ON EDGE-TRANSITIVE TETRAVALENT GRAPHS OF SQUARE-FREE ORDER

CAI HENG LI, ZAI PING LU, AND GAI XIA WANG

ABSTRACT. In this paper, a classification is given for tetravalent graphs of squarefree order which are vertex-transitive and edge-transitive. It is shown that such graphs are either Cayley graphs or covers of some graphs arisen from simple groups A_7 , J_1 and PSL(2, p).

1. INTRODUCTION

We denote by $\Gamma = (V, E)$ a simple graph with vertex set V and edge set E. Then the cardinality |V| is called the *order* of Γ . A graph $\Gamma = (V, E)$ is called *vertextransitive* or *edge-transitive* if the automorphism group Aut Γ acts transitively on V and E, respectively. Recall that an *arc* in a graph Γ is an ordered pair of adjacent vertices. Then a graph Γ is called *arc-transitive* if Aut Γ acts transitively on the set of arcs of Γ . A graph Γ is called *edge-regular* or *arc-regular* if Aut Γ acts regularly on the edge set or arc set of Γ , respectively.

This paper is one of a series of articles devoted to studying the class of edgetransitive graphs of square-free order. The study of such graph has a long history. For example, Chao [4] gave a classification of edge-transitive graphs of prime order and proved that those resulting graphs are also arc-transitive; Cheng and Oxley [5] showed that every vertex- and edge-transitive graphs of order twice a prime is isomorphic to one of a list of well-defined arc-transitive graphs. Thereafter, a lot of interesting results have appeared in this topic, especially, for those graphs of order being a product of two primes, see for instance [1, 17, 18, 19, 21, 22].

In [16] we gave a characterization for the class of edge-transitive graphs of squarefree order, which says that the basic members in this class consist of a few special families of graphs and a finite number of sporadic graphs. This motivate us to classify edge-transitive graphs of square-free order and of small valency. In a recent paper [15], we classified cubic arc-transitive graphs of square-free order. In the present paper, we shall give a classification of connected tetravalent graphs of square-free order which are vertex-transitive and edge-transitive.

We fist explain some notation and concepts on groups and graphs. For two groups A and B, denote by $A \times B$, A.B and A:B the direct product, an extension and a semi-direct product of A by B, respectively; for an positive integer m, denote by \mathbb{Z}_m and \mathbb{D}_{2m} the cyclic group of order m and the dihedral group of order 2m, respectively. For a finite group X, the *socle* of X, denoted by $\operatorname{soc}(X)$, is the subgroup generated by all minimal normal subgroups of X. A group X is said to be *almost simple* if its socle $\operatorname{soc}(X)$ is a non-abelian simple group.

The work was supported partially by the NSFC.

Let $\Gamma = (V, E)$ be a graph. Then Γ is called *vertex-primitive* if Aut Γ is a primitive permutation group on V. The *standard double cover* of the graph Γ is defined to be the bipartite graph with vertex set $V \times \mathbb{Z}_2$ such that two vertices $(\alpha, 0)$ and $(\beta, 1)$ are adjacent if and only if α and β are adjacent in Γ .

Our main result is stated as follows.

Theorem 1.1. Let $\Gamma = (V, E)$ be a connected tetravalent graph of square-free order. Assume that Γ is both vertex-transitive and edge-transitive. Then one of the following statements holds.

- (1) Γ is a Cayley graph, that is, Aut Γ contains a regular subgroup.
- (2) Aut $\Gamma \cong \mathbb{Z}_m: (\mathbb{Z}_n \times \mathbb{Z}_4)$ with m > 1, n > 1 and |V| = 2mn, and Γ is constructed as in Construction 3.1.
- (3) Aut $\Gamma = S_7$, and Γ is isomorphic either the odd graph O_4 of valency 4 or the graph in Example 5.1.
- (4) $\operatorname{Aut}\Gamma = \operatorname{J}_1$ or $\mathbb{Z}_3 \times \operatorname{J}_1$, and Γ is isomorphic to a graph given in Example 5.2.
- (5) $\operatorname{Aut}\Gamma = \operatorname{PSL}(2, p)$ or $\operatorname{PGL}(2, p)$ for a prime $p \ge 5$, and
 - (i) $p \equiv \pm 3 \pmod{8}$, and Γ is edge-regular or arc-regular; or
 - (ii) Γ is isomorphic to a graph given in Examples 5.3, 5.4, 5.5 and 5.6; or
 - (iii) Γ is vertex-primitive.
- (6) $\operatorname{Aut}\Gamma = \mathbb{Z}_2 \times \operatorname{PSL}(2, p), \mathbb{Z}_3: \operatorname{PGL}(2, p), \mathbb{D}_6 \times \operatorname{PSL}(2, p) \text{ or } \mathbb{D}_6 \times \operatorname{PGL}(2, p) \text{ for a prime } p \geq 5, \text{ and } \Gamma \text{ is isomorphic to a graph given in Example 5.7.}$
- (7) $\operatorname{Aut}\Gamma = \mathbb{Z}_2 \times \operatorname{PSL}(2, p)$ or $\mathbb{Z}_2 \times \operatorname{PGL}(2, p)$ for a prime $p \ge 5$, and Γ is either arc-regular or isomorphic to a graph give in Examples 5.8 and 5.9.
- (8) Aut $\Gamma = \mathbb{Z}_l$:PGL(2, p) or \mathbb{Z}_{2l} :PGL(2, p) for a prime $p \ge 5$ and a square-free integer l > 1 coprime to $p(p^2 1)$, and Γ is isomorphic to a graph given in Example 5.10 or 5.12, respectively.
- (9) $\operatorname{Aut}\Gamma = \mathbb{Z}_l \times \operatorname{PSL}(2, p)$ or $\operatorname{D}_{2l} \times \operatorname{PSL}(2, p)$ for a prime $p \ge 5$ and a square-free integer l > 1 coprime to $p(p^2 1)$, and Γ is isomorphic to a graph given in Example 5.11 or 5.13, respectively.
- (10) Γ is isomorphic the standard double cover of a graph which is of odd order and described as in one of parts (3), (5), (6) and (8).

