
ON EDGE-TRANSITIVE TETRAVALENT GRAPHS
OF SQUARE-FREE ORDER

CAI HENG LI, ZAI PING LU, AND GAI XIA WANG

Abstract. In this paper, a classification is given for tetravalent graphs of square-
free order which are vertex-transitive and edge-transitive. It is shown that such
graphs are either Cayley graphs or covers of some graphs arisen from simple groups
A7, J1 and PSL(2, p).

1. introduction

We denote by Γ = (V,E) a simple graph with vertex set V and edge set E. Then
the cardinality |V | is called the order of Γ . A graph Γ = (V,E) is called vertex-

transitive or edge-transitive if the automorphism group AutΓ acts transitively on V
and E, respectively. Recall that an arc in a graph Γ is an ordered pair of adjacent
vertices. Then a graph Γ is called arc-transitive if AutΓ acts transitively on the set
of arcs of Γ . A graph Γ is called edge-regular or arc-regular if AutΓ acts regularly on
the edge set or arc set of Γ , respectively.

This paper is one of a series of articles devoted to studying the class of edge-
transitive graphs of square-free order. The study of such graph has a long history.
For example, Chao [4] gave a classification of edge-transitive graphs of prime order
and proved that those resulting graphs are also arc-transitive; Cheng and Oxley
[5] showed that every vertex- and edge-transitive graphs of order twice a prime is
isomorphic to one of a list of well-defined arc-transitive graphs. Thereafter, a lot of
interesting results have appeared in this topic, especially, for those graphs of order
being a product of two primes, see for instance [1, 17, 18, 19, 21, 22].

In [16] we gave a characterization for the class of edge-transitive graphs of square-
free order, which says that the basic members in this class consist of a few special
families of graphs and a finite number of sporadic graphs. This motivate us to classify
edge-transitive graphs of square-free order and of small valency. In a recent paper [15],
we classified cubic arc-transitive graphs of square-free order. In the present paper, we
shall give a classification of connected tetravalent graphs of square-free order which
are vertex-transitive and edge-transitive.

We fist explain some notation and concepts on groups and graphs. For two groups
A and B, denote by A×B, A.B and A:B the direct product, an extension and a
semi-direct product of A by B, respectively; for an positive integer m, denote by Zm

and D2m the cyclic group of order m and the dihedral group of order 2m, respectively.
For a finite group X , the socle of X , denoted by soc(X), is the subgroup generated
by all minimal normal subgroups of X . A group X is said to be almost simple if its
socle soc(X) is a non-abelian simple group.

The work was supported partially by the NSFC..
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2 LI, LU, AND WANG

Let Γ = (V,E) be a graph. Then Γ is called vertex-primitive if AutΓ is a primitive
permutation group on V . The standard double cover of the graph Γ is defined to be
the bipartite graph with vertex set V×Z2 such that two vertices (α, 0) and (β, 1) are
adjacent if and only if α and β are adjacent in Γ .

Our main result is stated as follows.

Theorem 1.1. Let Γ = (V,E) be a connected tetravalent graph of square-free order.

Assume that Γ is both vertex-transitive and edge-transitive. Then one of the following

statements holds.

(1) Γ is a Cayley graph, that is, AutΓ contains a regular subgroup.

(2) AutΓ ∼= Zm:(Zn×Z4) with m > 1, n > 1 and |V | = 2mn, and Γ is constructed

as in Construction 3.1.
(3) AutΓ = S7, and Γ is isomorphic either the odd graph O4 of valency 4 or the

graph in Example 5.1.
(4) AutΓ = J1 or Z3×J1, and Γ is isomorphic to a graph given in Example 5.2.
(5) AutΓ = PSL(2, p) or PGL(2, p) for a prime p ≥ 5, and

(i) p ≡ ±3 (mod 8), and Γ is edge-regular or arc-regular; or

(ii) Γ is isomorphic to a graph given in Examples 5.3, 5.4, 5.5 and 5.6; or
(iii) Γ is vertex-primitive.

(6) AutΓ = Z2×PSL(2, p), Z3:PGL(2, p), D6×PSL(2, p) or D6×PGL(2, p) for a

prime p ≥ 5, and Γ is isomorphic to a graph given in Example 5.7.
(7) AutΓ = Z2×PSL(2, p) or Z2×PGL(2, p) for a prime p ≥ 5, and Γ is either

arc-regular or isomorphic to a graph give in Examples 5.8 and 5.9.
(8) AutΓ = Zl:PGL(2, p) or Z2l:PGL(2, p) for a prime p ≥ 5 and a square-free

integer l > 1 coprime to p(p2 − 1), and Γ is isomorphic to a graph given in

Example 5.10 or 5.12, respectively.
(9) AutΓ = Zl×PSL(2, p) or D2l×PSL(2, p) for a prime p ≥ 5 and a square-free

integer l > 1 coprime to p(p2 − 1), and Γ is isomorphic to a graph given in

Example 5.11 or 5.13, respectively..
(10) Γ is isomorphic the standard double cover of a graph which is of odd order

and described as in one of parts (3), (5), (6) and (8).

Remark on Theorem 1.1. The graphs satisfying (1) were classified in [14], and the
graphs in item (iii) of part (5) can be read out from [13].

2. Preliminaries

Let Γ = (V,E) be a graph and G ≤ AutΓ . The graph Γ is said to be G-vertex-

transitive or G-edge-transitive if G acts transitively on V or E, respectively. Let
α ∈ V . Denote by Gα and Γ (α) the stabilizer of α in G and the set of the neighbors
of α in Γ , respectively. For β ∈ Γ (α), denote by Gαβ the arc-stabilizer Gα ∩ Gβ of
(α, β). Suppose that Γ is both G-vertex-transitive and G-edge-transitive. Then

(i) Gα is transitive on Γ (α), so |Γ (α)| = |Gα : Gαβ|; or
(ii) Gα has exactly two orbits on Γ (α), and |Γ (α)| = 2|Gα : Gαβ |.

In these two cases, Γ is called G-arc-transitive and G-half-transitive, respectively. If Γ
is G-arc-transitive, then there exists g ∈ G \Gα such that (α, β)g = (β, α); obviously,
this g can be chosen to be a 2-element in NG(Gαβ) with g2 ∈ Gαβ. Set H = Gα.
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EDGE-TRANSITIVE GRAPHS 3

[G : H ] := {Hx | x ∈ G}. The coset graph Cos(G,H,HgH) is defined on [G : H ] with
edge set {{Hx,Hy} | yx−1 ∈ H{g, g−1}H}, where g ∈ G \H is such that αg ∈ Γ (α).
Then the group G can be viewed as a group of automorphisms of Cos(G,H,HgH)
acting on [G : H ] by the right multiplication, and the mapping αx 7→ Hx, ∀x ∈ G is
an isomorphism from Γ to Cos(G,H,HgH).

Lemma 2.1. Let Γ = Cos(G,H,HgH) be a coset graph. Then

(i) Γ is G-vertex-transitive and G-edge-transitive, and Γ is connected if and only

if 〈H, g〉 = G;

(ii) Γ is G-arc-transitive if and only if H{g, g−1}H = HxH for some 2-element

x ∈ NG(H ∩Hg) \H with x2 ∈ H ∩Hg.

Let Γ = (V,E) be a graph and G ≤ AutΓ . Note that, for α ∈ V , the stabilizer Gα

fixes Γ (α) set-wise. Then Gα induces a permutation group G
Γ (α)
α (on Γ (α)). Let G

[1]
α

be the kernel of this action. Then G
Γ (α)
α

∼= Gα/G
[1]
α .

Let N be a normal subgroup of G, denoted by N ✂ G. Then Nα is a normal
subgroup of Gα. One extreme case is that Nα acts transitively on Γ (α). It is easily
shown that the following lemma holds for connected arc-transitive graphs.

Lemma 2.2. Let Γ = (V,E) be a connected G-vertex-transitive graph, α ∈ V and

N✂G ≤ AutΓ. If Nα is transitive on Γ (α), then Γ is N-edge-transitive; in particular,

either Γ is N-arc-transitive or N has exactly two orbits on V .

For the case where N is a semiregular on V with two orbits, by [12, Lemma 2.4],
we have the following result.

Lemma 2.3. Let Γ = (V,E) be a connected bipartite graph, α ∈ V and N ✂ G ≤

AutΓ. If N is regular on both the bipartition subsets of Γ , then Gα
∼= G

Γ (α)
α .

By [6, Lemma 2.1], we have the following result.

Lemma 2.4. Let Γ = (V,E) be a connected G-vertex-transitive graph, α ∈ V and

N ✂G ≤ AutΓ. Then each prime divisor of |Nα| divides |N
Γ (α)
α | and, for β ∈ Γ (α),

each prime divisor of |Nαβ| is less than |Γ (α)|. In particular, N
Γ (α)
α 6= 1 if Nα 6= 1.

Lemma 2.5. Let Γ = (V,E) be a connected G-vertex-transitive graph, α ∈ V and

N ✂G ≤ AutΓ. If Γ is G-edge-transitive then |Nα : Nαβ| is a constant, where {α, β}

runs over E. If N
Γ (α)
α is semiregular on Γ (α), then Nα

∼= N
Γ (α)
α .

Proof. The first part of this lemma follows from [14, Lemma 3.1].

Assume that N
Γ (α)
α is semiregular on Γ (α). Let β ∈ Γ (α). Then β = αx for

some x ∈ G. Since N ✁ G, it is easily shown that Nβ = Nx
α and N

[1]
β = (N

[1]
α )x.

It follows that N
Γ (β)
β and N

Γ (α)
α are permutation isomorphic. In particular, N

Γ (α)
α is

semiregular on Γ (α) if and only if N
Γ (β)
β is semiregular on Γ (β), which yields that

N
[1]
α acts trivially on Γ (β), and so N

[1]
α = N

[1]
β . Since Γ is connected, N

[1]
α fixes each

vertex of Γ , hence N
[1]
α = 1. Then the lemma follows. �

Let Γ = (V,E) be a graph. For a positive integer s, an s-arc in Γ is a sequence
of s + 1 vertices α0, α1, . . . , αs such that αi is adjacent to αi+1 and αi 6= αi+2. For
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4 LI, LU, AND WANG

G ≤ AutΓ , the graph Γ is said to be (G, s)-arc-transitive if G acts transitively on V
and on the set of s-arcs of Γ , and (G, s)-transitive if further G is intransitive on the
set of (s+ 1)-arcs of Γ . The vertex stabilizer for s-arc-transitive graphs of valency 4
is known, refer to [23].

Lemma 2.6. Let Γ = (V,E) be a connected (G, s)-transitive graph of valency 4.
Then, for α ∈ V , the stabilizer Xα and s are listed in the following table.

s 2 3 4 7
Gα A4, S4 Z3×A4, (Z3×A4).Z2, S3×S4 Z

2
3:GL(2, 3) [35]:GL(2, 3)

We end this section by a useful observation on permutation groups.

Lemma 2.7. Let G = N :X be a permutation group on V , and let B be an N-orbit.

Assume that N is regular on B. Then (NY )α ∼= YB for α ∈ B and Y ≤ X.

Proof. Let U be the NY -orbit containing B. Then {Bg | g ∈ NY } is anNY -invariant
partition of U . It follows that (NY )α ≤ (NY )B, and so (NY )α = ((NY )B)α. Since
N is transitive on B, we have (NY )B = N(NY )α. Then N(NY )α = (NY )B =
NY ∩GB = N(Y ∩GB) = NYB. Thus (NY )α ∼= N(NY )α/N = NYB/N ∼= YB. �

3. The soluble case

In this section, we treat vertex-transitive and edge-transitive tetravalent graphs
which have soluble automorphism groups. We first construct a family of such graphs.

Construction 3.1. Let F = 〈a〉 ∼= Zm with m odd and square-free. Assume that
Aut(F ) has an element y of order 4. Let b ∈ Aut(F ) be of order n with n odd square-
free and coprime to m. Consider the semi-direct product G = 〈a〉:(〈b〉×〈y〉). Let
H = 〈y2〉, and g = aby. If 〈H, g〉 = 〈aby, y2〉 = G, then Γ = Cos(G,H,HgH) is a
connected vertex-transitive and edge-transitive graph of valency 4.

Lemma 3.2. Let Γ = (V,E) be as in Construction 3.1. If n = 1, then AutΓ contains

two subgroups isomorphic to D2m and D2m:Z4 which acts regularly on the vertices and

arcs of Γ , respectively.

