self-paired

if and only if ∆∗ = ∆. For a non-trivial G-orbital ∆, the orbital bipartite graph B(G,Ω,∆) is

the graph on two copies of Ω, say Ω×{1, 2}, such that {(α, 1), (β, 2)} is an edge if and only if

(α, β) ∈ ∆. Then B(G,Ω,∆) is G-semisymmetric, where G acts on Ω×{1, 2} as follows:

(α, i)g = (αg, i), g ∈ G, i = 1, 2.

If ∆ is self-paired, then (α, 1) ↔ (α, 2), α ∈ Ω gives an automorphism of B(G,Ω,∆), which

yields thatB(G,Ω,∆) isG-arc-transitive. The next lemma indicates it is possible thatB(G,Ω,∆)

is arc-transitive even if ∆ is not self-paired.

Lemma 2.2 Let X be a permutation group on Ω and G is a transitive subgroup of X with

index |X : G| = 2. Let ∆ be a G-orbital. If ∆ ∪ ∆∗ is an X-orbital, then B(G,Ω,∆) is

arc-transitive.

Proof. Assume that ∆∪∆∗ is anX-orbital. To show Γ := B(G,Ω,∆) is arc-transitive, it suffices

to find an automorphism of Γ which interchanges two bipartition subsets of Γ . Take x ∈ X \G.

It is easily shown that ∆x = ∆∗ and (∆∗)x = ∆. Define x̂ : Ω×{0, 1} → Ω×{0, 1}; (α, 0) 7→
(αx, 1), (β, 1) 7→ (βx, 0). It is easy to check x̂ ∈ AutΓ , and so the lemma follows.

Moreover, the next lemma is easily shown, see also [14].

Lemma 2.3 Assume that Γ is a connected G-semisymmetric graph of valency at least 2

with bipartition subsets U and W , and that, for an edge {u,w} ∈ EΓ, two stabilizers Gu and

Gw are conjugate in G. Then there is a bijection ι : U ↔ W such that Gu = Gι(u) and

{u, ι(u)} ̸∈ EΓ for all u ∈ U . Moreover, ∆ = {(u, ι−1(w)) | {u,w} ∈ EΓ , u ∈ U,w ∈ W} is a

G-orbital on U . In particular, Γ ∼= B(G,U,∆), and ι extends to an automorphism of Γ if and

only if ∆ is self-paired.

Remark on Lemma 2.3. Let Γ and G ≤ AutΓ be as in Lemma 2.3. Then {Gu | u ∈ U} =

{Gw | w ∈ W}, and so ∩u∈UGu = ∩w∈WGw = 1 as G ≤ AutΓ . Thus G is faithful on both parts

of Γ . Take u ∈ U and w ∈ W with Gu = Gw. Then ug ↔ wg, g ∈ G gives a bijection meeting

the requirement of Lemma 2.3. Thus one can define l2 bijections ι, where l is the number of

the points in U fixed by a stabilizer Gu. By [7, Theorem 4.2A], l = |NG(Gu) : Gu|.
Let G be a finite transitive permutation group on Ω. Let N = {x1 = 1, x2, · · · , xn} be a

group of order n lying in the center Z(G) of G. Then N is normal in G, and N is semiregular

on Ω, that is, Nα = 1 for all α ∈ Ω. Denote by ᾱ the N -orbit containing α ∈ Ω and by Ω̄ the

set of all N -orbits. Then G induces a transitive permutation group Ḡ on Ω̄. Take a Ḡ-orbital

∆̄ and (ᾱ, β̄) ∈ ∆̄. Noting that Gᾱ = N×Gα, it follows that ∆̄(ᾱ) = {(β̄)h | h ∈ Gα}. Set

∆i(α) = {βxih | h ∈ Gα}, 1 ≤ i ≤ n.

Then all ∆i(α) are suborbits of G at α, which are not necessarily distinct. It is easily shown

that N×Gα acts transitively on Ω1 := {βxih | 1 ≤ i ≤ n, h ∈ Gα}. It follows that all Gα-orbits
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on Ω1 have the same length divided by |∆̄(ᾱ)|. For each i, let ∆i be the G-orbital corresponding

to ∆i(α).

Lemma 2.4 Let G, N , ∆̄ and ∆i be as above.

(1) All ∆i(α) are suborbits of G of the same length divisible by |∆̄(ᾱ)|.

(2) If ∆̄ is self-paired then, for each i, there is some j such that ∆i(α) = ∆∗
j (α).

(3) B(G,Ω,∆i) ∼= B(G,Ω,∆j) for 1 ≤ i, j ≤ n.

Proof. Part (1) of this lemma follows from the argument above the lemma.

Assume that ∆̄ is self-paired. Then there is some g ∈ G such that (ᾱ, β̄)g = (β̄, ᾱ). Thus,

for each i, there are some i′ and j′ such that (α, βxi)g = (βxj′ , αxi′ ) = (βx−1

i′ xj′ , α)xi′ . Setting

x−1
i′ xj′ = xj , we have (α, βxi)g = (βxj , α)xi′ . Then ∆i = ∆∗

j .

For each i, define fi : Ω×{1, 2} → Ω×{1, 2} by fi(δ, 1) = (δ, 1) and fi(δ, 2) = (δxi , 2), where

δ ∈ Ω. It is easily shown that fi is an isomorphism from B(G,Ω,∆1) to B(G,Ω,∆i). Thus

part (3) of this lemma follows.

Let Γ be a G-semisymmetric graph. Suppose that G has a normal subgroup N which acts

intransitively on at least one of the bipartition subsets of Γ . Then we define the quotient graph

ΓN to have vertices the N -orbits on V Γ , and two N -orbits B and B′ are adjacent in ΓN if and

only if some v ∈ B and some v′ ∈ B′ are adjacent in Γ . It is easy to see that the quotient ΓN

is a regular graph if and only if all N -orbits have the same length. Moreover, if ΓN is regular

then its valency is a divisor of that of Γ . The graph Γ is called a normal cover of ΓN (with

respect to G and N) if ΓN and Γ have the same valency, which yields that N is the kernel of

G acting the N -orbits (vertices of ΓN ). Thus, if Γ is a normal cover of ΓN then the quotient

group G/N can be identified with a subgroup of AutΓN , and so ΓN is G/N -semisymmetric.

Corollary 2.1 Let Γ and G ≤ AutΓ be as in Lemma 2.3. Let N ≤ Z(G). Then N is

intransitive and semiregularly on both U and W . Assume further that |N | is odd and that ΓN

is the orbital bipartite graph of some self-paired orbital of Ḡ, where Ḡ is the subgroup of AutΓN

induced by G. Then Γ is arc-transitive.

Proof. Recall that G is faithful on both U and W , see the remark after Lemma 2.3. Since

N ≤ Z(G), every subgroup of N is normal in G, so Nv ≤ Gg
v = Gvg for v ∈ V Γ and g ∈ G. It

follows that Nv = 1, so N is semiregular on both U and W . Suppose that N is transitive on

one of U and W , say U . Then G = NGu for u ∈ U , and so Gu is normal in G as N ≤ Z(G).

It follows that Gu fixes every vertex in U , so Gu = 1, which contradicts the transitivity of Gu

on Γ (u).

By Lemma 2.3, there is bijection ι : U ↔ W such that, for u ∈ U , the subset ι−1(Γ (u))

is a suborbit of G at u. By the remark after Lemma 2.3, we may choose ι such that it maps

each N -orbit on U to some N -orbit on W . Thus ι induces a bijection ῑ on V ΓN interchanging

two bipartition subsets UN and WN of ΓN , where UN and WN denote respectively the sets of

N -orbits on U and W . Moreover, it is easily shown that Ḡv̄ = Ḡῑ(v̄) for any N -orbit v̄, and

that ι−1(Γ (u)) = {u′h | h ∈ Gu} for u′ ∈ U such that ū′ ∈ ῑ−1(ΓN (ū)).

