Manuscript

ON EDGE-TRANSITIVE TETRAVALENT GRAPHS OF SQUARE-FREE ORDER

CAI HENG LI, ZAI PING LU, AND GAI XIA WANG

Abstract

In this paper, a classification is given for tetravalent graphs of squarefree order which are vertex-transitive and edge-transitive. It is shown that such graphs are either Cayley graphs or covers of some graphs arisen from simple groups $\mathrm{A}_{7}, \mathrm{~J}_{1}$ and $\operatorname{PSL}(2, p)$.

1. Introduction

We denote by $\Gamma=(V, E)$ a simple graph with vertex set V and edge set E. Then the cardinality $|V|$ is called the order of Γ. A graph $\Gamma=(V, E)$ is called vertextransitive or edge-transitive if the automorphism group Aut Γ acts transitively on V and E, respectively. Recall that an arc in a graph Γ is an ordered pair of adjacent vertices. Then a graph Γ is called arc-transitive if Aut Γ acts transitively on the set of arcs of Γ. A graph Γ is called edge-regular or arc-regular if Aut Γ acts regularly on the edge set or arc set of Γ, respectively.

This paper is one of a series of articles devoted to studying the class of edgetransitive graphs of square-free order. The study of such graph has a long history. For example, Chao [4] gave a classification of edge-transitive graphs of prime order and proved that those resulting graphs are also arc-transitive; Cheng and Oxley [5] showed that every vertex- and edge-transitive graphs of order twice a prime is isomorphic to one of a list of well-defined arc-transitive graphs. Thereafter, a lot of interesting results have appeared in this topic, especially, for those graphs of order being a product of two primes, see for instance $[1,17,18,19,21,22]$.

In [16] we gave a characterization for the class of edge-transitive graphs of squarefree order, which says that the basic members in this class consist of a few special families of graphs and a finite number of sporadic graphs. This motivate us to classify edge-transitive graphs of square-free order and of small valency. In a recent paper [15], we classified cubic arc-transitive graphs of square-free order. In the present paper, we shall give a classification of connected tetravalent graphs of square-free order which are vertex-transitive and edge-transitive.

We fist explain some notation and concepts on groups and graphs. For two groups A and B, denote by $A \times B, A . B$ and $A: B$ the direct product, an extension and a semi-direct product of A by B, respectively; for an positive integer m, denote by \mathbb{Z}_{m} and $\mathrm{D}_{2 m}$ the cyclic group of order m and the dihedral group of order $2 m$, respectively. For a finite group X, the socle of X, denoted by $\operatorname{soc}(X)$, is the subgroup generated by all minimal normal subgroups of X. A group X is said to be almost simple if its socle $\operatorname{soc}(X)$ is a non-abelian simple group.

The work was supported partially by the NSFC..

Let $\Gamma=(V, E)$ be a graph. Then Γ is called vertex-primitive if Aut Γ is a primitive permutation group on V. The standard double cover of the graph Γ is defined to be the bipartite graph with vertex set $V \times \mathbb{Z}_{2}$ such that two vertices $(\alpha, 0)$ and $(\beta, 1)$ are adjacent if and only if α and β are adjacent in Γ.

Our main result is stated as follows.
Theorem 1.1. Let $\Gamma=(V, E)$ be a connected tetravalent graph of square-free order. Assume that Γ is both vertex-transitive and edge-transitive. Then one of the following statements holds.
(1) Γ is a Cayley graph, that is, Aut Γ contains a regular subgroup.
(2) Aut $\Gamma \cong \mathbb{Z}_{m}:\left(\mathbb{Z}_{n} \times \mathbb{Z}_{4}\right)$ with $m>1$, $n>1$ and $|V|=2 m n$, and Γ is constructed as in Construction 3.1.
(3) Aut $\Gamma=\mathrm{S}_{7}$, and Γ is isomorphic either the odd graph \mathbf{O}_{4} of valency 4 or the graph in Example 5.1.
(4) Aut $\Gamma=\mathrm{J}_{1}$ or $\mathbb{Z}_{3} \times \mathrm{J}_{1}$, and Γ is isomorphic to a graph given in Example 5.2.
(5) Aut $\Gamma=\operatorname{PSL}(2, p)$ or $\operatorname{PGL}(2, p)$ for a prime $p \geq 5$, and
(i) $p \equiv \pm 3(\bmod 8)$, and Γ is edge-regular or arc-regular; or
(ii) Γ is isomorphic to a graph given in Examples 5.3, 5.4, 5.5 and 5.6; or (iii) Γ is vertex-primitive.
(6) Aut $\Gamma=\mathbb{Z}_{2} \times \operatorname{PSL}(2, p), \mathbb{Z}_{3}: \operatorname{PGL}(2, p), \mathrm{D}_{6} \times \operatorname{PSL}(2, p)$ or $\mathrm{D}_{6} \times \operatorname{PGL}(2, p)$ for a prime $p \geq 5$, and Γ is isomorphic to a graph given in Example 5.7.
(7) Aut $\Gamma=\mathbb{Z}_{2} \times \operatorname{PSL}(2, p)$ or $\mathbb{Z}_{2} \times \operatorname{PGL}(2, p)$ for a prime $p \geq 5$, and Γ is either arc-regular or isomorphic to a graph give in Examples 5.8 and 5.9.
(8) Aut $\Gamma=\mathbb{Z}_{l}: \mathrm{PGL}(2, p)$ or $\mathbb{Z}_{2 l}: \mathrm{PGL}(2, p)$ for a prime $p \geq 5$ and a square-free integer $l>1$ coprime to $p\left(p^{2}-1\right)$, and Γ is isomorphic to a graph given in Example 5.10 or 5.12 , respectively.
(9) Aut $\Gamma=\mathbb{Z}_{l} \times \operatorname{PSL}(2, p)$ or $\mathrm{D}_{2 l} \times \operatorname{PSL}(2, p)$ for a prime $p \geq 5$ and a square-free integer $l>1$ coprime to $p\left(p^{2}-1\right)$, and Γ is isomorphic to a graph given in Example 5.11 or 5.13 , respectively..
(10) Γ is isomorphic the standard double cover of a graph which is of odd order and described as in one of parts (3), (5), (6) and (8).
Remark on Theorem 1.1. The graphs satisfying (1) were classified in [14], and the graphs in item (iii) of part (5) can be read out from [13].

2. Preliminaries

Let $\Gamma=(V, E)$ be a graph and $G \leq$ Aut Γ. The graph Γ is said to be G-vertextransitive or G-edge-transitive if G acts transitively on V or E, respectively. Let $\alpha \in V$. Denote by G_{α} and $\Gamma(\alpha)$ the stabilizer of α in G and the set of the neighbors of α in Γ, respectively. For $\beta \in \Gamma(\alpha)$, denote by $G_{\alpha \beta}$ the arc-stabilizer $G_{\alpha} \cap G_{\beta}$ of (α, β). Suppose that Γ is both G-vertex-transitive and G-edge-transitive. Then
(i) G_{α} is transitive on $\Gamma(\alpha)$, so $|\Gamma(\alpha)|=\left|G_{\alpha}: G_{\alpha \beta}\right|$; or
(ii) G_{α} has exactly two orbits on $\Gamma(\alpha)$, and $|\Gamma(\alpha)|=2\left|G_{\alpha}: G_{\alpha \beta}\right|$.

In these two cases, Γ is called G-arc-transitive and G-half-transitive, respectively. If Γ is G-arc-transitive, then there exists $g \in G \backslash G_{\alpha}$ such that $(\alpha, \beta)^{g}=(\beta, \alpha)$; obviously, this g can be chosen to be a 2 -element in $\mathbf{N}_{G}\left(G_{\alpha \beta}\right)$ with $g^{2} \in G_{\alpha \beta}$. Set $H=G_{\alpha}$.
$[G: H]:=\{H x \mid x \in G\}$. The coset graph $\operatorname{Cos}(G, H, H g H)$ is defined on $[G: H]$ with edge set $\left\{\{H x, H y\} \mid y x^{-1} \in H\left\{g, g^{-1}\right\} H\right\}$, where $g \in G \backslash H$ is such that $\alpha^{g} \in \Gamma(\alpha)$. Then the group G can be viewed as a group of automorphisms of $\operatorname{Cos}(G, H, H g H)$ acting on $[G: H]$ by the right multiplication, and the mapping $\alpha^{x} \mapsto H x, \forall x \in G$ is an isomorphism from Γ to $\operatorname{Cos}(G, H, H g H)$.

Lemma 2.1. Let $\Gamma=\operatorname{Cos}(G, H, H g H)$ be a coset graph. Then
(i) Γ is G-vertex-transitive and G-edge-transitive, and Γ is connected if and only if $\langle H, g\rangle=G$;
(ii) Γ is G-arc-transitive if and only if $H\left\{g, g^{-1}\right\} H=H x H$ for some 2-element $x \in \mathbf{N}_{G}\left(H \cap H^{g}\right) \backslash H$ with $x^{2} \in H \cap H^{g}$.

Let $\Gamma=(V, E)$ be a graph and $G \leq \operatorname{Aut} \Gamma$. Note that, for $\alpha \in V$, the stabilizer G_{α} fixes $\Gamma(\alpha)$ set-wise. Then G_{α} induces a permutation group $G_{\alpha}^{\Gamma(\alpha)}$ (on $\left.\Gamma(\alpha)\right)$. Let $G_{\alpha}^{[1]}$ be the kernel of this action. Then $G_{\alpha}^{\Gamma(\alpha)} \cong G_{\alpha} / G_{\alpha}^{[1]}$.

Let N be a normal subgroup of G, denoted by $N \unlhd G$. Then N_{α} is a normal subgroup of G_{α}. One extreme case is that N_{α} acts transitively on $\Gamma(\alpha)$. It is easily shown that the following lemma holds for connected arc-transitive graphs.

Lemma 2.2. Let $\Gamma=(V, E)$ be a connected G-vertex-transitive graph, $\alpha \in V$ and $N \unlhd G \leq$ Aut Γ. If N_{α} is transitive on $\Gamma(\alpha)$, then Γ is N-edge-transitive; in particular, either Γ is N-arc-transitive or N has exactly two orbits on V.

For the case where N is a semiregular on V with two orbits, by [12, Lemma 2.4], we have the following result.

Lemma 2.3. Let $\Gamma=(V, E)$ be a connected bipartite graph, $\alpha \in V$ and $N \unlhd G \leq$ Aut Γ. If N is regular on both the bipartition subsets of Γ, then $G_{\alpha} \cong G_{\alpha}^{\Gamma(\alpha)}$.

By [6, Lemma 2.1], we have the following result.
Lemma 2.4. Let $\Gamma=(V, E)$ be a connected G-vertex-transitive graph, $\alpha \in V$ and $N \unlhd G \leq$ Aut Γ. Then each prime divisor of $\left|N_{\alpha}\right|$ divides $\left|N_{\alpha}^{\Gamma(\alpha)}\right|$ and, for $\beta \in \Gamma(\alpha)$, each prime divisor of $\left|N_{\alpha \beta}\right|$ is less than $|\Gamma(\alpha)|$. In particular, $N_{\alpha}^{\Gamma(\alpha)} \neq 1$ if $N_{\alpha} \neq 1$.

Lemma 2.5. Let $\Gamma=(V, E)$ be a connected G-vertex-transitive graph, $\alpha \in V$ and $N \unlhd G \leq$ Aut Γ. If Γ is G-edge-transitive then $\left|N_{\alpha}: N_{\alpha \beta}\right|$ is a constant, where $\{\alpha, \beta\}$ runs over E. If $N_{\alpha}^{\Gamma(\alpha)}$ is semiregular on $\Gamma(\alpha)$, then $N_{\alpha} \cong N_{\alpha}^{\Gamma(\alpha)}$.

Proof. The first part of this lemma follows from [14, Lemma 3.1].
Assume that $N_{\alpha}^{\Gamma(\alpha)}$ is semiregular on $\Gamma(\alpha)$. Let $\beta \in \Gamma(\alpha)$. Then $\beta=\alpha^{x}$ for some $x \in G$. Since $N \triangleleft G$, it is easily shown that $N_{\beta}=N_{\alpha}^{x}$ and $N_{\beta}^{[1]}=\left(N_{\alpha}^{[1]}\right)^{x}$. It follows that $N_{\beta}^{\Gamma(\beta)}$ and $N_{\alpha}^{\Gamma(\alpha)}$ are permutation isomorphic. In particular, $N_{\alpha}^{\Gamma(\alpha)}$ is semiregular on $\Gamma(\alpha)$ if and only if $N_{\beta}^{\Gamma(\beta)}$ is semiregular on $\Gamma(\beta)$, which yields that $N_{\alpha}^{[1]}$ acts trivially on $\Gamma(\beta)$, and so $N_{\alpha}^{[1]}=N_{\beta}^{[1]}$. Since Γ is connected, $N_{\alpha}^{[1]}$ fixes each vertex of Γ, hence $N_{\alpha}^{[1]}=1$. Then the lemma follows.

Let $\Gamma=(V, E)$ be a graph. For a positive integer s, an s-arc in Γ is a sequence of $s+1$ vertices $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{s}$ such that α_{i} is adjacent to α_{i+1} and $\alpha_{i} \neq \alpha_{i+2}$. For
$G \leq \operatorname{Aut} \Gamma$, the graph Γ is said to be (G, s)-arc-transitive if G acts transitively on V and on the set of s-arcs of Γ, and (G, s)-transitive if further G is intransitive on the set of $(s+1)$-arcs of Γ. The vertex stabilizer for s-arc-transitive graphs of valency 4 is known, refer to [23].

Lemma 2.6. Let $\Gamma=(V, E)$ be a connected (G, s)-transitive graph of valency 4 . Then, for $\alpha \in V$, the stabilizer X_{α} and s are listed in the following table.

s	2	3	4	7
G_{α}	$\mathrm{A}_{4}, \mathrm{~S}_{4}$	$\mathbb{Z}_{3} \times \mathrm{A}_{4},\left(\mathbb{Z}_{3} \times \mathrm{A}_{4}\right) \cdot \mathbb{Z}_{2}, \mathrm{~S}_{3} \times \mathrm{S}_{4}$	$\mathbb{Z}_{3}^{2}: \mathrm{GL}(2,3)$	$\left[3^{5}\right]: \mathrm{GL}(2,3)$

We end this section by a useful observation on permutation groups.
Lemma 2.7. Let $G=N: X$ be a permutation group on V, and let B be an N-orbit. Assume that N is regular on B. Then $(N Y)_{\alpha} \cong Y_{B}$ for $\alpha \in B$ and $Y \leq X$.

Proof. Let U be the $N Y$-orbit containing B. Then $\left\{B^{g} \mid g \in N Y\right\}$ is an $N Y$-invariant partition of U. It follows that $(N Y)_{\alpha} \leq(N Y)_{B}$, and so $(N Y)_{\alpha}=\left((N Y)_{B}\right)_{\alpha}$. Since N is transitive on B, we have $(N Y)_{B}=N(N Y)_{\alpha}$. Then $N(N Y)_{\alpha}=(N Y)_{B}=$ $N Y \cap G_{B}=N\left(Y \cap G_{B}\right)=N Y_{B}$. Thus $(N Y)_{\alpha} \cong N(N Y)_{\alpha} / N=N Y_{B} / N \cong Y_{B}$.

3. The soluble case

In this section, we treat vertex-transitive and edge-transitive tetravalent graphs which have soluble automorphism groups. We first construct a family of such graphs.

Construction 3.1. Let $F=\langle a\rangle \cong \mathbb{Z}_{m}$ with m odd and square-free. Assume that $\operatorname{Aut}(F)$ has an element y of order 4 . Let $b \in \operatorname{Aut}(F)$ be of order n with n odd squarefree and coprime to m. Consider the semi-direct product $G=\langle a\rangle:(\langle b\rangle \times\langle y\rangle)$. Let $H=\left\langle y^{2}\right\rangle$, and $g=a b y$. If $\langle H, g\rangle=\left\langle a b y, y^{2}\right\rangle=G$, then $\Gamma=\operatorname{Cos}(G, H, H g H)$ is a connected vertex-transitive and edge-transitive graph of valency 4.

Lemma 3.2. Let $\Gamma=(V, E)$ be as in Construction 3.1. If $n=1$, then Aut Γ contains two subgroups isomorphic to $\mathrm{D}_{2 m}$ and $\mathrm{D}_{2 m}: \mathbb{Z}_{4}$ which acts regularly on the vertices and arcs of Γ, respectively.

Proof. Assume that $n=1$ and $a^{y}=a^{r}$. Then r is coprime to $m, r^{4} \equiv 1(\bmod m)$ and $r^{2} \not \equiv 1(\bmod m)$. Note that Γ is bipartite and $\langle a\rangle$ is semiragular on each of the biparts of Γ. Then $V=\left\{H a^{i} \mid 0 \leq i \leq m-1\right\} \cup\left\{H a^{i} y \mid 0 \leq i \leq l-1\right\}$, and $H\left\{g, g^{-1}\right\} H=$ $\left\{y^{s} a^{t} \mid s=1,-1 ; t=-1, r,-r^{2}, r^{3}\right\}$. Note that $H a^{i}$ and $H a^{j} y$ are adjacent if and only if $y a^{r j-i}=\left(a^{j} y\right) a^{-i} \in H\left\{g, g^{-1}\right\} H$. Then $H a^{i}$ and $H a^{j} y$ are adjacent if and only if $r j-i$, modulo m, lies in $\left\{-1, r,-r^{2}, r^{3}\right\}$. Since $r j-i \equiv r\left(-r^{3}\right) i-(-r) j(\bmod m)$, we know that $H a^{i}$ and $H a^{j} y$ are adjacent if and only if $H a^{-r j}$ and $H a^{-r^{3}} y$ are adjacent in Γ. Define a map $\tau: H a^{i} \mapsto H a^{-r^{3}} y, H a^{j} y \mapsto H a^{-r j}$. Then $\tau \in$ Aut Γ by the above argument. It is easily shown τ is an involution and that $R:=\langle a, \tau\rangle$ is transitive on V. Computation shows that $\left(H a^{i}\right)^{\tau a \tau}=H a^{i-1}$ and $\left(H a^{i} y\right)^{\tau a \tau}=H a^{i} y a^{-1}$, and so $\tau a \tau=a^{-1}$ and $\langle a, \tau\rangle \cong \mathrm{D}_{2 m}$. Then R is regular on V. Further computation indicates that $\tau y=y \tau$. Thus $R:\langle\tau y\rangle \cong \mathrm{D}_{2 m}: \mathbb{Z}_{4}$ is regular on the arcs of Γ.

Theorem 3.3. Let $\Gamma=(V, E)$ be a connected tetravalent graph of square-free order, and $G \leq$ Aut Γ. Assume that G is soluble and Γ is both G-vertex-transitive and G-edge-transitive. Then one of the following holds.
(1) Aut Γ contains a regular subgroup;
(2) $G \cong \mathbb{Z}_{m}:\left(\mathbb{Z}_{n} \times \mathbb{Z}_{4}\right)$ with $m, n>1$ and $|V|=2 m n, G$ is regular on E and Γ described as in Construction 3.1.
Proof. For a prime divisor p of $|G|$, denote by $\mathbf{O}_{p}(G)$ the largest normal p-subgroup of G. By Lemma 2.5, $\left|\left(\mathbf{O}_{p}(G)\right)_{\alpha}:\left(\mathbf{O}_{p}(G)\right)_{\alpha \beta}\right|$ is a divisor of 4 , where $\{\alpha, \beta\} \in E$. It follows that either $p=2$ or $\mathbf{O}_{p}(G)$ is semiregular on V. Thus $\left|\mathbf{O}_{p}(G)\right| \leq p$ if $p \geq 3$.

Suppose that $N:=\mathbf{O}_{2}(G)$ has order divisible by 4 . Then N is not semiregular on V, and it follows that, for any two N-orbits B and C, the subgraph $[B \cup C]$ induced by $B \cup C$ either contains no edge or is isomorphic to $\mathrm{K}_{2,2}$. It follows that Γ is the lexicographic product of the empty graph $2 \mathrm{~K}_{1}$ by an n-cycle, where n is the number of N-orbits. It is easily shown that $\mathrm{Aut} \Gamma \cong \mathbb{Z}_{2}^{n}: \mathrm{D}_{2 n}$ contains two regular subgroups isomorphic to $\mathbb{Z}_{2 n}$ and $\mathrm{D}_{2 n}$, respectively. So part (1) occurs.