Proof. Assume that n = 1 and ay = ar. Then r is coprime to m, r4 ≡ 1 (mod m) and
r2 6≡ 1 (mod m). Note that Γ is bipartite and 〈a〉 is semiragular on each of the biparts
of Γ . Then V = {Hai | 0 ≤ i ≤ m− 1} ∪ {Haiy | 0 ≤ i ≤ l − 1}, and H{g, g−1}H =
{ysat | s = 1,−1; t = −1, r,−r2, r3}. Note that Hai and Hajy are adjacent if and
only if yarj−i = (ajy)a−i ∈ H{g, g−1}H . Then Hai and Hajy are adjacent if and only
if rj−i, modulom, lies in {−1, r,−r2, r3}. Since rj−i ≡ r(−r3)i−(−r)j (mod m), we
know that Hai and Hajy are adjacent if and only if Ha−rj and Ha−r3iy are adjacent
in Γ . Define a map τ : Hai 7→ Ha−r3iy, Hajy 7→ Ha−rj. Then τ ∈ AutΓ by the
above argument. It is easily shown τ is an involution and that R := 〈a, τ〉 is transitive
on V . Computation shows that (Hai)τaτ = Hai−1 and (Haiy)τaτ = Haiya−1, and so
τaτ = a−1 and 〈a, τ〉 ∼= D2m. Then R is regular on V . Further computation indicates
that τy = yτ . Thus R:〈τy〉 ∼= D2m:Z4 is regular on the arcs of Γ . �
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EDGE-TRANSITIVE GRAPHS 5

Theorem 3.3. Let Γ = (V,E) be a connected tetravalent graph of square-free order,

and G ≤ AutΓ. Assume that G is soluble and Γ is both G-vertex-transitive and

G-edge-transitive. Then one of the following holds.

(1) AutΓ contains a regular subgroup;

(2) G ∼= Zm:(Zn×Z4) with m, n > 1 and |V | = 2mn, G is regular on E and Γ

described as in Construction 3.1.

Proof. For a prime divisor p of |G|, denote by Op(G) the largest normal p-subgroup
of G. By Lemma 2.5, |(Op(G))α : (Op(G))αβ| is a divisor of 4, where {α, β} ∈ E. It
follows that either p = 2 or Op(G) is semiregular on V . Thus |Op(G)| ≤ p if p ≥ 3.

Suppose that N := O2(G) has order divisible by 4. Then N is not semiregular on
V , and it follows that, for any two N -orbits B and C, the subgraph [B ∪ C] induced
by B ∪ C either contains no edge or is isomorphic to K2,2. It follows that Γ is the
lexicographic product of the empty graph 2K1 by an n-cycle, where n is the number
of N -orbits. It is easily shown that AutΓ ∼= Z

n
2 :D2n contains two regular subgroups

isomorphic to Z2n and D2n, respectively. So part (1) occurs.
Now assume that Op(G) = 1 or Zp for each prime divisor p of |G|. Let F be the

Fitting subgroup of G, the largest nilpotent normal subgroup of G. Then F 6= 1 as G
is soluble, and F is cyclic. It follows that F is semiregular on V . Since G is soluble,
the centralizer CG(F ) ≤ F , and so CG(F ) = F . Then G/F = NG(F )/CG(F ) is
isomorphic to a subgroup of Aut(F ), which is abelian. Thus G/F is abelian. For a
vertex α, we have Gα

∼= FGα/F ≤ G/F ; in particular, Gα is an abelian 2-group.
Assume that F has l orbits on V . Then |G| = l|F ||Gα|. If l is odd, then G contains

a normal regular subgroup F :Zl, so part (1) occurs. Thus we assume further that |F |
is odd and l = 2n is even. Since |G : Gα| = 2n|F | is square-free, |F | is coprime to
2n|Gα|. Since G is soluble, G has a Hall subgroup H of order 2n|Gα|. Then G = F :H ,
and H is abelian as H ∼= G/F . Thus H = N×P , where N ∼= Zn and P is a Sylow
2-subgroup of G with Gα ≤ P and |P : Gα| = 2. Then F :N is a normal semiregular
subgroup of G, and it has exactly two orbits on V . Since G is transitive on E, we
know that Γ is a bipartite graph with two parts being the FN -orbits on V . Thus By
Lemma 2.3, Gα is faithful on Γ (α), and so Gα

∼= Z2, Z4 or Z2
2.

Suppose that Γ is G-arc-transitive. Then Gαβ = 1 for β ∈ Γ (α). Let g ∈ G with
(α, β)g = (β, α). Then g2 ∈ Gαβ = 1. Thus G has a regular subgroup (FN):〈g〉, so
part (1) of Theorem 1.1 occurs.

Suppose next that Γ is G-half-transitive. It follows from Lemma 2.5 that Gα 6∼= Z4.
Then Gα

∼= Z2 or Z
2
2. Recall that P is a Sylow 2-subgroup of G with Gα ≤ P and

|P : Gα| = 2. If P ∼= Z
i
2 for i = 2 or 3, then G has a regular subgroup (FN):〈g〉 for

some involution g ∈ P . Thus we assume further that P ∼= Z4 or Z2×Z4.
Set F ∼= Zm. Then G = FNP ∼= Zm:(Zn×P ). Write Γ = Cos(G,Gα{g, g

−1}Gα),
where g = aby for a ∈ F , b ∈ N and y ∈ P . Then GαgGα 6= Gαg

−1Gα, |G : (Gα ∩
Gg

α)| = 2 and, since Γ is connected, G = 〈g,Gα〉 ≤ 〈a〉:〈b, y, Gα〉 = 〈a〉:(〈b〉×〈y,Gα〉).
It follows that F = 〈a〉, N = 〈b〉 and y has order 4. Set Gα∩Gg

α = 〈x〉. Then x2 = 1.

Note that Gα ∩ Gg
α = Gα ∩ Gaby

α = (Gα ∩ Ga
α)

by = Gα ∩ Ga
α. Then 〈x, xa−1

〉 ≤ Gα.

If x 6= xa−1

then Gα = 〈x, xa−1

〉 ∼= Z
2
2, but 1 6= xxa−1

= axa−1 ∈ F , a contradiction.
Thus x ∈ CG(a

−1) = CG(F ) = F . It implies that x = 1, so Gα ∩ Gg
α = 1. Then

Gα
∼= Z2, yielding |P | = 4 and P ∼= Z4. Thus Γ is described as in Construction 3.1.

Then, by Lemma 3.2, one of (1) and (2) of this theorem follows. �
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4. Insoluble automorphism groups

In this section, we assume that Γ = (V,E) is a connected tetravalent graph of
square-free order, and that a subgroup G ≤ AutΓ acts transitively on V .

Let N✁G be an intransitive normal subgroup. Consider the normal quotient graph

ΓN , which is the graph defined on VN = {αN | α ∈ V } with edge set {{αN , βN} |
{α, β} ∈ E}. Then ΓN has valency 1, 2 or 4. If Γ and ΓN has the same valency, then
it is easily shown that N is a semiregular subgroup of G and itself is the kernel of G
acting on VN ; in this case, Γ is called a normal cover of ΓN with respect to G and N .

Lemma 4.1. Let N be an intransitive normal subgroup of G. Assume that Γ is a

normal cover of ΓN . Then G = N :X for some X ≤ G with N ∩X = 1.

Proof. The lemma is trivial for N = 1. Thus we assume that N 6= 1.
Since Γ is a normal cover of ΓN and Γ is connected, N is semiregular on V ;

in particular, |N | is a divisor of |V |, so |N | is square-free. Let p be the largest
prime divisor of |N |. Then N has a unique Sylow p-subgroup, say P . Thus P is a
characteristic subgroup of N , and so P ✁G.

Note that each N -orbits on V is the union of some P -orbits. Since Γ and ΓN

has the same valency, it is easily shown that Γ is a normal cover of ΓP and that
ΓP is a normal cover of (ΓP )N/P

∼= ΓN . Then, by induction, we may assume that
G/P = (N/P ):(Y/P ) for a subgroup Y ≤ G with Y ∩N = P .

Clearly, Y acts transitively on VP , and so Y is transitive on V . Consider the action
of Y on VP . Then, for B ∈ VP , we have |VP | = |Y : YB|. Noting that P is semiregular,

each P -orbit on V has length p. Thus |V |
p

= |VP | = |Y : YB| is coprime to p as |V | is

square-free. Then YB contains a Sylow p-subgroup of Y . Since P ≤ YB is transitive on
B, we have YB = PYα = P :Yα for α ∈ B. It follows that YB and hence Y has a Sylow
p-subgroup P :Q, where Q is a Sylow p-subgroup of Yα. Then, by Gaschtz’ Theorem
(see [2, 10.4]), the extension Y = P.(Y/P ) splits over P . Thus Y = P :X for X < Y
with X ∩ P = 1. Then G = NY = NX and X ∩ N = X ∩ (Y ∩ N) = X ∩ P = 1,
and the result follows. �

Lemma 4.2. Assume that Γ is G-vertex-transitive and G-edge-transitive. Let C be

the largest soluble normal subgroup of G. Then G = C:X for X ≤ G, and either

C = G or X is almost simple with socle centralizing C.

Proof. Assume C 6= G. Let K be the kernel of G acting on the set of C-orbits on
V . Let B be a C-orbit and α ∈ B. Then K = C:Kα. Since Kα ≤ Gα is soluble,
K is soluble. Thus K = C by the choice of C, and so G/C = K/C is insoluble,
hence AutΓC is insoluble. Then ΓC is of valency 4, so Γ is a normal cover of ΓC . By
Lemma 4.1, G = C:X for some X ≤ G. Identify X with a subgroup of AutΓC . Then
ΓC is X-vertex-transitive and X-edge-transitive.

By the choice of C, each minimal normal subgroup of X ∼= G/C is a direct product
of isomorphic nonabelian simple groups. Then, since ΓC has square-free order, the
order of X is not divisible by p2 for any prime p > 3. It implies that each minimal
normal subgroup of X is nonabelian simple. Suppose that X has two distinct minimal
normal subgroup, say N1 and N2. Then N1N2 = N1×N2. For i = 1, 2, since Ni is
nonabelian simple, Ni is not semiregular on V , either the quotient graph (ΓC)Ni

is
a cycle or Ni has at most two orbits on VC . It follows that N2 fixes set-wise each
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EDGE-TRANSITIVE GRAPHS 7

N1-orbit on VC . Thus X∆ ≥ N1×N2, where ∆ is an N1-orbit on VC containing
B. It implies that |XB| is divisible by |N2|. Thus XB is not a {2, 3}-group, which
contradicts that ΓC is of valency 4. Therefore, X is almost simple.

Since C has square-free order, Aut(C) is soluble. Then the quotient G/CG(C) =
NG(C)/CG(C) is soluble as it is isomorphic to a subgroup of Aut(C). It follows that
soc(X) ≤ CG(C), and then our lemma follows. �

We next determine G when G is almost simple. Let α ∈ V . Then Gα is a {2, 3}-
group by Lemma 2.4. Since |V | = |G : Gα| is square-free, |G| is not divisible by p2

for any prime p ≥ 5. Moreover, either

(1) Gα is a 2-group, and so |G| is not divisible by 9; or
(2) Γ is (G, 2)-arc-transitive and, by Lemma 2.6, |G| is not divisible by 26.

In particular, |G| is not divisible by 2632 and 2238.

Lemma 4.3. Assume that Γ is G-vertex-transitive and G-edge-transitive, and that G
is an almost simple group. Then soc(G) is one of the following simple groups: A5, A6,

A7, M11, J1, PSL(2, p), PSL(2, 2f), PSL(2, 32), PSL(2, 33), PSL(2, 34), PSL(2, 35),
PSL(2, 36), PSL(2, 37), PSL(3, 2), PSL(3, 3) and Sz(2, 2f), where p ≥ 5 is a prime.

Proof. Let T = soc(G). If T = An, then n < 8; otherwise 25 or 2632 divides |T |.
Similarly, if T is a sporadic simple group then T = M11 or J1.

To finish the proof, we assume that T 6= PSL(2, p) and T is a simple group of Lie
type defined over GF(pf ), where p is a prime. Then p ∈ {2, 3} as p2 divides |T |.

Assume that p = 3. Since |G| is not divisible by 2238, we conclude that T is one
of PSL(2, 3f) (with f ≤ 7), PSL(3, 3), PSU(3, 3), PSL(3, 9), PSL(4, 3), PSU(3, 9),
PSU(4, 3), PSp(4, 3), Ω(5, 3), PΩ+(6, 3), PΩ−(6, 3) and G2(3). The last 9 groups are
excluded as their orders are divided by 25 or 2632. By the Atlas [7], PSU(3, 3) has no
a {2, 3}-subgroup of square-free index. Thus T = PSL(2, 3f) or PSL(3, 3).

Now let p = 2. Then T is one of PSL(2, 2f), PSL(3, 2f), PSU(3, 2f) and Sz(2, 2f);
otherwise, |T | has a divisor 26(2f + 1)2, which implies that |T | is divisible by 26r2,

where r ≥ 3 is a prime. Assume that T = PSL(3, 2f). Then |T | has a divisor (2f−1)2

(3,2f−1)
,

yielding 2f − 1 = 3e for some integer e. It follows that f = 1 or 2. The group
PSL(3, 4) is excluded as its order has a divisor 2632. Thus T = PSL(3, 2).

Suppose that T = PSU(3, 2f). Then |T | has a divisor (2f+1)2

(3,2f+1)
, yielding 2f + 1 = 3e

for some integer e. It follows that f = 1 or 3. However, PSU(3, 2) is not simple and
PSU(3, 8) has order divisible by 2632, a contradiction. Thus the lemma follows. �

Recall that, for a connected G-arc-transitive graph Γ = (V,E) and {α, β} ∈ E,
there is g ∈ NG(Gαβ) with 〈g,Gα〉 = G. Then several groups in Lemma 4.3 are
excluded.