Assume ΓN is the orbital bipartite graph of some self-paired orbital of Ḡ. Then, again by

Lemma 2.3, ῑ ∈ AutΓN and ῑ−1(ΓN (ū)) is a self-paired suborbit of Ḡ at ū. If |N | is odd then,
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by Lemma 2.4, Γ is isomorphic to the orbital bipartite graph of some self-paired orbital of G

on U , and hence Γ is arc-transitive.

Recall that, for a group G acts transitively on a set Ω, a block B is a non-empty subset of

Ω such that B = Bg or B ∩Bg = ∅ for every g ∈ G.

Lemma 2.5 Let Γ be a connected graph, and let G ≤ AutΓ such that G is locally primitive

but not vertex-transitive. Assume that U and W are G-orbits on V Γ and that B is a block of

G on W . Then either B = W , or |Γ (u) ∩B| ≤ 1 for each u ∈ U .

Proof. Note that for each u ∈ U either Γ (u) ∩ B = ∅ or Γ (u) ∩ B is a block of Gu on Γ (u).

Since Gu acts primitively on Γ (u), we know that either |Γ (u) ∩B| ≤ 1 or Γ (u) ⊆ B. Suppose

that Γ (u) ⊆ B for some u ∈ U . Take w ∈ B and v ∈ Γ (w). Since G is edge-transitive, there

is g ∈ G with vg = u and wg ∈ Γ (u) ⊆ B. Then w ∈ Bg−1 ∩ B, and so B = Bg−1

. Thus

Γ (v) = (Γ (u))g
−1 ⊆ Bg−1

= B. It follows that Γ has a connected component with vertex set

(∪w∈BΓ (w)) ∪B. This yields B = W .

Lemma 2.6 Let Γ and G be as in Lemma 2.5. Let U and W be the G-orbits on V Γ.

Suppose that G has a normal subgroup N which acts transitively on U . Then

(1) ΓN is a |Γ (u)|-star, where u ∈ U ; or

(2) Γ is N -edge-transitive; or

(3) N is regular on both U and W .

Proof. If N is intransitive on W , then part (1) follows from [14, Lemma 5.5]. Thus we assume

that N is transitive on W . Take u ∈ U . If Nu is transitive on Γ (u) then Γ is N -edge-transitive,

and so (2) holds. Suppose that Nu is not transitive on Γ (u). Since Nu is normal in Gu and

G is locally primitive, Nu fixes Γ (u) point-wise. Thus Nw ≥ Nu for each w ∈ Γ (u). If Nw is

transitive on Γ (w) then Γ is N -edge-transitive, and so (2) holds. Thus we may suppose further

that Nw ≤ Nu′ for each u′ ∈ Γ (w). By the connectedness of Γ , we conclude that Nu = Nw = 1.

Then (3) follows.

Recall that a quasiprimitive group is a permutation group with all minimal normal subgroups

transitive. By [14, Theorem 1.1 and Lemma 5.1], the next lemma holds.

Lemma 2.7 Let Γ and G be as in Lemma 2.5. Suppose that N is a normal subgroup of G

which is intransitive on both bipartition subsets of Γ . Then Γ is a normal cover of ΓN and ΓN

is G/N -locally primitive. If further N is maximal among the normal subgroups of G which are

intransitive on both bipartition subsets of Γ , then either ΓN is a complete bipartite graph, or

G/N acts faithfully on both parts and is quasiprimitive on at least one the bipartition subsets

of ΓN .

For a finite group G, denote by soc(G) the subgroup generated by all minimal normal

subgroups of G, which is called the socle of G. The next result describes the basic structural

information for quasiprimitive permutation groups, refer to [30].

Lemma 2.8 Let G be a finite quasiprimitive permutation group on Ω. Then G has at most

two minimal normal subgroups, and one of the following statements holds.
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(1) |Ω| = pd, soc(G) ∼= Zd
p and soc(G) is the unique minimal normal subgroup of G, where

d ≥ 1 and p is a prime; in this case, G is primitive on Ω;

(2) soc(G) = T l for l ≥ 1 and a nonabelian simple group T , and either soc(G) is the unique

minimal normal subgroup of G, or soc(G) = M×N for two minimal normal subgroups M

and N of G with |M | = |N | = |Ω|.

3 The quasiprimitive case

Let Γ be a G-locally primitive regular graph of order 18p, where G ≤ AutΓ and p is a prime.

Assume that G is intransitive on V Γ . Then Γ is a bipartite graph with two bipartition subsets

being G-orbits, say U and W .

Assume next that G acts faithfully on both U and W , and that G is quasiprimitive on one

of U and W . If G acts primitively on one of U and W then, by [18], Γ is either arc-transitive or

isomorphic to one of the Gray graph and the Tutte 12-cage. Thus we assume in the following

that neither GU nor GW is a primitive permutation group. Then, by Lemma 2.8, N := soc(G) is

the direct product of some isomorphic non-abelian simple groups. In particular, G is insoluble,

and so Γ is not a cycle.

Without loss of generality, we assume that G is quasiprimitive on U . Recall that GU is not

primitive. Take a maximal block B (̸= U) of G on U . Then |B| is a proper divisor of |U | = 9p

and |GB : Gu| = |NB : Nu| = |B| for each u ∈ B. Set B = {Bg | g ∈ G}. Then |B| = 9p
|B| , and

G acts primitively on B. Since G is quasiprimitive on U , we know that G acts faithfully on B.
Thus we may view G as a primitive permutation group (on B) of degree 9p

|B| .

Lemma 3.1 |B| = 3 or 9.

Proof. It is easy to see that |B| = 3, 9 or p. Suppose that |B| = p. Then |B| = 9 and, by [7,

Appendix B], N = soc(G) = A9 or PSL(2, 8). If N = A9 then NB
∼= A8 and p ≤ 7; however

A8 has no subgroups of index p, a contradiction. Thus N = PSL(2, 8), NB
∼= Z3

2:Z7 and p = 7,

and so Nu
∼= Z3

2 and |U | = 63, where u ∈ B. Since Γ is G-locally primitive, Gu induces a

primitive permutation group G
Γ(u)
u . If G = N then G

Γ(u)
u

∼= Z2, yielding that Γ is a cycle,

a contradiction. It follows that G = PΣL(2, 8) ∼= PSL(2, 8):Z3 and |Gv| = 24, where v is an

arbitrary vertex of Γ . Checking the subgroups of PSL(2, 8) in the Atlas [6], we know that N

has no proper subgroups of index dividing 21. It implies that N is transitive on W , and so G is

also quasiprimitive on W . By the information given for PΣL(2, 8) in [6], Gv
∼= Z3

2:Z3
∼= Z2×A4

for each v ∈ V Γ . Then either G
Γ(v)
v

∼= Z3 and Γ is cubic, or G
Γ(v)
v

∼= A4 and Γ has valency 4.

Take {u,w} ∈ EΓ . Then Guw
∼= Z3

2 or Z6. It follows that Gu and Gw have the same center,

which contradicts Lemma 2.1.

Therefore, G is a primitive permutation group (on B) of degree p or 3p. For further argument,

we list in Tables 1 and 2 the insoluble primitive groups of degree p and of degree 3p, respectively.

Noting that NB has a subgroup of index |B| = 9 or 3, it is easy to check that N = A6 or

PSL(n, q). Suppose that N = A6. Then |B| = 3 and p = 5. It follows that Gu is a 2-group.

Since Γ is G-locally primitive, G
Γ(u)
u

∼= Z2. Then Γ is a cycle, a contradiction. Thus the next

lemma follows.
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Degree p 11 11 23 p qn−1
q−1

Socle PSL(2, 11) M11 M23 Ap PSL(n, q)
Stabilizer A5 M10 M22 Ap−1

Action 1- or (n− 1)-subspaces
Remark prime n ≥ 3 or (n, q) = (2, 22

s

)

Table 1. Insoluble transitive groups of prime degree ( refer to [2, Table 7.4]).