Now assume that $\mathbf{O}_{p}(G)=1$ or \mathbb{Z}_{p} for each prime divisor p of $|G|$. Let F be the Fitting subgroup of G, the largest nilpotent normal subgroup of G. Then $F \neq 1$ as G is soluble, and F is cyclic. It follows that F is semiregular on V. Since G is soluble, the centralizer $\mathbf{C}_{G}(F) \leq F$, and so $\mathbf{C}_{G}(F)=F$. Then $G / F=\mathbf{N}_{G}(F) / \mathbf{C}_{G}(F)$ is isomorphic to a subgroup of $\operatorname{Aut}(F)$, which is abelian. Thus G / F is abelian. For a vertex α, we have $G_{\alpha} \cong F G_{\alpha} / F \leq G / F$; in particular, G_{α} is an abelian 2-group.

Assume that F has l orbits on V. Then $|G|=l|F|\left|G_{\alpha}\right|$. If l is odd, then G contains a normal regular subgroup $F: \mathbb{Z}_{l}$, so part (1) occurs. Thus we assume further that $|F|$ is odd and $l=2 n$ is even. Since $\left|G: G_{\alpha}\right|=2 n|F|$ is square-free, $|F|$ is coprime to $2 n\left|G_{\alpha}\right|$. Since G is soluble, G has a Hall subgroup H of order $2 n\left|G_{\alpha}\right|$. Then $G=F: H$, and H is abelian as $H \cong G / F$. Thus $H=N \times P$, where $N \cong \mathbb{Z}_{n}$ and P is a Sylow 2-subgroup of G with $G_{\alpha} \leq P$ and $\left|P: G_{\alpha}\right|=2$. Then $F: N$ is a normal semiregular subgroup of G, and it has exactly two orbits on V. Since G is transitive on E, we know that Γ is a bipartite graph with two parts being the $F N$-orbits on V. Thus By Lemma 2.3, G_{α} is faithful on $\Gamma(\alpha)$, and so $G_{\alpha} \cong \mathbb{Z}_{2}, \mathbb{Z}_{4}$ or \mathbb{Z}_{2}^{2}.

Suppose that Γ is G-arc-transitive. Then $G_{\alpha \beta}=1$ for $\beta \in \Gamma(\alpha)$. Let $g \in G$ with $(\alpha, \beta)^{g}=(\beta, \alpha)$. Then $g^{2} \in G_{\alpha \beta}=1$. Thus G has a regular subgroup $(F N):\langle g\rangle$, so part (1) of Theorem 1.1 occurs.

Suppose next that Γ is G-half-transitive. It follows from Lemma 2.5 that $G_{\alpha} \neq \mathbb{Z}_{4}$. Then $G_{\alpha} \cong \mathbb{Z}_{2}$ or \mathbb{Z}_{2}^{2}. Recall that P is a Sylow 2-subgroup of G with $G_{\alpha} \leq P$ and $\left|P: G_{\alpha}\right|=2$. If $P \cong \mathbb{Z}_{2}^{i}$ for $i=2$ or 3 , then G has a regular subgroup $(F N):\langle g\rangle$ for some involution $g \in P$. Thus we assume further that $P \cong \mathbb{Z}_{4}$ or $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$.

Set $F \cong \mathbb{Z}_{m}$. Then $G=F N P \cong \mathbb{Z}_{m}:\left(\mathbb{Z}_{n} \times P\right)$. Write $\Gamma=\operatorname{Cos}\left(G, G_{\alpha}\left\{g, g^{-1}\right\} G_{\alpha}\right)$, where $g=a b y$ for $a \in F, b \in N$ and $y \in P$. Then $G_{\alpha} g G_{\alpha} \neq G_{\alpha} g^{-1} G_{\alpha}, \mid G:\left(G_{\alpha} \cap\right.$ $\left.G_{\alpha}^{g}\right) \mid=2$ and, since Γ is connected, $G=\left\langle g, G_{\alpha}\right\rangle \leq\langle a\rangle:\left\langle b, y, G_{\alpha}\right\rangle=\langle a\rangle:\left(\langle b\rangle \times\left\langle y, G_{\alpha}\right\rangle\right)$. It follows that $F=\langle a\rangle, N=\langle b\rangle$ and y has order 4. Set $G_{\alpha} \cap G_{\alpha}^{g}=\langle x\rangle$. Then $x^{2}=1$. Note that $G_{\alpha} \cap G_{\alpha}^{g}=G_{\alpha} \cap G_{\alpha}^{a b y}=\left(G_{\alpha} \cap G_{\alpha}^{a}\right)^{b y}=G_{\alpha} \cap G_{\alpha}^{a}$. Then $\left\langle x, x^{a^{-1}}\right\rangle \leq G_{\alpha}$. If $x \neq x^{a^{-1}}$ then $G_{\alpha}=\left\langle x, x^{a^{-1}}\right\rangle \cong \mathbb{Z}_{2}^{2}$, but $1 \neq x x^{a^{-1}}=a^{x} a^{-1} \in F$, a contradiction. Thus $x \in \mathbf{C}_{G}\left(a^{-1}\right)=\mathbf{C}_{G}(F)=F$. It implies that $x=1$, so $G_{\alpha} \cap G_{\alpha}^{g}=1$. Then $G_{\alpha} \cong \mathbb{Z}_{2}$, yielding $|P|=4$ and $P \cong \mathbb{Z}_{4}$. Thus Γ is described as in Construction 3.1. Then, by Lemma 3.2, one of (1) and (2) of this theorem follows.

4. Insoluble automorphism groups

In this section, we assume that $\Gamma=(V, E)$ is a connected tetravalent graph of square-free order, and that a subgroup $G \leq \operatorname{Aut} \Gamma$ acts transitively on V.

Let $N \triangleleft G$ be an intransitive normal subgroup. Consider the normal quotient graph Γ_{N}, which is the graph defined on $V_{N}=\left\{\alpha^{N} \mid \alpha \in V\right\}$ with edge set $\left\{\left\{\alpha^{N}, \beta^{N}\right\} \mid\right.$ $\{\alpha, \beta\} \in E\}$. Then Γ_{N} has valency 1, 2 or 4 . If Γ and Γ_{N} has the same valency, then it is easily shown that N is a semiregular subgroup of G and itself is the kernel of G acting on V_{N}; in this case, Γ is called a normal cover of Γ_{N} with respect to G and N.
Lemma 4.1. Let N be an intransitive normal subgroup of G. Assume that Γ is a normal cover of Γ_{N}. Then $G=N: X$ for some $X \leq G$ with $N \cap X=1$.
Proof. The lemma is trivial for $N=1$. Thus we assume that $N \neq 1$.
Since Γ is a normal cover of Γ_{N} and Γ is connected, N is semiregular on V; in particular, $|N|$ is a divisor of $|V|$, so $|N|$ is square-free. Let p be the largest prime divisor of $|N|$. Then N has a unique Sylow p-subgroup, say P. Thus P is a characteristic subgroup of N, and so $P \triangleleft G$.

Note that each N-orbits on V is the union of some P-orbits. Since Γ and Γ_{N} has the same valency, it is easily shown that Γ is a normal cover of Γ_{P} and that Γ_{P} is a normal cover of $\left(\Gamma_{P}\right)_{N / P} \cong \Gamma_{N}$. Then, by induction, we may assume that $G / P=(N / P):(Y / P)$ for a subgroup $Y \leq G$ with $Y \cap N=P$.

Clearly, Y acts transitively on V_{P}, and so Y is transitive on V. Consider the action of Y on V_{P}. Then, for $B \in V_{P}$, we have $\left|V_{P}\right|=\left|Y: Y_{B}\right|$. Noting that P is semiregular, each P-orbit on V has length p. Thus $\frac{|V|}{p}=\left|V_{P}\right|=\left|Y: Y_{B}\right|$ is coprime to p as $|V|$ is square-free. Then Y_{B} contains a Sylow p-subgroup of Y. Since $P \leq Y_{B}$ is transitive on B, we have $Y_{B}=P Y_{\alpha}=P: Y_{\alpha}$ for $\alpha \in B$. It follows that Y_{B} and hence Y has a Sylow p-subgroup $P: Q$, where Q is a Sylow p-subgroup of Y_{α}. Then, by Gaschtz' Theorem (see [2, 10.4]), the extension $Y=P .(Y / P)$ splits over P. Thus $Y=P: X$ for $X<Y$ with $X \cap P=1$. Then $G=N Y=N X$ and $X \cap N=X \cap(Y \cap N)=X \cap P=1$, and the result follows.

Lemma 4.2. Assume that Γ is G-vertex-transitive and G-edge-transitive. Let C be the largest soluble normal subgroup of G. Then $G=C: X$ for $X \leq G$, and either $C=G$ or X is almost simple with socle centralizing C.
Proof. Assume $C \neq G$. Let K be the kernel of G acting on the set of C-orbits on V. Let B be a C-orbit and $\alpha \in B$. Then $K=C: K_{\alpha}$. Since $K_{\alpha} \leq G_{\alpha}$ is soluble, K is soluble. Thus $K=C$ by the choice of C, and so $G / C=K / C$ is insoluble, hence Aut Γ_{C} is insoluble. Then Γ_{C} is of valency 4 , so Γ is a normal cover of Γ_{C}. By Lemma 4.1, $G=C: X$ for some $X \leq G$. Identify X with a subgroup of Aut Γ_{C}. Then Γ_{C} is X-vertex-transitive and X-edge-transitive.

By the choice of C, each minimal normal subgroup of $X \cong G / C$ is a direct product of isomorphic nonabelian simple groups. Then, since Γ_{C} has square-free order, the order of X is not divisible by p^{2} for any prime $p>3$. It implies that each minimal normal subgroup of X is nonabelian simple. Suppose that X has two distinct minimal normal subgroup, say N_{1} and N_{2}. Then $N_{1} N_{2}=N_{1} \times N_{2}$. For $i=1,2$, since N_{i} is nonabelian simple, N_{i} is not semiregular on V, either the quotient graph $\left(\Gamma_{C}\right)_{N_{i}}$ is a cycle or N_{i} has at most two orbits on V_{C}. It follows that N_{2} fixes set-wise each
N_{1}-orbit on V_{C}. Thus $X_{\Delta} \geq N_{1} \times N_{2}$, where Δ is an N_{1}-orbit on V_{C} containing B. It implies that $\left|X_{B}\right|$ is divisible by $\left|N_{2}\right|$. Thus X_{B} is not a $\{2,3\}$-group, which contradicts that Γ_{C} is of valency 4 . Therefore, X is almost simple.

Since C has square-free order, $\operatorname{Aut}(C)$ is soluble. Then the quotient $G / \mathbf{C}_{G}(C)=$ $\mathbf{N}_{G}(C) / \mathbf{C}_{G}(C)$ is soluble as it is isomorphic to a subgroup of Aut (C). It follows that $\operatorname{soc}(X) \leq \mathbf{C}_{G}(C)$, and then our lemma follows.

We next determine G when G is almost simple. Let $\alpha \in V$. Then G_{α} is a $\{2,3\}$ group by Lemma 2.4. Since $|V|=\left|G: G_{\alpha}\right|$ is square-free, $|G|$ is not divisible by p^{2} for any prime $p \geq 5$. Moreover, either
(1) G_{α} is a 2-group, and so $|G|$ is not divisible by 9 ; or
(2) Γ is $(G, 2)$-arc-transitive and, by Lemma $2.6,|G|$ is not divisible by 2^{6}. In particular, $|G|$ is not divisible by $2^{6} 3^{2}$ and $2^{2} 3^{8}$.

Lemma 4.3. Assume that Γ is G-vertex-transitive and G-edge-transitive, and that G is an almost simple group. Then $\operatorname{soc}(G)$ is one of the following simple groups: $\mathrm{A}_{5}, \mathrm{~A}_{6}$, $\mathrm{A}_{7}, \mathrm{M}_{11}, \mathrm{~J}_{1}, \operatorname{PSL}(2, p), \operatorname{PSL}\left(2,2^{f}\right), \operatorname{PSL}\left(2,3^{2}\right), \operatorname{PSL}\left(2,3^{3}\right), \operatorname{PSL}\left(2,3^{4}\right), \operatorname{PSL}\left(2,3^{5}\right)$, $\operatorname{PSL}\left(2,3^{6}\right), \operatorname{PSL}\left(2,3^{7}\right), \operatorname{PSL}(3,2), \operatorname{PSL}(3,3)$ and $\operatorname{Sz}\left(2,2^{f}\right)$, where $p \geq 5$ is a prime.

Proof. Let $T=\operatorname{soc}(G)$. If $T=\mathrm{A}_{n}$, then $n<8$; otherwise 25 or $2^{6} 3^{2}$ divides $|T|$. Similarly, if T is a sporadic simple group then $T=\mathrm{M}_{11}$ or J_{1}.

To finish the proof, we assume that $T \neq \operatorname{PSL}(2, p)$ and T is a simple group of Lie type defined over $\mathrm{GF}\left(p^{f}\right)$, where p is a prime. Then $p \in\{2,3\}$ as p^{2} divides $|T|$.

Assume that $p=3$. Since $|G|$ is not divisible by $2^{2} 3^{8}$, we conclude that T is one of $\operatorname{PSL}\left(2,3^{f}\right)$ (with $\left.f \leq 7\right), \operatorname{PSL}(3,3), \operatorname{PSU}(3,3), \operatorname{PSL}(3,9), \operatorname{PSL}(4,3), \operatorname{PSU}(3,9)$, $\operatorname{PSU}(4,3), \operatorname{PSp}(4,3), \Omega(5,3), \mathrm{P} \Omega^{+}(6,3), \mathrm{P} \Omega^{-}(6,3)$ and $\mathrm{G}_{2}(3)$. The last 9 groups are excluded as their orders are divided by 25 or $2^{6} 3^{2}$. By the Atlas [7], $\operatorname{PSU}(3,3)$ has no a $\{2,3\}$-subgroup of square-free index. Thus $T=\operatorname{PSL}\left(2,3^{f}\right)$ or $\operatorname{PSL}(3,3)$.

Now let $p=2$. Then T is one of $\operatorname{PSL}\left(2,2^{f}\right), \operatorname{PSL}\left(3,2^{f}\right), \operatorname{PSU}\left(3,2^{f}\right)$ and $\operatorname{Sz}\left(2,2^{f}\right)$; otherwise, $|T|$ has a divisor $2^{6}\left(2^{f}+1\right)^{2}$, which implies that $|T|$ is divisible by $2^{6} r^{2}$, where $r \geq 3$ is a prime. Assume that $T=\operatorname{PSL}\left(3,2^{f}\right)$. Then $|T|$ has a divisor $\frac{\left(2^{f}-1\right)^{2}}{\left(3,2^{f}-1\right)}$, yielding $2^{f}-1=3^{e}$ for some integer e. It follows that $f=1$ or 2 . The group $\operatorname{PSL}(3,4)$ is excluded as its order has a divisor $2^{6} 3^{2}$. Thus $T=\operatorname{PSL}(3,2)$.

Suppose that $T=\operatorname{PSU}\left(3,2^{f}\right)$. Then $|T|$ has a divisor $\frac{\left(2^{f}+1\right)^{2}}{\left(3,2^{f}+1\right)}$, yielding $2^{f}+1=3^{e}$ for some integer e. It follows that $f=1$ or 3 . However, $\operatorname{PSU}(3,2)$ is not simple and $\operatorname{PSU}(3,8)$ has order divisible by $2^{6} 3^{2}$, a contradiction. Thus the lemma follows.

Recall that, for a connected G-arc-transitive graph $\Gamma=(V, E)$ and $\{\alpha, \beta\} \in E$, there is $g \in \mathbf{N}_{G}\left(G_{\alpha \beta}\right)$ with $\left\langle g, G_{\alpha}\right\rangle=G$. Then several groups in Lemma 4.3 are excluded.

Lemma 4.4. Assume that Γ is G-vertex-transitive and G-edge-transitive. Then $\operatorname{soc}(G) \neq \mathrm{A}_{6}, \mathrm{M}_{11}$.
Proof. Suppose that $T:=\operatorname{soc}(G)=\mathrm{A}_{6}$ or M_{11}. Then $2^{3} 3^{2}$ divides $|G|$, and so $2^{2} 3$ divides $\left|G_{\alpha}\right|$. By the Atlas [7] and Lemma 2.6, we know that $G_{\alpha} \cong \mathrm{S}_{4}$.

Assume that $T=\mathrm{M}_{11}$. Then $G=T$ and Γ is $(T, 2)$-arc-transitive. Further, checking by the GAP, all subgroups isomorphic to S_{4} are conjugate in T. Thus we may
assume that T_{α} is contained in a maximal subgroup $M \cong \mathrm{~S}_{5}$. Since Γ is tetravalent, $T_{\alpha \beta}=\mathrm{S}_{3}$ for $\beta \in \Gamma(\alpha)$. Checking the subgroups of M_{11} in the Atlas [7], we get $\mathbf{N}_{T}\left(T_{\alpha \beta}\right) \cong \mathrm{D}_{12}$, so $N_{T}\left(T_{\alpha \beta}\right)=\mathbf{N}_{M}\left(T_{\alpha \beta}\right)$. Thus there is no an element $g \in \mathbf{N}_{T}\left(T_{\alpha \beta}\right)$ with $\left\langle g, T_{\alpha}\right\rangle=T$, a contradiction.

Assume that $T=\mathrm{A}_{6}$. Then $|V|=15$ or 30 . Suppose that $T_{\alpha} \cong \mathrm{A}_{4}$. Then T is transitive on V, so Γ is $(T, 2)$-arc-transitive. For $\beta \in \Gamma(\alpha)$, we have $T_{\alpha \beta} \cong \mathbb{Z}_{3}$. It is easily shown that $\mathbf{N}_{T}\left(T_{\alpha \beta}\right) \cong \mathrm{S}_{3}$. Let M be a maximal subgroup of T with $T_{\alpha}<M$. Then $M \cong \mathrm{~A}_{5}$ or S_{4}, and so $\mathbf{N}_{M}\left(T_{\alpha \beta}\right) \cong \mathrm{S}_{3}$. Thus $\mathbf{N}_{T}\left(T_{\alpha \beta}\right)=\mathbf{N}_{M}\left(T_{\alpha \beta}\right)$, so there is no $g \in \mathbf{N}_{T}\left(T_{\alpha \beta}\right)$ with $\left\langle g, T_{\alpha}\right\rangle=T$, a contradiction. Suppose that $T_{\alpha}=G_{\alpha} \cong \mathrm{S}_{4}$. Then $G=T$ or $T . \mathbb{Z}_{2}$, and $G_{\alpha \beta} \cong \mathrm{S}_{3}$ for $\beta \in \Gamma(\alpha)$. Checking the maximal subgroups of G in the Atlas [7], we conclude that either $\mathbf{N}_{G}\left(G_{\alpha \beta}\right)=G_{\alpha \beta}$, or $G=\mathrm{S}_{6}$ and both $\mathbf{N}_{G}\left(G_{\alpha \beta}\right)$ and G_{α} are contained in a maximal subgroup isomorphic to $\mathrm{S}_{4} \times \mathbb{Z}_{2}$. Thus $\left\langle g, G_{\alpha}\right\rangle \neq G$ for any $g \in \mathbf{N}_{G}\left(G_{\alpha \beta}\right)$, again a contradiction.

Lemma 4.5. Assume that Γ is G-vertex-transitive and G-edge-transitive. If $\operatorname{soc}(G)=$ $\operatorname{PSL}\left(2, p^{f}\right)$ with $f \geq 2$ and $p=2$ or 3 , then $\operatorname{soc}(G) \cong \mathrm{A}_{5}$.

Proof. Assume that $T:=\operatorname{soc}(G)=\operatorname{PSL}\left(2, p^{f}\right)$ for $f \geq 2$ and $p=2$ or 3 . Since T is normal in G, all T-orbits on V have the same length $\left|T: T_{\alpha}\right|$, where $\alpha \in V$. Then $\left|T: T_{\alpha}\right|$ is square-free. Thus p^{f-1} is divisor of $\left|T_{\alpha}\right|$.