Lemma 4.4. Assume that Γ is G-vertex-transitive and G-edge-transitive. Then

soc(G) 6= A6, M11.

Proof. Suppose that T := soc(G) = A6 or M11. Then 2332 divides |G|, and so 223
divides |Gα|. By the Atlas [7] and Lemma 2.6, we know that Gα

∼= S4.
Assume that T = M11. Then G = T and Γ is (T, 2)-arc-transitive. Further,

checking by the GAP, all subgroups isomorphic to S4 are conjugate in T . Thus we may
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8 LI, LU, AND WANG

assume that Tα is contained in a maximal subgroup M ∼= S5. Since Γ is tetravalent,
Tαβ = S3 for β ∈ Γ (α). Checking the subgroups of M11 in the Atlas [7], we get
NT (Tαβ) ∼= D12, so NT (Tαβ) = NM(Tαβ). Thus there is no an element g ∈ NT (Tαβ)
with 〈g, Tα〉 = T , a contradiction.

Assume that T = A6. Then |V | = 15 or 30. Suppose that Tα
∼= A4. Then T is

transitive on V , so Γ is (T, 2)-arc-transitive. For β ∈ Γ (α), we have Tαβ
∼= Z3. It is

easily shown that NT (Tαβ) ∼= S3. Let M be a maximal subgroup of T with Tα < M .
Then M ∼= A5 or S4, and so NM(Tαβ) ∼= S3. Thus NT (Tαβ) = NM(Tαβ), so there
is no g ∈ NT (Tαβ) with 〈g, Tα〉 = T , a contradiction. Suppose that Tα = Gα

∼= S4.
Then G = T or T.Z2, and Gαβ

∼= S3 for β ∈ Γ (α). Checking the maximal subgroups
of G in the Atlas [7], we conclude that either NG(Gαβ) = Gαβ, or G = S6 and both
NG(Gαβ) and Gα are contained in a maximal subgroup isomorphic to S4×Z2. Thus
〈g,Gα〉 6= G for any g ∈ NG(Gαβ), again a contradiction. �

Lemma 4.5. Assume that Γ is G-vertex-transitive and G-edge-transitive. If soc(G) =
PSL(2, pf) with f ≥ 2 and p = 2 or 3, then soc(G) ∼= A5.

Proof. Assume that T := soc(G) = PSL(2, pf) for f ≥ 2 and p = 2 or 3. Since T is
normal in G, all T -orbits on V have the same length |T : Tα|, where α ∈ V . Then
|T : Tα| is square-free. Thus p

f−1 is divisor of |Tα|.
Suppose that f > 3. Then, checking the subgroups of T (see [10, II.8.27], for

example), we know that Tα
∼= Z

e
p:Zt, where e = f − 1 or f , and t is a divisor of

pf − 1. In particular, e ≥ 3 and Tα has a unique Sylow p-subgroup. For an arbitrary
β ∈ Γ (α), by Lemma 2.5, |T : Tαβ | is a divisor of 4, so p is divisor of |Tαβ| = |Tα∩Tα|.
Let P1 and P2 be Sylow p-subgroups of T such that P1 contains the Sylow p-subgroup
of Tα and P2 contains the Sylow p-subgroup of Tβ. Then, by [10, II.8.5], we conclude
that P := P1 = P2. Thus the stabilizers Pα and Pβ are the Sylow p-subgroups
of Tα and Tβ , respectively. Let γ ∈ Γ (β). Since G is transitive on E, we have
|Tαβ| = |Tβγ|. A similar argument implies that Pγ is the Sylow p-subgroup of Tγ . It
follows from the connectedness of Γ that Pδ is the Sylow p-subgroup of Tδ for any
δ ∈ V . Then P contains a subgroup Q = 〈Pδ | δ ∈ V 〉 6= 1. For x ∈ G, we have
P x
δ ≤ T x

δ = T ∩Gx
δ = Tδx , so P x

δ is the the Sylow p-subgroup of Tδ, hence P x
δ = Pδx .

It follows that Q is a normal subgroup of G, which is impossible.
Therefore, f = 2 or 3. By the Atlas [7], neither PSL(2, 8) nor PSL(2, 27) has

{2, 3}-subgroups of square-free index. Thus T = PSL(2, p2) ∼= A5 by Lemma 4.4. �

By [20], any two distinct Sylow 2-subgroups of Sz(2f) intersect trivially. Then a
similar argument as in Lemma 4.5 implies the next lemma.

Lemma 4.6. Assume that G is transitive on both V and E. Then soc(G) 6= Sz(2f).

Note that A5
∼= PSL(2, 4) ∼= PSL(2, 5) and PSL(3, 2) ∼= PSL(2, 7). By Lemmas 4.2

to 4.6, we have the following Theorem.

Theorem 4.7. Let Γ = (V,E) be a connected tetravalent graph of square-free order.

Assume that Γ is G-vertex-transitive and G-edge-transitive, where G ≤ AutΓ. If G
is insoluble then G = C:X, soc(X) is normal in G and soc(X) = A7, J1, PSL(3, 3)
or PSL(2, p), where p ≥ 5 is a prime.
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EDGE-TRANSITIVE GRAPHS 9

5. Examples

In this section we construct the graphs involved in Theorem 1.1. We always assume
that p is a prime no less than 5.

5.1. Graphs constructed from almost simple groups. The first two examples
give arc-transitive graphs associated with the symmetric group S7 and the first Janko
group J1, respectively.

Example 5.1. Let G = S7, P = 〈(1 2)(3 4), (1 3)(2 4)〉, K = 〈(234)(567), (34)(56)〉
and H = P :K. Then NG(K) = K:〈π〉, where π = (2 5)(3 7)(4 6). It is easily shown
that 〈H, π〉 = G. Thus Cos(G;H,HπH) is a connected 2-arc-transitive graph of
valency 4 and order 210. �

Example 5.2. Let G = J1. By the information for G given in the Atlas [7], all
subgroups isomorphic to A4 are conjugate, and all subgroups of order 4 are conjugate.
Take a subgroup H isomorphic to A4. Let Q be the Sylow 2-subgroup of H , and let
P be a Sylow 3-subgroup of H . Then Q ∼= Z

2
2, P

∼= Z3 and NG(P ) ∼= D6×D10.
(1) Computation shows that NG(P ) contains exactly 8 involutions g with 〈g,H〉 =

G (confirmed by GAP). For such an involution g, the coset graph Cos(G,H,HgH) is
connected, (G, 2)-arc-transitive and of valency 4.

(2) There are exactly 1184 involutions g in G such that 〈g,Q〉 = G (confirmed
by GAP). For such an involution g, the coset graph Cos(G,Q,QgQ) is connected,
G-arc-transitive and of valency 4.

(3) Computation shows that G has exactly 6 involutions g such that 〈g,H〉 = G
and g centralizes some element of order 3 in H (confirmed by GAP). Let g be such
an involution. Take an element b ∈ H of order 3 with gb = bg. Then b induce an

automorphism b̃ of Γ = Cos(G,Q,QgQ) acting on [G : Q] by left multiplication.
Recall that G is viewed as a subgroup of AutΓ which acts on [G : Q] by the right

multiplication. Clearly, b 6= b̃, and b̃ centralizes G. It is easily shown that b−1b̃ has

order 3 and fixes the vertex Q. Thus AutΓ ≥ 〈G, b̃〉 = G×〈̃b〉 ∼= J1×Z3, and Γ is a
2-arc-transitive graph. �

We now construct some graphs associated with the simple group PSL(2, p). Let
G = PSL(2, p) or PGL(2, p), and let Γ = (V,E) be a connected graph of valency 4
such that G acts transitively on both V and E. If Γ is (G, 2)-arc-transitive then, by
[9], we may construct easily Γ as a coset graph. If Gα is maximal in G for some α ∈ V ,
that is, G is primitive on V , then Γ is explicitly known by [13]. In the following four
examples we list some graphs which are not vertex-primitive.

Example 5.3. Let p ≡ ±1 (mod 3) and p ≡ ∓1 (mod 8). Let G = PGL(2, p),
S4

∼= H < soc(G) and S3
∼= K < H . ThenNG(K) ∼= S3×Z2. WriteNG(K) = K×〈o〉.

Then Γ = Cos(G,H,HoH) is a connected (G, 2)-arc-transitive graph of valency 4. If
p = 7, then Γ is the non-incidence graph of the projective plane PG(2, 2). �

Example 5.4. Let ǫ = ±1 such that p+ ǫ is divisible by 3.
(1) Let G = PSL(2, p) with p ≡ ±3 (mod 8) and p ≡ ±1 (mod 10). Then G has one

conjugacy class of subgroups isomorphic to A4 and two conjugacy classes of subgroups
isomorphic to A5. Take M1, M2 < G with M1

∼= M2
∼= A5 and H := M1 ∩M2

∼= A4.
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10 LI, LU, AND WANG

Let K < H with K ∼= Z3. Then NM1
(K) ∼= NM2

(K) ∼= D6. Set NMi
(K) = K:〈bi〉

for i = 1, 2. It is easily shown that NM1
(K) ∪ NM2

(K) contains 6 involutions,
which form two distinct cosets Kb1 and Kb2. Moreover, b1, b2 ∈ NG(K) ∼= Dp+ǫ. Set
CG(K) = 〈a〉. ThenNG(K) = 〈a, b1〉 = 〈a, b2〉. Write b2 = arb1 for some 1 ≤ r ≤ p+ǫ

2
.

Then 〈ar〉 6≤ K = 〈a
p+ǫ

6 〉. Replacing b1 by a
p+ǫ

6 b1 or a
p+ǫ

3 b1 if necessarily, we assume
that 1 ≤ r < p+ǫ

6
. Then, for each j with 1 ≤ j < r

2
or r < j < r

2
+ p+ǫ

12
, the coset

graph Γj = Cos(G,H,Hajb1H) is connected, (G, 2)-arc-transitive and of odd order.
(2) Let G = PSL(2, p) with p ≡ ±1 (mod 8). Then G has a maximal subgroup

M ∼= S4. Let A4
∼= H < M and Z3

∼= K < H . Then NG(K) ∼= Dp+ǫ. Set M = H :〈b〉,
where b is an involution normalizes K. WriteNG(K) = 〈a〉:〈b〉, where a has order p+ǫ

2
.

For each 1 ≤ j < p+ǫ
12

, define Γj = Cos(G,H,HajbH). Then Γj is (G, 2)-arc-transitive.
If p 6≡ ±1 (mod 10) then it is easily shown that each Γj is connected.
Assume that p ≡ ±1 (mod 10). In this case, G has two conjugacy classes of sub-

groups isomorphic to A4 and two conjugacy classes of subgroups isomorphic to A5.
Computation shows that H ∼= A4 is contained exactly two subgroups isomorphic A5.
Let H < M1

∼= A5. Then H < M2 := M b
1 . Set NM1

(K) = K:〈b1〉 and b2 = bb1. Then
NM2

(K) = K:〈b2〉 and b1, b2 ∈ NG(K). Choosing a suitable b1, we may set b1 = arb
for some 1 ≤ r < p+ǫ

6
. For 1 ≤ j < p+ǫ

12
, the graph Γj is connected if and only if

ajb 6∈ NM1
(K) ∪NM2

(K), that is, j 6= r.
(3) Let G = PGL(2, p) for p ≡ ±3 (mod 8). Then G has a maximal subgroup

M ∼= S4. Let A4
∼= H < M and Z3

∼= K < H . Set M = H :〈z〉, where z is an
involution normalizes K. Then NG(K) ∼= D2(p+ǫ). Write NG(K) = 〈a〉:〈z〉, where

a has order p+ ǫ. For each 1 ≤ j < p+ǫ
6
, the graph Γj = Cos(G,H,HajzH) is a

connected (G, 2)-arc-transitive graph. �

Example 5.5. Let ǫ = ±1 such that p + ǫ is divisible by 4. Let G be an almost
simple group with socle T = PSL(2, p). Suppose that G has a subgroup isomorphic
to D8. Let x ∈ G be of order 4 and y ∈ G be an involution with xy = x−1. Then
x2 ∈ CG(y) = NG(〈y〉). Set H = 〈x, y〉 and write CG(y) = 〈a〉:〈x2〉.

(1) Let G = PSL(2, p) with p ≡ ±7, ±9 or ± 15 (mod 32). Then a ∈ G is of order
p+ǫ
2
, y = a

p+ǫ

4 and Z
2
2
∼= 〈x2, y〉✁ 〈x, y, a

p+ǫ

8 〉 ∼= S4. For each i 6= p+ǫ
8

with 1 ≤ i < p+ǫ
4
,

the graph Cos(G,H,HaiH) is connected and G-arc-transitive.
(2) Let G = PGL(2, p) with p ≡ ±7 (mod 16). Then x ∈ T , andCG(y) ∼= D2(p±ǫ). If

y ∈ T then, for each odd i with 1 ≤ i < p+ǫ
2
, the graph Cos(G,H,HaiH) is connected,

bipartite and G-arc-transitive. If y 6∈ T then, for each even i with 1 < j < p−ǫ
2
, the

graph Cos(G,H,HajH) is of even order, connected and G-arc-transitive.
(3) Let G = PGL(2, p) with p ≡ ±3 (mod 8). If y ∈ T then, for each i 6= p+ǫ

4

with 1 ≤ i < p+ǫ
2
, the graph Cos(G,H,HaiH) is connected and G-arc-transitive. If

y ∈ G\T then, for each j with 1 ≤ j < p−ǫ
2
, the graph Cos(G,H,HajH) is connected

and G-arc-transitive. �

Example 5.6. Let G = PSL(2, p) or PGL(2, p), and Z
2
2
∼= K < T := soc(G).