Lemma 3.2 Either |B| = 9 and N = PSL(n, q) with n prime, or |B| = 3 and N = PSL(3, q)

with q ≡ 1 (mod 3).

Degree 3p Socle Action Remark
6 A5 cosets of D10

15 A6 2-subsets or partitions
21 A7 2-subsets
21 PSL(3, 2) (1, 2)-flags
57 PSL(2, 19) cosets of A5 two actions
15 A7 cosets of PSL(2, 7) two actions
3p A3p

15 PSL(4, 2) 1- or 3-subspaces
2f + 1 PSL(2, 2f ) 1-subspaces odd primef
q3−1
q−1 PSL(3, q) 1- or 2-subspaces q ≡ 1 (mod 3)

Table 2. Insoluble primitive groups of degree 3p ( refer to [16]).

Let Fq be the Galois field of order q, and let Fn
q be the n-dimensional linear space of row

vectors over Fq. Denote by P and H, respectively, the sets of 1-subspaces and (n−1)-subspaces

of Fn
q . Then the action of N = SL(n, q)/Z(SL(n, q)) on B is equivalent to one of the actions of

N on P and on H induced by

(x1, x2, · · · , xn)A = (Σn
i=1ai1xi,Σ

n
i=1ai2xi, · · · ,Σn

i=1ainxi),

where A = (aij)n×n ∈ SL(n, q). Let σ be the inverse-transpose automorphism of SL(n, q), that

is,

σ : SL(n, q) → SL(n, q),a 7→ (a′)−1.

Then σ gives an automorphism of N of order 2. Define

ι : P → H, ⟨(x1, x2, · · · , xn)⟩ 7→ {(y1, y2, · · · , yn) | Σn
i=1xiyi = 0}.

Then

(ι(⟨v⟩))A = ι(⟨vA⟩), ∀A ∈ SL(n, q), ⟨v⟩ ∈ P.

For 1 ≤ i ≤ n, let ei be the vector with the ith entry 1 and other entries 0. Then

(SL(n, q))⟨e1⟩ = Q:H and (SL(n, q))⟨ei|2≤i≤n⟩ = Qσ:H,
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where

Q =

{(
1 0
b′ In−1

)∣∣∣∣ b ∈ Fn−1
q

}
,

H =

{(
a 0
0′ A

)∣∣∣∣ A ∈ GL(n− 1, q), a−1 = det(A)

}
.

For a subgroup X of SL(n, q), we denote X to be the image of X in N , that is, X =

X/Z(SL(n, q)). Then the following lemma holds.

Lemma 3.3 If B ∈ B then NB is conjugate in N to one of Q:H and Q
σ
:H.

The following simple fact may be shown by simple calculations.

Lemma 3.4 Set Fq \ {0} = ⟨η⟩ and

L =

{(
1 0
0′ A

)∣∣∣∣ A ∈ SL(n− 1, q)

}
.

Then Q:L acts transitively on P \ ⟨e1⟩, and has two orbits on H with length qn−1−1
q−1 and qn−1,

respectively. Moreover, for each divisor m of q− 1, Q:H has a unique subgroup containing Q:L

and having index m, which is{(
a 0
b′ A

)∣∣∣∣b ∈ Fn−1
q ,A ∈ GL(n− 1, q), a−1 = det(A) ∈ ⟨ηm⟩

}
.

Lemma 3.5 Write q = rf for a prime r and an integer f ≥ 1. Assume that |B| = 9 for

B ∈ B. Then the following statements hold:

(1) (n, q) ̸= (2, 2), (2, 3), (3, 2), (3, 3);

(2) n is an odd prime with q ̸≡ 1 (mod n);

(3) n is the smallest prime divisor of nf .

Proof. By Lemma 3.2, N = PSL(n, q) for a prime n. Since 9 is a divisor of |N | and N is simple,

(n, q) ̸= (2, 2), (2, 3), (3, 2).

Suppose that N = PSL(3, 3). Then p = 13, G = N , |GB | = 24 · 33 and |Gu| = 48. Take

w ∈ Γ (u). Since Γ is regular, |Gu| = 48 = |Gw|. Checking the subgroups of SL(3, 3) (refer to

[6]), we have Gu
∼= Gw

∼= 2S4 ∼= GL(2, 3). Since Γ is G-locally primitive, G
Γ(u)
u

∼= S4 ∼= G
Γ(w)
w

and Γ has valency 4. Thus Guw
∼= D12. It follows that Gu and Gw have the same center

isomorphic to Z2, which contradicts Lemma 2.1. Thus part (1) follows.

Suppose that n = 2. Then, since p = rnf−1
rf−1

is a prime, r = 2 and f = 2s for some

integer s ≥ 1. Thus NB
∼= Z2s

2 :Z22s−1, and hence Nu
∼= Z2s

2 :Z 22
s−1
9

. But 22
s − 1 is not

divisible by 9, a contradiction. This implies that n is an odd prime. If q ≡ 1 (mod n) then

p = Σn−1
i=0 q

i ≡ 0 (mod n), a contradiction. Then part (2) follows.

If nf = 6 and r = 2 then p = qn−1
q−1 = 21 or 63, a contradiction. Thus, by Zsigmondy’s

Theorem (refer to [20, p. 508]), there is a prime which divides rnf −1 but not divides ri−1 for

all 1 ≤ i ≤ nf − 1. Clearly, such a prime is p. Suppose that f has a prime divisor s such that

s < n. Then qn − 1 has a divisor r
nf
s − 1. By Zsigmondy’s Theorem, either (r, nf

s ) = (2, 6), or

r
nf
s − 1 has a prime divisor which does not divide rf − 1. The latter case yields that qn−1

q−1 has
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two (distinct) prime divisors, a contradiction. Thus (r, nf
s ) = (2, 6), yielding that n = 3 and

f = 4. Then p = qn−1
q−1 = 212−1

24−1 = 273, a contradiction. Then part (3) follows.

Lemma 3.6 Let B ∈ B. If (n, q) = (3, 8) then |B| = 9 and Γ is arc-transitive and of

valency 8 or 64.

Proof. Assume that (n, q) = (3, 8). Then N ∼= SL(3, 8), p = 73 and |G : N | = 1 or 3. By

Lemma 3.2, |B| = 9. Without loss of generality, we assume that N = SL(3, 8) and choose B

such that NB = P :H, where P ∼= Z6
2 and H is defined as above Lemma 3.3.

Since NB is transitive on B, it is easily shown that P acts trivially on B, and so H acts

transitively on B. Then |H : Hu| = 9. Note that H ∼= GL(2, 8) ∼= Z7×PSL(2, 8). Checking

the subgroups of PSL(2, 8), we conclude that the action of H on B is equivalent to the action

of H on the 1-subspaces of F2
8. Then, without loss of generality, we may assume that Hu is

conjugate to 
 a1 0 0

0 a2 0
0 b a3

∣∣∣∣∣∣ a1, a2, a3, b ∈ F8, a1a2a3 = 1

 .

Recall that a (1, 2)-flag of F3
8 is a pair {V1, V2} of a 1-subspace and a 2-subspace with the

1-subspace contained in the 2-subspace. Since P ≤ Nu, we have Nu = Nu ∩ (PH) = PHu
∼=

Z6
2:(Z3

2:Z2
7). It is easily shown that Nu is the stabilizer of some (1, 2)-flag {V1, V2} in N . It

follows that the action of N on U is equivalent to the action of N on the set F of (1, 2)-flags of

F3
8.

Now we show that the actions of N on U and W are equivalent. Note that |G : N | = 1 or

3. Thus, since W is a G-orbit, either N is transitive on W or N has 3 orbits on W . Checking

the subgroups of SL(3, 8), we know that N has no subgroups of index 219. It follows that

N is transitive on W . Note that N = SL(3, 8) has no subgroups of indices 3, 9 and 219. It

follows that a maximal block of N on W has size 9. Then a similar argument as above implies

the action of N on W is also equivalent to that on F . Moreover, Γ is N -edge-transitive by

Lemma 2.6.