Suppose that $f>3$. Then, checking the subgroups of T (see [10, II.8.27], for example), we know that $T_{\alpha} \cong \mathbb{Z}_{p}^{e}: \mathbb{Z}_{t}$, where $e=f-1$ or f, and t is a divisor of $p^{f}-1$. In particular, $e \geq 3$ and T_{α} has a unique Sylow p-subgroup. For an arbitrary $\beta \in \Gamma(\alpha)$, by Lemma 2.5, $\left|T: T_{\alpha \beta}\right|$ is a divisor of 4 , so p is divisor of $\left|T_{\alpha \beta}\right|=\left|T_{\alpha} \cap T_{\alpha}\right|$. Let P_{1} and P_{2} be Sylow p-subgroups of T such that P_{1} contains the Sylow p-subgroup of T_{α} and P_{2} contains the Sylow p-subgroup of T_{β}. Then, by [10, II.8.5], we conclude that $P:=P_{1}=P_{2}$. Thus the stabilizers P_{α} and P_{β} are the Sylow p-subgroups of T_{α} and T_{β}, respectively. Let $\gamma \in \Gamma(\beta)$. Since G is transitive on E, we have $\left|T_{\alpha \beta}\right|=\left|T_{\beta \gamma}\right|$. A similar argument implies that P_{γ} is the Sylow p-subgroup of T_{γ}. It follows from the connectedness of Γ that P_{δ} is the Sylow p-subgroup of T_{δ} for any $\delta \in V$. Then P contains a subgroup $Q=\left\langle P_{\delta} \mid \delta \in V\right\rangle \neq 1$. For $x \in G$, we have $P_{\delta}^{x} \leq T_{\delta}^{x}=T \cap G_{\delta}^{x}=T_{\delta^{x}}$, so P_{δ}^{x} is the the Sylow p-subgroup of T_{δ}, hence $P_{\delta}^{x}=P_{\delta^{x}}$. It follows that Q is a normal subgroup of G, which is impossible.

Therefore, $f=2$ or 3 . By the Atlas [7], neither $\operatorname{PSL}(2,8)$ nor $\operatorname{PSL}(2,27)$ has $\{2,3\}$-subgroups of square-free index. Thus $T=\operatorname{PSL}\left(2, p^{2}\right) \cong \mathrm{A}_{5}$ by Lemma 4.4.

By [20], any two distinct Sylow 2-subgroups of $\mathrm{Sz}\left(2^{f}\right)$ intersect trivially. Then a similar argument as in Lemma 4.5 implies the next lemma.

Lemma 4.6. Assume that G is transitive on both V and E. Then $\operatorname{soc}(G) \neq \operatorname{Sz}\left(2^{f}\right)$.
Note that $\mathrm{A}_{5} \cong \operatorname{PSL}(2,4) \cong \operatorname{PSL}(2,5)$ and $\operatorname{PSL}(3,2) \cong \operatorname{PSL}(2,7)$. By Lemmas 4.2 to 4.6 , we have the following Theorem.

Theorem 4.7. Let $\Gamma=(V, E)$ be a connected tetravalent graph of square-free order. Assume that Γ is G-vertex-transitive and G-edge-transitive, where $G \leq$ Aut Γ. If G is insoluble then $G=C: X, \operatorname{soc}(X)$ is normal in G and $\operatorname{soc}(X)=\mathrm{A}_{7}, \mathrm{~J}_{1}, \operatorname{PSL}(3,3)$ or $\operatorname{PSL}(2, p)$, where $p \geq 5$ is a prime.

5. EXAMPLES

In this section we construct the graphs involved in Theorem 1.1. We always assume that p is a prime no less than 5 .
5.1. Graphs constructed from almost simple groups. The first two examples give arc-transitive graphs associated with the symmetric group S_{7} and the first Janko group J_{1}, respectively.

Example 5.1. Let $G=\mathrm{S}_{7}, P=\langle(12)(34),(13)(24)\rangle, K=\langle(234)(567),(34)(56)\rangle$ and $H=P: K$. Then $\mathbf{N}_{G}(K)=K:\langle\pi\rangle$, where $\pi=(25)(37)(46)$. It is easily shown that $\langle H, \pi\rangle=G$. Thus $\operatorname{Cos}(G ; H, H \pi H)$ is a connected 2-arc-transitive graph of valency 4 and order 210.

Example 5.2. Let $G=\mathrm{J}_{1}$. By the information for G given in the Atlas [7], all subgroups isomorphic to A_{4} are conjugate, and all subgroups of order 4 are conjugate. Take a subgroup H isomorphic to A_{4}. Let Q be the Sylow 2-subgroup of H, and let P be a Sylow 3-subgroup of H. Then $Q \cong \mathbb{Z}_{2}^{2}, P \cong \mathbb{Z}_{3}$ and $\mathbf{N}_{G}(P) \cong \mathrm{D}_{6} \times \mathrm{D}_{10}$.
(1) Computation shows that $\mathbf{N}_{G}(P)$ contains exactly 8 involutions g with $\langle g, H\rangle=$ G (confirmed by GAP). For such an involution g, the coset graph $\operatorname{Cos}(G, H, H g H)$ is connected, $(G, 2)$-arc-transitive and of valency 4.
(2) There are exactly 1184 involutions g in G such that $\langle g, Q\rangle=G$ (confirmed by GAP). For such an involution g, the coset graph $\operatorname{Cos}(G, Q, Q g Q)$ is connected, G-arc-transitive and of valency 4 .
(3) Computation shows that G has exactly 6 involutions g such that $\langle g, H\rangle=G$ and g centralizes some element of order 3 in H (confirmed by GAP). Let g be such an involution. Take an element $b \in H$ of order 3 with $g b=b g$. Then b induce an automorphism \widetilde{b} of $\Gamma=\operatorname{Cos}(G, Q, Q g Q)$ acting on $[G: Q]$ by left multiplication. Recall that G is viewed as a subgroup of Aut Γ which acts on $[G: Q]$ by the right multiplication. Clearly, $b \neq \widetilde{b}$, and \widetilde{b} centralizes G. It is easily shown that $b^{-1} \widetilde{b}$ has order 3 and fixes the vertex Q. Thus Aut $\Gamma \geq\langle G, \widetilde{b}\rangle=G \times\langle\widetilde{b}\rangle \cong \mathrm{J}_{1} \times \mathbb{Z}_{3}$, and Γ is a 2 -arc-transitive graph.

We now construct some graphs associated with the simple group PSL $(2, p)$. Let $G=\operatorname{PSL}(2, p)$ or $\operatorname{PGL}(2, p)$, and let $\Gamma=(V, E)$ be a connected graph of valency 4 such that G acts transitively on both V and E. If Γ is $(G, 2)$-arc-transitive then, by [9], we may construct easily Γ as a coset graph. If G_{α} is maximal in G for some $\alpha \in V$, that is, G is primitive on V, then Γ is explicitly known by [13]. In the following four examples we list some graphs which are not vertex-primitive.

Example 5.3. Let $p \equiv \pm 1(\bmod 3)$ and $p \equiv \mp 1(\bmod 8)$. Let $G=\operatorname{PGL}(2, p)$, $\mathrm{S}_{4} \cong H<\operatorname{soc}(G)$ and $\mathrm{S}_{3} \cong K<H$. Then $\mathbf{N}_{G}(K) \cong \mathrm{S}_{3} \times \mathbb{Z}_{2}$. Write $\mathbf{N}_{G}(K)=K \times\langle o\rangle$. Then $\Gamma=\operatorname{Cos}(G, H, H o H)$ is a connected $(G, 2)$-arc-transitive graph of valency 4. If $p=7$, then Γ is the non-incidence graph of the projective plane $\operatorname{PG}(2,2)$.

Example 5.4. Let $\epsilon= \pm 1$ such that $p+\epsilon$ is divisible by 3 .
(1) Let $G=\operatorname{PSL}(2, p)$ with $p \equiv \pm 3(\bmod 8)$ and $p \equiv \pm 1(\bmod 10)$. Then G has one conjugacy class of subgroups isomorphic to A_{4} and two conjugacy classes of subgroups isomorphic to A_{5}. Take $M_{1}, M_{2}<G$ with $M_{1} \cong M_{2} \cong \mathrm{~A}_{5}$ and $H:=M_{1} \cap M_{2} \cong \mathrm{~A}_{4}$.

Let $K<H$ with $K \cong \mathbb{Z}_{3}$. Then $\mathbf{N}_{M_{1}}(K) \cong \mathbf{N}_{M_{2}}(K) \cong \mathrm{D}_{6}$. Set $\mathbf{N}_{M_{i}}(K)=K:\left\langle b_{i}\right\rangle$ for $i=1,2$. It is easily shown that $\mathbf{N}_{M_{1}}(K) \cup \mathbf{N}_{M_{2}}(K)$ contains 6 involutions, which form two distinct cosets $K b_{1}$ and $K b_{2}$. Moreover, $b_{1}, b_{2} \in \mathbf{N}_{G}(K) \cong \mathrm{D}_{p+\epsilon}$. Set $\mathbf{C}_{G}(K)=\langle a\rangle$. Then $\mathbf{N}_{G}(K)=\left\langle a, b_{1}\right\rangle=\left\langle a, b_{2}\right\rangle$. Write $b_{2}=a^{r} b_{1}$ for some $1 \leq r \leq \frac{p+\epsilon}{2}$. Then $\left\langle a^{r}\right\rangle \not \leq K=\left\langle a^{\frac{p+\epsilon}{6}}\right\rangle$. Replacing b_{1} by $a^{\frac{p+\epsilon}{6}} b_{1}$ or $a^{\frac{p+\epsilon}{3}} b_{1}$ if necessarily, we assume that $1 \leq r<\frac{p+\epsilon}{6}$. Then, for each j with $1 \leq j<\frac{r}{2}$ or $r<j<\frac{r}{2}+\frac{p+\epsilon}{12}$, the coset graph $\Gamma_{j}=\operatorname{Cos}\left(G, H, H a^{j} b_{1} H\right)$ is connected, $(G, 2)$-arc-transitive and of odd order.
(2) Let $G=\operatorname{PSL}(2, p)$ with $p \equiv \pm 1(\bmod 8)$. Then G has a maximal subgroup $M \cong \mathrm{~S}_{4}$. Let $\mathrm{A}_{4} \cong H<M$ and $\mathbb{Z}_{3} \cong K<H$. Then $\mathbf{N}_{G}(K) \cong \mathrm{D}_{p+\epsilon}$. Set $M=H:\langle b\rangle$, where b is an involution normalizes K. Write $\mathbf{N}_{G}(K)=\langle a\rangle:\langle b\rangle$, where a has order $\frac{p+\epsilon}{2}$. For each $1 \leq j<\frac{p+\epsilon}{12}$, define $\Gamma_{j}=\operatorname{Cos}\left(G, H, H a^{j} b H\right)$. Then Γ_{j} is $(G, 2)$-arc-transitive.

If $p \not \equiv \pm 1(\bmod 10)$ then it is easily shown that each Γ_{j} is connected.
Assume that $p \equiv \pm 1(\bmod 10)$. In this case, G has two conjugacy classes of subgroups isomorphic to A_{4} and two conjugacy classes of subgroups isomorphic to A_{5}. Computation shows that $H \cong \mathrm{~A}_{4}$ is contained exactly two subgroups isomorphic A_{5}. Let $H<M_{1} \cong \mathrm{~A}_{5}$. Then $H<M_{2}:=M_{1}^{b}$. Set $\mathbf{N}_{M_{1}}(K)=K:\left\langle b_{1}\right\rangle$ and $b_{2}=b_{1}^{b}$. Then $\mathbf{N}_{M_{2}}(K)=K:\left\langle b_{2}\right\rangle$ and $b_{1}, b_{2} \in \mathbf{N}_{G}(K)$. Choosing a suitable b_{1}, we may set $b_{1}=a^{r} b$ for some $1 \leq r<\frac{p+\epsilon}{6}$. For $1 \leq j<\frac{p+\epsilon}{12}$, the graph Γ_{j} is connected if and only if $a^{j} b \notin \mathbf{N}_{M_{1}}(K) \cup \mathbf{N}_{M_{2}}(K)$, that is, $j \neq r$.
(3) Let $G=\operatorname{PGL}(2, p)$ for $p \equiv \pm 3(\bmod 8)$. Then G has a maximal subgroup $M \cong \mathrm{~S}_{4}$. Let $\mathrm{A}_{4} \cong H<M$ and $\mathbb{Z}_{3} \cong K<H$. Set $M=H:\langle z\rangle$, where z is an involution normalizes K. Then $\mathbf{N}_{G}(K) \cong \mathrm{D}_{2(p+\epsilon)}$. Write $\mathbf{N}_{G}(K)=\langle a\rangle:\langle z\rangle$, where a has order $p+\epsilon$. For each $1 \leq j<\frac{p+\epsilon}{6}$, the $\operatorname{graph} \Gamma_{j}=\operatorname{Cos}\left(G, H, H a^{j} z H\right)$ is a connected ($G, 2$)-arc-transitive graph.

Example 5.5. Let $\epsilon= \pm 1$ such that $p+\epsilon$ is divisible by 4. Let G be an almost simple group with socle $T=\operatorname{PSL}(2, p)$. Suppose that G has a subgroup isomorphic to D_{8}. Let $x \in G$ be of order 4 and $y \in G$ be an involution with $x^{y}=x^{-1}$. Then $x^{2} \in \mathbf{C}_{G}(y)=\mathbf{N}_{G}(\langle y\rangle)$. Set $H=\langle x, y\rangle$ and write $\mathbf{C}_{G}(y)=\langle a\rangle:\left\langle x^{2}\right\rangle$.
(1) Let $G=\operatorname{PSL}(2, p)$ with $p \equiv \pm 7, \pm 9$ or $\pm 15(\bmod 32)$. Then $a \in G$ is of order $\frac{p+\epsilon}{2}, y=a^{\frac{p+\epsilon}{4}}$ and $\mathbb{Z}_{2}^{2} \cong\left\langle x^{2}, y\right\rangle \triangleleft\left\langle x, y, a^{\frac{p+\epsilon}{8}}\right\rangle \cong \mathrm{S}_{4}$. For each $i \neq \frac{p+\epsilon}{8}$ with $1 \leq i<\frac{p+\epsilon}{4}$, the graph $\operatorname{Cos}\left(G, H, H a^{i} H\right)$ is connected and G-arc-transitive.
(2) Let $G=\operatorname{PGL}(2, p)$ with $p \equiv \pm 7(\bmod 16)$. Then $x \in T$, and $\mathbf{C}_{G}(y) \cong \mathrm{D}_{2(p \pm \epsilon)}$. If $y \in T$ then, for each odd i with $1 \leq i<\frac{p+\epsilon}{2}$, the $\operatorname{graph} \operatorname{Cos}\left(G, H, H a^{i} H\right)$ is connected, bipartite and G-arc-transitive. If $y \notin T$ then, for each even i with $1<j<\frac{p-\epsilon}{2}$, the graph $\operatorname{Cos}\left(G, H, H a^{j} H\right)$ is of even order, connected and G-arc-transitive.
(3) Let $G=\operatorname{PGL}(2, p)$ with $p \equiv \pm 3(\bmod 8)$. If $y \in T$ then, for each $i \neq \frac{p+\epsilon}{4}$ with $1 \leq i<\frac{p+\epsilon}{2}$, the graph $\operatorname{Cos}\left(G, H, H a^{i} H\right)$ is connected and G-arc-transitive. If $y \in G \backslash T$ then, for each j with $1 \leq j<\frac{p-\epsilon}{2}$, the $\operatorname{graph} \operatorname{Cos}\left(G, H, H a^{j} H\right)$ is connected and G-arc-transitive.

Example 5.6. Let $G=\operatorname{PSL}(2, p)$ or $\operatorname{PGL}(2, p)$, and $\mathbb{Z}_{2}^{2} \cong K<T:=\operatorname{soc}(G)$. Suppose that K is contained in a subgroup $H \cong \mathrm{D}_{16}$ of G. Then $\mathbf{N}_{G}(K) \cong \mathrm{S}_{4}$. Write $\mathbf{N}_{G}(K)=K:(\langle y\rangle:\langle z\rangle)$ with $\langle y\rangle:\langle z\rangle \cong \mathrm{S}_{3}$. If $H<T$ then $\operatorname{Cos}(T, H, H y z H)$ is
a connected T-arc-transitive graph of valency 4 ; if $H \not \approx T$ then $G=\operatorname{PGL}(2, p)$ and $\operatorname{Cos}(G, H, H y z H)$ is a connected G-arc-transitive graph of valency 4 .
5.2. Examples of normal covers. Now we construct some graphs which are normal covers of graphs admitting $\operatorname{PSL}(2, p)$.

Example 5.7. Let $\epsilon= \pm 1$ such that $p+\epsilon$ is divisible by 3. Let $T=\operatorname{PSL}(2, p)$, $\mathbb{Z}_{2}^{2} \cong P<T$ and $x \in T$ such that $\langle P, x\rangle=P:\langle x\rangle \cong \mathrm{A}_{4}$. Then $\mathbf{C}_{T}(x) \cong \mathbb{Z}_{\frac{p+\epsilon}{2}}$. Set $\mathbf{C}_{T}(x)=\langle a\rangle$. Then $\langle x\rangle=\left\langle a^{\frac{p+\epsilon}{6}}\right\rangle$.
(1) Assume that $p+\epsilon$ is divisible 12. Let $C=\langle y\rangle \cong \mathbb{Z}_{3}$ and $G=C \times T$. Take $H=P:\langle x y\rangle$ and $K=\langle x y\rangle$. Then $H \cong \mathrm{~A}_{4}$ and $\mathbf{N}_{G}(K)=\mathbf{C}_{T}(x) \times\langle y\rangle$ contains a uniqe involution $a^{\frac{p+\epsilon}{4}}$. It is easy to show that $\Gamma=\operatorname{Cos}\left(G, H, H a^{\frac{p+\epsilon}{4}} H\right)$ is a connected $(G, 2)$-arc-transitive graph of valency 4.