Suppose that K is contained in a subgroup H ∼= D16 of G. Then NG(K) ∼= S4.
Write NG(K) = K:(〈y〉:〈z〉) with 〈y〉:〈z〉 ∼= S3. If H < T then Cos(T,H,HyzH) is
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EDGE-TRANSITIVE GRAPHS 11

a connected T -arc-transitive graph of valency 4; if H 6≤ T then G = PGL(2, p) and
Cos(G,H,HyzH) is a connected G-arc-transitive graph of valency 4. �

5.2. Examples of normal covers. Now we construct some graphs which are normal
covers of graphs admitting PSL(2, p).

Example 5.7. Let ǫ = ±1 such that p + ǫ is divisible by 3. Let T = PSL(2, p),
Z
2
2
∼= P < T and x ∈ T such that 〈P, x〉 = P :〈x〉 ∼= A4. Then CT (x) ∼= Z p+ǫ

2

. Set

CT (x) = 〈a〉. Then 〈x〉 = 〈a
p+ǫ

6 〉.
(1) Assume that p + ǫ is divisible 12. Let C = 〈y〉 ∼= Z3 and G = C×T . Take

H = P :〈xy〉 and K = 〈xy〉. Then H ∼= A4 and NG(K) = CT (x)×〈y〉 contains a

uniqe involution a
p+ǫ
4 . It is easy to show that Γ = Cos(G,H,Ha

p+ǫ
4 H) is a connected

(G, 2)-arc-transitive graph of valency 4.
Take involutions σ ∈ Aut(C) and τ ∈ PGL(2, p) \ T such that xτ = x−1 and

P :〈x, τ〉 ∼= S4. Then τ normalizes 〈x〉 and centralizes a
p+ǫ
4 . Thus στ centralizes a

p+ǫ
4 .

Clearly, στ normalizes H . Define θ : Hg 7→ Hgστ , g ∈ G. Then AutΓ ≥ 〈θ, G〉 ∼=
(Z3×PSL(2, p)):Z2 with 〈y, θ〉 ∼= D6 and 〈T, θ〉 ∼= PGL(2, p).

(2) Assume that p ≡ ±3 (mod 8). Let C = 〈y〉 ∼= Z3 and G = (C×T ):〈θ〉 such
that yθ = y−1, xθ = x−1, 〈P, x, θ〉 = P :〈x, θ〉 ∼= S4 and 〈T, θ〉 = T :〈θ〉 ∼= PGL(2, p).
Take H = P :〈xy〉 and K = 〈xy〉. Then NG(K) = (〈a〉×〈y〉):〈θ〉 = 〈xy〉:(〈a〉:〈θ〉) ∼=
Z3:Dp+ǫ. It is easily shown that G = 〈aiθ,H〉 if and only if 〈ai, P 〉 = T . For
1 ≤ i < p+ǫ

2
with i 6∈ {p+ǫ

6
, p+ǫ

4
, p+ǫ

3
}, define Γi = Cos(G,H,HaiθH). Then Γi is a

connected (G, 2)-arc-transitive bipartite graph of valency 4.

(3) Assume that p ≡ ±1 (mod 8) and p + ǫ is divisible by 12. Let G = C×T ,
where C = 〈y〉 ∼= Z2. Take an involution b ∈ T with xb = x−1 and 〈P, x, b〉 =
(P :〈x〉):〈b〉 ∼= S4. Set H = 〈P, x〉:〈by〉 and K = 〈x, by〉. Then H ∼= S4, K ∼= S3 and

NG(K) = 〈a
p+ǫ

4 〉×〈x, b〉×〈y〉. It is easily shown that both Cos(G,H,Ha
p+ǫ

4 H) and

Cos(G,H,Ha
p+ǫ

4 yH) are connected (G, 2)-arc-transitive graphs of valency 4.

(4) Assume that p ≡ ±1 (mod 8) and p+ǫ is divisible by 12. LetG = (〈y〉:〈y1〉)×T ∼=
D6×PSL(2, p). Take an involution b ∈ T with xb = x−1. Set H = (〈P 〉:〈xy〉):〈by1〉

and K = 〈xy, by1〉. Then H ∼= S4, K ∼= S3 and NG(K) = 〈a
p+ǫ

4 〉×K. It is easily

shown that Cos(G,H,Ha
p+ǫ
4 H) is a connected (G, 2)-arc-transitive graph.

(5) Assume that p ≡ ±3 (mod 8) and p+ǫ is not divisible by 4. Let z ∈ PGL(2, p)\
PSL(2, p) be an involution with xz = x−1 and P z = P . Let G = (〈y〉:〈y1〉)×(T :〈z〉) ∼=
D6×PGL(2, p). Take H = (P :〈xy〉):〈y1z〉 and K = 〈xy〉:〈y1z〉. Then H ∼= S4, K ∼= S3

and NG(K) = 〈o〉×K, where o is the unique involution in CT :〈z〉(x) ∼= D2(p+ǫ). It is
easily shown that Cos(G,H,HoH) is a connected (G, 2)-arc-transitive graph.

(6) Assume that p ≡ ±3 (mod 8). Let G = 〈y〉:〈y1〉×T ∼= D6×PSL(2, p). Take
H = P :〈xy〉 ∼= A4 and K = 〈xy〉. Take an involution b ∈ T with xb = x−1. Then
NG(K) = (〈a〉×〈y〉):〈by1〉 = 〈xy〉(〈a〉:〈by1〉). For each 1 ≤ i < p+2+ǫ

4
, the coset graph

Cos(G,H,Haiby1H) is a connected (G, 2)-arc-transitive graph. �

Example 5.8. Let X = PSL(2, p) or PGL(2, p) such that X has a Sylow 2-subgroup
isomorphic to D8. Let x ∈ X be of order 4 and z ∈ X be an involution such that
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12 LI, LU, AND WANG

xz = x−1. Then x2 ∈ CX(z). Write CX(z) = 〈a, x2〉 with ax
2

= a−1. Let ǫ = ±1
such that p+ ǫ is divisible by 4. Let G = 〈y〉×X , where y has order 2.

(1) Let X = PGL(2, p) with p ≡ ±3 (mod 8). Then a has order p ± ǫ, and the
following graphs are connected and G-arc-transitive.

(i) Cos(G,H,HyjaiH), where H = 〈xy, z〉, z 6∈ T , j = 0, 1 and i is even with
1 ≤ i < p−ǫ

2
.

(ii) Cos(G,H,HaiH), where H = 〈x, yz〉 and either 1 ≤ i < p−ǫ
2

for z 6∈ PSL(2, p),

or i 6= p+ǫ
4

with 1 ≤ i < p+ǫ
2

for z ∈ PSL(2, p).

(iii) Cos(G,H,HaiH), where H = 〈xy, yz〉, z ∈ PSL(2, p) and i 6= p+ǫ
4

with 1 ≤

i < p+ǫ
2
.

(2) Let X = PSL(2, p) with p ≡ ±7 (mod 16). Then CX(z) ∼= Dp+ǫ, z = a
p+ǫ

4 . For
i 6= p+ǫ

8
with 1 ≤ i < p+ǫ

4
, the following graphs are connected and G-arc-transitive.

(iv) Cos(G,H,HaiH), where H = 〈xy, z〉, 〈x, yz〉 or 〈xy, yz〉.
(v) Cos(G,H,HyaiH), where H = 〈xy, z〉. �

Example 5.9. Let T = PSL(2, p) with p ≡ ±15 (mod 32). Then each Sylow 2-
subgroup of T is isomorphic to D16. Let D8

∼= P < T and Z
2
2
∼= K < T . Then

P < NT (K) ∼= S4. Write NT (K) = K:〈a, b〉, where a has order 3 and b ∈ P is an
involution with ab = a−1. Take an involution z ∈ T such that 〈P, z〉 = P :〈z〉 ∼= D16.

Let G = 〈y〉×T , where y has order 2. Then NG(K) = 〈y〉×(K:〈a, b〉). Set H =
P :〈yz〉. Then, for g ∈ NG(K)\H , we have HgH = HaH or HayH . It is easily shown
that Cos(G,H,HaH) and Cos(G,H,HayH) are connected and G-arc-transitive. �

Example 5.10. Let p ≡ ±3 (mod 8) and ǫ = ±1 such that p+ ǫ is divided by 4. Let
T = PSL(2, p), X = PGL(2, p) and z ∈ X \ T be an involution. Let C = 〈c〉 ∼= Zl,
where l > 1 is coprime to |T |. Define a semidirect product G = C:X such that
cz = c−1 and CT = C×T .

(1) Take an involution o ∈ T such that oz = zo. Set H = 〈o, z〉. For each
x ∈ T with xz = x−1 and 〈x, o〉 = T , the graph Cos(G,H,HcxH) is a connected
G-arc-transitive graph of valency 4. (It is easily shown there is at least such an x.)

(2) Let H ∼= D8 be a Sylow 2-subgroup of X containing z. Take an involution
o ∈ H∩T which is not in the center ofH . ThenCX(o) ∼= D2(p+ǫ). SetCX(o) = 〈a〉:〈b〉,
where b ∈ H ∩ T and a has order p+ ǫ. Then, for each odd i 6= p+ǫ

4
with 1 ≤ i < p+ǫ

2
,

the graph Cos(G,H,HcaiH) is a connected G-arc-transitive graph of valency 4. �

Example 5.11. Let p ≡ ±3 (mod 8). Let T = PSL(2, p) and o ∈ T be an involu-
tion. Let C = 〈c〉 ∼= Zl with l > 1 coprime to |T |. Set G = C×T and H = 〈o〉.
Take an element x ∈ T with 〈x, o〉 = T such that xσ 6= x−1 for each automor-
phism σ of T which fixes o. (It is easily shown there is at least such an x.) Then
Cos(G,H,H{cx, c−1x−1}H) is connected, G-half-transitive and of valency 4. �

Example 5.12. Let X = PGL(2, p) with p ≡ ±3 (mod 8). Let x ∈ X be of order
4 and z ∈ T := soc(X) be an involution such that xz = x−1. Then x2 ∈ CX(z) ∼=
D2(p+ǫ), where ǫ = ±1 such that p + ǫ is divisible by 4. Write CX(z) = 〈a, x2〉 with

ax
2

= a−1. Then X = T :〈ax2〉. Let C = 〈c, y〉 ∼= Z2l, where l > 1 is coprime to |T |,
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EDGE-TRANSITIVE GRAPHS 13

c has order l and y is an inovlution. Define a semidirect product G = (C×T ):〈ax2〉

such that cax
2

= c−1 and yax
2

= y.
Set H = 〈x, yz〉 or 〈xy, yz〉. Then Cos(G,H,HckaiH) is connected and G-arc-

transitive, where k is coprime to l, i 6= p+ǫ
4

and 1 ≤ i < p+ǫ
2
. �

Example 5.13. Let X = PSL(2, p) or PGL(2, p), and let C = 〈c, y〉 ∼= D2l with
cy = c−1, where l > 1 is coprime to |p(p2 − 1)|. Set G = C×X . Suppose that X has
a Sylow 2-subgroup P ∼= Z

2
2, D8 or D16. Write P = Q:〈z〉, where z is an involution.

Set H = Q:〈yz〉, and take K < Q with |Q : K| = 2. For each j coprime to
l and a 2-element x ∈ NX(K) with x2 ∈ K and 〈x, P 〉 = X , the coset graph
Cos(G,H,HcjyxH) is connected, G-arc-transitive and of valency 4. �

6. The almost simple case

Let Γ = (V,E) be a connected tetravalent graph of square-free order, and G ≤
AutΓ . Assume that G is almost simple and Γ is G-vertex-transitive and G-edge-
transitive. By Theorem 4.7, we have T := soc(G) = soc(G) = A7, J1, PSL(3, 3) or
PSL(2, p). We next determine the possible associated graphs.

Lemma 6.1. If T = PSL(3, 3), then Γ is the incidence graph of the projective plane

PG(2, 3), and AutΓ = G = T.Z2 has a regular subgroup isomorphic to D26.

Proof. Let T = PSL(3, 3). Then, by Lemma 2.6 and the information given in the
Atlas [7], we know that G = T.Z2 and Tα = Z

2
3:2S4. By [11], the lemma follows. �

Lemma 6.2. If T = A7 or J1, then Γ satisfies one line of Table 1.

G |V | Γ

A7, S7 35 Odd graph O4

S7 70 Standard double cover of O4

S7 210 Example 5.1
J1 Example 5.2 (1), (2)

Table 1

Proof. Assume first that T = J1. ThenG = T and, by Lemma 2.6 and the information
given in the Atlas [7], Tα

∼= Z
2
2 or A4. If Tα = A4, then Γ is one of the graphs given

in Example 5.2 (1). Thus we assume that Tα = Z
2
2.