Remark on Theorem 1.1. The graphs satisfying (1) were classified in [14], and the graphs in item (iii) of part (5) can be read out from [13].

2. Preliminaries

Let $\Gamma = (V, E)$ be a graph and $G \leq \operatorname{Aut}\Gamma$. The graph Γ is said to be *G*-vertextransitive or *G*-edge-transitive if *G* acts transitively on *V* or *E*, respectively. Let $\alpha \in V$. Denote by G_{α} and $\Gamma(\alpha)$ the stabilizer of α in *G* and the set of the neighbors of α in Γ , respectively. For $\beta \in \Gamma(\alpha)$, denote by $G_{\alpha\beta}$ the arc-stabilizer $G_{\alpha} \cap G_{\beta}$ of (α, β) . Suppose that Γ is both *G*-vertex-transitive and *G*-edge-transitive. Then

- (i) G_{α} is transitive on $\Gamma(\alpha)$, so $|\Gamma(\alpha)| = |G_{\alpha}: G_{\alpha\beta}|$; or
- (ii) G_{α} has exactly two orbits on $\Gamma(\alpha)$, and $|\Gamma(\alpha)| = 2|G_{\alpha}: G_{\alpha\beta}|$.

In these two cases, Γ is called *G*-arc-transitive and *G*-half-transitive, respectively. If Γ is *G*-arc-transitive, then there exists $g \in G \setminus G_{\alpha}$ such that $(\alpha, \beta)^g = (\beta, \alpha)$; obviously, this g can be chosen to be a 2-element in $\mathbf{N}_G(G_{\alpha\beta})$ with $g^2 \in G_{\alpha\beta}$. Set $H = G_{\alpha}$.

 $[G:H] := \{Hx \mid x \in G\}$. The coset graph $\mathsf{Cos}(G, H, HgH)$ is defined on [G:H] with edge set $\{\{Hx, Hy\} \mid yx^{-1} \in H\{g, g^{-1}\}H\}$, where $g \in G \setminus H$ is such that $\alpha^g \in \Gamma(\alpha)$. Then the group G can be viewed as a group of automorphisms of $\mathsf{Cos}(G, H, HgH)$ acting on [G:H] by the right multiplication, and the mapping $\alpha^x \mapsto Hx, \forall x \in G$ is an isomorphism from Γ to $\mathsf{Cos}(G, H, HgH)$.

Lemma 2.1. Let $\Gamma = Cos(G, H, HgH)$ be a coset graph. Then

- (i) Γ is G-vertex-transitive and G-edge-transitive, and Γ is connected if and only if (H, g) = G;
- (ii) Γ is G-arc-transitive if and only if $H\{g, g^{-1}\}H = HxH$ for some 2-element $x \in \mathbf{N}_G(H \cap H^g) \setminus H$ with $x^2 \in H \cap H^g$.

Let $\Gamma = (V, E)$ be a graph and $G \leq \operatorname{Aut}\Gamma$. Note that, for $\alpha \in V$, the stabilizer G_{α} fixes $\Gamma(\alpha)$ set-wise. Then G_{α} induces a permutation group $G_{\alpha}^{\Gamma(\alpha)}$ (on $\Gamma(\alpha)$). Let $G_{\alpha}^{[1]}$ be the kernel of this action. Then $G_{\alpha}^{\Gamma(\alpha)} \cong G_{\alpha}/G_{\alpha}^{[1]}$.

Let N be a normal subgroup of G, denoted by $N \leq G$. Then N_{α} is a normal subgroup of G_{α} . One extreme case is that N_{α} acts transitively on $\Gamma(\alpha)$. It is easily shown that the following lemma holds for connected arc-transitive graphs.

Lemma 2.2. Let $\Gamma = (V, E)$ be a connected *G*-vertex-transitive graph, $\alpha \in V$ and $N \leq G \leq \operatorname{Aut}\Gamma$. If N_{α} is transitive on $\Gamma(\alpha)$, then Γ is *N*-edge-transitive; in particular, either Γ is *N*-arc-transitive or *N* has exactly two orbits on *V*.

For the case where N is a semiregular on V with two orbits, by [12, Lemma 2.4], we have the following result.

Lemma 2.3. Let $\Gamma = (V, E)$ be a connected bipartite graph, $\alpha \in V$ and $N \leq G \leq Aut\Gamma$. If N is regular on both the bipartition subsets of Γ , then $G_{\alpha} \cong G_{\alpha}^{\Gamma(\alpha)}$.

By [6, Lemma 2.1], we have the following result.

Lemma 2.4. Let $\Gamma = (V, E)$ be a connected *G*-vertex-transitive graph, $\alpha \in V$ and $N \leq G \leq \operatorname{Aut}\Gamma$. Then each prime divisor of $|N_{\alpha}|$ divides $|N_{\alpha}^{\Gamma(\alpha)}|$ and, for $\beta \in \Gamma(\alpha)$, each prime divisor of $|N_{\alpha\beta}|$ is less than $|\Gamma(\alpha)|$. In particular, $N_{\alpha}^{\Gamma(\alpha)} \neq 1$ if $N_{\alpha} \neq 1$.