Take involutions $\sigma \in \operatorname{Aut}(C)$ and $\tau \in \operatorname{PGL}(2, p) \backslash T$ such that $x^{\tau}=x^{-1}$ and $P:\langle x, \tau\rangle \cong \mathrm{S}_{4}$. Then τ normalizes $\langle x\rangle$ and centralizes $a^{\frac{p+\epsilon}{4}}$. Thus $\sigma \tau$ centralizes $a^{\frac{p+\epsilon}{4}}$. Clearly, $\sigma \tau$ normalizes H. Define $\theta: H g \mapsto H g^{\sigma \tau}, g \in G$. Then Aut $\Gamma \geq\langle\theta, G\rangle \cong$ $\left(\mathbb{Z}_{3} \times \operatorname{PSL}(2, p)\right): \mathbb{Z}_{2}$ with $\langle y, \theta\rangle \cong \mathrm{D}_{6}$ and $\langle T, \theta\rangle \cong \operatorname{PGL}(2, p)$.
(2) Assume that $p \equiv \pm 3(\bmod 8)$. Let $C=\langle y\rangle \cong \mathbb{Z}_{3}$ and $G=(C \times T):\langle\theta\rangle$ such that $y^{\theta}=y^{-1}, x^{\theta}=x^{-1},\langle P, x, \theta\rangle=P:\langle x, \theta\rangle \cong \mathrm{S}_{4}$ and $\langle T, \theta\rangle=T:\langle\theta\rangle \cong \operatorname{PGL}(2, p)$. Take $H=P:\langle x y\rangle$ and $K=\langle x y\rangle$. Then $\mathbf{N}_{G}(K)=(\langle a\rangle \times\langle y\rangle):\langle\theta\rangle=\langle x y\rangle:(\langle a\rangle:\langle\theta\rangle) \cong$ $\mathbb{Z}_{3}: \mathrm{D}_{p+\epsilon}$. It is easily shown that $G=\left\langle a^{i} \theta, H\right\rangle$ if and only if $\left\langle a^{i}, P\right\rangle=T$. For $1 \leq i<\frac{p+\epsilon}{2}$ with $i \notin\left\{\frac{p+\epsilon}{6}, \frac{p+\epsilon}{4}, \frac{p+\epsilon}{3}\right\}$, define $\Gamma_{i}=\operatorname{Cos}\left(G, H, H a^{i} \theta H\right)$. Then Γ_{i} is a connected ($G, 2$)-arc-transitive bipartite graph of valency 4.
(3) Assume that $p \equiv \pm 1(\bmod 8)$ and $p+\epsilon$ is divisible by 12 . Let $G=C \times T$, where $C=\langle y\rangle \cong \mathbb{Z}_{2}$. Take an involution $b \in T$ with $x^{b}=x^{-1}$ and $\langle P, x, b\rangle=$ $(P:\langle x\rangle):\langle b\rangle \cong \mathrm{S}_{4}$. Set $H=\langle P, x\rangle:\langle b y\rangle$ and $K=\langle x, b y\rangle$. Then $H \cong \mathrm{~S}_{4}, K \cong \mathrm{~S}_{3}$ and $\mathbf{N}_{G}(K)=\left\langle a^{\frac{p+\epsilon}{4}}\right\rangle \times\langle x, b\rangle \times\langle y\rangle$. It is easily shown that both $\operatorname{Cos}\left(G, H, H a^{\frac{p+\epsilon}{4}} H\right)$ and $\operatorname{Cos}\left(G, H, H a^{\frac{p+\epsilon}{4}} y H\right)$ are connected $(G, 2)$-arc-transitive graphs of valency 4.
(4) Assume that $p \equiv \pm 1(\bmod 8)$ and $p+\epsilon$ is divisible by 12 . Let $G=\left(\langle y\rangle:\left\langle y_{1}\right\rangle\right) \times T \cong$ $\mathrm{D}_{6} \times \operatorname{PSL}(2, p)$. Take an involution $b \in T$ with $x^{b}=x^{-1}$. Set $H=(\langle P\rangle:\langle x y\rangle):\left\langle b y_{1}\right\rangle$ and $K=\left\langle x y, b y_{1}\right\rangle$. Then $H \cong \mathrm{~S}_{4}, K \cong \mathrm{~S}_{3}$ and $\mathbf{N}_{G}(K)=\left\langle a^{\frac{p+\epsilon}{4}}\right\rangle \times K$. It is easily shown that $\operatorname{Cos}\left(G, H, H a^{\frac{p+\epsilon}{4}} H\right)$ is a connected $(G, 2)$-arc-transitive graph.
(5) Assume that $p \equiv \pm 3(\bmod 8)$ and $p+\epsilon$ is not divisible by 4 . Let $z \in \operatorname{PGL}(2, p) \backslash$ $\operatorname{PSL}(2, p)$ be an involution with $x^{z}=x^{-1}$ and $P^{z}=P$. Let $G=\left(\langle y\rangle:\left\langle y_{1}\right\rangle\right) \times(T:\langle z\rangle) \cong$ $\mathrm{D}_{6} \times \operatorname{PGL}(2, p)$. Take $H=(P:\langle x y\rangle):\left\langle y_{1} z\right\rangle$ and $K=\langle x y\rangle:\left\langle y_{1} z\right\rangle$. Then $H \cong \mathrm{~S}_{4}, K \cong \mathrm{~S}_{3}$ and $\mathbf{N}_{G}(K)=\langle o\rangle \times K$, where o is the unique involution in $\mathbf{C}_{T:\langle z\rangle}(x) \cong \mathrm{D}_{2(p+\epsilon)}$. It is easily shown that $\operatorname{Cos}(G, H, H o H)$ is a connected $(G, 2)$-arc-transitive graph.
(6) Assume that $p \equiv \pm 3(\bmod 8)$. Let $G=\langle y\rangle:\left\langle y_{1}\right\rangle \times T \cong \mathrm{D}_{6} \times \operatorname{PSL}(2, p)$. Take $H=P:\langle x y\rangle \cong \mathrm{A}_{4}$ and $K=\langle x y\rangle$. Take an involution $b \in T$ with $x^{b}=x^{-1}$. Then $\mathbf{N}_{G}(K)=(\langle a\rangle \times\langle y\rangle):\left\langle b y_{1}\right\rangle=\langle x y\rangle\left(\langle a\rangle:\left\langle b y_{1}\right\rangle\right)$. For each $1 \leq i<\frac{p+2+\epsilon}{4}$, the coset graph $\operatorname{Cos}\left(G, H, H a^{i} b y_{1} H\right)$ is a connected $(G, 2)$-arc-transitive graph.

Example 5.8. Let $X=\operatorname{PSL}(2, p)$ or $\operatorname{PGL}(2, p)$ such that X has a Sylow 2-subgroup isomorphic to D_{8}. Let $x \in X$ be of order 4 and $z \in X$ be an involution such that
$x^{z}=x^{-1}$. Then $x^{2} \in \mathbf{C}_{X}(z)$. Write $\mathbf{C}_{X}(z)=\left\langle a, x^{2}\right\rangle$ with $a^{x^{2}}=a^{-1}$. Let $\epsilon= \pm 1$ such that $p+\epsilon$ is divisible by 4 . Let $G=\langle y\rangle \times X$, where y has order 2 .
(1) Let $X=\operatorname{PGL}(2, p)$ with $p \equiv \pm 3(\bmod 8)$. Then a has order $p \pm \epsilon$, and the following graphs are connected and G-arc-transitive.
(i) $\operatorname{Cos}\left(G, H, H y^{j} a^{i} H\right)$, where $H=\langle x y, z\rangle, z \notin T, j=0,1$ and i is even with $1 \leq i<\frac{p-\epsilon}{2}$.
(ii) $\operatorname{Cos}\left(G, H, H a^{i} H\right)$, where $H=\langle x, y z\rangle$ and either $1 \leq i<\frac{p-\epsilon}{2}$ for $z \notin \operatorname{PSL}(2, p)$, or $i \neq \frac{p+\epsilon}{4}$ with $1 \leq i<\frac{p+\epsilon}{2}$ for $z \in \operatorname{PSL}(2, p)$.
(iii) $\operatorname{Cos}\left(G, H, H a^{i} H\right)$, where $H=\langle x y, y z\rangle, z \in \operatorname{PSL}(2, p)$ and $i \neq \frac{p+\epsilon}{4}$ with $1 \leq$ $i<\frac{p+\epsilon}{2}$.
(2) Let $X=\operatorname{PSL}(2, p)$ with $p \equiv \pm 7(\bmod 16)$. Then $\mathbf{C}_{X}(z) \cong \mathrm{D}_{p+\epsilon}, z=a^{\frac{p+\epsilon}{4}}$. For $i \neq \frac{p+\epsilon}{8}$ with $1 \leq i<\frac{p+\epsilon}{4}$, the following graphs are connected and G-arc-transitive.
(iv) $\operatorname{Cos}\left(G, H, H a^{i} H\right)$, where $H=\langle x y, z\rangle,\langle x, y z\rangle$ or $\langle x y, y z\rangle$.
(v) $\operatorname{Cos}\left(G, H, H y a^{i} H\right)$, where $H=\langle x y, z\rangle$.

Example 5.9. Let $T=\operatorname{PSL}(2, p)$ with $p \equiv \pm 15(\bmod 32)$. Then each Sylow 2subgroup of T is isomorphic to D_{16}. Let $\mathrm{D}_{8} \cong P<T$ and $\mathbb{Z}_{2}^{2} \cong K<T$. Then $P<\mathbf{N}_{T}(K) \cong \mathrm{S}_{4}$. Write $\mathbf{N}_{T}(K)=K:\langle a, b\rangle$, where a has order 3 and $b \in P$ is an involution with $a^{b}=a^{-1}$. Take an involution $z \in T$ such that $\langle P, z\rangle=P:\langle z\rangle \cong \mathrm{D}_{16}$.

Let $G=\langle y\rangle \times T$, where y has order 2. Then $\mathbf{N}_{G}(K)=\langle y\rangle \times(K:\langle a, b\rangle)$. Set $H=$ $P:\langle y z\rangle$. Then, for $g \in \mathbf{N}_{G}(K) \backslash H$, we have $H g H=H a H$ or $H a y H$. It is easily shown that $\operatorname{Cos}(G, H, H a H)$ and $\operatorname{Cos}(G, H, H a y H)$ are connected and G-arc-transitive.

Example 5.10. Let $p \equiv \pm 3(\bmod 8)$ and $\epsilon= \pm 1$ such that $p+\epsilon$ is divided by 4 . Let $T=\operatorname{PSL}(2, p), X=\operatorname{PGL}(2, p)$ and $z \in X \backslash T$ be an involution. Let $C=\langle c\rangle \cong \mathbb{Z}_{l}$, where $l>1$ is coprime to $|T|$. Define a semidirect product $G=C: X$ such that $c^{z}=c^{-1}$ and $C T=C \times T$.
(1) Take an involution $o \in T$ such that $o z=z o$. Set $H=\langle o, z\rangle$. For each $x \in T$ with $x^{z}=x^{-1}$ and $\langle x, o\rangle=T$, the graph $\operatorname{Cos}(G, H, H c x H)$ is a connected G-arc-transitive graph of valency 4. (It is easily shown there is at least such an x.)
(2) Let $H \cong \mathrm{D}_{8}$ be a Sylow 2-subgroup of X containing z. Take an involution $o \in H \cap T$ which is not in the center of H. Then $\mathbf{C}_{X}(o) \cong \mathrm{D}_{2(p+\epsilon)}$. Set $\mathbf{C}_{X}(o)=\langle a\rangle:\langle b\rangle$, where $b \in H \cap T$ and a has order $p+\epsilon$. Then, for each odd $i \neq \frac{p+\epsilon}{4}$ with $1 \leq i<\frac{p+\epsilon}{2}$, the graph $\operatorname{Cos}\left(G, H, H c a^{i} H\right)$ is a connected G-arc-transitive graph of valency 4 .

Example 5.11. Let $p \equiv \pm 3(\bmod 8)$. Let $T=\operatorname{PSL}(2, p)$ and $o \in T$ be an involution. Let $C=\langle c\rangle \cong \mathbb{Z}_{l}$ with $l>1$ coprime to $|T|$. Set $G=C \times T$ and $H=\langle o\rangle$. Take an element $x \in T$ with $\langle x, o\rangle=T$ such that $x^{\sigma} \neq x^{-1}$ for each automorphism σ of T which fixes o. (It is easily shown there is at least such an x.) Then $\operatorname{Cos}\left(G, H, H\left\{c x, c^{-1} x^{-1}\right\} H\right)$ is connected, G-half-transitive and of valency 4.

Example 5.12. Let $X=\operatorname{PGL}(2, p)$ with $p \equiv \pm 3(\bmod 8)$. Let $x \in X$ be of order 4 and $z \in T:=\operatorname{soc}(X)$ be an involution such that $x^{z}=x^{-1}$. Then $x^{2} \in \mathbf{C}_{X}(z) \cong$ $\mathrm{D}_{2(p+\epsilon)}$, where $\epsilon= \pm 1$ such that $p+\epsilon$ is divisible by 4 . Write $\mathbf{C}_{X}(z)=\left\langle a, x^{2}\right\rangle$ with $a^{x^{2}}=a^{-1}$. Then $X=T:\left\langle a x^{2}\right\rangle$. Let $C=\langle c, y\rangle \cong \mathbb{Z}_{2 l}$, where $l>1$ is coprime to $|T|$,
c has order l and y is an inovlution. Define a semidirect product $G=(C \times T):\left\langle a x^{2}\right\rangle$ such that $c^{a x^{2}}=c^{-1}$ and $y^{a x^{2}}=y$.

Set $H=\langle x, y z\rangle$ or $\langle x y, y z\rangle$. Then $\operatorname{Cos}\left(G, H, H c^{k} a^{i} H\right)$ is connected and G-arctransitive, where k is coprime to $l, i \neq \frac{p+\epsilon}{4}$ and $1 \leq i<\frac{p+\epsilon}{2}$.

Example 5.13. Let $X=\operatorname{PSL}(2, p)$ or $\operatorname{PGL}(2, p)$, and let $C=\langle c, y\rangle \cong \mathrm{D}_{2 l}$ with $c^{y}=c^{-1}$, where $l>1$ is coprime to $\left|p\left(p^{2}-1\right)\right|$. Set $G=C \times X$. Suppose that X has a Sylow 2-subgroup $P \cong \mathbb{Z}_{2}^{2}$, D_{8} or D_{16}. Write $P=Q:\langle z\rangle$, where z is an involution.

Set $H=Q:\langle y z\rangle$, and take $K<Q$ with $|Q: K|=2$. For each j coprime to l and a 2-element $x \in \mathbf{N}_{X}(K)$ with $x^{2} \in K$ and $\langle x, P\rangle=X$, the coset graph $\operatorname{Cos}\left(G, H, H c^{j} y x H\right)$ is connected, G-arc-transitive and of valency 4 .

6. The almost simple case

Let $\Gamma=(V, E)$ be a connected tetravalent graph of square-free order, and $G \leq$ Aut Γ. Assume that G is almost simple and Γ is G-vertex-transitive and G-edgetransitive. By Theorem 4.7, we have $T:=\operatorname{soc}(G)=\operatorname{soc}(G)=\mathrm{A}_{7}, \mathrm{~J}_{1}, \operatorname{PSL}(3,3)$ or $\operatorname{PSL}(2, p)$. We next determine the possible associated graphs.

Lemma 6.1. If $T=\operatorname{PSL}(3,3)$, then Γ is the incidence graph of the projective plane $\mathrm{PG}(2,3)$, and $\mathrm{Aut} \Gamma=G=T . \mathbb{Z}_{2}$ has a regular subgroup isomorphic to D_{26}.

Proof. Let $T=\operatorname{PSL}(3,3)$. Then, by Lemma 2.6 and the information given in the Atlas [7], we know that $G=T \cdot \mathbb{Z}_{2}$ and $T_{\alpha}=\mathbb{Z}_{3}^{2}: 2 \mathrm{~S}_{4}$. By [11], the lemma follows.

Lemma 6.2. If $T=\mathrm{A}_{7}$ or J_{1}, then Γ satisfies one line of Table 1 .

G	$\|V\|$	Γ
$\mathrm{A}_{7}, \mathrm{~S}_{7}$	35	Odd graph \mathbf{O}_{4}
$\mathrm{~S}_{7}$	70	Standard double cover of \mathbf{O}_{4}
$\mathrm{~S}_{7}$	210	Example 5.1
J_{1}		Example 5.2 (1), (2)

Table 1

Proof. Assume first that $T=\mathrm{J}_{1}$. Then $G=T$ and, by Lemma 2.6 and the information given in the Atlas [7], $T_{\alpha} \cong \mathbb{Z}_{2}^{2}$ or A_{4}. If $T_{\alpha}=\mathrm{A}_{4}$, then Γ is one of the graphs given in Example 5.2 (1). Thus we assume that $T_{\alpha}=\mathbb{Z}_{2}^{2}$.

Suppose that Γ is not T-arc-transitive. Let $\left\{\alpha, \alpha^{x}\right\}$ be an edge of Γ, where $x \in G$. Then $\left\langle G_{\alpha}, x\right\rangle=G$, and $G_{\alpha} \cap\left(G_{\alpha}\right)^{x}=G_{\alpha} \cap G_{\alpha^{x}}=\left\langle h^{x}\right\rangle$ for an involution h in G_{α}. If $h^{x}=h$, then $\langle h\rangle \triangleleft\left\langle x, G_{\alpha}\right\rangle=G$, a contradiction. Thus $G_{\alpha}=\left\langle h, h^{x}\right\rangle$ and $G_{\alpha^{x}}=\left\langle h^{x}, h^{x^{2}}\right\rangle$. Let Y be the centralizer of h^{x} in T. Then $h, h^{x}, h^{x^{2}} \in Y \cong \mathbb{Z}_{2} \times \mathrm{A}_{5}$. Thus $h^{x}, h^{x^{2}} \in Y^{x}$, and so $G_{\alpha^{x}} \leq Y \cap Y^{x}$. By the argument in Example 5.2, we know that $Y=Y^{x}$, yielding $x \in Y$ as Y is maximal in T. Then $\left\langle G_{\alpha}, x\right\rangle=\left\langle h, h^{x}, x\right\rangle \leq Y$, a contradiction. Thus Γ is T-arc-transitive, and then Γ is isomorphic to one of the graphs given in Example 5.2 (2).

Let $T=\mathrm{A}_{7}$ in the following. Then $\left|T_{\alpha}\right|$ is divided by 12 , and hence Γ is $(G, 2)$-arctransitive. It is easily shown that $T_{\alpha} \cong \mathrm{A}_{4}, \mathrm{~S}_{4}, \mathrm{~A}_{4} \times \mathbb{Z}_{3}$ or $\left(\mathrm{A}_{4} \times \mathbb{Z}_{3}\right): \mathbb{Z}_{2}$.

Assume that $T_{\alpha} \cong\left(\mathrm{A}_{4} \times \mathbb{Z}_{3}\right): \mathbb{Z}_{2}$. Then the vertices in each T-orbit on V can be viewed as 3 -subsets of $\Pi:=\{1,2,3,4,5,6,7\}$. Thus either T is transitive on V and Γ is isomorphic to the odd graph \mathbf{O}_{4} of order 35 , or $G=\mathrm{S}_{7}$ and Γ is the standard double cover of \mathbf{O}_{4}.

Now we deal with the other cases. We may set $T_{\alpha}=P: T_{\alpha \beta}$, where $\beta \in \Gamma(\alpha)$ and $P \cong \mathbb{Z}_{2}^{2}$. Consider the natural action of A_{7} on Π. Then P is conjugate to $\langle(12)(34),(13)(24)\rangle$. Without loss of generality, we let $P=\langle(12)(34),(13)(24)\rangle$. Then $\mathbf{N}_{T}(P)=P:\langle(123),(567),(34)(67)\rangle$.

Assume that $T_{\alpha} \cong \mathrm{A}_{4}$ or $\mathrm{A}_{4} \times \mathbb{Z}_{3}$. Then $\left|T: T_{\alpha}\right|$ is even, and it follows that T is transitive on V. Thus Γ is $(T, 2)$-arc-transitive. Write $\Gamma=\operatorname{Cos}\left(T, T_{\alpha}, T_{\alpha} x T_{\alpha}\right)$ for a 2-element $x \in \mathbf{N}_{T}\left(T_{\alpha \beta}\right)$ with $x^{2} \in T_{\alpha \beta}$ and $\left\langle x, T_{\alpha}\right\rangle=T$. Then x is an involution. Since x is an even permutation, x is a product of two transpositions. Noting $T_{\alpha \beta}$ is a Sylow 3-subgroup of T_{α}, we may choose $T_{\alpha \beta}=\langle(123)\rangle,\langle(123)(567)\rangle$ or $\langle(123),(567)\rangle$. Suppose that $T_{\alpha \beta}=\langle(123)\rangle$. Then $\mathbf{N}_{T}\left(T_{\alpha \beta}\right)=\langle(123)\rangle:\langle(45)(67),(23)(45)\rangle$, and x is conjugate to (45)(67) or (23)(45) under $T_{\alpha \beta}$. But, for such an x, the group $\left\langle x, T_{\alpha}\right\rangle$ is intransitive on Π, and so $\left\langle x, T_{\alpha}\right\rangle \neq T$, a contradiction. If $T_{\alpha \beta}=\langle(123)(567)\rangle$ or $\langle(123),(567)\rangle$ then, noting that x fixes each $T_{\alpha \beta \text {-orbit on } \Pi, x \text { is conjugate to }(23)(67)}$ under $T_{\alpha \beta}$, which gives a similar contradiction as above.