Suppose that Γ is not T -arc-transitive. Let {α, αx} be an edge of Γ , where x ∈ G.
Then 〈Gα, x〉 = G, and Gα ∩ (Gα)

x = Gα ∩ Gαx = 〈hx〉 for an involution h in
Gα. If hx = h, then 〈h〉 ✁ 〈x,Gα〉 = G, a contradiction. Thus Gα = 〈h, hx〉 and

Gαx = 〈hx, hx2

〉. Let Y be the centralizer of hx in T . Then h, hx, hx2

∈ Y ∼= Z2×A5.

Thus hx, hx2

∈ Y x, and so Gαx ≤ Y ∩Y x. By the argument in Example 5.2, we know
that Y = Y x, yielding x ∈ Y as Y is maximal in T . Then 〈Gα, x〉 = 〈h, hx, x〉 ≤ Y ,
a contradiction. Thus Γ is T -arc-transitive, and then Γ is isomorphic to one of the
graphs given in Example 5.2 (2).
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14 LI, LU, AND WANG

Let T = A7 in the following. Then |Tα| is divided by 12, and hence Γ is (G, 2)-arc-
transitive. It is easily shown that Tα

∼= A4, S4, A4×Z3 or (A4×Z3):Z2.
Assume that Tα

∼= (A4×Z3):Z2. Then the vertices in each T -orbit on V can be
viewed as 3-subsets of Π := {1, 2, 3, 4, 5, 6, 7}. Thus either T is transitive on V and
Γ is isomorphic to the odd graph O4 of order 35, or G = S7 and Γ is the standard
double cover of O4.

Now we deal with the other cases. We may set Tα = P :Tαβ, where β ∈ Γ (α)
and P ∼= Z

2
2. Consider the natural action of A7 on Π. Then P is conjugate to

〈(12)(34), (13)(24)〉. Without loss of generality, we let P = 〈(12)(34), (13)(24)〉. Then
NT (P ) = P :〈(123), (567), (34)(67)〉.

Assume that Tα
∼= A4 or A4×Z3. Then |T : Tα| is even, and it follows that T is

transitive on V . Thus Γ is (T, 2)-arc-transitive. Write Γ = Cos(T, Tα, TαxTα) for a
2-element x ∈ NT (Tαβ) with x2 ∈ Tαβ and 〈x, Tα〉 = T . Then x is an involution.
Since x is an even permutation, x is a product of two transpositions. Noting Tαβ is a
Sylow 3-subgroup of Tα, we may choose Tαβ = 〈(123)〉, 〈(123)(567)〉 or 〈(123), (567)〉.
Suppose that Tαβ = 〈(123)〉. Then NT (Tαβ) = 〈(123)〉:〈(45)(67), (23)(45)〉, and x is
conjugate to (45)(67) or (23)(45) under Tαβ . But, for such an x, the group 〈x, Tα〉
is intransitive on Π, and so 〈x, Tα〉 6= T , a contradiction. If Tαβ = 〈(123)(567)〉 or
〈(123), (567)〉 then, noting that x fixes each Tαβ-orbit on Π, x is conjugate to (2 3)(6 7)
under Tαβ , which gives a similar contradiction as above.

Assume that Tα
∼= S4. Then Tαβ

∼= S3, and we may take Tαβ = 〈(234), (34)(56)〉
or 〈(234)(567), (34)(56)〉. Suppose that Tαβ = 〈(234), (34)(56)〉. Then NT (Tαβ) =
Tαβ×〈(1 7)(5 6)〉. It is easily shown that, for x ∈ NT (Tαβ), the group 〈Tα, x〉 fixes
{5, 6} set-wise; in particular, 〈Tα, x〉 6= T . It follows that T is intransitive the vertices
of Γ . Then G = S7 and Gα = Tα, and hence Gαβ = Tαβ . Computation shows that
NG(Tαβ) = Tαβ :〈(1 7), (2 3)〉. Then 〈Gα, x〉 6= G for any x ∈ NG(Tαβ), a contradic-
tion. Thus Tαβ = 〈(234)(567), (34)(56)〉. Then NT (Tαβ) = Tαβ , it implies that T is
intransitive on V . Hence G = S7, Gα = Tα and Gαβ = Tαβ . Then NG(Tαβ) = Tαβ:〈π〉,
where π = (2 5)(3 7)(4 6). It is easily shown that 〈Gα, π〉 = G. It implies that Γ is
isomorphic to the graph constructed in Example 5.1. �

Next we deal with the case where T = PSL(2, p). Let α ∈ V . Note that Gα is a
{2, 3}-group and the subgroups of PGL(2, p) are all known, see [3] for example. Then
Gα is isomorphic to one of Z2

2, Z2s , D2t , A4 and S4, where s ≥ 1 and t ≥ 3.

Lemma 6.3. Assume that T = PSL(2, p). If Γ = (V,E) is not (G, 2)-arc-transitive,
then one of the following statements holds.

(1) Gα
∼= Z2 and Γ is G-half-transitive, or Gα

∼= Z4 and Γ is G-arc-transitive;

(2) Gα
∼= Z

2
2, either Γ is G-arc-transitive or one of the following occurs:

(i) CAutΓ (G) contains an involution θ such that Γ is 〈θ, G〉-arc-transitive;
(ii) G = PSL(2, p) with p ≡ ±3 (mod 8), there exists X ≤ AutΓ such that

G < X ∼= PGL(2, p) and Γ is X-arc-transitive.

(3) Gα
∼= D8, either Γ is isomorphic to one of the graphs in Example 5.5, or

CAutΓ (G) contains an involution θ such that Γ is 〈θ, G〉-arc-transitive.
(4) Γ is G-arc-transitive and isomorphic to one of the two graphs in Example 5.6.

Proof. Assume that Γ is not (G, 2)-arc-transitive. Let α ∈ V . Then Gα
∼= Z

2
2, Z2s

or D2t , where s ≥ 1 and t ≥ 3.
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EDGE-TRANSITIVE GRAPHS 15

Case 1. Assume that Gα is abelian. If Gα
∼= Z2s then, by Lemma 2.5, Gα

∼=
G

Γ (α)
α

∼= Z2 or Z4, so part (1) follows. Thus we assume that Gα
∼= Z

2
2 in the following.

Suppose that Γ is G-half-transitive. Then Gαβ
∼= Z2 for β ∈ Γ (α). Set Gαβ = 〈o〉

and β = αx. Then o ∈ Gβ = Gx
α, and so ox

−1

∈ Gα. Since Γ is connected, we have
G = 〈Gα, x〉. If x centralizes o then o lies in the center of G, which is impossible.

Thus ox
−1

6= o, so Gα = 〈o, ox
−1

〉 and Gβ = 〈o, ox〉. Then Gα, Gβ < CG(x) ∼= Dl(p±1),

where l = |G : T |. Set CG(o) = 〈a〉:〈ox
−1

〉. Noting that all subgroups isomorphic
to CG(o) are conjugate in G, it is easily shown that two subgroups isomorphic to
Z
2
2 of CG(o) are conjugate in CG(o) if and only if they are conjugate in G. Thus

Gai

α = Gβ = Gx
α for some i, and so x ∈ NG(Gα)a

i \ 〈a〉.

Assume that p ≡ ±1 (mod 8). Then G = T , NG(Gα) ∼= S4 and NCG(o)(Gα) ∼= D8.
Thus we may write NG(Gα) = Gα:(〈y〉:〈z〉), where y has order 3 and z ∈ CT (o) is

an involution normalizing Gα and 〈y〉. Computation shows that αx = αyjak for some

integers j and k. Define θ : αg 7→ αyjzg, g ∈ G. Then θ is an involution in CAutΓ (G).
It is easily shown that Γ is (G×〈θ〉)-arc-transitive.

Assume that p ≡ ±3 (mod 8) and G = PGL(2, p). If Gα < T then NG(Gα) ∼= S4

and NCG(o)(Gα) ∼= D8; a similar argument as above implies that there is an involution
θ ∈ AutΓ such that Γ is (G×〈θ〉)-arc-transitive. Suppose that Gα 6≤ T . Then
NG(Gα) ∼= D8 and NCG(o)(Gα) = Gα. Write NG(Gα) = Gα:〈z〉 for an involution

z ∈ PSL(2, p). Then αx = αzai . Note that Gα and PSL(2, p) contain only one
involution oox

−1

in common. This implies that oox
−1

lies in the center of NG(Gα).

Define θ : αg 7→ αoox
−1

zg, g ∈ G. Then θ is an involution in CAutΓ (G), and Γ is
(G×〈θ〉)-arc-transitive.

Let p ≡ ±3 (mod 8) and G = PSL(2, p). Then NG(Gα) = Gα:〈y〉 ∼= A4, where y ∈

T has order 3. Thus αx = αyjai for some integer j. Noting that NPGL(2,p)(Gα) ∼= S4,
there is an involution σ ∈ CPGL(2,p)(o) \ T such that Gσ

α = Gα and yσ = y−1. Define

ρ : αg 7→ αyjgσ , g ∈ G. Then ρ ∈ AutΓ , 〈G, ρ〉 ∼= PGL(2, p) and Γ is 〈T, ρ〉-arc-
transitive. Then part (2) follows.

Case 2. Assume that Gα
∼= D2t for t ≥ 3. Let β ∈ Γ (α).

Suppose that Gαβ contains a cyclic subgroup C of order no less than 3. Then C is
the unique subgroup of order |C| in both Gα and Gβ. For an arbitrary edge {γ, δ},
since G is transitive on E, there is x ∈ G with {γ, δ} = {α, β}x, so Gγδ = Gx

αβ .
Then Cx is the unique subgroup of order |C| in both Gγ and Gδ. So C ≤ Gγ for
γ ∈ Γ (α) ∪ Γ (β). Since Γ is connected, C fixes each vertex of Γ , and so C = 1 as
C ≤ AutΓ , a contradiction. Thus |Gαβ| is a divisor of 4, hence Gα

∼= D8 or D16.

Assume that Gα
∼= D8 and Γ is G-arc-transitive. Then Gα is transitive on Γ (α).

Set Gα = 〈x〉:〈y〉, where x has order 4 and y is an involution with xy = x−1. By

Lemma 2.5, we know that G
[1]
α = 1. It follows that Gαβ dose not lies in the center

of Gα. Thus we may choose a suitable y such that Gαβ = 〈y〉. Write Γ as a coset
Cos(G,Gα, GαgGα) for g ∈ NG〈y〉 = CG(y). Then Γ is constructed as in Example 5.5.

Assume that Gα
∼= D8 and Γ is G-half-transitive. Then Gαβ

∼= Z
2
2. Hence Gαβ

is normal in M := 〈Gα, Gβ〉, yielding NG(Gαβ) = M ∼= S4. Let y ∈ M be an
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16 LI, LU, AND WANG

involution such that Gαβ :〈y〉 is the Sylow 2-subgroup of M other than Gα and Gβ.
Then Gβ = Gy

α. Let x ∈ G with β = αx. Then Gy
α = Gβ = Gx

α, so xy ∈ NG(Gα).
If xy ∈ Gα then 〈x,Gα〉 ≤ 〈M,Gα〉 = M , which contradicts the connectedness of
Γ . Thus xy 6∈ NG(Gα), and so NG(Gα) 6= Gα, It follows that NG(Gα) ∼= D16 is a
Sylow 2-subgroup of G as |G : Gα| is square-free. Write NG(Gα) = Gα:〈z〉 for some
involution z. Then xy = hz for some h ∈ Gα, so GαxGα = GαxyyGα = GαzyGα

and (GαxGα)
z = (GαzyGα)

z = Gα(zy)
−1Gα = Gαx

−1hGα = Gαx
−1Gα. Define

θ : αg 7→ αzg, g ∈ G. Then θ is an involution in CAutΓ (G), and Γ is (G×〈θ〉)-arc-
transitive. Thus part (3) of this lemma follows.

Assume that Gα
∼= D16. Then Gαβ

∼= Z
2
2 and Γ is G-arc-transitive. If Gαβ 6≤ T

then NG(Gαβ) ∼= D8, and so NG(Gαβ) ≤ Gα, which is impossible. Thus Gαβ ≤ T
and T > NG(Gαβ) ∼= S4. Write NGα

(Gαβ) = Gαβ:〈z〉 and NG(Gαβ) = Gαβ:(〈y〉:〈z〉).
Then, for x ∈ NG(Gαβ) with 〈x,Gα〉 = G, we have GαxGα = Gαy

±1Gα, and either
G = T or Gα 6≤ T . Noting GαyGα = GαzyzGα = Gαy

−1Gα as z ∈ Gα, it implies
that Γ is isomorphic to one of the graphs in Example 5.6. Thus (4) occurs. �

Lemma 6.4. Assume that T = soc(G) = PSL(2, p) and α ∈ V . If Γ is (G, 2)-arc-
transitive, then one of the following statements holds.