Identifying U with F , by Lemma 2.3, Γ ∼= B(N,F ,∆), where ∆ is an N -orbital on F .

Without loss of generality, choose u to be the flag {⟨e3⟩, ⟨e2, e3⟩}. Calculation shows that ∆(u)

is one of the following 5 suborbits:

(i) {{⟨e2+ae3⟩, ⟨e2, e3⟩} | a ∈ F8} and {{⟨e3⟩, ⟨e3, e1+ae2⟩} | a ∈ F8}, which are self-paired

and of length 23;

(ii) {{⟨e2 + ae3⟩, ⟨e1 + be2, e2 + ae3⟩} | a, b ∈ F8} and {{⟨e1 + ae2 + be3⟩, ⟨e1 + ae2, e3⟩} |
a, b ∈ F8}, which are paired to each other and of length 26;

(iii) {{⟨e1 + ae2 + be3⟩, ⟨e1 + ae2 + be3, e2 + ce3⟩} | a, b, c ∈ F8}, which is self-paired and of

length 29.

Suppose that ∆(u) is the suborbit in (iii). Then Γ has valency 29. Recall that |G : N | = 1

or 3, and Nu = PHu
∼= Z6

2:(Z3
2:Z2

7). It follows that Gu/Nu is cyclic, and hence Gu is soluble.

Since Γ is G-locally primitive, G
Γ(u)
u is a soluble primitive permutation group of degree 29. In

particular, soc(G
Γ(u)
u ) ∼= Z9

2 and soc(G
Γ(u)
u ) is the unique minimal normal subgroup of G

Γ(u)
u .

Thus N
Γ(u)
u ≥ soc(G

Γ(u)
u ) as Nu induces a normal transitive subgroup of GΓ(u). However, the

unique Sylow 2-subgroup of Nu is non-abelian and has order 29, a contradiction.
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If ∆(u) is described in (i) then Γ has valency 8 and, by Lemma 2.3, Γ is arc-transitive.

Assume that ∆(u) is one of the suborbits in (ii). Then Γ has valency 64. Let σ is the

inverse-transpose automorphism of N = SL(3, 8). Then F is σ-invariant. Consider that action

N :⟨σ⟩ on F and take a ∈ SL(3, 8) with

a =

 0 0 1
0 1 0
1 0 0

 .

Then (N⟨σ⟩)u = Nu:⟨σa⟩, which interchanges the two suborbits in (ii). It follows from Lem-

ma 2.2 that Γ is arc-transitive.

Lemma 3.7 Assume that (n, q) ̸= (3, 8). Then there is u ∈ U with Nu ≥ Q:L or Q
σ
:L,

where σ is the inverse-transpose automorphism of SL(n, q), Q and L are described as in Lem-

mas 3.3 and 3.4. In particular, q ≡ 1(mod |B|).

Proof. Recall that the action of N = SL(n, q)/Z(SL(n, q)) on B is equivalent to one of the

actions of N on P and on H. Without loss of generality, we may choose B ∈ B such that

NB = R:H, where R = Q or Q
σ
, and H is described as in Lemma 3.3. Set q = rf for some

prime r and integer f ≥ 1. Then R is a nontrivial r-group.

Take u ∈ B. Then |NB : Nu| = |B| = 3 or 9. Suppose that R ̸≤ Nu. Noting that RNu is a

subgroup of NB as R is normal in NB, it follows that |R : (R ∩Nu)| = |(RNu) : Nu| = 3 or 9.

In particular, R is a 3-group, and hence |B| = 9 by Lemma 3.2. Then, by Lemma 3.5, n and

q − 1 are coprime, and so Z(SL(n, q)) = 1. Thus N ∼= SL(n, q) and R ∼= Q ∼= Z(n−1)f
3 . Assume

that |(RNu) : Nu| = 9. Then NB = RNu. It implies that R ∩ Nu is normal in NB. Then

Nu > R ∩Nu = ⟨(R ∩Nu)
x | x ∈ NB⟩ = R, yielding R ∩Nu = 1. It follows that R ∼= Z2

3. By

Lemma 3.5, we conclude that n = 3 and f = 1, that is, (n, q) = (3, 3), a contradiction. Thus

|NB : (RNu)| = 3. Noting that GL(n− 1, 3f ) ∼= H ∼= H ∼= NB/R, it follows that GL(n− 1, 3f )

has a subgroup of index 3. Note that GL(n− 1, 3f ) = Z3f−1.(PSL(n− 1, 3f ).Zd, where d is the

largest common divisor of n − 1 and 3f − 1. It implies that PSL(n − 1, 3f ) has a subgroup of

index 3. Then n = 3 and f = 1, a contradiction. Therefore, R is contained in Nu.

Since R:L is normal in NB, we know that LNu = (R:L)Nu is a subgroup of NB . Suppose

that R:L ̸≤ Nu. Then |L : (L ∩ Nu)| = |(LNu) : Nu| = 3 or 9. Let Z be the center of

L. Then L/Z ∼= PSL(n − 1, q) and |L/Z : (L ∩ Nu)Z/Z| divides 9. By Lemma 3.2 and

3.5, n ≥ 3 and (n, q) ̸= (3, 2), (3, 3). Thus L/Z is simple, and hence it has no subgroups of

order 3. Suppose that |L/Z : (L ∩ Nu)Z/Z| = 9. Then L/Z has a primitive permutation

representation of degree 9. By [7, Appendix B], we conclude that L/Z ∼= PSL(2, 8). Then

(n, q) = (3, 8), a contradiction. It follows that |L/Z : (L∩Nu)Z/Z| = 1, that is, L = (L∩Nu)Z.

Consider the commutator subgroups of L and L. By [19, Chapter II, 6.10], L′ = L, hence

L = L
′
= (L ∩ Nu)

′ ≤ L ∩ Nu ̸= Nu, a contradiction. Therefore, the first part of this lemma

follows.

Let X and Y be the pre-images of NB and Nu in SL(n, q). Then |X : Y | = |NB : Nu| = |B|.
Moreover X = Q:H or Qσ:H and Y ≥ Q:L or Qσ:L, respectively. It follows that |B| is divisor
of |H : L| = q − 1. Then q ≡ 1 (mod |B|).

Theorem 3.1 Γ is an arc-transitive graph, and one of the following holds.
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(1) N = PSL(3, 8), p = 73 and Γ has valency 8 or 64;

(2) N = PSL(n, q), p = qn−1
q−1 and Γ has valency qn−1, where q ≡ 1 (mod 9), n ≥ 5 and (n, q)

satisfies Lemma 3.5;

(3) N = PSL(3, q), 3p = q2 + q + 1 and Γ has valency q2, where q ≡ 1 (mod 3).

Proof. By Lemmas 3.2 and 3.5, N = soc(G) = PSL(n, q) for some odd prime n. If (n, q) = (3, 8)

then part (1) of the theorem follows from Lemma 3.6. Thus we assume that (n, q) ̸= (3, 8) in

the following. Write q = rf for a prime r and an integer f ≥ 1.

Case 1. Assume that |B| = 9. Then |B| = p = qn−1
q−1 is a prime. By Lemma 3.7,

q ≡ 1 (mod 3), and so n < p = Σn−1
i=0 q

i ≡ n (mod 3). It follows that n ̸= 3. By Lemmas 3.5, nf

has no prime divisors less that 5. Note that |G : N | divides nf and G is transitive on W . It

follows that the number of N -orbits on W is a divisor of nf . It implies that N is transitive on

W , and hence G is quasiprimitive on W .

Recall that G is faithful and imprimitive on W . Take a maximal block C of G on W , and

set C = {Cg | g ∈ G}. Then G acts primitively on C.
Since n ≥ 5, checking Table 2, we conclude that G has no primitive permutation represen-

tation of degree 3p. Then |C| ̸= 3. In addition, G has no subgroups of index 9, and so |C| ̸= p.