Assume that $T_{\alpha} \cong \mathrm{S}_{4}$. Then $T_{\alpha \beta} \cong \mathrm{S}_{3}$, and we may take $T_{\alpha \beta}=\langle(234),(34)(56)\rangle$ or $\langle(234)(567),(34)(56)\rangle$. Suppose that $T_{\alpha \beta}=\langle(234),(34)(56)\rangle$. Then $\mathbf{N}_{T}\left(T_{\alpha \beta}\right)=$ $T_{\alpha \beta} \times\langle(17)(56)\rangle$. It is easily shown that, for $x \in \mathbf{N}_{T}\left(T_{\alpha \beta}\right)$, the group $\left\langle T_{\alpha}, x\right\rangle$ fixes $\{5,6\}$ set-wise; in particular, $\left\langle T_{\alpha}, x\right\rangle \neq T$. It follows that T is intransitive the vertices of Γ. Then $G=\mathrm{S}_{7}$ and $G_{\alpha}=T_{\alpha}$, and hence $G_{\alpha \beta}=T_{\alpha \beta}$. Computation shows that $\mathbf{N}_{G}\left(T_{\alpha \beta}\right)=T_{\alpha \beta}:\langle(17),(23)\rangle$. Then $\left\langle G_{\alpha}, x\right\rangle \neq G$ for any $x \in \mathbf{N}_{G}\left(T_{\alpha \beta}\right)$, a contradiction. Thus $T_{\alpha \beta}=\langle(234)(567),(34)(56)\rangle$. Then $\mathbf{N}_{T}\left(T_{\alpha \beta}\right)=T_{\alpha \beta}$, it implies that T is intransitive on V. Hence $G=\mathrm{S}_{7}, G_{\alpha}=T_{\alpha}$ and $G_{\alpha \beta}=T_{\alpha \beta}$. Then $\mathbf{N}_{G}\left(T_{\alpha \beta}\right)=T_{\alpha \beta}:\langle\pi\rangle$, where $\pi=(25)(37)(46)$. It is easily shown that $\left\langle G_{\alpha}, \pi\right\rangle=G$. It implies that Γ is isomorphic to the graph constructed in Example 5.1.

Next we deal with the case where $T=\operatorname{PSL}(2, p)$. Let $\alpha \in V$. Note that G_{α} is a $\{2,3\}$-group and the subgroups of PGL $(2, p)$ are all known, see [3] for example. Then G_{α} is isomorphic to one of $\mathbb{Z}_{2}^{2}, \mathbb{Z}_{2^{s}}, \mathrm{D}_{2^{t}}, \mathrm{~A}_{4}$ and S_{4}, where $s \geq 1$ and $t \geq 3$.
Lemma 6.3. Assume that $T=\operatorname{PSL}(2, p)$. If $\Gamma=(V, E)$ is not $(G, 2)$-arc-transitive, then one of the following statements holds.
(1) $G_{\alpha} \cong \mathbb{Z}_{2}$ and Γ is G-half-transitive, or $G_{\alpha} \cong \mathbb{Z}_{4}$ and Γ is G-arc-transitive;
(2) $G_{\alpha} \cong \mathbb{Z}_{2}^{2}$, either Γ is G-arc-transitive or one of the following occurs:
(i) $\mathrm{C}_{\mathrm{Aut} \Gamma}(G)$ contains an involution θ such that Γ is $\langle\theta, G\rangle$-arc-transitive;
(ii) $G=\operatorname{PSL}(2, p)$ with $p \equiv \pm 3(\bmod 8)$, there exists $X \leq \operatorname{Aut} \Gamma$ such that $G<X \cong \operatorname{PGL}(2, p)$ and Γ is X-arc-transitive.
(3) $G_{\alpha} \cong \mathrm{D}_{8}$, either Γ is isomorphic to one of the graphs in Example 5.5, or $\mathbf{C}_{\mathrm{Aut} \Gamma}(G)$ contains an involution θ such that Γ is $\langle\theta, G\rangle$-arc-transitive.
(4) Γ is G-arc-transitive and isomorphic to one of the two graphs in Example 5.6.

Proof. Assume that Γ is not $(G, 2)$-arc-transitive. Let $\alpha \in V$. Then $G_{\alpha} \cong \mathbb{Z}_{2}^{2}, \mathbb{Z}_{2^{s}}$ or $\mathrm{D}_{2^{t}}$, where $s \geq 1$ and $t \geq 3$.

Case 1. Assume that G_{α} is abelian. If $G_{\alpha} \cong \mathbb{Z}_{2^{\text {s }}}$ then, by Lemma 2.5, $G_{\alpha} \cong$ $\mathrm{G}_{\alpha}^{\Gamma(\alpha)} \cong \mathbb{Z}_{2}$ or \mathbb{Z}_{4}, so part (1) follows. Thus we assume that $G_{\alpha} \cong \mathbb{Z}_{2}^{2}$ in the following.

Suppose that Γ is G-half-transitive. Then $G_{\alpha \beta} \cong \mathbb{Z}_{2}$ for $\beta \in \Gamma(\alpha)$. Set $G_{\alpha \beta}=\langle o\rangle$ and $\beta=\alpha^{x}$. Then $o \in G_{\beta}=G_{\alpha}^{x}$, and so $o^{x^{-1}} \in G_{\alpha}$. Since Γ is connected, we have $G=\left\langle G_{\alpha}, x\right\rangle$. If x centralizes o then o lies in the center of G, which is impossible. Thus $o^{x^{-1}} \neq o$, so $G_{\alpha}=\left\langle o, o^{x^{-1}}\right\rangle$ and $G_{\beta}=\left\langle o, o^{x}\right\rangle$. Then $G_{\alpha}, G_{\beta}<\mathbf{C}_{G}(x) \cong \mathrm{D}_{l(p \pm 1)}$, where $l=|G: T|$. Set $\mathbf{C}_{G}(o)=\langle a\rangle:\left\langle o^{x^{-1}}\right\rangle$. Noting that all subgroups isomorphic to $\mathbf{C}_{G}(o)$ are conjugate in G, it is easily shown that two subgroups isomorphic to \mathbb{Z}_{2}^{2} of $\mathbf{C}_{G}(o)$ are conjugate in $\mathbf{C}_{G}(o)$ if and only if they are conjugate in G. Thus $G_{\alpha}^{a^{i}}=G_{\beta}=G_{\alpha}^{x}$ for some i, and so $x \in \mathbf{N}_{G}\left(G_{\alpha}\right) a^{i} \backslash\langle a\rangle$.

Assume that $p \equiv \pm 1(\bmod 8)$. Then $G=T, \mathbf{N}_{G}\left(G_{\alpha}\right) \cong \mathrm{S}_{4}$ and $\mathbf{N}_{\mathbf{C}_{G}(o)}\left(G_{\alpha}\right) \cong \mathrm{D}_{8}$. Thus we may write $\mathbf{N}_{G}\left(G_{\alpha}\right)=G_{\alpha}:(\langle y\rangle:\langle z\rangle)$, where y has order 3 and $z \in \mathbf{C}_{T}(o)$ is an involution normalizing G_{α} and $\langle y\rangle$. Computation shows that $\alpha^{x}=\alpha^{y^{j} a^{k}}$ for some integers j and k. Define $\theta: \alpha^{g} \mapsto \alpha^{y^{j} z g}, g \in G$. Then θ is an involution in $\mathbf{C}_{\mathrm{Aut} \Gamma}(G)$. It is easily shown that Γ is $(G \times\langle\theta\rangle)$-arc-transitive.

Assume that $p \equiv \pm 3(\bmod 8)$ and $G=\operatorname{PGL}(2, p)$. If $G_{\alpha}<T$ then $\mathbf{N}_{G}\left(G_{\alpha}\right) \cong \mathrm{S}_{4}$ and $\mathbf{N}_{\mathbf{C}_{G}(o)}\left(G_{\alpha}\right) \cong \mathrm{D}_{8}$; a similar argument as above implies that there is an involution $\theta \in$ Aut Γ such that Γ is $(G \times\langle\theta\rangle)$-arc-transitive. Suppose that $G_{\alpha} \not \leq T$. Then $\mathbf{N}_{G}\left(G_{\alpha}\right) \cong \mathrm{D}_{8}$ and $\mathbf{N}_{\mathbf{C}_{G}(o)}\left(G_{\alpha}\right)=G_{\alpha}$. Write $\mathbf{N}_{G}\left(G_{\alpha}\right)=G_{\alpha}:\langle z\rangle$ for an involution $z \in \operatorname{PSL}(2, p)$. Then $\alpha^{x}=\alpha^{z a^{i}}$. Note that G_{α} and $\operatorname{PSL}(2, p)$ contain only one involution $O o^{x^{-1}}$ in common. This implies that $o o^{x^{-1}}$ lies in the center of $\mathbf{N}_{G}\left(G_{\alpha}\right)$. Define $\theta: \alpha^{g} \mapsto \alpha^{o o^{x^{-1}} z g}, g \in G$. Then θ is an involution in $\mathbf{C}_{\mathrm{Aut} \Gamma}(G)$, and Γ is $(G \times\langle\theta\rangle)$-arc-transitive.

Let $p \equiv \pm 3(\bmod 8)$ and $G=\operatorname{PSL}(2, p)$. Then $\mathbf{N}_{G}\left(G_{\alpha}\right)=G_{\alpha}:\langle y\rangle \cong \mathrm{A}_{4}$, where $y \in$ T has order 3. Thus $\alpha^{x}=\alpha^{y^{j} a^{i}}$ for some integer j. Noting that $\mathbf{N}_{\mathrm{PGL}(2, p)}\left(G_{\alpha}\right) \cong \mathrm{S}_{4}$, there is an involution $\sigma \in \mathbf{C}_{\operatorname{PGL}(2, p)}(o) \backslash T$ such that $G_{\alpha}^{\sigma}=G_{\alpha}$ and $y^{\sigma}=y^{-1}$. Define $\rho: \alpha^{g} \mapsto \alpha^{y^{j} g^{\sigma}}, g \in G$. Then $\rho \in \operatorname{Aut} \Gamma,\langle G, \rho\rangle \cong \operatorname{PGL}(2, p)$ and Γ is $\langle T, \rho\rangle$-arctransitive. Then part (2) follows.

Case 2. Assume that $G_{\alpha} \cong \mathrm{D}_{2^{t}}$ for $t \geq 3$. Let $\beta \in \Gamma(\alpha)$.
Suppose that $G_{\alpha \beta}$ contains a cyclic subgroup C of order no less than 3. Then C is the unique subgroup of order $|C|$ in both G_{α} and G_{β}. For an arbitrary edge $\{\gamma, \delta\}$, since G is transitive on E, there is $x \in G$ with $\{\gamma, \delta\}=\{\alpha, \beta\}^{x}$, so $G_{\gamma \delta}=G_{\alpha \beta}^{x}$. Then C^{x} is the unique subgroup of order $|C|$ in both G_{γ} and G_{δ}. So $C \leq G_{\gamma}$ for $\gamma \in \Gamma(\alpha) \cup \Gamma(\beta)$. Since Γ is connected, C fixes each vertex of Γ, and so $C=1$ as $C \leq$ Aut Γ, a contradiction. Thus $\left|G_{\alpha \beta}\right|$ is a divisor of 4 , hence $G_{\alpha} \cong \mathrm{D}_{8}$ or D_{16}.

Assume that $G_{\alpha} \cong \mathrm{D}_{8}$ and Γ is G-arc-transitive. Then G_{α} is transitive on $\Gamma(\alpha)$. Set $G_{\alpha}=\langle x\rangle:\langle y\rangle$, where x has order 4 and y is an involution with $x^{y}=x^{-1}$. By Lemma 2.5, we know that $G_{\alpha}^{[1]}=1$. It follows that $G_{\alpha \beta}$ dose not lies in the center of G_{α}. Thus we may choose a suitable y such that $G_{\alpha \beta}=\langle y\rangle$. Write Γ as a coset $\operatorname{Cos}\left(G, G_{\alpha}, G_{\alpha} g G_{\alpha}\right)$ for $g \in \mathbf{N}_{G}\langle y\rangle=\mathbf{C}_{G}(y)$. Then Γ is constructed as in Example 5.5.

Assume that $G_{\alpha} \cong \mathrm{D}_{8}$ and Γ is G-half-transitive. Then $G_{\alpha \beta} \cong \mathbb{Z}_{2}^{2}$. Hence $G_{\alpha \beta}$ is normal in $M:=\left\langle G_{\alpha}, G_{\beta}\right\rangle$, yielding $\mathbf{N}_{G}\left(G_{\alpha \beta}\right)=M \cong \mathrm{~S}_{4}$. Let $y \in M$ be an
involution such that $G_{\alpha \beta}:\langle y\rangle$ is the Sylow 2-subgroup of M other than G_{α} and G_{β}. Then $G_{\beta}=G_{\alpha}^{y}$. Let $x \in G$ with $\beta=\alpha^{x}$. Then $G_{\alpha}^{y}=G_{\beta}=G_{\alpha}^{x}$, so $x y \in \mathbf{N}_{G}\left(G_{\alpha}\right)$. If $x y \in G_{\alpha}$ then $\left\langle x, G_{\alpha}\right\rangle \leq\left\langle M, G_{\alpha}\right\rangle=M$, which contradicts the connectedness of Γ. Thus $x y \notin \mathbf{N}_{G}\left(G_{\alpha}\right)$, and so $\mathbf{N}_{G}\left(G_{\alpha}\right) \neq G_{\alpha}$, It follows that $\mathbf{N}_{G}\left(G_{\alpha}\right) \cong \mathrm{D}_{16}$ is a Sylow 2-subgroup of G as $\left|G: G_{\alpha}\right|$ is square-free. Write $\mathbf{N}_{G}\left(G_{\alpha}\right)=G_{\alpha}:\langle z\rangle$ for some involution z. Then $x y=h z$ for some $h \in G_{\alpha}$, so $G_{\alpha} x G_{\alpha}=G_{\alpha} x y y G_{\alpha}=G_{\alpha} z y G_{\alpha}$ and $\left(G_{\alpha} x G_{\alpha}\right)^{z}=\left(G_{\alpha} z y G_{\alpha}\right)^{z}=G_{\alpha}(z y)^{-1} G_{\alpha}=G_{\alpha} x^{-1} h G_{\alpha}=G_{\alpha} x^{-1} G_{\alpha}$. Define $\theta: \alpha^{g} \mapsto \alpha^{z g}, g \in G$. Then θ is an involution in $\mathbf{C}_{\mathrm{Aut} \Gamma}(G)$, and Γ is $(G \times\langle\theta\rangle)$-arctransitive. Thus part (3) of this lemma follows.

Assume that $G_{\alpha} \cong \mathrm{D}_{16}$. Then $G_{\alpha \beta} \cong \mathbb{Z}_{2}^{2}$ and Γ is G-arc-transitive. If $G_{\alpha \beta} \not \leq T$ then $\mathbf{N}_{G}\left(G_{\alpha \beta}\right) \cong \mathrm{D}_{8}$, and so $\mathbf{N}_{G}\left(G_{\alpha \beta}\right) \leq G_{\alpha}$, which is impossible. Thus $G_{\alpha \beta} \leq T$ and $T>\mathbf{N}_{G}\left(G_{\alpha \beta}\right) \cong \mathrm{S}_{4}$. Write $\mathbf{N}_{G_{\alpha}}\left(G_{\alpha \beta}\right)=G_{\alpha \beta}:\langle z\rangle$ and $\mathbf{N}_{G}\left(G_{\alpha \beta}\right)=G_{\alpha \beta}:(\langle y\rangle:\langle z\rangle)$. Then, for $x \in \mathbf{N}_{G}\left(G_{\alpha \beta}\right)$ with $\left\langle x, G_{\alpha}\right\rangle=G$, we have $G_{\alpha} x G_{\alpha}=G_{\alpha} y^{ \pm 1} G_{\alpha}$, and either $G=T$ or $G_{\alpha} \not \leq T$. Noting $G_{\alpha} y G_{\alpha}=G_{\alpha} z y z G_{\alpha}=G_{\alpha} y^{-1} G_{\alpha}$ as $z \in G_{\alpha}$, it implies that Γ is isomorphic to one of the graphs in Example 5.6. Thus (4) occurs.

Lemma 6.4. Assume that $T=\operatorname{soc}(G)=\operatorname{PSL}(2, p)$ and $\alpha \in V$. If Γ is $(G, 2)$-arctransitive, then one of the following statements holds.
(1) Aut $\Gamma=\operatorname{PSL}(2, p), 7 \neq p \equiv \pm 1(\bmod 8), \Gamma$ is unique and of order $\frac{p\left(p^{2}-1\right)}{48}$;
(2) Aut $\Gamma=\operatorname{PGL}(2, p), p \equiv \pm 3(\bmod 8), \Gamma$ is unique and of order $\frac{p\left(p^{2}-1\right)}{24}$;
(3) Aut $\Gamma=\operatorname{PSL}(2, p), 5 \neq p \equiv \pm 3(\bmod 8)$ and $p \not \equiv 1(\bmod 10), \Gamma$ is of order $\frac{p\left(p^{2}-1\right)}{24}$ and isomorphic to one of $\left[\frac{p+\varepsilon}{12}\right]$ graphs, where $\epsilon= \pm 1$ such that $p+\epsilon$ is divisible by 3;
(4) $G=\mathrm{PGL}(2, p), \mathrm{S}_{4} \cong G_{\alpha}<T$ and Γ is constructed as in Example 5.3;
(5) $G_{\alpha}=T_{\alpha} \cong \mathrm{A}_{4}$ and Γ is isomorphic to one of the graphs in Example 5.4;
(6) $G_{\alpha}=T_{\alpha} \cong \mathrm{A}_{4}$ and $\mathbf{C}_{\mathrm{Aut} \Gamma}(G)$ contains an involution.

Proof. Assume that Γ is $(G, 2)$-arc-transitive. Then $G_{\alpha} \cong \mathrm{A}_{4}$ or S_{4}. If G_{α} is maximal in G, then, by [13], one of parts (1)-(3) occurs. Thus we assume further that G_{α} is not maximal in G. Then either $G_{\alpha}=T_{\alpha} \cong \mathrm{A}_{4}$, or $\mathrm{S}_{4} \cong G_{\alpha}<T$ and $G=\operatorname{PGL}(2, p)$. Let $\epsilon= \pm 1$ with $p+\epsilon$ divisible by 3 .

Let $\mathrm{S}_{4} \cong G_{\alpha}<T$ and $G=\operatorname{PGL}(2, p)$. Then $G_{\alpha \beta} \cong \mathrm{S}_{3}$, and $\mathbf{N}_{G}\left(G_{\alpha \beta}\right) \cong \mathrm{S}_{3} \times \mathbb{Z}_{2}$. If $p+\epsilon$ is divisible by 4 , then $G_{\alpha \beta}$ is contained in a subgroup $M \cong \mathrm{D}_{p+\epsilon}$ of T, so $\mathbf{N}_{G}\left(G_{\alpha \beta}\right) \geq \mathbf{N}_{M}\left(G_{\alpha \beta}\right) \cong \mathrm{S}_{3} \times \mathbb{Z}_{2}$, hence $\mathbf{N}_{G}\left(G_{\alpha \beta}\right) \leq T$, a contradiction. Thus $p+\epsilon$ is not divisible by 4, and Γ is isomorphic to the graph in Example 5.3. Thus (4) occurs.

We assume next that $G_{\alpha}=T_{\alpha} \cong \mathrm{A}_{4}$ and $G_{\alpha \beta} \cong \mathbb{Z}_{3}$. Let $1 \neq x \in G$ a be 2-element with $(\alpha, \beta)^{x}=(\beta, \alpha)$. Since Γ is connected, $\left\langle x, G_{\alpha}\right\rangle=G$. Moreover, $x \in \mathbf{N}_{G}\left(G_{\alpha \beta}\right)$ and $x^{2} \in G_{\alpha \beta}$, and so x is an involution. Since G_{α} is not maximal in G, we have
(i) $G=\operatorname{PSL}(2, p)$ with $p \equiv \pm 3(\bmod 8)$ and $p \equiv \pm 1(\bmod 10)$; or
(ii) $G=\operatorname{PSL}(2, p)$ with $p \equiv \pm 1(\bmod 8)$; or
(iii) $G=\operatorname{PGL}(2, p)$ with $p \equiv \pm 3(\bmod 8)$.