(1) AutΓ = PSL(2, p), 7 6= p ≡ ±1 (mod 8), Γ is unique and of order
p(p2−1)

48
;

(2) AutΓ = PGL(2, p), p ≡ ±3 (mod 8), Γ is unique and of order
p(p2−1)

24
;

(3) AutΓ = PSL(2, p), 5 6= p ≡ ±3 (mod 8) and p 6≡ 1 (mod 10), Γ is of order
p(p2−1)

24
and isomorphic to one of [p+ε

12
] graphs, where ǫ = ±1 such that p+ ǫ is

divisible by 3;
(4) G = PGL(2, p), S4

∼= Gα < T and Γ is constructed as in Example 5.3;
(5) Gα = Tα

∼= A4 and Γ is isomorphic to one of the graphs in Example 5.4;
(6) Gα = Tα

∼= A4 and CAutΓ (G) contains an involution.

Proof. Assume that Γ is (G, 2)-arc-transitive. Then Gα
∼= A4 or S4. If Gα is maximal

in G, then, by [13], one of parts (1)-(3) occurs. Thus we assume further that Gα is
not maximal in G. Then either Gα = Tα

∼= A4, or S4
∼= Gα < T and G = PGL(2, p).

Let ǫ = ±1 with p+ ǫ divisible by 3.
Let S4

∼= Gα < T and G = PGL(2, p). Then Gαβ
∼= S3, and NG(Gαβ) ∼= S3×Z2.

If p + ǫ is divisible by 4, then Gαβ is contained in a subgroup M ∼= Dp+ǫ of T , so
NG(Gαβ) ≥ NM(Gαβ) ∼= S3×Z2, hence NG(Gαβ) ≤ T , a contradiction. Thus p+ ǫ is
not divisible by 4, and Γ is isomorphic to the graph in Example 5.3. Thus (4) occurs.

We assume next that Gα = Tα
∼= A4 and Gαβ

∼= Z3. Let 1 6= x ∈ G a be 2-element
with (α, β)x = (β, α). Since Γ is connected, 〈x,Gα〉 = G. Moreover, x ∈ NG(Gαβ)
and x2 ∈ Gαβ , and so x is an involution. Since Gα is not maximal in G, we have

(i) G = PSL(2, p) with p ≡ ±3 (mod 8) and p ≡ ±1 (mod 10); or
(ii) G = PSL(2, p) with p ≡ ±1 (mod 8); or
(iii) G = PGL(2, p) with p ≡ ±3 (mod 8).

Case (i). Suppose that (i) occurs. Then G has one conjugacy class of subgroups
isomorphic to A4 and two conjugacy classes of subgroups isomorphic to A5. Thus
Gα is contained in exactly two subgroups isomorphic to A5. Take M1, M2 < G with
M1

∼= M2
∼= A5 and Gα = M1 ∩ M2. Then NM1

(Gαβ) ∼= NM2
(Gαβ) ∼= D6. Set

NMi
(Gαβ) = Gαβ:〈bi〉 for i = 1, 2. It is easily shown that NM1

(Gαβ) ∪ NM2
(Gαβ)
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EDGE-TRANSITIVE GRAPHS 17

contains 6 involutions, which form two distinct cosets Gαβb1 and Gαβb2. Note that
b1, b2 ∈ NG(Gαβ) ∼= Dp+ǫ. Write CG(Gαβ) = 〈a〉. Then NG(Gαβ) = 〈a, b1〉 = 〈a, b2〉.

Set b1 = arb2 for some 1 ≤ r ≤ p+ǫ
2
. Then 〈ar〉 6≤ Gαβ = 〈a

p+ǫ

6 〉. Replacing b1

by a
p+ǫ

6 b1 or a
p+ǫ

3 b1 if necessarily, we may choose 1 ≤ r < p+ǫ
6
. For an involution

x ∈ NG(Gαβ) with 〈x,Gα〉 = G, we get

(i.1) GαxGα = Gαa
jb1Gα for 1 ≤ j < p+ǫ

6
with j 6= r; or

(i.2) GαxGα = Gαa
p+ǫ

4 Gα and 4 is a divisor of p+ ǫ.

Take an involution z ∈ PGL(2, p) \ G with 〈Gα, z〉 ∼= S4 and 〈Gαβ , z〉 ∼= S3. Then
z ∈ NPGL(2,p)(Gαβ) ∼= D2(p+ǫ), and so NPGL(2,p)(Gαβ) = 〈a, b1, z〉 = 〈a, zb1, z〉 =
〈a, zb1〉:〈z〉; in particular, zb1 6∈ 〈a〉 and 〈a, zb1〉 ∼= Zp+ǫ. It is easily shown that
Mz

1 = M2, and so NM2
(Gαβ) = (NM1

(Gαβ))
z. Thus we may choose z such that

b2 = bz1. Then (zb1)
2 = bz1b1 = ar.

Suppose that 2j ≡ r (mod
p+ǫ
6
) for some 1 ≤ j < p+ǫ

6
. Then 2j = r + p+ǫ

6
by the

choice of r. Note that p + ǫ is not divisible by 8. If p + ǫ is divisible by 4, then
r is even, so ar is of odd order, hence the order of zb1 is not divisible by 4, which
contradicts the fact that 〈a, zb1〉 ∼= Zp+ǫ. Thus

p+ǫ
6

is odd, and so r is odd and j > r.
For (i.1), we have

(GαxGα)
z = Gαa

−jbz1Gα = Gαa
r−jb1Gα =





Gαa
r−jb1Gα, if 1 ≤ j < r

2
;

Gαa
p+ǫ

6
+r−jb1Gα, if r < j < r

2
+ p+ǫ

12
;

Gαa
jb1Gα, if j = r

2
+ p+ǫ

12
, p+ǫ

6
is odd.

Thus Γ is one of the graphs in Example 5.4 (1), or Γ ∼= Cos(G,Gα, Gαa
r
2
+ p+ǫ

12 b1Gα)
with odd p+ǫ

6
. For the latter case, define ρ : αg 7→ αgz , g ∈ G. Then ρ ∈ NAutΓ (Gα),

αρ = α and X := 〈G, ρ〉 ∼= PGL(2, p). Moreover, Xα = 〈Gα, ρ〉 is maximal in X .
Thus Γ is isomorphic to the graph described in part (2).

For (i.2), D2(p+ǫ)
∼= NPGL(2,p)(Gαβ) = 〈z,NG(Gαβ)〉. It implies that a

p+ǫ
4 lies in the

center of NPGL(2,p)(Gαβ). Then z induces an automorphism of Γ by αg 7→ αgz , g ∈ G.
Arguing as above, we know that Γ is isomorphic to the graph described in part (2).

Case (ii). Suppose that (ii) occurs, that is, G = PSL(2, p) with p ≡ ±1 (mod 8).
Then Gα

∼= A4 is contained a maximal subgroup M ∼= S4. Set M = Gα:〈b〉, where
b is an involution normalizing Gαβ. Then b ∈ NG(Gαβ) ∼= Dp+ǫ. Write NG(Gαβ) =
〈a〉:〈b〉, where a has order p+ǫ

2
. By a similar argument as in Case (i), for an involution

x ∈ NG(Gαβ) with 〈x,Gα〉 = G, either GαxGα = Gαa
jbGα for some 1 ≤ j < p+ǫ

6
, or

GαxGα = Gαa
p+ǫ
4 Gα if further 4 is a divisor of p + ǫ. Moreover,

(GαxGα)
b = Gαx

bGα =

{
Gαa

p+ǫ

6
−jbGα for 1 ≤ j < p+ǫ

6
; or

Gαa
p+ǫ

4 Gα.

Assume that p+ǫ is a divisible by 4 and GαxGα = Gαa
p+ǫ

4 Gα or Gαa
p+ǫ

12 bGα. Define
θ : αg 7→ αbg, g ∈ G. Then θ is an involution in CAutΓ (G). Thus part (6) occurs.

Assume that GαxGα = Gαa
jbGα, where j 6= p+ǫ

12
and 1 ≤ j < p+ǫ

6
. Define σ :

Gαg 7→ Gαbg, g ∈ G. Then σ is an isomorphism from Cos(G,Gα, Gαa
jbGα) to

Cos(G,Gα, Gαa
p+ǫ
6

−jbGα). Thus Γ is isomorphic a graph in Example 5.4 (2).
Case (iii). Suppose that (iii) occurs, that is, G = PGL(2, p) with p ≡ ±3 (mod 8).

Then Gα = Tα
∼= A4 is contained a maximal subgroup M ∼= S4 of G. Set M =
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Gα:〈z〉, where z ∈ G \ T is an involution normalizing Gαβ. Then z ∈ NG(Gαβ) ∼=
D2(p+ǫ). Write NG(Gαβ) = 〈a〉:〈z〉, where a has order p+ ǫ. For an involution x ∈
NG(Gαβ) with 〈x,Gα〉 = G, either GαxGα = Gαa

jzGα for some 1 ≤ j < p+ǫ
3
,

or GαxGα = Gαa
p+ǫ

2 Gα. Note that (Gαa
jzGα)

z = Gαa
−jzGα = Gαa

p+ǫ

3
−jzGα for

1 ≤ j < p+ǫ
3
. It follows that Γ is isomorphic to a graph in Example 5.4 (3) or one

of Cos(G,Gα, Gαa
p+ǫ

6 zGα) and Cos(G,Gα, Gαa
p+ǫ

2 Gα). For the latter, AutΓ has an
involution αg 7→ αzg, g ∈ G, which centralizes G, and so part (6) occurs. �

7. Normal covers

In this section we give a proof of Theorem 1.1.
Let Γ = (V,E) be a connected tetravalent graph of square-free order. Assume that

Γ is both vertex-transitive and edge-transitive. Let G = AutΓ . If G is soluble then,
by Theorem 3.3, one of of Theorem 1.1 (1) and (2) occurs. If G is almost simple then,
by the argument in Section 6, either soc(G) = PSL(3, 3) and Γ is a Cayley graph or
one of parts (3)-(5) of Theorem 1.1 occurs.

By Theorem 4.7, we assume next that G = C:X , C 6= 1, T := soc(X) ✁ G and
T = A7, J1, PSL(3, 3) or PSL(2, p), where p ≥ 5 is a prime. Let B be a C-orbit on
V and α ∈ B. Then Gα

∼= XB by Lemma 2.7. Note that Γ is 2-arc-transitive if and
only if ΓC is (X, 2)-arc-transitive. We shall characterizes Γ in three lemmas.

Lemma 7.1. Assume that Γ is 2-arc-transitive. Then one of Theorem 1.1 (4), (6)
and (10) occurs.

Proof. Since Γ has square-free order, T is not semiregular on V , and so Tα 6= 1. By

Lemma 2.4, T
Γ (α)
α 6= 1. Since Γ is (G, 2)-arc-transitive, Gα is 2-transitive on Γ (α).

Noting that Tα ✁Gα as T ✁G, it follows that Tα is transitive on Γ (α). Then T has
at most two orbits on V by Lemma 2.2. Thus TB has at most two orbits on B

Since (CT )B = C×TB and C is regular on B, we conclude that Tα is the kernel
of TB acting on B, and so Tα ✁ TB. Let B′ be the TB-orbit on B containing α.
Then either CB′ = C, or CB′ is the unique 2′-Hall subgroup of C. Moreover, CB′

and TB induce two regular permutation groups on B′. Thus CB′
∼= TB/Tα by [8,

Theorem 4.2A]. Then TB/Tα is isomorphic to C or the 2′-Hall subgroup of C, and
hence |C| = 2, 3 or 6 by noting that TB is a {2, 3}-group. Note that |C| = |B| is
coprime to |VC | = |X : XB|. Applying Lemmas 6.1, 6.2 and 6.4 to ΓC and X , we get
a table as follows, where lines 1-6 arise if C ∼= TB/Tα and lines 7-10 arise otherwise.

line T TB Tα C ΓC remark
1 A7 (Z3×A4):Z2 Z3×A4 Z2 O4

2 (Z3×A4):Z2 A4 D6 O4

3 J1 A4 Z
2
2 Z3 5.2 (1) G = Z3×J1

4 PSL(2, p) A4 Z
2
2 Z3 6.4 (2), (3), (5), (6)

5 (p ≥ 5) S4 A4 Z2 6.4 (1) G = C×T

6 S4 Z
2
2 D6 6.4 (1) G = C×T

7 A7 (Z3×A4):Z2 (Z3×A4):Z2 Z2 O4

8 PSL(2, p) A4 A4 Z2 5.4 (1), 6.4 (2), (3)
9 S4 S4 Z2 6.4 (1) G = C×T

10 A4 Z
2
2 |M | = 6 5.4 (1), 6.4 (2), (3)
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EDGE-TRANSITIVE GRAPHS 19

If line 1 or 2 occurs, then Γ is (A7, 2)-arc-transitive; however, by Lemma 6.2, there
is no such a graph, a contradiction. For line 3, Γ is J1-arc-transitive, and so Γ

isomorphic to one of the graphs in Example 5.2 (3), and so Theorem 1.1 (4) occurs.

