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Abstract

An edge-colored graph G is rainbow connected if every two vertices are con-
nected by a path whose edges have distinct colors. The rainbow connection
number of a connected graph G, denoted by rc(G), is the smallest number of
colors that are needed in order to make G rainbow connected. It was proved
that computing rc(G) is an NP-Hard problem, as well as that even decid-
ing whether a graph has rc(G) = 2 is NP-Complete. Li et al. proved that
rc(G) ≤ 5 if G is a bridgeless graph with diameter 2, while rc(G) ≤ 9 if G
is a bridgeless graph with diameter 3. Furthermore, Uchizawa et al. showed
that determining the rainbow connection number of graphs is strongly NP-
complete even for outerplanar graphs. In this paper, we give upper bounds of
the rainbow connection number of outerplanar graphs with small diameters.
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1. Introduction

All graphs considered here are simple, finite and undirected. We fol-
low the notation and terminology of [23]. An edge-colored graph is rainbow

connected if every two vertices are connected by a path whose edges have dis-
tinct colors (such a path is called a rainbow path). Obviously, if G is rainbow
connected, then it is also connected. The concept of rainbow connection in
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graphs was introduced by Chartrand et al. in [4]. The rainbow connection

number of a connected graph G, denoted by rc(G), is the smallest number of
colors that are needed in order to make G rainbow connected. Observe that
diam(G) ≤ rc(G) ≤ n− 1, where diam(G) denotes the diameter of G and n
denotes the order of G. It is easy to verify that rc(G) = 1 if and only if G is
a complete graph, that rc(G) = n−1 if and only if G is a tree. Chartrand et
al. computed the precise rainbow connection number of several graph classes
including complete multipartite graphs [4]. The rainbow connection number
has been studied for further graph classes in [1, 12, 16, 17] and for graphs
with fixed minimum degree in [1, 13, 20]. There are also some results on the
aspect of extremal graph theory, see [21]. In addition, many researches on
the rainbow connection of random graphs are stated, such as [7, 8, 9, 10].
For more results on the rainbow connection, we refer to the survey [18] and
the monograph [19].

In [2], Chakraborty et al. proved the following result: If G is an n-vertex
graph with diameter 2 and minimum degree at least 8 log n, then rc(G) ≤ 3.
Since a graph with minimum degree n/2 is connected and has diameter 2, we
have an immediate result: If G is an n-vertex graph with minimum degree
at least n/2, then rc(G) ≤ 3. We know that any graph G with rc(G) = 2
must have diam(G) = 2. So, graphs with rc(G) = 2 belong to the graph
class with diam(G) = 2. Therefore, there is an interesting problem: For any
bridgeless graph G with diam(G) = 2, determine the smallest constant c
such that rc(G) ≤ c. In [6, 14], Li et al. showed that c ≤ 5, and moreover,
examples are given to show that the bound is best possible.

Theorem 1 ([6, 14]). If G is a connected bridgeless graph with diameter 2,
then rc(G) ≤ 5. Moreover, the upper bound is sharp.

In [14], Li et al. also showed that rc(G) ≤ k + 2 if G is connected
with diameter 2 and k bridges, where k ≥ 1. The bound k + 2 is sharp as
there are infinity many graphs with diameter 2 and k bridges whose rainbow
connection numbers attain this bound. For diameter 3, Li et al. [15] proved
that rc(G) ≤ 9 if G is a bridgeless graph.

It was proved that the computation of rc(G) is NP-hard [2]. Actually, it
is already NP-complete to decide whether rc(G) = 2, and in fact it is already
NP-complete to decide whether a given edge-colored (with an unbounded
number of colors) graph is rainbow connected. In [11], we proved that it is still
NP-complete even when the edge-colored graph is a planar bipartite graph.
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Uchizawa et al. [22] obtained a stronger result: Determining the rainbow
connection number of graphs is strongly NP-complete even for outerplanar
graphs. So it is interesting to study the bounds of the rainbow connection
number of outerplanar graphs. In [5], uppers bound of rainbow connection
number of maximal outerplanar graphs are considered. In this paper, we
will show that the rainbow connection number is at most 3 for bridgeless
outerplanar graphs with diameter 2, and at most 6 for bridgeless outerplanar
graphs with diameter 3.

2. Main results

We show that the rainbow connection number is at most 3 for bridgeless
outerplanar graphs with diameter 2.

Theorem 2. If G is a bridgeless outerplanar graph with order n and diam-

eter 2, then rc(G) ≤ 3, i.e., rc(G) = 2, 3.

Proof. Suppose that G is a bridgeless outerplanar graph with diameter 2. If
G has a cut vertex, then this vertex is a dominating vertex of the graph, then
rc(G) ≤ 3. Now we suppose that G is 2-connected and we can embed G in
such way that a Hamilton cycle, H , bounds the outer face, and the edges not
in H are chords that lie in the interior of H . If G has no chords, then G is
a cycle of length at most 5 and thus rc(G) ≤ 3. In the following we assume
G has chords. Let v be a vertex with degree 2 and suppose N(v) = {x1, y1}.
Denote by C the induced cycle of G containing vertex v. We will consider
the following two cases according to the order of C.