It follows that |C| = 9 and |C| = p. Then the argument for the actions of N on B and on U is

available for the actions on C and on W . This allows us to view B as a copy of P and C a copy

of P or H.

Choose B ∈ B and C ∈ C such that NB = Q:H and NC = NB or Nσ
B . Then, by Lemmas 3.4

and 3.7, Q:L ≤ Nu = X/Z(SL(n, q)) and Nw = Nu or Nσ
u , where u ∈ B, w ∈ C and X is a

subgroup of SL(n, q) consists matrices of the following form:(
a 0
b′, A

)
, b ∈ Fn−1

q ,A ∈ GL(n− 1, q), a−1 = det(A) ∈ ⟨η9⟩.

Note Γ is G-locally primitive and N is not regular on both U and W . By Lemma 2.6, Γ

is N -edge-transitive. Then Γ (u) is an Nu-orbit on W . Thus, for an Nu-orbit C′ on C, either
Γ (u) = ∪C′∈C′(Γ (u) ∩ C ′), or Γ (u) ∩ C ′ = ∅ for each C ′ ∈ C′.

Suppose that NC = NB . Then both B and C are corresponding to ⟨e1⟩. By Lemma 3.4,

for each u ∈ B, the stabilizer Nu is transitive on C \ {C}. Thus either Γ (u) ⊆ C or Γ (u) =

∪C′∈C\{C}Γ (u) ∩ C ′. Note that Nu fixes C point-wise as Nu = Nw is normal in NB = NC ,

where w ∈ C. Then Γ (u) = ∪C′∈C\{C}Γ (u) ∩ C ′. Choose C ′ ∈ C corresponding to ⟨e2⟩, and
take w′ ∈ C ′. Let Y1 and Y2 be the pre-images of Nu ∩NC′ and Nu ∩Nw′ , respectively. Then

Y1 =


 a 0 0

0 b 0
b′
1 b′

2 a1

∣∣∣∣∣∣ a1 ∈ GL(n− 2, q), a−1 = b det(a1) ∈ ⟨η9⟩

 ,

Y2 =


 a 0 0

0 b 0
b′
1 b′

2 a1

∣∣∣∣∣∣ a1 ∈ GL(n− 2, q), ab det(a1) = 1, a, b ∈ ⟨η9⟩

 .

It follows that |(Nu ∩NC′) : (Nu ∩Nw′)| = |Y1 : Y2| = |9| = |C ′|, and so Nu ∩NC′ is transitive

on C ′. Then C ′ ⊂ Γ (u), which contradicts Lemma 2.5.

Now let NC = Nσ
B. Then B and C are corresponding to ⟨e1⟩ and ⟨ei | 2 ≤ i ≤ n⟩,

respectively. By Lemma 3.4, Nu has two orbits C1 and C2 on C, where C1 has length qn−1−1
q−1
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and contains C1 corresponding to ⟨ei | 1 ≤ i ≤ n − 1⟩⟩, and C2 has length qn−1 and contains

C2 corresponding to ⟨ei | 2 ≤ i ≤ n⟩⟩. Calculation shows that |(Nu ∩NC1) : (Nu ∩Nw1)| = 9

and Nu ∩ NC2 = Nu ∩ Nw2 , where w1 ∈ C1 and w2 ∈ C2. If Γ (u) ⊆ ∪C′∈C1C
′ then we get a

similar contradiction as above. Thus Γ (u) ⊆ ∪C′∈C2C
′, and Γ (u) is one of the 9-orbits of Nu

on ∪C′∈C2C
′. Note that Nσ

u = Nw for w ∈ C2. Then Γ is arc-transitive by Lemma 2.1, and

part (2) follows.

Case 2. Assume that |B| = 3. Then N = PSL(3, q) with q = rf ≡ 1 (mod 3). In particular,

|N | has at least 4 distinct prime divisors, refer to [15, pp. 12].

Let W1 be an arbitrary N -orbit on W . Take w ∈ W1. Then |W1| = |N : Nw| = 3, 9, p, 3p or

9p. Since N is simple, N has no subgroups of index 3. By [7, Appendix B], N has no subgroups

of index 9. By Table 1, N has no primitive permutation representations of prime degree, hence

N has no subgroups of index p. Thus |W1| = 3p or 9p. Suppose that |W1| = 3p. Then N has

exactly three orbits on W . Since N is normal in G, each N -orbit on W is a block of G. By

Lemma 2.5, |Γ (u) ∩W1| ≤ 1 for u ∈ U , yielding |Γ (u)| ≤ 3. By Lemma 2.1, |Gu| = 2s · 3t for
some integer s, t ≥ 0. Then |G| = 2s · 3t+2 · p. Thus |N | has at most 3 distinct prime divisors,

a contradiction. Then |W1| = 9p, that is, N is transitive on W .

Take a maximal block C of G on W , and set C = {Cg | g ∈ G}. Then G acts primitively on

C. Recall that N has no subgroups of indices 3, 9 and p. It implies that |C| = 3p. Then part

(3) of this theorem follows from an analogous argument given in Case 1.

4 The proof of Theorem 1.1

Let Γ be a G-locally primitive regular graph of order 18p, where G ≤ AutΓ and p is a prime.

Assume that G is intransitive on V Γ . Let U and W be the G-orbits on V Γ . If G acts

unfaithfully on one of U and W , then Γ is the complete bipartite graph K9p,9p, and hence Γ

is arc-transitive. Thus we assume that G is faithful on both U and W . By the argument in

Section 3, we assume further that G has non-trivial normal subgroups which are intransitive on

both U and W . Let M be maximal one of such normal subgroups of G. Denote by Ũ and W̃

be the sets of M -orbits on U and W , respectively. For each v ∈ V Γ , denote by ṽ the M -orbit

containing v.

By Lemma 2.7, Γ is a normal cover of ΓM . Then M is semiregular on both U and W ; in

particular |M | = 3, 9, p or 3p and |Ũ | = |W̃ | = 9p
|M | = 3p, p, 9 or 3, respectively. Note that

M is the kernel of G acting on V ΓM = Ũ ∪ W̃ . Then we identify X := G/M with a subgroup

group of AutΓM . Then ΓM is X-locally primitive.

Next we finish the proof of Theorem 1.1 in two subsections depending on whether or not

ΓM is a bipartite complete graph.

4.1

In this subsection we assume that ΓM is a complete bipartite graph, that is, ΓM
∼= K 9p

|M| ,
9p
|M|

.

Let u ∈ U and w ∈ W . Then Xũ and Xw̃ acts primitively on W̃ and Ũ , respectively. Thus X

acts primitively on both Ũ and W̃ . Moreover, |Xũ : Xũw̃| = 9p
|M | = |X : Xũ|, and so 81p2

|M |2 is a

divisor of |X|.
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Lemma 4.1 Assume that X is faithful on one of Ũ and W̃ . Then Γ is an arc-transitive

graph of order 36 and valency 6.

Proof. Without loss of generality, we may assume that X is faithful on W̃ . Then both X and

Xũ are primitive permutation groups on W̃ . If |M | = 3p then X ∼= Z3 or S3, and hence X is

intransitive on the edges of ΓM , a contradiction. If |M | = 9 then p2 is a divisor of X; however

each permutation group of degree prime p has order indivisible by p2, a contradiction. If |M | = p

then soc(X) and soc(Xũ) are one of A9, PSL(2, 8) or Z2
3, yielding 9 = |Ũ | = |X : Xũ| ̸= 9, a

contradiction.

Now let |M | = 3. Then M ∼= Z3 and |W̃ | = 3p. Since 9p2 is a divisor of |X|, checking
Table 2 implies that soc(X) = A3p or A5. Note |X : Xũ| = 3p and |Xũ : Xũw̃| = 3p. It follows

that p = 2, ΓM
∼= K6,6, soc(X) ∼= A6 and soc(Xũ) ∼= A5.