Assume that line 4 occurs. Then (CT )α ∼= TB
∼= A4 by Lemma 2.7, and (CT )α =

Tα:〈xy〉 such that A4
∼= Tα:〈x〉 ≤ T and C = 〈y〉. If T is transitive on V then Γ is

(CT, 2)-arc-transitive, it follows that Γ is isomorphic to a graph in Example 5.7 (1);
in this case, Theorem 1.1 (6) occurs. Thus we assume further that T has two orbits
on V . Then |T : Tα| is odd, and C×T has two orbits on V . Hence Gα = (CT )α and
X = PGL(2, p). We may choose β ∈ Γ (α) such that Gαβ = 〈xy〉. Let θ ∈ X \ T
with xθ = x−1. If θ centralizes C, then NG(〈xy〉) = CT (x)×〈y〉 contains no 2-element
g ∈ G with 〈g,Gα〉 = G, a contradiction. Thus 〈C, θ〉 ∼= D6. Note that |VC| = |X :

XB| =
p(p2−1)

12
is square-free and coprime to |C| = 3. Then (p2 − 1) is not divisible

by 9 and 16; in particular, p ≡ ±3 (mod 8). Let ǫ = ±1 such that p + ǫ is divisible
by 3. Set CT (x) = 〈a〉. Then NG(〈xy〉) = (〈a〉×〈y〉):〈θ〉 = 〈xy〉:(〈a〉:〈θ〉) ∼= Z3:Dp+ǫ.
It is easily shown that G = 〈aiθj, Gα〉 if and only if 〈ai, P 〉 = T and j = 1. Thus

either Γ is isomorphic to a graph in Example 5.7 (2), or Γ ∼= Cos(G,Gα, Gαa
p+ǫ

4 θGα)
and p + ǫ is divisible by 12. The former case yields Theorem 1.1 (6). Suppose that

the latter case occurs. Note that a
p+ǫ

4 lies in the center of NT :〈θ〉(〈xy〉) = 〈a〉:〈θ〉,

and so (Gαa
p+ǫ
4 θGα)

θ = Gαa
p+ǫ
4 θGα. Define ρ : αg 7→ αθg, g ∈ G. It is easily shown

that ρ is an automorphism of Γ . Moreover, ρ centralizes G. Thus C〈ρ〉 is normal in
G = AutΓ . By the choice of C, we have ρ ∈ C ∼= Z3, and so ρ = 1 as ρ2 = 1. Then
α = αρ = αθ, hence θ ∈ Gα = Tα〈xy〉, yielding θ ∈ Tα, a contradiction.

Similarly, line 5 or 6 implies that Γ is isomorphic to a graph in Example 5.7 (3) or
(4), respectively. Thus Theorem 1.1 (6) follows.

For one of lines 7-9, it is easily shown that Γ is the standard double cover of ΓC

which is one of the odd graph O4 and the graphs in Example 5.4 (1) and Lemma
6.4 (1)-(3), and so Theorem 1.1 (10) occurs.

Assume finally that line 10 occurs. Then C ∼= Z6 or D6, Tα
∼= Z

2
2, and CT is

transitive on V . By Lemma 2.7, (CT )α ∼= TB, and so Γ is (CT, 2)-arc-transitive. Set
TB = Tα:〈x〉 and C = 〈y〉:〈y1〉, where x and y are of order 3 and y1 is an involution.
Since (CT )α 6≤ T , without loss of generality, we may assume that (CT )α = Tα:〈xy〉.

Let C ∼= Z6. Then Γ is the standard double cover of a (〈y〉×T, 2)-arc-transitive
graph Σ of odd order satisfying line 4 of the above table. Thus, by the foregoing
argument, Σ is isomorphic to a graph described in Example 5.7 (1). Thus Theo-
rem 1.1 (10) occurs. Thus we assume next that C ∼= D6.

Suppose that X = PGL(2, p). Then Gα
∼= XB

∼= S4. Take an involution z ∈ X \ T
such that xz = x−1 and XB = 〈x, z, Tα〉 ∼= S4. Then X = 〈T, z〉 ∼= 〈T, y1z〉,
and it is easily shown that one of z and y1z centralizes C. Thus, without loss of
generality, we assume that G = C×X . Then NG((CT )α) = (CT )α:〈y1, z〉. Since
A4

∼= (CT )α ✁ Gα
∼= S4, we conclude that Gα = (CT )α:〈z〉 or (CT )α:〈y1z〉. Suppose

that Gα = (CT )α:〈z〉. Then Gαβ = 〈xy〉:〈z〉 for some β ∈ Γ (α). Computation shows
that NG(Gαβ) = 〈o〉×Gαβ, where o is the involution in CX(x) ∼= Zp+ǫ. Thus, for
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20 LI, LU, AND WANG

any g ∈ NG(Gαβ), we have 〈g,Gα〉 ≤ 〈o, xy, z, Tα〉 ≤ 〈y〉×X 6= G, which contra-
dicts the connectedness of Γ . Therefore, Gα = (CT )α:〈y1z〉 = (Tα:〈xy〉):〈y1z〉 and
Gαβ = 〈xy〉:〈y1z〉 for some β ∈ Γ (α). Computation shows that NG(Gαβ) = 〈o〉×Gαβ .
Suppose that p + ǫ is divisible by 4. Then it is easily shown that o ∈ T . For each
g ∈ NG(Gαβ), we have 〈g,Gα〉 ≤ 〈o, xy, y1z, Tα〉 ≤ (〈y〉×T ):〈y1z〉 6= G, a contradic-
tion. Thus p+ǫ is not divisible by 4, and Γ is isomorphic the graph in Example 5.7 (5),
and so Theorem 1.1 (6) occurs..

Suppose that X = T . Then G = C×T and Tα:〈xy〉 = Gα
∼= TB

∼= A4. Thus Gαβ =
〈xy〉 for some β ∈ Γ (α), and NG(Gαβ) = (CT (x)×〈y〉):〈by1〉 = 〈xy〉:(CT (x):〈by1〉),
where b ∈ T is an involution with xb = x−1. Set CT (x) = 〈a〉. Then a has order p+ǫ

2
,

where ǫ = ±1 with p+ǫ divisible by 3. Since Γ is connected andG-arc-transitive, there
is a 2-element h ∈ NG(Gαβ) with β = αh and 〈h,Gα〉 = G. Then such an element
h must be an involution, and GαhGα = Gαa

iby1Gα for some 0 ≤ i < p+ǫ
2
. Note

G = C×T < C×PGL(2, p). Take an involution z ∈ PGL(2, p) \ T with xz = x−1 and
〈Tα, x, z〉 ∼= S4. Then z, b ∈ NPGL(2,p)(〈x〉) ∼= D2(p+ǫ). We may write NPGL(2,p)(〈x〉) =
〈a0〉:〈b〉, where a0 has order p+ ǫ with a20 = a. Then, since z 6∈ T , we may set z = as0b
for some odd integer s. Replacing b by a1−s

0 b if necessary, we assume further that z =
a0b. Then (Gαa

iby1Gα)
y1z = Gαa

1−iby1Gα. It follows that Cos(G,Gα, Gαa
iby1Gα) ∼=

Cos(G,Gα, Gαa
1−iby1Gα). Thus either Γ is isomorphic a graph in Example 5.7 (6),

or p+ ǫ is not divisible by 4 and Γ ∼= Cos(G,Gα, Gαa
p+2+ǫ

4 by1Gα). For the latter case,
Γ has an automorphism θ : αg 7→ αgy1z , g ∈ G, and so D6×PSL(2, p) ∼= G = AutΓ ≥
〈G, θ〉 = 〈C, T, y1θ〉 ∼= D6×PGL(2, p), a contradiction. Then Γ is isomorphic to a
graph in Example 5.7 (6), and so Theorem 1.1 (6) occurs. �

Lemma 7.2. Assume that C ∼= Z2 and Γ is not 2-arc-transitive. Then one of

Theorem 1.1 (7) and (10) occurs.

Proof. By the assumption, AutΓ = G = C×X and the quotient graph ΓC has
odd order. Applying Lemmas 6.1-6.4 to the pair (X,ΓC), we conclude that T =
soc(X) = PSL(2, p) and ΓC is X-arc-transitive, and so Γ is arc-transitive. Moreover,
Gα

∼= XB
∼= Z

2
2, D8 or D16, where B is a C-orbit and α ∈ B. If XB = Xα then

Gα ≤ X ; in this case, it is easily shown that Γ is isomorphic to the standard double
cover of ΓC , and so Theorem 1.1 (10) occurs. Thus we assume next that XB 6= Xα,
that is, XB is transitive on B. In particular, |XB : Xα| = 2.

Since ΓC has odd order, T is transitive on the vertices of ΓC . It implies that
|X : XB| = |T : TB|, and so |XB : TB| = |X : T |. Set C = 〈y〉.

Assume first that TB is intransitive on B. Then TB = Tα. Since T = soc(X) =
PSL(2, p), we haveX = PGL(2, p) andXα = TB = Tα. Take an involution z ∈ XB\T .
ThenXB = Tα:〈z〉 and z interchanges the vertices of Γ contained in B. Thus yz ∈ Gα,
and so Gα = Tα:〈yz〉. Set X1 = T :〈yz〉. Then Gα < X1

∼= PGL(2, p) and G = C×X1.
It follows that Γ is isomorphic to the standard double cover of an X1-arc-transitive
graph (which is isomorphic to ΓC). Thus Theorem 1.1 (10) occurs.

Assume that TB is transitive on B. Then |XB : Xα| = |TB : Tα| = 2, and both X
and T are transitive on V . If XB

∼= Z
2
2, then X = PSL(2, p) and Γ is arc-regular, and

hence Theorem 1.1 (7) occurs. We next deal with the cases: XB
∼= D8 and XB

∼= D16.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



EDGE-TRANSITIVE GRAPHS 21

Case 1. Let XB
∼= D8. We shall show that Γ is isomorphic to a graph in Exam-

ple 5.8, and thus Theorem 1.1 (7) occurs.
Let x ∈ XB be of order 4. Then x or xy is contained in Gα. By Lemma 2.5,

we conclude 〈x〉 is regular on ΓC(B). Let β ∈ Γ (α) and B′ ∈ ΓC(B) the C-orbit
containing β. Take an involution z ∈ XB which fixes B′ set-wise. Since Γ is a cover
of ΓC , it is easily shown that either z or yz fixes B ∪ B′ point-wise. Thus Gαβ = 〈z〉
or 〈yz〉. By the choices of x and z, we have xz = x−1, XB = 〈x, z〉 and Gα is one of
〈x〉:Gαβ and 〈xy〉:Gαβ . Recalling that Gα 6= XB, either Gαβ = 〈z〉 and Gα = 〈xy, z〉,
or Gαβ = 〈yz〉 and Gα = 〈x, yz〉 or 〈xy, yz〉.

Since Γ is connected and arc-transitive, Γ ∼= Cos(G,Gα, GαgGα) for some 2-element
g ∈ NX(Gαβ) = 〈y〉×CX(z) with 〈g,Gα〉 = G and g2 ∈ Gαβ

∼= Z2. Noting that

x2 ∈ CX(z) and CX(z) is dihedral, write CX(z) = 〈a, x2〉 with ax
2

= a−1. Then
g = yjai(x2)k for some integers i, j and k. Thus G = 〈g,Gα〉 ≤ 〈y, x, z, ai〉, yielding
that 〈x, z, ai〉 = X . It follows that ai 6= z. If ai has order 4 then a2i = z and

(ai)x
2

= a−i, and so (x2)a
i

= x2z ∈ 〈x2, z〉, yielding 〈x2, z〉 ✁ 〈x, z, ai〉 = X , a
contradiction. Thus ai is not of order 4. Let ǫ = ±1 such that p+ ǫ is divisible by 4.

Let X = PGL(2, p). Then p ≡ ±3 (mod 8) and |Tα| = 2. Thus Tα = 〈x2〉. Assume

that Gαβ = 〈z〉. Then Gα = 〈xy, z〉, z ∈ X \ T , CX(z) ∼= D2(p−ǫ) and z = a
p−ǫ
2 .

Noting that GαgGα = Gαy
jaiGα = Gαy

jaizGα, we conclude that Γ is isomorphic
to a graph in Example 5.8 (1.i). Assume that Gαβ = 〈yz〉. If Gα = 〈x, yz〉 then

z = a
p−ǫ

2 or z = a
p+ǫ

2 and GαgGα = Gαy
jaiGα = Gαy

jaiyzGα, which implies that Γ
is isomorphic to a graph in Example 5.8 (1.ii). Suppose that Gα = 〈xy, yz〉. Then
xz ∈ Xα. Since Tα = 〈x2〉, we have xz 6∈ T , and so z ∈ T . It follows that Γ is
isomorphic to a graph in Example 5.8 (1.iii).

Let X = PSL(2, p). Then p ≡ ±7 (mod 16), CX(z) ∼= Dp+ǫ and z = a
p+ǫ

4 . It is
easily shown that Γ is isomorphic a graph in Example 5.8 (2).

Case 2. Let XB
∼= D16. Then Xα

∼= D8 and Gα
∼= D16. Recall that X is transitive

on V . Suppose that Γ is X-arc-transitive. Then, by Lemma 2.5, we conclude that the
cyclic subgroup of Xα with order 4 must regular on Γ (α). It follows that Gα

∼= D16

can be written as a product of two subgroups of order 4, which is impossible. Then
Xα is not transitive on Γ (α). Thus, by Lemma 2.5, |Xαβ| = 4 for β ∈ Γ (α). Hence
Gαβ = Xαβ. Note that Gα contains a unique cyclic subgroup of order 4. Again
by Lemma 2.5, we conclude that Gαβ = Xαβ

∼= Z
2
2. Suppose that X = PGL(2, p).