Case (i). Suppose that (i) occurs. Then G has one conjugacy class of subgroups isomorphic to A_{4} and two conjugacy classes of subgroups isomorphic to A_{5}. Thus G_{α} is contained in exactly two subgroups isomorphic to A_{5}. Take $M_{1}, M_{2}<G$ with $M_{1} \cong M_{2} \cong \mathrm{~A}_{5}$ and $G_{\alpha}=M_{1} \cap M_{2}$. Then $\mathbf{N}_{M_{1}}\left(G_{\alpha \beta}\right) \cong \mathbf{N}_{M_{2}}\left(G_{\alpha \beta}\right) \cong \mathrm{D}_{6}$. Set $\mathbf{N}_{M_{i}}\left(G_{\alpha \beta}\right)=G_{\alpha \beta}:\left\langle b_{i}\right\rangle$ for $i=1,2$. It is easily shown that $\mathbf{N}_{M_{1}}\left(G_{\alpha \beta}\right) \cup \mathbf{N}_{M_{2}}\left(G_{\alpha \beta}\right)$
contains 6 involutions, which form two distinct cosets $G_{\alpha \beta} b_{1}$ and $G_{\alpha \beta} b_{2}$. Note that $b_{1}, b_{2} \in \mathbf{N}_{G}\left(G_{\alpha \beta}\right) \cong \mathrm{D}_{p+\epsilon}$. Write $\mathbf{C}_{G}\left(G_{\alpha \beta}\right)=\langle a\rangle$. Then $\mathbf{N}_{G}\left(G_{\alpha \beta}\right)=\left\langle a, b_{1}\right\rangle=\left\langle a, b_{2}\right\rangle$. Set $b_{1}=a^{r} b_{2}$ for some $1 \leq r \leq \frac{p+\epsilon}{2}$. Then $\left\langle a^{r}\right\rangle \not \leq G_{\alpha \beta}=\left\langle a^{\frac{p+\epsilon}{\sigma}}\right\rangle$. Replacing b_{1} by $a^{\frac{p+\epsilon}{6}} b_{1}$ or $a^{\frac{p+\epsilon}{3}} b_{1}$ if necessarily, we may choose $1 \leq r<\frac{p+\epsilon}{6}$. For an involution $x \in \mathbf{N}_{G}\left(G_{\alpha \beta}\right)$ with $\left\langle x, G_{\alpha}\right\rangle=G$, we get
(i.1) $G_{\alpha} x G_{\alpha}=G_{\alpha} a^{j} b_{1} G_{\alpha}$ for $1 \leq j<\frac{p+\epsilon}{6}$ with $j \neq r$; or
(i.2) $G_{\alpha} x G_{\alpha}=G_{\alpha} a^{\frac{p+\epsilon}{4}} G_{\alpha}$ and 4 is a divisor of $p+\epsilon$.

Take an involution $z \in \operatorname{PGL}(2, p) \backslash G$ with $\left\langle G_{\alpha}, z\right\rangle \cong \mathrm{S}_{4}$ and $\left\langle G_{\alpha \beta}, z\right\rangle \cong \mathrm{S}_{3}$. Then $z \in \mathbf{N}_{\mathrm{PGL}(2, p)}\left(G_{\alpha \beta}\right) \cong \mathrm{D}_{2(p+\epsilon)}$, and so $\mathbf{N}_{\mathrm{PGL}(2, p)}\left(G_{\alpha \beta}\right)=\left\langle a, b_{1}, z\right\rangle=\left\langle a, z b_{1}, z\right\rangle=$ $\left\langle a, z b_{1}\right\rangle:\langle z\rangle$; in particular, $z b_{1} \notin\langle a\rangle$ and $\left\langle a, z b_{1}\right\rangle \cong \mathbb{Z}_{p+\epsilon}$. It is easily shown that $M_{1}^{z}=M_{2}$, and so $\mathbf{N}_{M_{2}}\left(G_{\alpha \beta}\right)=\left(\mathbf{N}_{M_{1}}\left(G_{\alpha \beta}\right)\right)^{z}$. Thus we may choose z such that $b_{2}=b_{1}^{z}$. Then $\left(z b_{1}\right)^{2}=b_{1}^{z} b_{1}=a^{r}$.

Suppose that $2 j \equiv r\left(\bmod \frac{p+\epsilon}{6}\right)$ for some $1 \leq j<\frac{p+\epsilon}{6}$. Then $2 j=r+\frac{p+\epsilon}{6}$ by the choice of r. Note that $p+\epsilon$ is not divisible by 8 . If $p+\epsilon$ is divisible by 4 , then r is even, so a^{r} is of odd order, hence the order of $z b_{1}$ is not divisible by 4 , which contradicts the fact that $\left\langle a, z b_{1}\right\rangle \cong \mathbb{Z}_{p+\epsilon}$. Thus $\frac{p+\epsilon}{6}$ is odd, and so r is odd and $j>r$.

For (i.1), we have

$$
\left(G_{\alpha} x G_{\alpha}\right)^{z}=G_{\alpha} a^{-j} b_{1}^{z} G_{\alpha}=G_{\alpha} a^{r-j} b_{1} G_{\alpha}=\left\{\begin{array}{l}
G_{\alpha} a^{r-j} b_{1} G_{\alpha}, \text { if } 1 \leq j<\frac{r}{2} ; \\
G_{\alpha} a \frac{p+\epsilon}{6}+r-j b_{1} G_{\alpha} \text { if } r<j<\frac{r}{2}+\frac{p+\epsilon}{12} ; \\
G_{\alpha} a^{j} b_{1} G_{\alpha}, \text { if } j=\frac{r}{2}+\frac{p+\epsilon}{12}, \frac{p+\epsilon}{6} \text { is odd. }
\end{array}\right.
$$

Thus Γ is one of the graphs in Example 5.4 (1), or $\Gamma \cong \operatorname{Cos}\left(G, G_{\alpha}, G_{\alpha} a^{\frac{r}{2}+\frac{p+\epsilon}{12}} b_{1} G_{\alpha}\right)$ with odd $\frac{p+\epsilon}{6}$. For the latter case, define $\rho: \alpha^{g} \mapsto \alpha^{g^{z}}, g \in G$. Then $\rho \in \mathbf{N}_{\text {Aut } \Gamma}\left(G_{\alpha}\right)$, $\alpha^{\rho}=\alpha$ and $X:=\langle G, \rho\rangle \cong \operatorname{PGL}(2, p)$. Moreover, $X_{\alpha}=\left\langle G_{\alpha}, \rho\right\rangle$ is maximal in X. Thus Γ is isomorphic to the graph described in part (2).
For (i.2), $\mathrm{D}_{2(p+\epsilon)} \cong \mathbf{N}_{\mathrm{PGL}(2, p)}\left(G_{\alpha \beta}\right)=\left\langle z, \mathbf{N}_{G}\left(G_{\alpha \beta}\right)\right\rangle$. It implies that $a^{\frac{p+\epsilon}{4}}$ lies in the center of $\mathbf{N}_{\mathrm{PGL}(2, p)}\left(G_{\alpha \beta}\right)$. Then z induces an automorphism of Γ by $\alpha^{g} \mapsto \alpha^{g^{z}}, g \in G$. Arguing as above, we know that Γ is isomorphic to the graph described in part (2).

Case (ii). Suppose that (ii) occurs, that is, $G=\operatorname{PSL}(2, p)$ with $p \equiv \pm 1(\bmod 8)$. Then $G_{\alpha} \cong \mathrm{A}_{4}$ is contained a maximal subgroup $M \cong \mathrm{~S}_{4}$. Set $M=G_{\alpha}:\langle b\rangle$, where b is an involution normalizing $G_{\alpha \beta}$. Then $b \in \mathbf{N}_{G}\left(G_{\alpha \beta}\right) \cong \mathrm{D}_{p+\epsilon}$. Write $\mathbf{N}_{G}\left(G_{\alpha \beta}\right)=$ $\langle a\rangle:\langle b\rangle$, where a has order $\frac{p+\epsilon}{2}$. By a similar argument as in Case (i), for an involution $x \in \mathbf{N}_{G}\left(G_{\alpha \beta}\right)$ with $\left\langle x, G_{\alpha}\right\rangle=G$, either $G_{\alpha} x G_{\alpha}=G_{\alpha} a^{j} b G_{\alpha}$ for some $1 \leq j<\frac{p+\epsilon}{6}$, or $G_{\alpha} x G_{\alpha}=G_{\alpha} a^{\frac{p+\epsilon}{4}} G_{\alpha}$ if further 4 is a divisor of $p+\epsilon$. Moreover,

$$
\left(G_{\alpha} x G_{\alpha}\right)^{b}=G_{\alpha} x^{b} G_{\alpha}=\left\{\begin{array}{l}
G_{\alpha} a^{\frac{p+\epsilon}{6}-j} b G_{\alpha} \text { for } 1 \leq j<\frac{p+\epsilon}{6} ; \text { or } \\
G_{\alpha} a^{\frac{p+\epsilon}{4}} G_{\alpha} .
\end{array}\right.
$$

Assume that $p+\epsilon$ is a divisible by 4 and $G_{\alpha} x G_{\alpha}=G_{\alpha} a^{\frac{p+\epsilon}{4}} G_{\alpha}$ or $G_{\alpha} a^{\frac{p+\epsilon}{12}} b G_{\alpha}$. Define $\theta: \alpha^{g} \mapsto \alpha^{b g}, g \in G$. Then θ is an involution in $\mathbf{C}_{\text {Aut } \Gamma}(G)$. Thus part (6) occurs.

Assume that $G_{\alpha} x G_{\alpha}=G_{\alpha} a^{j} b G_{\alpha}$, where $j \neq \frac{p+\epsilon}{12}$ and $1 \leq j<\frac{p+\epsilon}{6}$. Define σ : $G_{\alpha} g \mapsto G_{\alpha} b g, g \in G$. Then σ is an isomorphism from $\operatorname{Cos}\left(G, G_{\alpha}, G_{\alpha} a^{j} b G_{\alpha}\right)$ to $\operatorname{Cos}\left(G, G_{\alpha}, G_{\alpha} a^{\frac{p+\epsilon}{6}-j} b G_{\alpha}\right)$. Thus Γ is isomorphic a graph in Example 5.4 (2).

Case (iii). Suppose that (iii) occurs, that is, $G=\mathrm{PGL}(2, p)$ with $p \equiv \pm 3(\bmod 8)$. Then $G_{\alpha}=T_{\alpha} \cong \mathrm{A}_{4}$ is contained a maximal subgroup $M \cong \mathrm{~S}_{4}$ of G. Set $M=$
$G_{\alpha}:\langle z\rangle$, where $z \in G \backslash T$ is an involution normalizing $G_{\alpha \beta}$. Then $z \in \mathbf{N}_{G}\left(G_{\alpha \beta}\right) \cong$ $\mathrm{D}_{2(p+\epsilon)}$. Write $\mathbf{N}_{G}\left(G_{\alpha \beta}\right)=\langle a\rangle:\langle z\rangle$, where a has order $p+\epsilon$. For an involution $x \in$ $\mathbf{N}_{G}\left(G_{\alpha \beta}\right)$ with $\left\langle x, G_{\alpha}\right\rangle=G$, either $G_{\alpha} x G_{\alpha}=G_{\alpha} a^{j} z G_{\alpha}$ for some $1 \leq j<\frac{p+\epsilon}{3}$, or $G_{\alpha} x G_{\alpha}=G_{\alpha} a^{\frac{p+\epsilon}{2}} G_{\alpha}$. Note that $\left(G_{\alpha} a^{j} z G_{\alpha}\right)^{z}=G_{\alpha} a^{-j} z G_{\alpha}=G_{\alpha} a^{\frac{p+\epsilon}{3}-j} z G_{\alpha}$ for $1 \leq j<\frac{p+\epsilon}{3}$. It follows that Γ is isomorphic to a graph in Example 5.4 (3) or one of $\operatorname{Cos}\left(G, G_{\alpha}, G_{\alpha} a^{\frac{p+\epsilon}{6}} z G_{\alpha}\right)$ and $\operatorname{Cos}\left(G, G_{\alpha}, G_{\alpha} a^{\frac{p+\epsilon}{2}} G_{\alpha}\right)$. For the latter, Aut Γ has an involution $\alpha^{g} \mapsto \alpha^{z g}, g \in G$, which centralizes G, and so part (6) occurs.

7. Normal covers

In this section we give a proof of Theorem 1.1.
Let $\Gamma=(V, E)$ be a connected tetravalent graph of square-free order. Assume that Γ is both vertex-transitive and edge-transitive. Let $G=\operatorname{Aut} \Gamma$. If G is soluble then, by Theorem 3.3, one of of Theorem 1.1 (1) and (2) occurs. If G is almost simple then, by the argument in Section 6, either $\operatorname{soc}(G)=\operatorname{PSL}(3,3)$ and Γ is a Cayley graph or one of parts (3)-(5) of Theorem 1.1 occurs.

By Theorem 4.7, we assume next that $G=C: X, C \neq 1, T:=\operatorname{soc}(X) \triangleleft G$ and $T=\mathrm{A}_{7}, \mathrm{~J}_{1}, \operatorname{PSL}(3,3)$ or $\operatorname{PSL}(2, p)$, where $p \geq 5$ is a prime. Let B be a C-orbit on V and $\alpha \in B$. Then $G_{\alpha} \cong X_{B}$ by Lemma 2.7. Note that Γ is 2 -arc-transitive if and only if Γ_{C} is (X,2)-arc-transitive. We shall characterizes Γ in three lemmas.

Lemma 7.1. Assume that Γ is 2-arc-transitive. Then one of Theorem 1.1 (4), (6) and (10) occurs.

Proof. Since Γ has square-free order, T is not semiregular on V, and so $T_{\alpha} \neq 1$. By Lemma 2.4, $T_{\alpha}^{\Gamma(\alpha)} \neq 1$. Since Γ is $(G, 2)$-arc-transitive, G_{α} is 2-transitive on $\Gamma(\alpha)$. Noting that $T_{\alpha} \triangleleft G_{\alpha}$ as $T \triangleleft G$, it follows that T_{α} is transitive on $\Gamma(\alpha)$. Then T has at most two orbits on V by Lemma 2.2. Thus T_{B} has at most two orbits on B

Since $(C T)_{B}=C \times T_{B}$ and C is regular on B, we conclude that T_{α} is the kernel of T_{B} acting on B, and so $T_{\alpha} \triangleleft T_{B}$. Let B^{\prime} be the T_{B}-orbit on B containing α. Then either $C_{B^{\prime}}=C$, or $C_{B^{\prime}}$ is the unique 2^{\prime}-Hall subgroup of C. Moreover, $C_{B^{\prime}}$ and T_{B} induce two regular permutation groups on B^{\prime}. Thus $C_{B^{\prime}} \cong T_{B} / T_{\alpha}$ by [8, Theorem 4.2A]. Then T_{B} / T_{α} is isomorphic to C or the 2^{\prime}-Hall subgroup of C, and hence $|C|=2,3$ or 6 by noting that T_{B} is a $\{2,3\}$-group. Note that $|C|=|B|$ is coprime to $\left|V_{C}\right|=\left|X: X_{B}\right|$. Applying Lemmas $6.1,6.2$ and 6.4 to Γ_{C} and X, we get a table as follows, where lines 1-6 arise if $C \cong T_{B} / T_{\alpha}$ and lines 7-10 arise otherwise.

line	T	T_{B}	T_{α}	C	Γ_{C}	remark
1	$\mathrm{~A}_{7}$	$\left(\mathbb{Z}_{3} \times \mathrm{A}_{4}\right): \mathbb{Z}_{2}$	$\mathbb{Z}_{3} \times \mathrm{A}_{4}$	\mathbb{Z}_{2}	\mathbf{O}_{4}	
2		$\left(\mathbb{Z}_{3} \times \mathrm{A}_{4}\right): \mathbb{Z}_{2}$	$\mathrm{~A}_{4}$	D_{6}	\mathbf{O}_{4}	
3	$\mathrm{~J}_{1}$	$\mathrm{~A}_{4}$	\mathbb{Z}_{2}^{2}	\mathbb{Z}_{3}	$5.2(1)$	$G=\mathbb{Z}_{3} \times \mathrm{J}_{1}$
4	$\mathrm{PSL}(2, p)$	A_{4}	\mathbb{Z}_{2}^{2}	\mathbb{Z}_{3}	$6.4(2),(3),(5),(6)$	
5	$(p \geq 5)$	S_{4}	$\mathrm{~A}_{4}$	\mathbb{Z}_{2}	$6.4(1)$	$G=C \times T$
6		$\mathrm{~S}_{4}$	\mathbb{Z}_{2}^{2}	D_{6}	$6.4(1)$	$G=C \times T$
7	$\mathrm{~A}_{7}$	$\left(\mathbb{Z}_{3} \times \mathrm{A}_{4}\right): \mathbb{Z}_{2}$	$\left(\mathbb{Z}_{3} \times \mathrm{A}_{4}\right): \mathbb{Z}_{2}$	\mathbb{Z}_{2}	\mathbf{O}_{4}	
8	$\operatorname{PSL}(2, p)$	A_{4}	$\mathrm{~A}_{4}$	\mathbb{Z}_{2}	$5.4(1), 6.4(2),(3)$	
9		$\mathrm{~S}_{4}$	$\mathrm{~S}_{4}$	\mathbb{Z}_{2}	$6.4(1)$	$G=C \times T$
10		$\mathrm{~A}_{4}$	\mathbb{Z}_{2}^{2}	$\|M\|=6$	$5.4(1), 6.4(2),(3)$	

If line 1 or 2 occurs, then Γ is $\left(\mathrm{A}_{7}, 2\right)$-arc-transitive; however, by Lemma 6.2, there is no such a graph, a contradiction. For line $3, \Gamma$ is J_{1}-arc-transitive, and so Γ isomorphic to one of the graphs in Example 5.2 (3), and so Theorem 1.1 (4) occurs.

Assume that line 4 occurs. Then $(C T)_{\alpha} \cong T_{B} \cong \mathrm{~A}_{4}$ by Lemma 2.7, and $(C T)_{\alpha}=$ $T_{\alpha}:\langle x y\rangle$ such that $\mathrm{A}_{4} \cong T_{\alpha}:\langle x\rangle \leq T$ and $C=\langle y\rangle$. If T is transitive on V then Γ is ($C T, 2$)-arc-transitive, it follows that Γ is isomorphic to a graph in Example 5.7 (1); in this case, Theorem 1.1 (6) occurs. Thus we assume further that T has two orbits on V. Then $\left|T: T_{\alpha}\right|$ is odd, and $C \times T$ has two orbits on V. Hence $G_{\alpha}=(C T)_{\alpha}$ and $X=\operatorname{PGL}(2, p)$. We may choose $\beta \in \Gamma(\alpha)$ such that $G_{\alpha \beta}=\langle x y\rangle$. Let $\theta \in X \backslash T$ with $x^{\theta}=x^{-1}$. If θ centralizes C, then $\mathbf{N}_{G}(\langle x y\rangle)=\mathbf{C}_{T}(x) \times\langle y\rangle$ contains no 2-element $g \in G$ with $\left\langle g, G_{\alpha}\right\rangle=G$, a contradiction. Thus $\langle C, \theta\rangle \cong \mathrm{D}_{6}$. Note that $\left|V_{C}\right|=\mid X$: $X_{B} \left\lvert\,=\frac{p\left(p^{2}-1\right)}{12}\right.$ is square-free and coprime to $|C|=3$. Then $\left(p^{2}-1\right)$ is not divisible by 9 and 16 ; in particular, $p \equiv \pm 3(\bmod 8)$. Let $\epsilon= \pm 1$ such that $p+\epsilon$ is divisible by 3. Set $\mathbf{C}_{T}(x)=\langle a\rangle$. Then $\mathbf{N}_{G}(\langle x y\rangle)=(\langle a\rangle \times\langle y\rangle):\langle\theta\rangle=\langle x y\rangle:(\langle a\rangle:\langle\theta\rangle) \cong \mathbb{Z}_{3}: \mathrm{D}_{p+\epsilon}$. It is easily shown that $G=\left\langle a^{i} \theta^{j}, G_{\alpha}\right\rangle$ if and only if $\left\langle a^{i}, P\right\rangle=T$ and $j=1$. Thus either Γ is isomorphic to a graph in Example 5.7 (2), or $\Gamma \cong \operatorname{Cos}\left(G, G_{\alpha}, G_{\alpha} a^{\frac{p+\epsilon}{4}} \theta G_{\alpha}\right)$ and $p+\epsilon$ is divisible by 12. The former case yields Theorem 1.1 (6). Suppose that the latter case occurs. Note that $a^{\frac{p+\epsilon}{4}}$ lies in the center of $\mathbf{N}_{T:\langle\theta\rangle}(\langle x y\rangle)=\langle a\rangle:\langle\theta\rangle$, and so $\left(G_{\alpha} a^{\frac{p+\epsilon}{4}} \theta G_{\alpha}\right)^{\theta}=G_{\alpha} a^{\frac{p+\epsilon}{4}} \theta G_{\alpha}$. Define $\rho: \alpha^{g} \mapsto \alpha^{\theta g}, g \in G$. It is easily shown that ρ is an automorphism of Γ. Moreover, ρ centralizes G. Thus $C\langle\rho\rangle$ is normal in $G=$ Aut Γ. By the choice of C, we have $\rho \in C \cong \mathbb{Z}_{3}$, and so $\rho=1$ as $\rho^{2}=1$. Then $\alpha=\alpha^{\rho}=\alpha^{\theta}$, hence $\theta \in G_{\alpha}=T_{\alpha}\langle x y\rangle$, yielding $\theta \in T_{\alpha}$, a contradiction.