Case 1. |C| = 4.
Suppose C = vx1zy1v. In this case, there is only one vertex outside of C,

since each vertex outside of C must be adjacent to both x1 and z. Observe
that rc(G) = 2.

Case 2. |C| = 3.
For convenience, we assume H = vx1x2 . . . xn/2y(n−2)/2 . . . y2y1v for even

n and H = vx1x2 . . . x(n−1)/2y(n−1)/2 . . . y2y1v for odd n. If H has only one
chord, then this case is the same as Case 1. Otherwise, H has at least two
chords, and then n ≥ 5. There must be one chord e such that one of its
end vertices is x1 or y1, without loss of generality, say x1. Then, the other
end of e must be y2 or x3. Assume e = x1y2. Then all other vertices in the
set V \ {v, x1, x2, y1, y2} must be adjacent to x1, as the diameter of G is 2.
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Therefore, in this case, the structure of graph G is a fan, as shown in Figure
1.
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Figure 1: Bridgeless outerplanar graph with diameter two.

For n = 5, we can give an edge-coloring c of G such that rc(G) = 2,
and under this coloring: c(vx1) = c(vy1) = c(x1y2) = c(x2y2) = 1 and
c(x1y1) = c(y1y2) = c(x1x2) = 2. For n = 6, 7, the similar discussion can
deduce that rc(G) = 2. For n ≥ 8, we observe that rc(G) = 3. Notice that
2 colors cannot make G rainbow connected. Now we give an edge-coloring
with 3 colors: all edges with x1 as one of its ends are assigned colors 1 and 2
alternatively in clockwise order; all other edges are assigned color 3, as shown
in Figure 1.

A subset D of the vertices in G is called a dominating set if every vertex
of G−D is adjacent to a vertex of D. Furthermore, if the dominating set D
induces a connected subgraph of G, then D is called a connected dominating

set. Let X, Y ∈ V (G). We say that X dominates Y if every vertex of Y is
adjacent to at least one vertex of X. The following lemma will be used in
the sequel.

Lemma 1 ([3]). Let G be a connected graph with minimum degree at least

2, D a connected dominating set of G. Then rc(G) ≤ rc(G[D]) + 3.

Theorem 3. If G is a bridgeless outerplanar graph with order n and diam-

eter 3, then 3 ≤ rc(G) ≤ 6.

Proof. Suppose that G = (V, E) is a bridgeless outerplanar graph with
diameter 3. Since the rainbow connection number is at least the diameter,
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then we have rc(G) ≥ 3. Suppose that G is not 2-connected and let v be a
cut vertex of G. There is a partition of V − {v} into two sets A and B such
that the vertex v dominates either A or B. Without loss of generality, we
may assume that v dominates A. Denote by B1 the vertices of B that are
adjacent to v and B2 = B − B1. Choose a minimum cardinality subset S of
B1 such that S dominates B2. Then S ∪ {v} is a connected dominating set.
We claim that |S| ≤ 2. Suppose that |S| ≥ 3 and let S = {s1, s2, s3}. By
the minimality of S, there exist three vertices x1, x2, x3 ∈ B2 satisfying that
among three vertices s1, s2, s3, xi is only adjacent to vertex si for 1 ≤ i ≤ 3.
Take a ∈ A. Without loss of generality, we may assume that an embedding of
G as an outerplanar graph has vertices a, s1, s2, s3 in clockwise order, adjacent
to v. Since all the vertices of G lie on a common face, there is no way to
obtain a path of length at most 3 between x1 and x3. Thus, |S| ≤ 2, which
yields that rc(G) ≤ rc(G[S ∪ {v}]) + 3 = 5.

Now suppose that G is 2-connected. It follows that G can be embedded
in such a way that a Hamilton cycle H bounds the outer face, and the edges
not in H are chords that lie in the interior of H . If H has no chords, then
G is a cycle of length at most 7, and thus rc(G) = 3 or rc(G) = 4. Thus, in
the following we assume that H has at least one chord.

Suppose that xy is a chord of H . The cycle H is divided into two xy-
paths. We denote the path goes in clockwise direction from x to y by the
xy-segment of H , and denote the other path by the yx-segment of H .

Now suppose that H has precisely one chord xy. In this case, {x, y} is a
vertex cut of G. Since G has diameter 3, then {x, y} dominates either the
xy-segment of H or the yx-segment of H . Without loss of generality, we
suppose that xy-segment is dominated. Since there are no other chords, the
xy-segment of H is a path of length 2 or 3. If it is 2, then the yx-segment of
H is a path of length 4 or 5 and thus we can check that rc(G) = 3. Otherwise,
the yx-segment of H is a path of length 3 or 4 and thus rc(G) = 3 or 4.

Suppose that H has at least two chords. Among all vertex cuts with two
vertices, we choose {a, b} as a vertex cut such that it dominates a maximum
number of vertices. Note that a and b may not correspond to the ends of
a chord of H . Since G has diameter 3, {a, b} dominates one segment of H .
Without loss of generality, we assume that the ba-segment of H is dominated
by {a, b}. Consider the ab-segment of H .