Recalling that |XB : Xα| = |TB : Tα| = 2, we know that Tα has order 4. Since T
is not semiregular on V , we have Tα 6= Tαβ. It follows that Gαβ = Xαβ 6≤ T . Then
Xα ≤ NX(Gαβ) ∼= D8, and so NG(Gαβ) = C×NX(Gαβ) = C×Xα. Thus there is no
g ∈ NG(Gαβ) with 〈g,Gα〉 = G, a contradiction. Then X = T = PSL(2, p), and so
NG(Gαβ) = C×NX(Gαβ) ∼= Z2×S4. This implies that Γ is isomorphic a graph in
Example 5.9, and so Theorem 1.1 (7) occurs. �

By the foregoing argument, we assume finally that |C| > 2 and Γ is not 2-arc-
transitive. Applying the argument in Section 6 to the pair (ΓC , X), we have T =
soc(X) = J1 or PSL(2, p). The following lemma will fulfill the proof of Theorem 1.1.

Lemma 7.3. Assume that |C| > 2 and Γ is not 2-arc-transitive. Then one of Theo-

rem 1.1 (8)-(10) occurs.
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Proof. Let B be a C-orbit on V and α ∈ B. Since Γ is not 2-arc-transitive, Gα

is a 2-group. Recall AutΓ = G = C:X , Gα
∼= XB and C semiregular on V . Since

|V | = |G : Gα| = |C||X : XB| is square-free, |C| and |X| have no common prime
divisors other than 2. Since T = soc(X)✁G, all T -orbits on V has the same length

|T : Tα|. Then the number of T -orbits equals to |V |
|T :Tα|

= |C| |X:XB|
|T :Tα|

, which is no less

than 3 as |C| > 2. Thus the quotient graph ΓT is a cycle. Let N be the kernel of G
acting on VT . Then T ≤ N and G/N is isomorphic to a subgroup of AutΓT which is
a dihedral group. Moreover, G/N is transitive on both the vertices and edges of ΓT .
It implies that G/N is either cyclic or isomorphic to AutΓT . Note that N = TNα,
T ≤ X and Nα is a 2-group. Then |C| and |N | have no common prime divisors other
than 2. In particular, |C ∩ N | ≤ 2. Since C/(C ∩ N) ∼= N/N ≤ G/N and |C| is
square-free, we conclude that C is cyclic or dihedral. We shall discuss in two cases
according to the parity of |C|.

Case 1. Assume first that |C| is odd. Then C ∩N = 1, C is cyclic and X contains
a Sylow 2-subgroup of G. Since Gα is a 2-group, let Gα < X by choosing α suitably.
Then Gα ≤ XB. Thus we assume next that Gα = XB as Gα

∼= XB.
Subcase 1.1. Let ΓC be X-arc-transitive. Then Γ is arc-transitive, and so G acts

transitively on the arcs of ΓT . Thus G/N ∼= AutΓT is dihedral. In particular, N = T
and G = CX 6= C×X . Recalling that T = soc(X) = J1 or PSL(2, p), it follows that
T = PSL(2, p) and X = PGL(2, p). Set X = T :〈z〉 for an involution z ∈ X \ T .

Take a 2-element g ∈ G with (α, β)g = (β, α) for some β ∈ Γ (α). Write g = cxzj

for some c ∈ C, x ∈ T and j = 0 or 1. Then cc(xz
j)−1

(xzj)2 = g2 ∈ Gαβ < X , yielding

c−1 = cxz
j

= cz
j

and (xzj)2 ∈ Gαβ . In particular, g = cxz, cz = c−1 and (xz)2 ∈ Gαβ .
Since Γ is connected, G = 〈g,Gα〉 ≤ 〈x, cz, Gα〉 ∩ 〈c, xz, Gα〉. It follows that 〈c〉 = C
and Gα 6≤ T . Thus we may choose z ∈ Gα.

Recalling that Gα = XB, we have TB = Tα and Gα = Tα:〈z〉. Since CT/N =
CT/T ∼= C is cyclic, CT is transitive on the edges but not on the arcs of ΓT , it implies
that Γ is CT -half-transitive. Then ΓC is T -half-transitive, and so, by Lemma 6.3,
Tα = TB

∼= Z2, Z
2
2 or D8. Moreover, since Γ is CT -half-transitive, we have |Tα :

Tαβ | = 2. Then |Gα : Tαβ | = 4, hence Gαβ = Tαβ.
Suppose that Tα

∼= D8. Then Gαβ = Tαβ
∼= Z

2
2, and so S4

∼= NX(Gαβ) < T . Thus
NG(Gαβ) = CNG(Gαβ) = C×NT (Tαβ), and so g 6∈ NG(Gαβ), a contradiction.

Assume that Tα
∼= Z2. Then Gαβ = Tαβ = 1, so xz is an involution, and hence

xz = x−1. By G = 〈g,Gα〉 = 〈cxz, Tα, z〉 = 〈c, x, Tα, z〉, we know 〈x, Tα〉 = T . Then
Γ is isomorphic to a graph given in Example 5.10 (1), and so Theorem 1.1 (8) occurs.

Assume that Tα
∼= Z

2
2. Then Gα

∼= D8 and Gαβ = Tαβ
∼= Z2. If p ≡ ±1 (mod 8)

then S4
∼= NX(Tα) < T , and hence z ∈ NX(Tα) < T , a contradiction. Thus p ≡

±3 (mod 8). Set Gαβ = 〈o〉 for an involution o ∈ T . Then Tα < CT (o), and g =
cxz ∈ NG(Gαβ) = CG(o) = C:CX(o), and so xz ∈ CX(o). If Gα = NCX(o)(Tα) then
z ∈ CX(o), so G = 〈cxz, Tα, z〉 ≤ CCX(o), a contradiction. Thus z 6∈ CX(o), and
hence Γ is isomorphic to a graph in Example 5.10 (2). Then Theorem 1.1 (8) occurs.

Subcase 1.2. Let ΓC be X-half-transitive. Then, by the argument in Section 6, we
know that T = PSL(2, p) and Gα = XB

∼= Z2, Z
2
2 or D8. Suppose that G 6= C×X .

Then X = PGL(2, p) and there is an involution z ∈ X \ T such that z dose not
centralize C. It follows that N = T , and so G/N ∼= C:〈z〉 is not abelian. Then
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G/N is dihedral, and so G acts transitively on the arcs of ΓT , it implies that Γ is
arc-transitive, a contradiction. Thus G = C×X .

Suppose that XB
∼= Z

2
2 or D8. By Lemma 6.3 (2) and (3), we conclude that

AutΓC \ X contains an involution θ which normalizes X and XB. Define a map

ρ : V → V ; αcix 7→ αc−ixθ

, 0 ≤ i ≤ |C| − 1, x ∈ X . It is easily shown that ρ ∈ AutΓ

but ρ 6∈ G; however, G = AutΓ , a contradiction.
Let Gα = XB

∼= Z2. Take β ∈ Γ (α) and g ∈ G with β = αg. Then Γ ∼=
Cos(G,XB, XB{g, g

−1}XB). Set g = cx with c ∈ C and x ∈ X . Since Γ is
connected, we have G = 〈g,XB〉 = 〈c, x,XB〉 = 〈c〉×〈x,XB〉. It implies that
C = 〈c〉 and 〈x,XB〉 = X . Thus we get a connected X-half-transitive graph
Cos(X,XB, XB{x, x

−1}XB), which is of valency 4. Then Γ is constructed as in Ex-
ample 5.11, and so Theorem 1.1 (9) occurs.

Case 2. Assume that |C| is even. Then ΓC has odd order, and so XB is a Sylow
2-subgroup of X . Applying Lemmas 6.1-6.4 to the pair (ΓC , X), we conclude that
T = soc(X) = PSL(2, p), Gα

∼= XB
∼= Z

2
2, D8 or D16, and ΓC is X-arc-transitive.

Then Γ is arc-transitive. Since |C| is square-free, C has a unique 2′-Hall subgroup,
say L. Then L is a characteristic subgroup of C, and hence L✁G. Recall that C is
cyclic or dihedral. We set L = 〈c〉 ∼= Zl, where l > 1 is odd and square-free.

Subcase 2.1. Assume that C ∼= Z2l and set C = L×〈y〉. Then G = 〈y〉×(L:X).
Consider the quotient graph Γ〈y〉. Then Γ〈y〉 is LX-arc-transitive and, by the argument
in Case 1, Γ〈y〉 is isomorphic to a graph in Example 5.10 (2). In particular, X =
PGL(2, p), p ≡ ±3 (mod 8) and cg = c−1 for each involution g ∈ X \ T . If Gα < LX
then it is easily shown that Γ is isomorphic to the standard double cover of Γ〈y〉, and
then Theorem 1.1 (10) occurs. Thus we assume next that Gα 6≤ LX .

Let B1 be the 〈y〉-orbit containing α. Then Gα
∼= (LX)B1

by Lemma 2.7, and
(LX)B1

is a Sylow 2-subgroup of LX , and so Gα
∼= (LX)B1

∼= D8. Since X contains a
Sylow 2-subgroup of LX , we may assume that (LX)B1

< X . Thus (LX)B1
= XB1

6=
Gα. Let x ∈ XB1

be of order 4. Then x or xy is contained in Gα. By Lemma 2.5,
XB1

is faithful on Γ〈y〉(B1). Thus 〈x〉 is regular on Γ〈y〉(B1). Let B′
1 ∈ Γ〈y〉(B1), and

let z ∈ XB1
be an involution which fixes B′

1 set-wise. Since Γ is a cover of Γ〈y〉, it is
easily shown that either z or yz fixes B1 ∪ B′

1 point-wise. Let β ∈ B′
1 ∩ Γ (α). Then

Gαβ = 〈z〉 or 〈yz〉. By the choices of x and z, we have xz = x−1, XB1
= 〈x, z〉 and

Gα = 〈x〉:Gαβ or 〈xy〉:Gαβ. It follows that either Gαβ = 〈z〉 and Gα = 〈xy, z〉, or
Gαβ = 〈yz〉 and Gα = 〈x, yz〉 or 〈xy, yz〉.

Suppose that z ∈ X \ T . Then cz = c−1. Computation shows that NG(Gαβ) =
CG(z) = 〈y〉×CX(z). Then there is no g ∈ NG(Gαβ) with 〈g,Gα〉 = G, which
contradicts that Γ is a connected G-arc-transitive graph. Thus z ∈ T .

If Gαβ = 〈yz〉 then, writing Γ as a coset graph, Γ is constructed as in Example
5.12, and so Theorem 1.1 (8) occurs. Assume that Gαβ = 〈z〉 and Gα = 〈xy, z〉. Set
X1 = T :〈xyz〉. Then X1

∼= PGL(2, p), G = 〈y〉×(LX1) and Gα < X1 < LX1. It
follows that Γ is the standard double cover of an LX1-arc-transitive graph, which is
isomorphic to Γ〈y〉. Thus Theorem 1.1 (10) occurs.

Subcase 2.2. Assume that C ∼= D2l. We claim that G = C×X1 for a subgroup X1 of
G. This is clear if X = T . Assume that X = PGL(2, p). Recall that N is the kernel
of G acting on T -orbits. Since C is dihedral and |C ∩ N | ≤ 2, we have C ∩ N = 1.
If G = CN then the claim hold by taking X1 = N . Suppose that G 6= CN . Then
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N = T and G = (C×T ):〈z〉 for an arbitrary involution z ∈ X \ T . It follows that
G/N = G/T ∼= C:〈z〉 < G. Since Γ is arc-transitive, ΓT is G/N -arc-transitive. Then
G/N is dihedral, and so either cz = c−1 or z lies in the center of C〈z〉. The latter
case yields G = C×X . Suppose that cz = c−1. Note that the set of involutions in
C is invariant under the conjugation of z. We may take an involution y ∈ C with
yz = y. Then yz centralizes C, and our claim holds by taking X1 = T :〈yz〉.

Without loss of generality, we assume that G = C×X . Then GB = C×XB. Recall
that |C| and |X| has no prime divisors in common other that 2. Considering the
action of XB on B, we conclude that either XB fixes B point-wise, or |XB : Xα| = 2
for α ∈ B. The former case implies that XB ≤ Gα, and so Gα = XB as Gα

∼= XB;
in this case, there is no a 2-element g with 〈g,Gα〉 = G, a contradiction. Thus
|XB : Xα| = 2, and so |Gα : Xα| = 2; in this case LX is transitive on V . Clearly,
there is no 2-element g in LX with 〈g,Xα〉 = LX . It follows that Γ is not LX-arc-
transitive, and so Xα is intransitive on Γ (α). By Lemmas 2.4 and 2.5, |Xα : Xαβ| = 2
for β ∈ Γ (α). Since Γ is arc-transitive, |Gα : Gαβ| = 4. It implies that Gαβ = Xαβ ,
and so Γ is isomorphic to a graph constructed in Example 5.13. Theorem 1.1 (9)
occurs. This completes the proof. �
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