Lemma 2.5. Let $\Gamma = (V, E)$ be a connected *G*-vertex-transitive graph, $\alpha \in V$ and $N \leq G \leq \operatorname{Aut}\Gamma$. If Γ is *G*-edge-transitive then $|N_{\alpha} : N_{\alpha\beta}|$ is a constant, where $\{\alpha, \beta\}$ runs over *E*. If $N_{\alpha}^{\Gamma(\alpha)}$ is semiregular on $\Gamma(\alpha)$, then $N_{\alpha} \cong N_{\alpha}^{\Gamma(\alpha)}$.

Proof. The first part of this lemma follows from [14, Lemma 3.1].

Assume that $N_{\alpha}^{\Gamma(\alpha)}$ is semiregular on $\Gamma(\alpha)$. Let $\beta \in \Gamma(\alpha)$. Then $\beta = \alpha^x$ for some $x \in G$. Since $N \triangleleft G$, it is easily shown that $N_{\beta} = N_{\alpha}^x$ and $N_{\beta}^{[1]} = (N_{\alpha}^{[1]})^x$. It follows that $N_{\beta}^{\Gamma(\beta)}$ and $N_{\alpha}^{\Gamma(\alpha)}$ are permutation isomorphic. In particular, $N_{\alpha}^{\Gamma(\alpha)}$ is semiregular on $\Gamma(\alpha)$ if and only if $N_{\beta}^{\Gamma(\beta)}$ is semiregular on $\Gamma(\beta)$, which yields that $N_{\alpha}^{[1]}$ acts trivially on $\Gamma(\beta)$, and so $N_{\alpha}^{[1]} = N_{\beta}^{[1]}$. Since Γ is connected, $N_{\alpha}^{[1]}$ fixes each vertex of Γ , hence $N_{\alpha}^{[1]} = 1$. Then the lemma follows.

Let $\Gamma = (V, E)$ be a graph. For a positive integer s, an s-arc in Γ is a sequence of s + 1 vertices $\alpha_0, \alpha_1, \ldots, \alpha_s$ such that α_i is adjacent to α_{i+1} and $\alpha_i \neq \alpha_{i+2}$. For

 $G \leq \operatorname{Aut}\Gamma$, the graph Γ is said to be (G, s)-arc-transitive if G acts transitively on Vand on the set of s-arcs of Γ , and (G, s)-transitive if further G is intransitive on the set of (s + 1)-arcs of Γ . The vertex stabilizer for s-arc-transitive graphs of valency 4 is known, refer to [23].

Lemma 2.6. Let $\Gamma = (V, E)$ be a connected (G, s)-transitive graph of valency 4. Then, for $\alpha \in V$, the stabilizer X_{α} and s are listed in the following table.

s	2	3	4	7
G_{α}	A_4, S_4	$\mathbb{Z}_3 \times A_4, \ (\mathbb{Z}_3 \times A_4).\mathbb{Z}_2, \ S_3 \times S_4$	\mathbb{Z}_3^2 :GL $(2,3)$	$[3^5]$:GL $(2,3)$

We end this section by a useful observation on permutation groups.

Lemma 2.7. Let G = N:X be a permutation group on V, and let B be an N-orbit. Assume that N is regular on B. Then $(NY)_{\alpha} \cong Y_B$ for $\alpha \in B$ and $Y \leq X$.

Proof. Let U be the NY-orbit containing B. Then $\{B^g \mid g \in NY\}$ is an NY-invariant partition of U. It follows that $(NY)_{\alpha} \leq (NY)_B$, and so $(NY)_{\alpha} = ((NY)_B)_{\alpha}$. Since N is transitive on B, we have $(NY)_B = N(NY)_{\alpha}$. Then $N(NY)_{\alpha} = (NY)_B =$ $NY \cap G_B = N(Y \cap G_B) = NY_B$. Thus $(NY)_{\alpha} \cong N(NY)_{\alpha}/N = NY_B/N \cong Y_B$. \Box

3. The soluble case

In this section, we treat vertex-transitive and edge-transitive tetravalent graphs which have soluble automorphism groups. We first construct a family of such graphs.

Construction 3.1. Let $F = \langle a \rangle \cong \mathbb{Z}_m$ with m odd and square-free. Assume that $\operatorname{Aut}(F)$ has an element y of order 4. Let $b \in \operatorname{Aut}(F)$ be of order n with n odd square-free and coprime to m. Consider the semi-direct product $G = \langle a \rangle : (\langle b \rangle \times \langle y \rangle)$. Let $H = \langle y^2 \rangle$, and g = aby. If $\langle H, g \rangle = \langle aby, y^2 \rangle = G$, then $\Gamma = \operatorname{Cos}(G, H, HgH)$ is a connected vertex-transitive and edge-transitive graph of valency 4.

Lemma 3.2. Let $\Gamma = (V, E)$ be as in Construction 3.1. If n = 1, then Aut Γ contains two subgroups isomorphic to D_{2m} and $D_{2m}:\mathbb{Z}_4$ which acts regularly on the vertices and arcs of Γ , respectively.