Case 1. There are no chords with both ends on the ab-segment of H .
In this case, there are at least two chords in the ba-segment. It follows

that there are at most three internal vertices in the ab-segment of H . Now we
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suppose that there are three internal vertices in the ab-segment of H , since
it is easy to check that rc(G) ≤ 6 for the other two cases. If ab ∈ E(G),
then there exists a connected dominating set with three vertices, and then
rc(G) ≤ 5. Otherwise, we claim that there exists a vertex v in the ba-segment
such that va, vb ∈ E(G), since G has diameter 3 and at least two chords. It
implies that G has a connected dominating set with four vertices, and then
rc(G) ≤ 6.

Case 2. There are some chords with both ends on the ab-segment of H .
Choose a vertex cut of size 2, {c, d}, such that any other vertex cut of

size 2 with both vertices in the ab-segment of H has at least one vertex in
the cd-segment of H , where the cd-segment is a part of the ab-segment.

Subcase 2.1. a, b, c, d are not all distinct vertices.
Without loss of generality, we suppose b = d. By our choice, any vertex

on the ac-segment of H does not form of a vertex cut with b, and hence ac
must be an edge of G (ac may be an edge of H or a chord of H).

Suppose that {c, b} can not dominate the cb-segment. Let v be a vertex
on the cb-segment such that d(v, c) ≥ 2 and d(v, b) ≥ 2. Then all vertices
in the ba-segment must be adjacent to vertex b. Therefore, all vertices in
the ac-segment must be adjacent to vertex c, since otherwise, if there exists
a vertex w such that wa ∈ E(G) and wc /∈ E(G), then d(w, v) ≥ 4. Thus,
{b, c} is a vertex cut with two vertices, which dominates more vertices than
{a, b}, a contradiction to the choice of {a, b}.

Now suppose that {c, b} dominates the cb-segment. Thus, {a, b, c} must
be a dominating set of G. If one of ab and bc is an edge of G, then {a, b, c} is
a connected dominating set of G and thus rc(G) ≤ 2 + 3 = 5. Now suppose
neither ab nor bc is an edge of G.

Subsubcase 2.1.1. There is vertex v in the ba-segment (or cb-segment)
such that v is adjacent to both a and b (or c and b).

In this situation, {a, b, c, v} is a connected dominating set of G and thus
rc(G) ≤ 3 + 3 = 6.

Subsubcase 2.1.2. Otherwise, there does not exist such a vertex.
Each vertex in the ba-segment is only adjacent to one of a and b, and

each vertex in the cb-segment is only adjacent to one of c and b. Now in this
case, each of the ba-segment and cb-segment of H has at least two internal
vertices. We claim that each of the ba-segment and cb-segment of H has
exactly two internal vertices, since otherwise, we can always find two vertices
with distance at least 4. Since G has at least two chords, then we can assume
that the ac-segment has at least two internal vertices, which also implies that
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one pair of vertices has distance at least 4.
Subcase 2.2. a, b, c, d are distinct vertices.
The choice of {c, d} implies that neither ad nor bc is an edge of G. From

the way that {a, b} and {c, d} was chosen, we know that {a, b} dominates
the ba-segment and {c, d} dominates the cd-segment. Moreover, ac and bd
must be edges of G. If there is one vertex p in the ba-segment such that
it is adjacent to a but not adjacent to b, and also one vertex q in the cd-
segment such that it is adjacent to d but not adjacent to c, then d(p, q) ≥ 4,
a contradiction. Therefore, either {a, b, c} or {b, c, d} is a dominating set of
G. We assume that {a, b, c} is a dominating set of G, since the other case is
similar. If ab is an edge of G, then {a, b, c} is a connected dominating set of
G and thus rc(G) ≤ 2 + 3 = 5. Now suppose that ab is not an edge of G.

Subsubcase 2.2.1. There is vertex v in the ba-segment such that v is
adjacent to both a and b.

In this situation, {a, b, c, v} is a connected dominating set of G and thus
rc(G) ≤ 3 + 3 = 6.

Subsubcase 2.2.2. Otherwise, there does not exist such a vertex.
In this situation, each vertex in the cd-segment must be adjacent to both c

and d, which implies that the cd-segment contains exactly one internal vertex.
Similarly, there exist exactly two internal vertices in the ba-segment. Since
G has two chords, then there exist some internal vertices in the ac-segment
and bd-segment. In each case, we can find two vertices with distance at least
4.

The proof is thus completed.

3. Conclusion

In [11], the authors proved that it is still NP-complete even when the
edge-colored graph is a planar bipartite graph. Uchizawa et al. [22] obtained
a stronger result: Determining the rainbow connection number of graphs is
strongly NP-complete even for outerplanar graphs. So it is interesting to
study the bounds of the rainbow connection number of outerplanar graphs.
In this paper, we show that the rainbow connection number is at most 3 for
bridgeless outerplanar graphs with diameter 2, and at most 6 for bridgeless
outerplanar graphs with diameter 3.

In the future, we would like to generalize our results to the bridgeless
outerplanar graphs with diameter D ≥ 4. In addition, it is interesting to
study the bounds for planar graphs with a given diameter.
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