By soc(X) ∼= A6, we know that X is isomorphic to a subgroup of Aut(A6) = A6.Z2
2. In

particular, |X : soc(X)| is a divisor of 4. Since soc(X) is normal in X, all soc(X)-orbits on Ũ

have that same length dividing 3p. Thus the number of soc(X)-orbits on Ũ is a common divisor

of 4 and 3p. It follows that soc(X) acts transitively on Ũ . In addition soc(X) is transitive W̃

as X is faithful and primitive on W̃ . Then ΓM is soc(X)-edge-transitive by Lemma 2.6. In

particular, soc(X)ũ and soc(X)w̃ acts transitively on W̃ and Ũ , respectively. Checking the

subgroups of A6, we conclude that soc(X)ũ ∼= soc(X)w̃ ∼= A5, and soc(X)ũ and soc(X)w̃ are

not conjugate in soc(X). It is easy to see that Γ is soc(X)-locally primitive.

LetH be the pre-image of soc(X) in G. ThenH = M.soc(X), M = Z(H) and Γ isH-locally

primitive. Let H ′ be the commutator subgroup of H. Suppose that H ′ ̸= H. Then H = M×H ′

and H ′ ∼= A6. Thus H ′ is normal in H and intransitive on both U and W . By Lemma 2.7,

H ′ is semiregular on V Γ , which is impossible. Therefore, H = H ′. By the information given

in [6], we know that H has an automorphism σ of order 2 with Hσ
ũ = Hw̃ for suitable ũ ∈ Ũ

and w̃ ∈ W̃ . Noting that Hũ = M×Hu′ and Hw̃ = M×Hw′ for arbitrary u′ ∈ ũ and w′ ∈ w̃, it

follows that Hσ
u′ = Hw′ . Then, by Lemma 2.1, Γ is an arc-transitive graph.

Lemma 4.2 Assume that X acts unfaithfully on both Ũ and W̃ . Then Γ has valency 2, 3

or p, and Γ is either arc-transitive or isomorphic to the Gray graph.

Proof. Let Y1 and Y2 be the corresponding kernels. Then Y1∩Y2 = 1 and Y1Y2 = Y1×Y2. Since

X acts primitively on both Ũ and W̃ , we conclude that Y1 and Y2 act transitively on W̃ and

Ũ , respectively. It follows that soc(X/Yi) ≤ Y1Y2/Y3−i, where i = 1, 2. Checking primitive

permutation groups of degree 9p
|M | , we conclude that Y1×Y2 contains a normal subgroup Y =

T1×T2 which is transitive on EΓM such that Yi ≥ Ti
∼= soc(X/Yi) and one of the following

conditions holds:

(i) p = 2 and ΓM is a 4-cycle;

(ii) |M | = 9, p ≥ 5, ΓM
∼= Kp,p, T1 = soc(Y1) ∼= T2 = soc(Y2) and T1 is simple;

(iii) ΓM
∼= K3,3, T1 = soc(Y1) ∼= T2 = soc(Y2) ∼= Z3;

(iv) ΓM
∼= K9,9, T1

∼= T2
∼= Z2

3;

(v) |M | = 3 or p, T1 = soc(Y1) ∼= T2 = soc(Y2) and T1 is non-abelian simple.
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Let N be the pre-image of Y in G. Then Γ is N -edge-transitive. In particular, N is not

regular on U and W . Noting that N is faithful on both U and W , it follows that N is not

abelian.

If (i) occurs then ΓM is a cycle, and so Γ is arc-transitive.

Assume that (ii) occurs. Then Y has a subgroup which has order p and acts regularly on

both Ũ and W̃ . Thus N has a subgroup M.Zp acting regularly on both U and W . By the

Sylow Theorem, it is easily shown that N.Zp
∼= Z2

3×Zp or Z9×Zp. It follows from Lemma 2.1

that Γ is vertex-transitive, hence Γ is arc-transitive.

Assume that (iii) occurs. Then |M | = 3p and N = M.Z2
3. If p = 3 then either Γ is arc-

transitive or, by [26] or [27], Γ is isomorphic to the Gray graph. Assume that p = 2. Then M

has a characteristic subgroup K ∼= Z3, and hence K is normal in N . It is easily shown that Γ

is a normal cover of ΓK with respect to N and K. Thus ΓK is a cubic edge-transitive graph

of order 12. However, by [3, 5], there are no such graphs, a contradiction. Thus assume that

p ≥ 5. Then M has a unique Sylow p-subgroup. Let P be the unique Sylow p-subgroup of M .

Then P ∼= Zp and P is normal in N . Since Γ is cubic, Γ is N -locally primitive. Thus Γ is a

normal cover of ΓP , and hence ΓP is an N/P -edge-transitive cubic graph of order 18. Write

N = P :Q, where Q is a Sylow 3-subgroup of N . Then Q ∼= N/P is non-abelian.

Let S be the Sylow 3-subgroup of CN (P ). Then S is normal in N . It is easily shown that

S fixes both U and W set-wise, and so S is intransitive on both U and W as |U | = |W | = 9p

and p ̸= 3. Then S is semiregular on both U and W , and so |S| = 1, 3 or 9; in particular,

S is ablelian. It implies that PS = P×S is abelian and semiregular on both U and W .

Assume |S| = 3. Since S is normal in Q, it implies that S lies in the center of Q. Note that

Q/S = Q/Q ∩ CN (P ) ∼= QCN (P )/CN (P ) ≤ N/CN (P ) . Aut(P ) ∼= Zp−1. Then Q/S is cyclic.

It follows that Q is abelian, a contradiction. Therefore |S| = 9, and hence PS is regular on

both U and W . Thus Γ is arc-transitive by Lemma 2.1.

Next we finish the proof by excluding (iv) and (v).

Suppose that (iv) occurs. Write N = P :Q, where Q is a Sylow 3-subgroup of N . Then

Q ∼= Z4
3. Let S be the Sylow 3-subgroup of CN (P ). Then S is normal in N . Since N is

non-abelian, Q ̸= S. Consider the quotient N/CN (P ). We conclude that S ∼= Z3
3. Since Γ

is bipartite, it is easily shown that S fixes the bipartition of Γ . If p ̸= 3 then S is neither

transitive nor semiregular on both U and W , which contradicts Lemma 2.7. Thus p = 3, and so

|V Γ | = 54 and |AutΓ | is divisible by 35. By [3, 5], there exists no such a cubic edge-transitive

graph, a contradiction.

Suppose that (v) occurs. Note that (N/M)/(CN (M)/M) ∼= N/CN (M) . Aut(M) ∼= Zp−1

or Z2. Since Y = N/M is the direct product of two isomorphic non-abelian simple groups,

it follows that N/M = CN (M)/M , and so N = CN (M). Then M is the center of N . Take

u ∈ U . Then Nũ = M×Nu, and so Nu
∼= Nũ/M = Yũ = (T2)ũ×T1. Then Nu acts transitively

on W̃ , and hence Nũ acts transitively on W . Note that Nu has a normal subgroup K ∼= (T2)ũ
which acts trivially on W̃ . Then K fixes set-wise each M -orbit on W . It is easily shown that

K is normal in Nũ. It follows that all K-orbits on W have the same length. Thus either K

acts trivially on W , or K acts transitively on each M -orbit on W . The latter case implies that

Γ ∼= K9p,9p, a contradiction. Thus K = 1 as G is faithful on both U and W , and so (T2)ũ = 1.

Noting that T2 is transitive on Ũ , it follows that |T2| = |T2 : (T2)ũ| = |Ũ | = 9 or 3p, which
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contradicts that T2 is simple.

4.2

Now we assume that ΓM is not a complete bipartite. Then X acts faithfully on both Ũ and W̃ .

By Lemma 2.7, X is quasiprimitive on one of Ũ and W̃ . Recall that |Ũ | = |W̃ | = 9p
|M | = 3p, p, 9

or 3.

Lemma 4.3 |Ũ | = |W̃ | ̸= 9.

Proof. Suppose that |Ũ | = |W̃ | = 9. Without loss of generality, we assume that X is quasiprim-

itive on Ũ . Then it is easily shown that X is primitive on Ũ . Thus soc(X) is isomorphic to one

of A9, PSL(2, 8) or Z2
3. Let N ≤ G with N/M = soc(X).