Proof. Assume that n = 1 and $a^y = a^r$. Then r is coprime to $m, r^4 \equiv 1 \pmod{m}$ and $r^2 \not\equiv 1 \pmod{m}$. Note that Γ is bipartite and $\langle a \rangle$ is semiragular on each of the biparts of Γ . Then $V = \{Ha^i \mid 0 \leq i \leq m-1\} \cup \{Ha^iy \mid 0 \leq i \leq l-1\}$, and $H\{g, g^{-1}\}H = \{y^s a^t \mid s = 1, -1; t = -1, r, -r^2, r^3\}$. Note that Ha^i and Ha^jy are adjacent if and only if $ya^{rj-i} = (a^jy)a^{-i} \in H\{g, g^{-1}\}H$. Then Ha^i and Ha^jy are adjacent if and only if rj-i, modulo m, lies in $\{-1, r, -r^2, r^3\}$. Since $rj-i \equiv r(-r^3)i - (-r)j \pmod{m}$, we know that Ha^i and Ha^jy are adjacent if and only if Ha^{-rj} and $Ha^{-r^3i}y$ are adjacent in Γ . Define a map $\tau : Ha^i \mapsto Ha^{-r^3i}y$, $Ha^jy \mapsto Ha^{-rj}$. Then $\tau \in \operatorname{Aut}\Gamma$ by the above argument. It is easily shown τ is an involution and that $R := \langle a, \tau \rangle$ is transitive on V. Computation shows that $(Ha^i)^{\tau a\tau} = Ha^{i-1}$ and $(Ha^iy)^{\tau a\tau} = Ha^iya^{-1}$, and so $\tau a\tau = a^{-1}$ and $\langle a, \tau \rangle \cong D_{2m}$. Then R is regular on V. Further computation indicates that $\tau y = y\tau$. Thus $R: \langle \tau y \rangle \cong D_{2m}: \mathbb{Z}_4$ is regular on the arcs of Γ .

Theorem 3.3. Let $\Gamma = (V, E)$ be a connected tetravalent graph of square-free order, and $G \leq \operatorname{Aut}\Gamma$. Assume that G is soluble and Γ is both G-vertex-transitive and G-edge-transitive. Then one of the following holds.

- (1) Aut Γ contains a regular subgroup;
- (2) $G \cong \mathbb{Z}_m: (\mathbb{Z}_n \times \mathbb{Z}_4)$ with m, n > 1 and |V| = 2mn, G is regular on E and Γ described as in Construction 3.1.

Proof. For a prime divisor p of |G|, denote by $\mathbf{O}_p(G)$ the largest normal p-subgroup of G. By Lemma 2.5, $|(\mathbf{O}_p(G))_{\alpha} : (\mathbf{O}_p(G))_{\alpha\beta}|$ is a divisor of 4, where $\{\alpha, \beta\} \in E$. It follows that either p = 2 or $\mathbf{O}_p(G)$ is semiregular on V. Thus $|\mathbf{O}_p(G)| \le p$ if $p \ge 3$.

Suppose that $N := \mathbf{O}_2(G)$ has order divisible by 4. Then N is not semiregular on V, and it follows that, for any two N-orbits B and C, the subgraph $[B \cup C]$ induced by $B \cup C$ either contains no edge or is isomorphic to $\mathsf{K}_{2,2}$. It follows that Γ is the lexicographic product of the empty graph $2\mathsf{K}_1$ by an *n*-cycle, where *n* is the number of N-orbits. It is easily shown that $\operatorname{Aut}\Gamma \cong \mathbb{Z}_2^n: \mathbb{D}_{2n}$ contains two regular subgroups isomorphic to \mathbb{Z}_{2n} and \mathbb{D}_{2n} , respectively. So part (1) occurs.

Now assume that $\mathbf{O}_p(G) = 1$ or \mathbb{Z}_p for each prime divisor p of |G|. Let F be the Fitting subgroup of G, the largest nilpotent normal subgroup of G. Then $F \neq 1$ as G is soluble, and F is cyclic. It follows that F is semiregular on V. Since G is soluble, the centralizer $\mathbf{C}_G(F) \leq F$, and so $\mathbf{C}_G(F) = F$. Then $G/F = \mathbf{N}_G(F)/\mathbf{C}_G(F)$ is isomorphic to a subgroup of $\operatorname{Aut}(F)$, which is abelian. Thus G/F is abelian. For a vertex α , we have $G_{\alpha} \cong FG_{\alpha}/F \leq G/F$; in particular, G_{α} is an abelian 2-group.

Assume that F has l orbits on V. Then $|G| = l|F||G_{\alpha}|$. If l is odd, then G contains a normal regular subgroup $F:\mathbb{Z}_l$, so part (1) occurs. Thus we assume further that |F|is odd and l = 2n is even. Since $|G:G_{\alpha}| = 2n|F|$ is square-free, |F| is coprime to $2n|G_{\alpha}|$. Since G is soluble, G has a Hall subgroup H of order $2n|G_{\alpha}|$. Then G = F:H, and H is abelian as $H \cong G/F$. Thus $H = N \times P$, where $N \cong \mathbb{Z}_n$ and P is a Sylow 2-subgroup of G with $G_{\alpha} \leq P$ and $|P:G_{\alpha}| = 2$. Then F:N is a normal semiregular subgroup of G, and it has exactly two orbits on V. Since G is transitive on E, we know that Γ is a bipartite graph with two parts being the FN-orbits on V. Thus By Lemma 2.3, G_{α} is faithful on $\Gamma(\alpha)$, and so $G_{\alpha} \cong \mathbb{Z}_2$, \mathbb{Z}_4 or \mathbb{Z}_2^2 .