Similarly, line 5 or 6 implies that Γ is isomorphic to a graph in Example 5.7 (3) or (4), respectively. Thus Theorem 1.1 (6) follows.

For one of lines $7-9$, it is easily shown that Γ is the standard double cover of Γ_{C} which is one of the odd graph \mathbf{O}_{4} and the graphs in Example 5.4 (1) and Lemma 6.4 (1)-(3), and so Theorem 1.1 (10) occurs.

Assume finally that line 10 occurs. Then $C \cong \mathbb{Z}_{6}$ or $\mathrm{D}_{6}, T_{\alpha} \cong \mathbb{Z}_{2}^{2}$, and $C T$ is transitive on V. By Lemma 2.7, $(C T)_{\alpha} \cong T_{B}$, and so Γ is $(C T, 2)$-arc-transitive. Set $T_{B}=T_{\alpha}:\langle x\rangle$ and $C=\langle y\rangle:\left\langle y_{1}\right\rangle$, where x and y are of order 3 and y_{1} is an involution. Since $(C T)_{\alpha} \not \leq T$, without loss of generality, we may assume that $(C T)_{\alpha}=T_{\alpha}:\langle x y\rangle$.

Let $C \cong \mathbb{Z}_{6}$. Then Γ is the standard double cover of a $(\langle y\rangle \times T, 2)$-arc-transitive graph Σ of odd order satisfying line 4 of the above table. Thus, by the foregoing argument, Σ is isomorphic to a graph described in Example 5.7 (1). Thus Theorem 1.1 (10) occurs. Thus we assume next that $C \cong \mathrm{D}_{6}$.

Suppose that $X=\operatorname{PGL}(2, p)$. Then $G_{\alpha} \cong X_{B} \cong \mathrm{~S}_{4}$. Take an involution $z \in X \backslash T$ such that $x^{z}=x^{-1}$ and $X_{B}=\left\langle x, z, T_{\alpha}\right\rangle \cong \mathrm{S}_{4}$. Then $X=\langle T, z\rangle \cong\left\langle T, y_{1} z\right\rangle$, and it is easily shown that one of z and $y_{1} z$ centralizes C. Thus, without loss of generality, we assume that $G=C \times X$. Then $\mathbf{N}_{G}\left((C T)_{\alpha}\right)=(C T)_{\alpha}:\left\langle y_{1}, z\right\rangle$. Since $\mathrm{A}_{4} \cong(C T)_{\alpha} \triangleleft G_{\alpha} \cong \mathrm{S}_{4}$, we conclude that $G_{\alpha}=(C T)_{\alpha}:\langle z\rangle$ or $(C T)_{\alpha}:\left\langle y_{1} z\right\rangle$. Suppose that $G_{\alpha}=(C T)_{\alpha}:\langle z\rangle$. Then $G_{\alpha \beta}=\langle x y\rangle:\langle z\rangle$ for some $\beta \in \Gamma(\alpha)$. Computation shows that $\mathbf{N}_{G}\left(G_{\alpha \beta}\right)=\langle o\rangle \times G_{\alpha \beta}$, where o is the involution in $\mathbf{C}_{X}(x) \cong \mathbb{Z}_{p+\epsilon}$. Thus, for
any $g \in \mathbf{N}_{G}\left(G_{\alpha \beta}\right)$, we have $\left\langle g, G_{\alpha}\right\rangle \leq\left\langle o, x y, z, T_{\alpha}\right\rangle \leq\langle y\rangle \times X \neq G$, which contradicts the connectedness of Γ. Therefore, $G_{\alpha}=(C T)_{\alpha}:\left\langle y_{1} z\right\rangle=\left(T_{\alpha}:\langle x y\rangle\right):\left\langle y_{1} z\right\rangle$ and $G_{\alpha \beta}=\langle x y\rangle:\left\langle y_{1} z\right\rangle$ for some $\beta \in \Gamma(\alpha)$. Computation shows that $\mathbf{N}_{G}\left(G_{\alpha \beta}\right)=\langle o\rangle \times G_{\alpha \beta}$. Suppose that $p+\epsilon$ is divisible by 4. Then it is easily shown that $o \in T$. For each $g \in \mathbf{N}_{G}\left(G_{\alpha \beta}\right)$, we have $\left\langle g, G_{\alpha}\right\rangle \leq\left\langle o, x y, y_{1} z, T_{\alpha}\right\rangle \leq(\langle y\rangle \times T):\left\langle y_{1} z\right\rangle \neq G$, a contradiction. Thus $p+\epsilon$ is not divisible by 4 , and Γ is isomorphic the graph in Example 5.7 (5), and so Theorem 1.1 (6) occurs..

Suppose that $X=T$. Then $G=C \times T$ and $T_{\alpha}:\langle x y\rangle=G_{\alpha} \cong T_{B} \cong \mathrm{~A}_{4}$. Thus $G_{\alpha \beta}=$ $\langle x y\rangle$ for some $\beta \in \Gamma(\alpha)$, and $\mathbf{N}_{G}\left(G_{\alpha \beta}\right)=\left(\mathbf{C}_{T}(x) \times\langle y\rangle\right):\left\langle b y_{1}\right\rangle=\langle x y\rangle:\left(\mathbf{C}_{T}(x):\left\langle b y_{1}\right\rangle\right)$, where $b \in T$ is an involution with $x^{b}=x^{-1}$. Set $\mathbf{C}_{T}(x)=\langle a\rangle$. Then a has order $\frac{p+\epsilon}{2}$, where $\epsilon= \pm 1$ with $p+\epsilon$ divisible by 3 . Since Γ is connected and G-arc-transitive, there is a 2-element $h \in \mathbf{N}_{G}\left(G_{\alpha \beta}\right)$ with $\beta=\alpha^{h}$ and $\left\langle h, G_{\alpha}\right\rangle=G$. Then such an element h must be an involution, and $G_{\alpha} h G_{\alpha}=G_{\alpha} a^{i} b y_{1} G_{\alpha}$ for some $0 \leq i<\frac{p+\epsilon}{2}$. Note $G=C \times T<C \times \operatorname{PGL}(2, p)$. Take an involution $z \in \operatorname{PGL}(2, p) \backslash T$ with $x^{z}=x^{-1}$ and $\left\langle T_{\alpha}, x, z\right\rangle \cong \mathrm{S}_{4}$. Then $z, b \in \mathbf{N}_{\mathrm{PGL}(2, p)}(\langle x\rangle) \cong \mathrm{D}_{2(p+\epsilon)}$. We may write $\mathbf{N}_{\mathrm{PGL}(2, p)}(\langle x\rangle)=$ $\left\langle a_{0}\right\rangle:\langle b\rangle$, where a_{0} has order $p+\epsilon$ with $a_{0}^{2}=a$. Then, since $z \notin T$, we may set $z=a_{0}^{s} b$ for some odd integer s. Replacing b by $a_{0}^{1-s} b$ if necessary, we assume further that $z=$ $a_{0} b$. Then $\left(G_{\alpha} a^{i} b y_{1} G_{\alpha}\right)^{y_{1} z}=G_{\alpha} a^{1-i} b y_{1} G_{\alpha}$. It follows that $\operatorname{Cos}\left(G, G_{\alpha}, G_{\alpha} a^{i} b y_{1} G_{\alpha}\right) \cong$ $\operatorname{Cos}\left(G, G_{\alpha}, G_{\alpha} a^{1-i} b y_{1} G_{\alpha}\right)$. Thus either Γ is isomorphic a graph in Example 5.7 (6), or $p+\epsilon$ is not divisible by 4 and $\Gamma \cong \operatorname{Cos}\left(G, G_{\alpha}, G_{\alpha} a^{\frac{p+2+\epsilon}{4}} b y_{1} G_{\alpha}\right)$. For the latter case, Γ has an automorphism $\theta: \alpha^{g} \mapsto \alpha^{g^{y_{1} z}}, g \in G$, and so $\mathrm{D}_{6} \times \operatorname{PSL}(2, p) \cong G=$ Aut $\Gamma \geq$ $\langle G, \theta\rangle=\left\langle C, T, y_{1} \theta\right\rangle \cong \mathrm{D}_{6} \times \mathrm{PGL}(2, p)$, a contradiction. Then Γ is isomorphic to a graph in Example 5.7 (6), and so Theorem 1.1 (6) occurs.

Lemma 7.2. Assume that $C \cong \mathbb{Z}_{2}$ and Γ is not 2-arc-transitive. Then one of Theorem 1.1 (7) and (10) occurs.

Proof. By the assumption, Aut $\Gamma=G=C \times X$ and the quotient graph Γ_{C} has odd order. Applying Lemmas 6.1-6.4 to the pair $\left(X, \Gamma_{C}\right)$, we conclude that $T=$ $\operatorname{soc}(X)=\operatorname{PSL}(2, p)$ and Γ_{C} is X-arc-transitive, and so Γ is arc-transitive. Moreover, $G_{\alpha} \cong X_{B} \cong \mathbb{Z}_{2}^{2}, \mathrm{D}_{8}$ or D_{16}, where B is a C-orbit and $\alpha \in B$. If $X_{B}=X_{\alpha}$ then $G_{\alpha} \leq X$; in this case, it is easily shown that Γ is isomorphic to the standard double cover of Γ_{C}, and so Theorem 1.1 (10) occurs. Thus we assume next that $X_{B} \neq X_{\alpha}$, that is, X_{B} is transitive on B. In particular, $\left|X_{B}: X_{\alpha}\right|=2$.

Since Γ_{C} has odd order, T is transitive on the vertices of Γ_{C}. It implies that $\left|X: X_{B}\right|=\left|T: T_{B}\right|$, and so $\left|X_{B}: T_{B}\right|=|X: T|$. Set $C=\langle y\rangle$.

Assume first that T_{B} is intransitive on B. Then $T_{B}=T_{\alpha}$. Since $T=\operatorname{soc}(X)=$ $\operatorname{PSL}(2, p)$, we have $X=\operatorname{PGL}(2, p)$ and $X_{\alpha}=T_{B}=T_{\alpha}$. Take an involution $z \in X_{B} \backslash T$. Then $X_{B}=T_{\alpha}:\langle z\rangle$ and z interchanges the vertices of Γ contained in B. Thus $y z \in G_{\alpha}$, and so $G_{\alpha}=T_{\alpha}:\langle y z\rangle$. Set $X_{1}=T:\langle y z\rangle$. Then $G_{\alpha}<X_{1} \cong \mathrm{PGL}(2, p)$ and $G=C \times X_{1}$. It follows that Γ is isomorphic to the standard double cover of an X_{1}-arc-transitive graph (which is isomorphic to Γ_{C}). Thus Theorem 1.1 (10) occurs.

Assume that T_{B} is transitive on B. Then $\left|X_{B}: X_{\alpha}\right|=\left|T_{B}: T_{\alpha}\right|=2$, and both X and T are transitive on V. If $X_{B} \cong \mathbb{Z}_{2}^{2}$, then $X=\operatorname{PSL}(2, p)$ and Γ is arc-regular, and hence Theorem 1.1 (7) occurs. We next deal with the cases: $X_{B} \cong \mathrm{D}_{8}$ and $X_{B} \cong \mathrm{D}_{16}$.

Case 1. Let $X_{B} \cong \mathrm{D}_{8}$. We shall show that Γ is isomorphic to a graph in Example 5.8, and thus Theorem 1.1 (7) occurs.

Let $x \in X_{B}$ be of order 4. Then x or $x y$ is contained in G_{α}. By Lemma 2.5, we conclude $\langle x\rangle$ is regular on $\Gamma_{C}(B)$. Let $\beta \in \Gamma(\alpha)$ and $B^{\prime} \in \Gamma_{C}(B)$ the C-orbit containing β. Take an involution $z \in X_{B}$ which fixes B^{\prime} set-wise. Since Γ is a cover of Γ_{C}, it is easily shown that either z or $y z$ fixes $B \cup B^{\prime}$ point-wise. Thus $G_{\alpha \beta}=\langle z\rangle$ or $\langle y z\rangle$. By the choices of x and z, we have $x^{z}=x^{-1}, X_{B}=\langle x, z\rangle$ and G_{α} is one of $\langle x\rangle: G_{\alpha \beta}$ and $\langle x y\rangle: G_{\alpha \beta}$. Recalling that $G_{\alpha} \neq X_{B}$, either $G_{\alpha \beta}=\langle z\rangle$ and $G_{\alpha}=\langle x y, z\rangle$, or $G_{\alpha \beta}=\langle y z\rangle$ and $G_{\alpha}=\langle x, y z\rangle$ or $\langle x y, y z\rangle$.

Since Γ is connected and arc-transitive, $\Gamma \cong \operatorname{Cos}\left(G, G_{\alpha}, G_{\alpha} g G_{\alpha}\right)$ for some 2-element $g \in \mathbf{N}_{X}\left(G_{\alpha \beta}\right)=\langle y\rangle \times \mathbf{C}_{X}(z)$ with $\left\langle g, G_{\alpha}\right\rangle=G$ and $g^{2} \in G_{\alpha \beta} \cong \mathbb{Z}_{2}$. Noting that $x^{2} \in \mathbf{C}_{X}(z)$ and $\mathbf{C}_{X}(z)$ is dihedral, write $\mathbf{C}_{X}(z)=\left\langle a, x^{2}\right\rangle$ with $a^{x^{2}}=a^{-1}$. Then $g=y^{j} a^{i}\left(x^{2}\right)^{k}$ for some integers i, j and k. Thus $G=\left\langle g, G_{\alpha}\right\rangle \leq\left\langle y, x, z, a^{i}\right\rangle$, yielding that $\left\langle x, z, a^{i}\right\rangle=X$. It follows that $a^{i} \neq z$. If a^{i} has order 4 then $a^{2 i}=z$ and $\left(a^{i}\right)^{x^{2}}=a^{-i}$, and so $\left(x^{2}\right)^{a^{i}}=x^{2} z \in\left\langle x^{2}, z\right\rangle$, yielding $\left\langle x^{2}, z\right\rangle \triangleleft\left\langle x, z, a^{i}\right\rangle=X$, a contradiction. Thus a^{i} is not of order 4. Let $\epsilon= \pm 1$ such that $p+\epsilon$ is divisible by 4 .

Let $X=\operatorname{PGL}(2, p)$. Then $p \equiv \pm 3(\bmod 8)$ and $\left|T_{\alpha}\right|=2$. Thus $T_{\alpha}=\left\langle x^{2}\right\rangle$. Assume that $G_{\alpha \beta}=\langle z\rangle$. Then $G_{\alpha}=\langle x y, z\rangle, z \in X \backslash T, \mathbf{C}_{X}(z) \cong \mathrm{D}_{2(p-\epsilon)}$ and $z=a^{\frac{p-\epsilon}{2}}$. Noting that $G_{\alpha} g G_{\alpha}=G_{\alpha} y^{j} a^{i} G_{\alpha}=G_{\alpha} y^{j} a^{i} z G_{\alpha}$, we conclude that Γ is isomorphic to a graph in Example 5.8 (1.i). Assume that $G_{\alpha \beta}=\langle y z\rangle$. If $G_{\alpha}=\langle x, y z\rangle$ then $z=a^{\frac{p-\epsilon}{2}}$ or $z=a^{\frac{p+\epsilon}{2}}$ and $G_{\alpha} g G_{\alpha}=G_{\alpha} y^{j} a^{i} G_{\alpha}=G_{\alpha} y^{j} a^{i} y z G_{\alpha}$, which implies that Γ is isomorphic to a graph in Example 5.8 (1.ii). Suppose that $G_{\alpha}=\langle x y, y z\rangle$. Then $x z \in X_{\alpha}$. Since $T_{\alpha}=\left\langle x^{2}\right\rangle$, we have $x z \notin T$, and so $z \in T$. It follows that Γ is isomorphic to a graph in Example 5.8 (1.iii).

Let $X=\operatorname{PSL}(2, p)$. Then $p \equiv \pm 7(\bmod 16), \mathbf{C}_{X}(z) \cong \mathrm{D}_{p+\epsilon}$ and $z=a^{\frac{p+\epsilon}{4}}$. It is easily shown that Γ is isomorphic a graph in Example 5.8 (2).

Case 2. Let $X_{B} \cong \mathrm{D}_{16}$. Then $X_{\alpha} \cong \mathrm{D}_{8}$ and $G_{\alpha} \cong \mathrm{D}_{16}$. Recall that X is transitive on V. Suppose that Γ is X-arc-transitive. Then, by Lemma 2.5, we conclude that the cyclic subgroup of X_{α} with order 4 must regular on $\Gamma(\alpha)$. It follows that $G_{\alpha} \cong \mathrm{D}_{16}$ can be written as a product of two subgroups of order 4, which is impossible. Then X_{α} is not transitive on $\Gamma(\alpha)$. Thus, by Lemma $2.5,\left|X_{\alpha \beta}\right|=4$ for $\beta \in \Gamma(\alpha)$. Hence $G_{\alpha \beta}=X_{\alpha \beta}$. Note that G_{α} contains a unique cyclic subgroup of order 4. Again by Lemma 2.5, we conclude that $G_{\alpha \beta}=X_{\alpha \beta} \cong \mathbb{Z}_{2}^{2}$. Suppose that $X=\operatorname{PGL}(2, p)$. Recalling that $\left|X_{B}: X_{\alpha}\right|=\left|T_{B}: T_{\alpha}\right|=2$, we know that T_{α} has order 4. Since T is not semiregular on V, we have $T_{\alpha} \neq T_{\alpha \beta}$. It follows that $G_{\alpha \beta}=X_{\alpha \beta} \not \leq T$. Then $X_{\alpha} \leq \mathbf{N}_{X}\left(G_{\alpha \beta}\right) \cong \mathrm{D}_{8}$, and so $\mathbf{N}_{G}\left(G_{\alpha \beta}\right)=C \times \mathbf{N}_{X}\left(G_{\alpha \beta}\right)=C \times X_{\alpha}$. Thus there is no $g \in \mathbf{N}_{G}\left(G_{\alpha \beta}\right)$ with $\left\langle g, G_{\alpha}\right\rangle=G$, a contradiction. Then $X=T=\operatorname{PSL}(2, p)$, and so $\mathbf{N}_{G}\left(G_{\alpha \beta}\right)=C \times \mathbf{N}_{X}\left(G_{\alpha \beta}\right) \cong \mathbb{Z}_{2} \times \mathrm{S}_{4}$. This implies that Γ is isomorphic a graph in Example 5.9, and so Theorem 1.1 (7) occurs.

By the foregoing argument, we assume finally that $|C|>2$ and Γ is not 2-arctransitive. Applying the argument in Section 6 to the pair $\left(\Gamma_{C}, X\right)$, we have $T=$ $\operatorname{soc}(X)=\mathrm{J}_{1}$ or $\operatorname{PSL}(2, p)$. The following lemma will fulfill the proof of Theorem 1.1.

Lemma 7.3. Assume that $|C|>2$ and Γ is not 2 -arc-transitive. Then one of Theorem 1.1 (8)-(10) occurs.

Proof. Let B be a C-orbit on V and $\alpha \in B$. Since Γ is not 2-arc-transitive, G_{α} is a 2-group. Recall Aut $\Gamma=G=C: X, G_{\alpha} \cong X_{B}$ and C semiregular on V. Since $|V|=\left|G: G_{\alpha}\right|=|C|\left|X: X_{B}\right|$ is square-free, $|C|$ and $|X|$ have no common prime divisors other than 2. Since $T=\operatorname{soc}(X) \triangleleft G$, all T-orbits on V has the same length $\left|T: T_{\alpha}\right|$. Then the number of T-orbits equals to $\frac{|V|}{\left|T: T_{\alpha}\right|}=|C| \frac{\left|X: X_{B}\right|}{\left|T: T_{\alpha}\right|}$, which is no less than 3 as $|C|>2$. Thus the quotient graph Γ_{T} is a cycle. Let N be the kernel of G acting on V_{T}. Then $T \leq N$ and G / N is isomorphic to a subgroup of Aut Γ_{T} which is a dihedral group. Moreover, G / N is transitive on both the vertices and edges of Γ_{T}. It implies that G / N is either cyclic or isomorphic to Aut Γ_{T}. Note that $N=T N_{\alpha}$, $T \leq X$ and N_{α} is a 2-group. Then $|C|$ and $|N|$ have no common prime divisors other than 2. In particular, $|C \cap N| \leq 2$. Since $C /(C \cap N) \cong N / N \leq G / N$ and $|C|$ is square-free, we conclude that C is cyclic or dihedral. We shall discuss in two cases according to the parity of $|C|$.