Assume that soc(X) ∼= PSL(2, 8). Then X is 3-transitive on both Ũ and W̃ . It follows

that ΓM
∼= K9,9 − 9K2, and that Γ is N -locally primitive. Moreover, it is easily shown that

M is the center of N . By [6], PSL(2, 8) has Schur Multiplier 1. This implies that N = M×K

with PSL(2, 8) ∼= K < N . Thus N has a normal subgroup K acting neither transitively nor

semiregularly on each of U and W , which contradicts Lemma 2.7.

Assume that soc(X) ∼= A9. A similar argument as above implies that ΓM
∼= K9,9 − 9K2 and

Γ is N -locally primitive. Moreover, N is a central extension of M by A9. If p ̸= 2 then, noting

that A9 has Schur Multiplier Z2, we have N = M×K for K < N with K ∼= A9, which yields a

similar contradiction as above. Suppose that p = 2. Take u ∈ Ũ . Then Nũ = M×Nu, and so

Nu
∼= Nũ/M ∼= A8. Noting that M ∼= Z2 and Nũ contains a Sylow 2-subgroup of N , it follows

from Gaschtz’ Theorem (see [1, 10.4]) that the extension N = M.soc(X) splits over M , that is,

N = M×K for K < N with K ∼= A9, again a contradiction.

Assume that soc(X) ∼= Z2
3. Then X . AGL(2, 3) and, for some ũ ∈ W̃ , the stabilizer

Xũ is isomorphic to an irreducible subgroup of GL(2, 3). By [13, Theorem 2], there are no

semisymmetric graphs of order 18. It follows from [17, Lemma 2.5] that soc(X) acts transitively

on W̃ . Thus soc(X) is regular on both Ũ and W̃ . By [25], Xũ acts faithfully on the neighbors

of ũ. In addition, since ΓM is X-locally primitive, Xũ is a primitive permutation group on

ΓM (ũ). However, it is easy to check that GL(2, 3) has no irreducible subgroups satisfying the

conditions for Xũ, a contradiction.

Lemma 4.4 If |Ũ | = |W̃ | = 3 or p, then Γ is arc-transitive.

Proof. If |Ũ | = 2 then X ∼= Z2 and ΓM is 4-cycle, which is impossible. If |Ũ | = 3 then X ∼= S3
and ΓM is 6-cycle, and hence Γ is a cycle. Thus we assume that |Ũ | = p ≥ 5. Then |M | = 9,

and either X = G/M ≤ Zp:Zp−1 or X is a permutation group with soc(X) listed in Table 1. In

particular, G has a subgroup R = M.Zp which acts regularly on both U and W . By the Sylow

Theorem, it is easily shown that R ∼= M×P , where P is a Sylow p-subgroup of R. Then R is

abelian, and hence Γ is arc-transitive by Lemma 2.1.

Finally, we deal with the case where |Ũ | = 3p ̸= 9, that is, p ̸= 3 and M ∼= Z3.

Lemma 4.5 Assume that |Ũ | = 3p ̸= 9. Then Γ is arc-transitive.

Proof. Without loss of generality, we assume that X = G/M is a quasiprimitive group on Ũ .

Since |Ũ | = 3p ̸= 9, by Lemma 2.8, soc(X) is insoluble.
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Case 1. Assume that X = G/M is primitive on Ũ . Then X is known as in Table 2. Since

soc(X) is non-abelian simple, it has no proper subgroups of index less than 5. Suppose that

soc(X) is not primitive on W̃ . Then either each soc(X)-orbit on W̃ has length p, or soc(X) is

transitive on W̃ with a block of size 3; moreover, p > 3 in both cases. Thus, for these two cases,

soc(X) can be viewed as a transitive permutation group of prime degree. Checking Table 1

and 2, we conclude that soc(X) ∼= A7 and soc(X)α ∼= A6, where α is either an M -orbit on W̃

or a block of soc(X) with size 3 on W̃ . For the former case, 3p = |W̃ | = |X : Xα| ≤ |X :

soc(X)α| ≤ |S7:A6| = 14, a contradiction; for the latter case, A6 has a subgroup of index 3,

which is impossible. It follows that soc(X) is primitive on both Ũ and W̃ ; in particular, ΓM is

soc(X)-edge-transitive.

Let N ≤ G with N/M = soc(X). Clearly, N is normal in G and Γ is N -edge-transitive.

Moreover, it is easily shown that M is the center of N .

Subcase 1.1. Assume that the extension N = M.soc(X) splits over M , that is, N = M×K

for soc(X) ∼= K < N . Then K is a normal subgroup of G, and K acts primitively on both

Ũ and W̃ . Since K is a non-abelian simple group, its order has at least three distinct prime

divisor. It follows that K is not semiregular on both U and W . Then K is transitive on one of

U and W . This implies that 9p is a divisor of |K|, and so K is not isomorphic to one of A5,

PSL(3, 2) and PSL(2, 2f ).

Without loss of generality, assume that K is transitive on U . Then, for u ∈ U , the stabilizer

Kũ is transitive on the M -orbit ũ. Thus 3 = |M | = |ũ| = |Kũ : Ku|, and so K has a

subgroup of index 3. Noting that Nũ = MKũ, it implies that Kũ
∼= Nũ/M = soc(X)ũ.

Checking the subgroups of soc(X)ũ, we know that either K ∼= soc(X) = A6 and p = 5, or

K ∼= soc(X) = PSL(3, q) and 3p = q2+ q+1, where q is a power of a prime with q ≡ 1 (mod 3).

Assume that soc(X) = A6. Then Γ has order 90. Suppose that K is intransitive on W .

Then K has three orbits on W , and so Γ is cubic by Lemma 2.6. Thus Γ is a semisymmetric

cubic graph by [5, Theorem 5.2]. Again by [5], there is no semisymmetric cubic graphs of order

90, a contradiction. Then K is also transitive on W . By Lemma 2.6, Γ is K-edge-transitive.

Checking the subgroups of A6, we know that Ku
∼= D8 for u ∈ U . It follows that Γ has valency

4 or 8. Since Γ is G-locally primitive, G
Γ(u)
u is a primitive group of degree 4 or 8. Since K

Γ(u)
u

is a transitive normal subgroup of G
Γ(u)
u , it follows that Γ has valency 4. Then ΓM has valency

4. Consider the actions of soc(X) on Ũ and W̃ . If these two actions are equivalent then ΓM

has valency 6 or 8; otherwise, ΓM has valency 3 or 12. This is a contradiction.

Assume that soc(X) = PSL(3, q). Then ΓM has valency q2, q+1 or q2+q. IfK is intransitive

on W then K has three orbits on W , and hence Γ is cubic by Lemma 2.6, a contradiction. Thus

K is also transitive on W , and so Γ is K-edge-transitive. Arguing similarly as in the proof of

Theorem 3.1, we conclude that Γ is arc-transitive and has valency q2.

Subcase 1.2. Assume that the extension N = M.soc(X) does not split over M . Then,

checking the Schur multipliers of the simple groups in Table 2, we conclude that N = 3.A6 with

p = 5 or 2, or N = 3.A7 with p = 5 or 7, or N = SL(3, q) with 3
∣∣ q − 1.

Let N = SL(3, q) with 3
∣∣ q − 1. Using the notation defined above Lemma 3.3, we identify

Ũ with P and W̃ with P or H. Then there are ũ ∈ Ũ and w̃ ∈ W̃ such that

Nũ =

{(
a 0
b′ A

)∣∣∣∣b ∈ F2
q,A ∈ GL(2, q), a−1 = det(A)

}
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and Nw̃ = Nũ or Nσ
ũ . By Lemma 3.4 and a similar argument in the proof of Theorem 3.1, it is

easily shown that Γ is an arc-transitive graph of valency q2.