Suppose that Γ is *G*-arc-transitive. Then $G_{\alpha\beta} = 1$ for $\beta \in \Gamma(\alpha)$. Let $g \in G$ with $(\alpha, \beta)^g = (\beta, \alpha)$. Then $g^2 \in G_{\alpha\beta} = 1$. Thus *G* has a regular subgroup $(FN):\langle g \rangle$, so part (1) of Theorem 1.1 occurs.

Suppose next that Γ is *G*-half-transitive. It follows from Lemma 2.5 that $G_{\alpha} \cong \mathbb{Z}_4$. Then $G_{\alpha} \cong \mathbb{Z}_2$ or \mathbb{Z}_2^2 . Recall that *P* is a Sylow 2-subgroup of *G* with $G_{\alpha} \leq P$ and $|P:G_{\alpha}|=2$. If $P \cong \mathbb{Z}_2^i$ for i=2 or 3, then *G* has a regular subgroup $(FN):\langle g \rangle$ for some involution $g \in P$. Thus we assume further that $P \cong \mathbb{Z}_4$ or $\mathbb{Z}_2 \times \mathbb{Z}_4$.

Set $F \cong \mathbb{Z}_m$. Then $G = FNP \cong \mathbb{Z}_m: (\mathbb{Z}_n \times P)$. Write $\Gamma = \mathsf{Cos}(G, G_\alpha\{g, g^{-1}\}G_\alpha)$, where g = aby for $a \in F$, $b \in N$ and $y \in P$. Then $G_\alpha gG_\alpha \neq G_\alpha g^{-1}G_\alpha$, $|G : (G_\alpha \cap G_\alpha^g)| = 2$ and, since Γ is connected, $G = \langle g, G_\alpha \rangle \leq \langle a \rangle: \langle b, y, G_\alpha \rangle = \langle a \rangle: (\langle b \rangle \times \langle y, G_\alpha \rangle)$. It follows that $F = \langle a \rangle$, $N = \langle b \rangle$ and y has order 4. Set $G_\alpha \cap G_\alpha^g = \langle x \rangle$. Then $x^2 = 1$. Note that $G_\alpha \cap G_\alpha^g = G_\alpha \cap G_\alpha^{aby} = (G_\alpha \cap G_\alpha^a)^{by} = G_\alpha \cap G_\alpha^a$. Then $\langle x, x^{a^{-1}} \rangle \leq G_\alpha$. If $x \neq x^{a^{-1}}$ then $G_\alpha = \langle x, x^{a^{-1}} \rangle \cong \mathbb{Z}_2^2$, but $1 \neq xx^{a^{-1}} = a^x a^{-1} \in F$, a contradiction. Thus $x \in \mathbf{C}_G(a^{-1}) = \mathbf{C}_G(F) = F$. It implies that x = 1, so $G_\alpha \cap G_\alpha^g = 1$. Then $G_\alpha \cong \mathbb{Z}_2$, yielding |P| = 4 and $P \cong \mathbb{Z}_4$. Thus Γ is described as in Construction 3.1. Then, by Lemma 3.2, one of (1) and (2) of this theorem follows.

LI, LU, AND WANG

4. Insoluble automorphism groups

In this section, we assume that $\Gamma = (V, E)$ is a connected tetravalent graph of square-free order, and that a subgroup $G \leq \operatorname{Aut}\Gamma$ acts transitively on V.

Let $N \triangleleft G$ be an intransitive normal subgroup. Consider the normal quotient graph Γ_N , which is the graph defined on $V_N = \{\alpha^N \mid \alpha \in V\}$ with edge set $\{\{\alpha^N, \beta^N\} \mid \{\alpha, \beta\} \in E\}$. Then Γ_N has valency 1, 2 or 4. If Γ and Γ_N has the same valency, then it is easily shown that N is a semiregular subgroup of G and itself is the kernel of G acting on V_N ; in this case, Γ is called a normal cover of Γ_N with respect to G and N.

Lemma 4.1. Let N be an intransitive normal subgroup of G. Assume that Γ is a normal cover of Γ_N . Then G = N:X for some $X \leq G$ with $N \cap X = 1$.

Proof. The lemma is trivial for N = 1. Thus we assume that $N \neq 1$.

Since Γ is a normal cover of Γ_N and Γ is connected, N is semiregular on V; in particular, |N| is a divisor of |V|, so |N| is square-free. Let p be the largest prime divisor of |N|. Then N has a unique Sylow p-subgroup, say P. Thus P is a characteristic subgroup of N, and so $P \triangleleft G$.

Note that each N-orbits on V is the union of some P-orbits. Since Γ and Γ_N has the same valency, it is easily shown that Γ is a normal cover of Γ_P and that Γ_P is a normal cover of $(\Gamma_P)_{N/P} \cong \Gamma_N$. Then, by induction, we may assume that G/P = (N/P):(Y/P) for a subgroup $Y \leq G$ with $Y \cap N = P$.

Clearly, Y acts transitively on V_P , and so Y is transitive on V. Consider the action of Y on V_P . Then, for $B \in V_P$, we have $|V_P| = |Y : Y_B|$. Noting that P is semiregular, each P-orbit on V has length p. Thus $\frac{|V|}{p} = |V_P| = |Y : Y_B|$ is coprime to p as |V| is square-free. Then Y_B contains a Sylow p-subgroup of Y. Since $P \leq Y_B$ is transitive on B, we have $Y_B = PY_\alpha = P : Y_\alpha$ for $\alpha \in B$. It follows that Y_B and hence Y has a Sylow p-subgroup P:Q, where Q is a Sylow p-subgroup of Y_α . Then, by Gaschtz' Theorem (see [2, 10.4]), the extension $Y = P \cdot (Y/P)$ splits over P. Thus Y = P:X for X < Ywith $X \cap P = 1$. Then G = NY = NX and $X \cap N = X \cap (Y \cap N) = X \cap P = 1$, and the result follows.