Case 1. Assume first that $|C|$ is odd. Then $C \cap N=1, C$ is cyclic and X contains a Sylow 2-subgroup of G. Since G_{α} is a 2-group, let $G_{\alpha}<X$ by choosing α suitably. Then $G_{\alpha} \leq X_{B}$. Thus we assume next that $G_{\alpha}=X_{B}$ as $G_{\alpha} \cong X_{B}$.

Subcase 1.1. Let Γ_{C} be X-arc-transitive. Then Γ is arc-transitive, and so G acts transitively on the arcs of Γ_{T}. Thus $G / N \cong \operatorname{Aut} \Gamma_{T}$ is dihedral. In particular, $N=T$ and $G=C X \neq C \times X$. Recalling that $T=\operatorname{soc}(X)=\mathrm{J}_{1}$ or PSL(2, $\left.p\right)$, it follows that $T=\operatorname{PSL}(2, p)$ and $X=\operatorname{PGL}(2, p)$. Set $X=T:\langle z\rangle$ for an involution $z \in X \backslash T$.

Take a 2-element $g \in G$ with $(\alpha, \beta)^{g}=(\beta, \alpha)$ for some $\beta \in \Gamma(\alpha)$. Write $g=c x z^{j}$ for some $c \in C, x \in T$ and $j=0$ or 1. Then $c c^{\left(x z^{j}\right)^{-1}}\left(x z^{j}\right)^{2}=g^{2} \in G_{\alpha \beta}<X$, yielding $c^{-1}=c^{x z^{j}}=c^{z^{j}}$ and $\left(x z^{j}\right)^{2} \in G_{\alpha \beta}$. In particular, $g=c x z, c^{z}=c^{-1}$ and $(x z)^{2} \in G_{\alpha \beta}$. Since Γ is connected, $G=\left\langle g, G_{\alpha}\right\rangle \leq\left\langle x, c z, G_{\alpha}\right\rangle \cap\left\langle c, x z, G_{\alpha}\right\rangle$. It follows that $\langle c\rangle=C$ and $G_{\alpha} \not \leq T$. Thus we may choose $z \in G_{\alpha}$.

Recalling that $G_{\alpha}=X_{B}$, we have $T_{B}=T_{\alpha}$ and $G_{\alpha}=T_{\alpha}:\langle z\rangle$. Since $C T / N=$ $C T / T \cong C$ is cyclic, $C T$ is transitive on the edges but not on the arcs of Γ_{T}, it implies that Γ is $C T$-half-transitive. Then Γ_{C} is T-half-transitive, and so, by Lemma 6.3, $T_{\alpha}=T_{B} \cong \mathbb{Z}_{2}, \mathbb{Z}_{2}^{2}$ or D_{8}. Moreover, since Γ is $C T$-half-transitive, we have $\mid T_{\alpha}$: $T_{\alpha \beta} \mid=2$. Then $\left|G_{\alpha}: T_{\alpha \beta}\right|=4$, hence $G_{\alpha \beta}=T_{\alpha \beta}$.

Suppose that $T_{\alpha} \cong \mathrm{D}_{8}$. Then $G_{\alpha \beta}=T_{\alpha \beta} \cong \mathbb{Z}_{2}^{2}$, and so $\mathrm{S}_{4} \cong \mathbf{N}_{X}\left(G_{\alpha \beta}\right)<T$. Thus $\mathbf{N}_{G}\left(G_{\alpha \beta}\right)=C \mathbf{N}_{G}\left(G_{\alpha \beta}\right)=C \times \mathbf{N}_{T}\left(T_{\alpha \beta}\right)$, and so $g \notin \mathbf{N}_{G}\left(G_{\alpha \beta}\right)$, a contradiction.

Assume that $T_{\alpha} \cong \mathbb{Z}_{2}$. Then $G_{\alpha \beta}=T_{\alpha \beta}=1$, so $x z$ is an involution, and hence $x^{z}=x^{-1}$. By $G=\left\langle g, G_{\alpha}\right\rangle=\left\langle c x z, T_{\alpha}, z\right\rangle=\left\langle c, x, T_{\alpha}, z\right\rangle$, we know $\left\langle x, T_{\alpha}\right\rangle=T$. Then Γ is isomorphic to a graph given in Example 5.10 (1), and so Theorem 1.1 (8) occurs.

Assume that $T_{\alpha} \cong \mathbb{Z}_{2}^{2}$. Then $G_{\alpha} \cong \mathrm{D}_{8}$ and $G_{\alpha \beta}=T_{\alpha \beta} \cong \mathbb{Z}_{2}$. If $p \equiv \pm 1(\bmod 8)$ then $\mathrm{S}_{4} \cong N_{X}\left(T_{\alpha}\right)<T$, and hence $z \in N_{X}\left(T_{\alpha}\right)<T$, a contradiction. Thus $p \equiv$ $\pm 3(\bmod 8)$. Set $G_{\alpha \beta}=\langle o\rangle$ for an involution $o \in T$. Then $T_{\alpha}<\mathbf{C}_{T}(o)$, and $g=$ $c x z \in \mathbf{N}_{G}\left(G_{\alpha \beta}\right)=\mathbf{C}_{G}(o)=C: \mathbf{C}_{X}(o)$, and so $x z \in \mathbf{C}_{X}(o)$. If $G_{\alpha}=\mathbf{N}_{\mathbf{C}_{X}(o)}\left(T_{\alpha}\right)$ then $z \in \mathbf{C}_{X}(o)$, so $G=\left\langle c x z, T_{\alpha}, z\right\rangle \leq C \mathbf{C}_{X}(o)$, a contradiction. Thus $z \notin \mathbf{C}_{X}(o)$, and hence Γ is isomorphic to a graph in Example 5.10 (2). Then Theorem 1.1 (8) occurs.

Subcase 1.2. Let Γ_{C} be X-half-transitive. Then, by the argument in Section 6, we know that $T=\operatorname{PSL}(2, p)$ and $G_{\alpha}=X_{B} \cong \mathbb{Z}_{2}, \mathbb{Z}_{2}^{2}$ or D_{8}. Suppose that $G \neq C \times X$. Then $X=\operatorname{PGL}(2, p)$ and there is an involution $z \in X \backslash T$ such that z dose not centralize C. It follows that $N=T$, and so $G / N \cong C:\langle z\rangle$ is not abelian. Then
G / N is dihedral, and so G acts transitively on the arcs of Γ_{T}, it implies that Γ is arc-transitive, a contradiction. Thus $G=C \times X$.

Suppose that $X_{B} \cong \mathbb{Z}_{2}^{2}$ or D_{8}. By Lemma 6.3 (2) and (3), we conclude that Aut $\Gamma_{C} \backslash X$ contains an involution θ which normalizes X and X_{B}. Define a map $\rho: V \rightarrow V ; \alpha^{c^{i} x} \mapsto \alpha^{c^{-i} x^{\theta}}, 0 \leq i \leq|C|-1, x \in X$. It is easily shown that $\rho \in$ Aut Γ but $\rho \notin G$; however, $G=$ Aut Γ, a contradiction.

Let $G_{\alpha}=X_{B} \cong \mathbb{Z}_{2}$. Take $\beta \in \Gamma(\alpha)$ and $g \in G$ with $\beta=\alpha^{g}$. Then $\Gamma \cong$ $\operatorname{Cos}\left(G, X_{B}, X_{B}\left\{g, g^{-1}\right\} X_{B}\right)$. Set $g=c x$ with $c \in C$ and $x \in X$. Since Γ is connected, we have $G=\left\langle g, X_{B}\right\rangle=\left\langle c, x, X_{B}\right\rangle=\langle c\rangle \times\left\langle x, X_{B}\right\rangle$. It implies that $C=\langle c\rangle$ and $\left\langle x, X_{B}\right\rangle=X$. Thus we get a connected X-half-transitive graph $\operatorname{Cos}\left(X, X_{B}, X_{B}\left\{x, x^{-1}\right\} X_{B}\right)$, which is of valency 4. Then Γ is constructed as in Example 5.11, and so Theorem 1.1 (9) occurs.

Case 2. Assume that $|C|$ is even. Then Γ_{C} has odd order, and so X_{B} is a Sylow 2-subgroup of X. Applying Lemmas 6.1-6.4 to the pair $\left(\Gamma_{C}, X\right)$, we conclude that $T=\operatorname{soc}(X)=\operatorname{PSL}(2, p), G_{\alpha} \cong X_{B} \cong \mathbb{Z}_{2}^{2}, \mathrm{D}_{8}$ or D_{16}, and Γ_{C} is X-arc-transitive. Then Γ is arc-transitive. Since $|C|$ is square-free, C has a unique 2^{\prime}-Hall subgroup, say L. Then L is a characteristic subgroup of C, and hence $L \triangleleft G$. Recall that C is cyclic or dihedral. We set $L=\langle c\rangle \cong \mathbb{Z}_{l}$, where $l>1$ is odd and square-free.

Subcase 2.1. Assume that $C \cong \mathbb{Z}_{2 l}$ and set $C=L \times\langle y\rangle$. Then $G=\langle y\rangle \times(L: X)$. Consider the quotient graph $\Gamma_{\langle y\rangle}$. Then $\Gamma_{\langle y\rangle}$ is $L X$-arc-transitive and, by the argument in Case 1, $\Gamma_{\langle y\rangle}$ is isomorphic to a graph in Example 5.10 (2). In particular, $X=$ $\operatorname{PGL}(2, p), p \equiv \pm 3(\bmod 8)$ and $c^{g}=c^{-1}$ for each involution $g \in X \backslash T$. If $G_{\alpha}<L X$ then it is easily shown that Γ is isomorphic to the standard double cover of $\Gamma_{\langle y\rangle}$, and then Theorem 1.1 (10) occurs. Thus we assume next that $G_{\alpha} \not \leq L X$.

Let B_{1} be the $\langle y\rangle$-orbit containing α. Then $G_{\alpha} \cong(L X)_{\mathrm{B}_{1}}$ by Lemma 2.7, and $(L X)_{\mathrm{B}_{1}}$ is a Sylow 2-subgroup of $L X$, and so $G_{\alpha} \cong(L X)_{\mathrm{B}_{1}} \cong \mathrm{D}_{8}$. Since X contains a Sylow 2-subgroup of $L X$, we may assume that $(L X)_{\mathrm{B}_{1}}<X$. Thus $(L X)_{\mathrm{B}_{1}}=X_{B_{1}} \neq$ G_{α}. Let $x \in X_{B_{1}}$ be of order 4. Then x or $x y$ is contained in G_{α}. By Lemma 2.5, $X_{B_{1}}$ is faithful on $\Gamma_{\langle y\rangle}\left(B_{1}\right)$. Thus $\langle x\rangle$ is regular on $\Gamma_{\langle y\rangle}\left(B_{1}\right)$. Let $B_{1}^{\prime} \in \Gamma_{\langle y\rangle}\left(B_{1}\right)$, and let $z \in X_{B_{1}}$ be an involution which fixes B_{1}^{\prime} set-wise. Since Γ is a cover of $\Gamma_{\langle y\rangle}$, it is easily shown that either z or $y z$ fixes $B_{1} \cup B_{1}^{\prime}$ point-wise. Let $\beta \in B_{1}^{\prime} \cap \Gamma(\alpha)$. Then $G_{\alpha \beta}=\langle z\rangle$ or $\langle y z\rangle$. By the choices of x and z, we have $x^{z}=x^{-1}, X_{B_{1}}=\langle x, z\rangle$ and $G_{\alpha}=\langle x\rangle: G_{\alpha \beta}$ or $\langle x y\rangle: G_{\alpha \beta}$. It follows that either $G_{\alpha \beta}=\langle z\rangle$ and $G_{\alpha}=\langle x y, z\rangle$, or $G_{\alpha \beta}=\langle y z\rangle$ and $G_{\alpha}=\langle x, y z\rangle$ or $\langle x y, y z\rangle$.

Suppose that $z \in X \backslash T$. Then $c^{z}=c^{-1}$. Computation shows that $\mathbf{N}_{G}\left(G_{\alpha \beta}\right)=$ $\mathbf{C}_{G}(z)=\langle y\rangle \times \mathbf{C}_{X}(z)$. Then there is no $g \in \mathbf{N}_{G}\left(G_{\alpha \beta}\right)$ with $\left\langle g, G_{\alpha}\right\rangle=G$, which contradicts that Γ is a connected G-arc-transitive graph. Thus $z \in T$.

If $G_{\alpha \beta}=\langle y z\rangle$ then, writing Γ as a coset graph, Γ is constructed as in Example 5.12, and so Theorem 1.1 (8) occurs. Assume that $G_{\alpha \beta}=\langle z\rangle$ and $G_{\alpha}=\langle x y, z\rangle$. Set $X_{1}=T:\langle x y z\rangle$. Then $X_{1} \cong \operatorname{PGL}(2, p), G=\langle y\rangle \times\left(L X_{1}\right)$ and $G_{\alpha}<X_{1}<L X_{1}$. It follows that Γ is the standard double cover of an $L X_{1}$-arc-transitive graph, which is isomorphic to $\Gamma_{\langle y\rangle}$. Thus Theorem 1.1 (10) occurs.

Subcase 2.2. Assume that $C \cong \mathrm{D}_{2 l}$. We claim that $G=C \times X_{1}$ for a subgroup X_{1} of G. This is clear if $X=T$. Assume that $X=\operatorname{PGL}(2, p)$. Recall that N is the kernel of G acting on T-orbits. Since C is dihedral and $|C \cap N| \leq 2$, we have $C \cap N=1$. If $G=C N$ then the claim hold by taking $X_{1}=N$. Suppose that $G \neq C N$. Then
$N=T$ and $G=(C \times T):\langle z\rangle$ for an arbitrary involution $z \in X \backslash T$. It follows that $G / N=G / T \cong C:\langle z\rangle<G$. Since Γ is arc-transitive, Γ_{T} is G / N-arc-transitive. Then G / N is dihedral, and so either $c^{z}=c^{-1}$ or z lies in the center of $C\langle z\rangle$. The latter case yields $G=C \times X$. Suppose that $c^{z}=c^{-1}$. Note that the set of involutions in C is invariant under the conjugation of z. We may take an involution $y \in C$ with $y^{z}=y$. Then $y z$ centralizes C, and our claim holds by taking $X_{1}=T:\langle y z\rangle$.

Without loss of generality, we assume that $G=C \times X$. Then $G_{B}=C \times X_{B}$. Recall that $|C|$ and $|X|$ has no prime divisors in common other that 2. Considering the action of X_{B} on B, we conclude that either X_{B} fixes B point-wise, or $\left|X_{B}: X_{\alpha}\right|=2$ for $\alpha \in B$. The former case implies that $X_{B} \leq G_{\alpha}$, and so $G_{\alpha}=X_{B}$ as $G_{\alpha} \cong X_{B}$; in this case, there is no a 2-element g with $\left\langle g, G_{\alpha}\right\rangle=G$, a contradiction. Thus $\left|X_{B}: X_{\alpha}\right|=2$, and so $\left|G_{\alpha}: X_{\alpha}\right|=2$; in this case $L X$ is transitive on V. Clearly, there is no 2-element g in $L X$ with $\left\langle g, X_{\alpha}\right\rangle=L X$. It follows that Γ is not $L X$-arctransitive, and so X_{α} is intransitive on $\Gamma(\alpha)$. By Lemmas 2.4 and $2.5,\left|X_{\alpha}: X_{\alpha \beta}\right|=2$ for $\beta \in \Gamma(\alpha)$. Since Γ is arc-transitive, $\left|G_{\alpha}: G_{\alpha \beta}\right|=4$. It implies that $G_{\alpha \beta}=X_{\alpha \beta}$, and so Γ is isomorphic to a graph constructed in Example 5.13. Theorem 1.1 (9) occurs. This completes the proof.

References

[1] B. Alspach and M.Y. Xu, $\frac{1}{2}$-transitive graphs of order 3p, J. Algebraic Combin. 3 (1994), 347355.
[2] M. Aschbacher, Finite group theory, Cambridge University Press, Cambridge, 1993.
[3] P.J. Cameron, G.R Omidi and B. Tayfeh-Rezaie, 3-Design from $\operatorname{PGL}(2, q)$, The Electronic Journal of Combinatorics 13 (2006), \#R50.
[4] C.Y. Chao, On the classification of symmetric graphs with a prime number of vertices, Trans. Amer. Math. Soc. 158 (1971), 247-256.
[5] Y. Cheng and J. Oxley, On weakly symmetric graphs of order twice a prime, J. Combin. Theory Ser. B 42 (1987), 196-211.
[6] M.D. Conder, C.H Li and C.E. Praeger, On the Weiss conjucture for finite locally primitive graphs, Pro. Edinburgh Math. Soc. 43 (2000), 129-138.
[7] J.H. Conway, R.T. Curtis, S.P. Noton, R.A. Parker and R.A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
[8] J.D. Dixon and B. Mortimer, Permutation Groups, Springer-Verlag, New York, 1996.
[9] A. Hassani, L.R. Nochefranca and C.E. Praeger, Two-arc transitive graphs admitting a twodimensional projective linear group, J. Group Theory 2 (1999), 335-353.
[10] B. Huppert, Endliche Gruppen I, Springer-Verlag, 1967.
[11] C.H. Li, The finite vertex-primitive and vertex-biprimitive s-transitive graphs for $s \geq 4$, Trans. Amer. Math. Soc. 353 (2001) 3511-3529.
[12] C.H. Li, Finite s-arc transitive Cayley graphs and flag-transitive projective planes, Proc. Amer. Math. Soc. 133 (2004), 31-41.
[13] C.H. Li, Z.P. Lu and D. Marušič, On primitive permutation groups with small suborbits and their orbital graphs, J. Algebra 279 (2004), 749-770.
[14] C. H. Li, Z. Liu and Z. P. Lu, Edge-transitive tetravalent Cayley graphs of square-free order, Discrete Math. 312 (2012), 1952-1967.
[15] C. H. Li, Z. P. Lu and G. X. Wang, Vertex-transitive cubic graphs of square-free order, J. Graph Theory 75 (2014), 1-19.
[16] C.H. Li, Z.P. Lu and G.X. Wang, On edge-transitive graphs of square-free order, submitted.
[17] D. Marušič and P. Potočnik, Classifying 2-arc-transitive graphs of order a product of two primes, Discrete Math. 244 (2002), 331C338.
[18] C.E. Praeger, R.J. Wang and M.Y. Xu, Symmetric graphs of order a product of two distinct primes, J. Combin. Theory Ser. B 58 (1993), 299-318.
[19] C.E. Praeger and M.Y. Xu, Vertex-primitive graphs of order a product of two distinct primes, J. Combin. Theory Ser. B 59 (1993), 245-266.
[20] M. Suzuki, On a class of doubly transitive groups, Ann. Math.(2) 75 (1962), 105-145.
[21] R.J. Wang, Half-transitive graphs of order a product of two distinct primes, Comm.Alg. 22 (1994), 915-927.
[22] R.J. Wang and M.Y. Xu, A classification of symmetric graphs of order 3p, J. Combin. Theory Ser. B58 (1993), 197-216.
[23] R. M. Weiss, s-transitive graphs, Algebraic Methods in Graph Theory 2 (1981), 827-847.
C. H. Li, School of Mathematics and Statistics, The University of Western Australia, Crawley, WA 6009, Australia

E-mail address: li@maths.uwa.edu.au
Z. P. Lu, Center for Combinatorics, LPMC-TJKLC, Nankai University, Tianjin 300071 , P. R. China

E-mail address: lu@nankai.edu.cn
G. X. Wang, Department of Applied Mathematics, Anhui University of Technology, MaAnshan 243002, P. R. China

E-mail address: gxwang@ahut.edu.cn