Let N = 3.A6. If p = 2 then ΓM
∼= K6,6− 6K2, and hence Γ is arc-transitive by Lemma 2.4.

Now let p = 5. Then ΓM has valency 6, 8, 3 or 12. Take u ∈ U . Then Nũ = M×Nu, and

so Nu
∼= Nũ/M = soc(X)ũ ∼= S4. Since Γ is G-locally primitive, G

Γ(u)
u is a primitive group.

Noting that N
Γ(u)
u is a transitive normal subgroup of G

Γ(u)
u , it follows that Γ has valency 4

or 3. Since Γ is a normal cover of ΓM , we conclude that Γ has valency 3. By [5], there is no

semisymmetric cubic graphs of order 90. Thus Γ is arc-transitive.

Let N = 3.A7 with p = 5 or 7. Assume first that soc(X) acts equivalently on Ũ and

W̃ . Then, by Lemma 2.3, ΓM is isomorphic to an orbital bipartite graph of soc(X) on Ũ .

Calculation shows that the suborbits of soc(X) on Ũ are all self-paired. Then Γ is arc-transitive

by Colloray 2.1. If p = 5 then X = soc(X) ∼= A7, Xũ
∼= PSL(2, 7) and ΓM has valency 14;

however PSL(2, 7) has no primitive permutation representations of degree 14, a contradiction.

Then p = 7. It is easily shown that Γ has valency 10.

Assume that the actions of soc(X) on Ũ and W̃ are not equivalent. Then X = soc(X) = A7

and Xũ
∼= PSL(2, 7), and so G = N = 3.A7. In particular, p = 5 and ΓM has order 30. Take

w̃ ∈ ΓM (ũ). Checking the subgroups of A7, we conclude that |Xũ : (Xũ ∩Xw̃)| = 7 or 8. Then

ΓM has valency 7 or 8, and so does Γ . Verified by GAP, there are two involutions σ1, σ2 ∈ S7
such that |Xũ : (Xũ ∩ Xσ1

ũ )| = 7 and |Xũ : (Xũ ∩ Xσ2

ũ )| = 8. Note that Gṽ = N×Gv and

Xṽ
∼= Gv for v ∈ V Γ . Thus we may choose a suitable w ∈ Γ (u) such that Gσ

u = Gw for an

automorphism of G of order 2. Then Γ is arc-transitive by Lemma 2.1.

Case 2. Assume that X = G/M is quasiprimitive but not primitive on Ũ . Let B be a

maximal block of X on Ũ . Then |B| = 3. Set B = {Bx | x ∈ X}. Then |B| = p and X acts

faithfully on B. Thus X is known as in Table 1. Let ũ ∈ B. Then |XB : Xu| = |B| = 3.

Checking one by one the groups listed in Table 1, we conclude that soc(X) = PSL(n, q) with

p = qn−1
q−1 .

Suppose that n = 2. Then q = 22
s

for some integer s ≥ 1, and N = M.soc(X) ∼=
Z3×PSL(2, 22

s

). It follows that G has a normal subgroup K isomorphic to PSL(2, 22
s

). Note

that 9 is not a divisor of |K|. It follows that K is intransitive on both U and W . By Lemma 2.7,

K is semiregular on U , which is impossible. Then n ≥ 3.

A similar argument as above implies that (n, q) ̸= (3, 2). Then, by [15, pp. 12], |soc(X)|
has at least four distinct prime divisors. Noting |X| = 3p|Xũ|, it follows that |Xũ| has an

odd prime divisor other than 3. This implies that the valency of ΓM is no less than 5. If

soc(X) is intransitive on W̃ , then soc(X) has exactly three orbits on W̃ , and so ΓM has valency

3 by Lemma 2.6, a contradiction. Therefore, soc(X) is transitive on W̃ , and hence ΓM is

soc(X)-edge-transitive. Let N ≤ G with N/M = soc(X). Then N is normal in G and Γ is

N -edge-transitive.

It is easily shown that n is an odd prime with q ̸≡ 1 (mod n), see the proof of Lemma 3.5.

Then the Schur Multiplier of PSL(n, q) is 1. Recalling M ∼= Z3, it yields that N = M×K, where

K ∼= PSL(n, q). Clearly, K is a normal subgroup of G. Recalling soc(X) is transitive on both Ũ

and W̃ , we conclude that each K-orbit on V Γ has length at least 3p. Since K is not semiregular

and Γ has valency no less than 5, by Lemma 2.6, we know that Γ is K-edge-transitive. Then

the argument in Section 3 implies that Γ is an arc-transitive graph.
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[5] Conder, M., Malnič, A., Marušič, D. and Potočnik, P., A census of semisymmetric cubic graphs on up to
768 vertices. J. Algebr. Comb., 23, 2006, 255–294.

[6] Conway, J. H., Curtis, R. T., Noton, S. P., Parker, R. A. and Wilson, R. A., Atlas of Finite Groups,
Clarendon Press, Oxford, 1985.

[7] Dixon, J. D. and Mortimer, B., Permutation Groups, Springer-Verlag New York Berlin Heidelberg, 1996.

[8] Du, S. F. and Xu, M. Y., A classification of semisymmetric graphs of order 2pq, Comm. Algebra, 28(6),
2000, 2685–2714.

[9] Fang, X. G., Havas, G. and Praeger, C. E., On the automorphism groups of quasiprimitive almost simple
graphs, J. Algebra 222, 1999, 271–283.

[10] Fang, X. G., Ma, X. S. and Wang, J., On locally primitive Cayley graphs of finite simple groups, J.
Combin. Theory Ser. A, 118, 2011, 1039–1051.

[11] Fang, X. G. and Praeger, C. E., On graphs admitting arc-transitive actions of almost simple groups, J.
Algebra, 205, 1998, 37–52.

[12] Fang, X. G., Praeger, C. E. and Wang, J., Locally primitive Cayley graphs of finite simple groups, Sci.
China Ser. A, 44, 2001, 58–66.

[13] Folkman, J., Regular line-symmetric graphs, J. Combin Theory Ser. B, 3, 1967, 215–232.

[14] Giudici, M., Li, C. H. and Praeger, C. E., Analysing finite locally s-arc transitive graphs, Trans. Amer.
Math. Soc., 356, 2004, 291–317.

[15] Gorenstein, D., Finite Simple Groups, Plenum Press, New York, 1982.

[16] Han, H. and Lu, Z. P., Semisymmetric graphs of order 6p2 and prime valency, Sci. China Math., 55, 2012,
2579–2592.

[17] Han, H. and Lu, Z. P., Affine primitive permutation groups and semisymmetric graphs, Electronic J.
Combin., 20(2), 2013, Research Paper 39.

[18] Han, H. and Lu, Z. P., Semisymmetric graphs arising from primitive permutation groups of degree 9p, In
review.

[19] Huppert, B., Endliche Gruppen I, Springer-Verlag, 1967.

[20] Huppert, B. and Blackburn, N., Finite Groups II, Springer-Verlag, Berlin, 1982.

[21] Iranmanesh, M. A., On finite G-locally primitive graphs and the Weiss conjecture, Bull. Austral. Math.
Soc., 70, 2004, 353–356.

[22] Li, C. H., Lou, B. G. and Pan, J. M., Finite locally primitive abelian Cayley graphs, Sci. China Math.,
54, 2011, 845–854.

[23] Li, C. H. and Ma, L., Locally primitive graphs and bidirect products of graphs, J. Aust. Math. Soc., 91,
2011, 231–242.

[24] Li, C. H., Pan, J. M. and Ma, L., Locally primitive graphs of prime-power order, J. Aust. Math. Soc., 86,
2009, 111–122.

[25] Lu, Z. P., On the automorphism groups of bi-Cayley graphs, Beijing Daxue Xuebao, 39, 2003, 1–5.

[26] Lu, Z. P., Wang, C. Q. and Xu, M. Y., On Semisymmetric Cubic Graphs of Order 6p2, Sci.China Ser.A,
47(1), 2004, 1–17.
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