Lemma 4.2. Assume that Γ is G-vertex-transitive and G-edge-transitive. Let C be the largest soluble normal subgroup of G. Then G = C:X for $X \leq G$, and either C = G or X is almost simple with socle centralizing C.

Proof. Assume $C \neq G$. Let K be the kernel of G acting on the set of C-orbits on V. Let B be a C-orbit and $\alpha \in B$. Then $K = C:K_{\alpha}$. Since $K_{\alpha} \leq G_{\alpha}$ is soluble, K is soluble. Thus K = C by the choice of C, and so G/C = K/C is insoluble, hence $\operatorname{Aut}\Gamma_C$ is insoluble. Then Γ_C is of valency 4, so Γ is a normal cover of Γ_C . By Lemma 4.1, G = C:X for some $X \leq G$. Identify X with a subgroup of $\operatorname{Aut}\Gamma_C$. Then Γ_C is X-vertex-transitive and X-edge-transitive.

By the choice of C, each minimal normal subgroup of $X \cong G/C$ is a direct product of isomorphic nonabelian simple groups. Then, since Γ_C has square-free order, the order of X is not divisible by p^2 for any prime p > 3. It implies that each minimal normal subgroup of X is nonabelian simple. Suppose that X has two distinct minimal normal subgroup, say N_1 and N_2 . Then $N_1N_2 = N_1 \times N_2$. For i = 1, 2, since N_i is nonabelian simple, N_i is not semiregular on V, either the quotient graph $(\Gamma_C)_{N_i}$ is a cycle or N_i has at most two orbits on V_C . It follows that N_2 fixes set-wise each

 N_1 -orbit on V_C . Thus $X_{\Delta} \geq N_1 \times N_2$, where Δ is an N_1 -orbit on V_C containing B. It implies that $|X_B|$ is divisible by $|N_2|$. Thus X_B is not a $\{2,3\}$ -group, which contradicts that Γ_C is of valency 4. Therefore, X is almost simple.

Since C has square-free order, $\operatorname{Aut}(C)$ is soluble. Then the quotient $G/\mathbb{C}_G(C) = \mathbb{N}_G(C)/\mathbb{C}_G(C)$ is soluble as it is isomorphic to a subgroup of $\operatorname{Aut}(C)$. It follows that $\operatorname{soc}(X) \leq \mathbb{C}_G(C)$, and then our lemma follows.

We next determine G when G is almost simple. Let $\alpha \in V$. Then G_{α} is a $\{2, 3\}$ group by Lemma 2.4. Since $|V| = |G : G_{\alpha}|$ is square-free, |G| is not divisible by p^2 for any prime $p \geq 5$. Moreover, either

(1) G_{α} is a 2-group, and so |G| is not divisible by 9; or

(2) Γ is (G, 2)-arc-transitive and, by Lemma 2.6, |G| is not divisible by 2^6 .

In particular, |G| is not divisible by $2^{6}3^{2}$ and $2^{2}3^{8}$.

Lemma 4.3. Assume that Γ is G-vertex-transitive and G-edge-transitive, and that G is an almost simple group. Then $\operatorname{soc}(G)$ is one of the following simple groups: A₅, A₆, A₇, M₁₁, J₁, PSL(2, p), PSL(2, 2^f), PSL(2, 3²), PSL(2, 3³), PSL(2, 3⁴), PSL(2, 3⁵), PSL(2, 3⁶), PSL(2, 3⁷), PSL(3, 2), PSL(3, 3) and Sz(2, 2^f), where $p \geq 5$ is a prime.

Proof. Let T = soc(G). If $T = A_n$, then n < 8; otherwise 25 or $2^{6}3^2$ divides |T|. Similarly, if T is a sporadic simple group then $T = M_{11}$ or J_1 .

To finish the proof, we assume that $T \neq \text{PSL}(2, p)$ and T is a simple group of Lie type defined over $\text{GF}(p^f)$, where p is a prime. Then $p \in \{2, 3\}$ as p^2 divides |T|.

Assume that p = 3. Since |G| is not divisible by 2^23^8 , we conclude that T is one of PSL(2, 3^f) (with $f \leq 7$), PSL(3, 3), PSU(3, 3), PSL(3, 9), PSL(4, 3), PSU(3, 9), PSU(4, 3), PSp(4, 3), $\Omega(5, 3)$, P $\Omega^+(6, 3)$, P $\Omega^-(6, 3)$ and G₂(3). The last 9 groups are excluded as their orders are divided by 25 or 2^63^2 . By the Atlas [7], PSU(3, 3) has no a {2,3}-subgroup of square-free index. Thus $T = PSL(2, 3^f)$ or PSL(3, 3).

Now let p = 2. Then T is one of $PSL(2, 2^f)$, $PSL(3, 2^f)$, $PSU(3, 2^f)$ and $Sz(2, 2^f)$; otherwise, |T| has a divisor $2^6(2^f + 1)^2$, which implies that |T| is divisible by 2^6r^2 , where $r \ge 3$ is a prime. Assume that $T = PSL(3, 2^f)$. Then |T| has a divisor $\frac{(2^f - 1)^2}{(3, 2^f - 1)}$, yielding $2^f - 1 = 3^e$ for some integer e. It follows that f = 1 or 2. The group PSL(3, 4) is excluded as its order has a divisor 2^63^2 . Thus T = PSL(3, 2).

Suppose that $T = \text{PSU}(3, 2^f)$. Then |T| has a divisor $\frac{(2^f+1)^2}{(3,2^f+1)}$, yielding $2^f + 1 = 3^e$ for some integer e. It follows that f = 1 or 3. However, PSU(3, 2) is not simple and PSU(3, 8) has order divisible by 2^63^2 , a contradiction. Thus the lemma follows. \Box

Recall that, for a connected *G*-arc-transitive graph $\Gamma = (V, E)$ and $\{\alpha, \beta\} \in E$, there is $g \in \mathbf{N}_G(G_{\alpha\beta})$ with $\langle g, G_{\alpha} \rangle = G$. Then several groups in Lemma 4.3 are excluded.

Lemma 4.4. Assume that Γ is G-vertex-transitive and G-edge-transitive. Then $\operatorname{soc}(G) \neq A_6, M_{11}$.

Proof. Suppose that $T := \operatorname{soc}(G) = A_6$ or M_{11} . Then $2^3 3^2$ divides |G|, and so $2^2 3$ divides $|G_{\alpha}|$. By the Atlas [7] and Lemma 2.6, we know that $G_{\alpha} \cong S_4$.

Assume that $T = M_{11}$. Then G = T and Γ is (T, 2)-arc-transitive. Further, checking by the GAP, all subgroups isomorphic to S_4 are conjugate in T. Thus we may

assume that T_{α} is contained in a maximal subgroup $M \cong S_5$. Since Γ is tetravalent, $T_{\alpha\beta} = S_3$ for $\beta \in \Gamma(\alpha)$. Checking the subgroups of M_{11} in the Atlas [7], we get $\mathbf{N}_T(T_{\alpha\beta}) \cong \mathbf{D}_{12}$, so $N_T(T_{\alpha\beta}) = \mathbf{N}_M(T_{\alpha\beta})$. Thus there is no an element $g \in \mathbf{N}_T(T_{\alpha\beta})$ with $\langle g, T_{\alpha} \rangle = T$, a contradiction.

Assume that $T = A_6$. Then |V| = 15 or 30. Suppose that $T_{\alpha} \cong A_4$. Then T is transitive on V, so Γ is (T, 2)-arc-transitive. For $\beta \in \Gamma(\alpha)$, we have $T_{\alpha\beta} \cong \mathbb{Z}_3$. It is easily shown that $\mathbf{N}_T(T_{\alpha\beta}) \cong \mathbf{S}_3$. Let M be a maximal subgroup of T with $T_{\alpha} < M$. Then $M \cong A_5$ or \mathbf{S}_4 , and so $\mathbf{N}_M(T_{\alpha\beta}) \cong \mathbf{S}_3$. Thus $\mathbf{N}_T(T_{\alpha\beta}) = \mathbf{N}_M(T_{\alpha\beta})$, so there is no $g \in \mathbf{N}_T(T_{\alpha\beta})$ with $\langle g, T_{\alpha} \rangle = T$, a contradiction. Suppose that $T_{\alpha} = G_{\alpha} \cong \mathbf{S}_4$. Then G = T or $T.\mathbb{Z}_2$, and $G_{\alpha\beta} \cong \mathbf{S}_3$ for $\beta \in \Gamma(\alpha)$. Checking the maximal subgroups of G in the Atlas [7], we conclude that either $\mathbf{N}_G(G_{\alpha\beta}) = G_{\alpha\beta}$, or $G = \mathbf{S}_6$ and both $\mathbf{N}_G(G_{\alpha\beta})$ and G_{α} are contained in a maximal subgroup isomorphic to $\mathbf{S}_4 \times \mathbb{Z}_2$. Thus $\langle g, G_{\alpha} \rangle \neq G$ for any $g \in \mathbf{N}_G(G_{\alpha\beta})$, again a contradiction.

Lemma 4.5. Assume that Γ is G-vertex-transitive and G-edge-transitive. If $\operatorname{soc}(G) = \operatorname{PSL}(2, p^f)$ with $f \ge 2$ and p = 2 or 3, then $\operatorname{soc}(G) \cong A_5$.

Proof. Assume that $T := \operatorname{soc}(G) = \operatorname{PSL}(2, p^f)$ for $f \ge 2$ and p = 2 or 3. Since T is normal in G, all T-orbits on V have the same length $|T : T_{\alpha}|$, where $\alpha \in V$. Then $|T : T_{\alpha}|$ is square-free. Thus p^{f-1} is divisor of $|T_{\alpha}|$.

Suppose that f > 3. Then, checking the subgroups of T (see [10, II.8.27], for example), we know that $T_{\alpha} \cong \mathbb{Z}_p^e:\mathbb{Z}_t$, where e = f - 1 or f, and t is a divisor of $p^f - 1$. In particular, $e \ge 3$ and T_{α} has a unique Sylow p-subgroup. For an arbitrary $\beta \in \Gamma(\alpha)$, by Lemma 2.5, $|T:T_{\alpha\beta}|$ is a divisor of 4, so p is divisor of $|T_{\alpha\beta}| = |T_{\alpha} \cap T_{\alpha}|$. Let P_1 and P_2 be Sylow p-subgroups of T such that P_1 contains the Sylow p-subgroup of T_{α} and P_2 contains the Sylow p-subgroup of T_{β} . Then, by [10, II.8.5], we conclude that $P := P_1 = P_2$. Thus the stabilizers P_{α} and P_{β} are the Sylow p-subgroups of T_{α} and T_{β} , respectively. Let $\gamma \in \Gamma(\beta)$. Since G is transitive on E, we have $|T_{\alpha\beta}| = |T_{\beta\gamma}|$. A similar argument implies that P_{γ} is the Sylow p-subgroup of T_{γ} . It follows from the connectedness of Γ that P_{δ} is the Sylow p-subgroup of T_{δ} for any $\delta \in V$. Then P contains a subgroup $Q = \langle P_{\delta} | \delta \in V \rangle \neq 1$. For $x \in G$, we have $P_{\delta}^x \leq T_{\delta}^x = T \cap G_{\delta}^x = T_{\delta^x}$, so P_{δ}^x is the the Sylow p-subgroup of T_{δ} , hence $P_{\delta}^x = P_{\delta^x}$. It follows that Q is a normal subgroup of G, which is impossible.

Therefore, f = 2 or 3. By the Atlas [7], neither PSL(2,8) nor PSL(2,27) has $\{2,3\}$ -subgroups of square-free index. Thus $T = PSL(2,p^2) \cong A_5$ by Lemma 4.4. \Box

By [20], any two distinct Sylow 2-subgroups of $Sz(2^{f})$ intersect trivially. Then a similar argument as in Lemma 4.5 implies the next lemma.

Lemma 4.6. Assume that G is transitive on both V and E. Then $soc(G) \neq Sz(2^f)$.

Note that $A_5 \cong PSL(2,4) \cong PSL(2,5)$ and $PSL(3,2) \cong PSL(2,7)$. By Lemmas 4.2 to 4.6, we have the following Theorem.

Theorem 4.7. Let $\Gamma = (V, E)$ be a connected tetravalent graph of square-free order. Assume that Γ is G-vertex-transitive and G-edge-transitive, where $G \leq \operatorname{Aut}\Gamma$. If G is insoluble then G = C:X, $\operatorname{soc}(X)$ is normal in G and $\operatorname{soc}(X) = A_7$, J_1 , $\operatorname{PSL}(3,3)$ or $\operatorname{PSL}(2,p)$, where $p \geq 5$ is a prime.

5. Examples

In this section we construct the graphs involved in Theorem 1.1. We always assume that p is a prime no less than 5.

5.1. Graphs constructed from almost simple groups. The first two examples give arc-transitive graphs associated with the symmetric group S_7 and the first Janko group J_1 , respectively.

Example 5.1. Let $G = S_7$, $P = \langle (12)(34), (13)(24) \rangle$, $K = \langle (234)(567), (34)(56) \rangle$ and H = P:K. Then $\mathbf{N}_G(K) = K:\langle \pi \rangle$, where $\pi = (25)(37)(46)$. It is easily shown that $\langle H, \pi \rangle = G$. Thus $\mathsf{Cos}(G; H, H\pi H)$ is a connected 2-arc-transitive graph of valency 4 and order 210.

Example 5.2. Let $G = J_1$. By the information for G given in the Atlas [7], all subgroups isomorphic to A_4 are conjugate, and all subgroups of order 4 are conjugate. Take a subgroup H isomorphic to A_4 . Let Q be the Sylow 2-subgroup of H, and let P be a Sylow 3-subgroup of H. Then $Q \cong \mathbb{Z}_2^2$, $P \cong \mathbb{Z}_3$ and $\mathbf{N}_G(P) \cong \mathbf{D}_6 \times \mathbf{D}_{10}$.

(1) Computation shows that $\mathbf{N}_G(P)$ contains exactly 8 involutions g with $\langle g, H \rangle = G$ (confirmed by GAP). For such an involution g, the coset graph $\mathsf{Cos}(G, H, HgH)$ is connected, (G, 2)-arc-transitive and of valency 4.

(2) There are exactly 1184 involutions g in G such that $\langle g, Q \rangle = G$ (confirmed by GAP). For such an involution g, the coset graph $\mathsf{Cos}(G, Q, QgQ)$ is connected, G-arc-transitive and of valency 4.

(3) Computation shows that G has exactly 6 involutions g such that $\langle g, H \rangle = G$ and g centralizes some element of order 3 in H (confirmed by GAP). Let g be such an involution. Take an element $b \in H$ of order 3 with gb = bg. Then b induce an automorphism \tilde{b} of $\Gamma = \mathsf{Cos}(G, Q, QgQ)$ acting on [G : Q] by left multiplication. Recall that G is viewed as a subgroup of $\mathsf{Aut}\Gamma$ which acts on [G : Q] by the right multiplication. Clearly, $b \neq \tilde{b}$, and \tilde{b} centralizes G. It is easily shown that $b^{-1}\tilde{b}$ has order 3 and fixes the vertex Q. Thus $\mathsf{Aut}\Gamma \geq \langle G, \tilde{b} \rangle = G \times \langle \tilde{b} \rangle \cong J_1 \times \mathbb{Z}_3$, and Γ is a 2-arc-transitive graph. \Box

We now construct some graphs associated with the simple group PSL(2, p). Let G = PSL(2, p) or PGL(2, p), and let $\Gamma = (V, E)$ be a connected graph of valency 4 such that G acts transitively on both V and E. If Γ is (G, 2)-arc-transitive then, by [9], we may construct easily Γ as a coset graph. If G_{α} is maximal in G for some $\alpha \in V$, that is, G is primitive on V, then Γ is explicitly known by [13]. In the following four examples we list some graphs which are not vertex-primitive.

Example 5.3. Let $p \equiv \pm 1 \pmod{3}$ and $p \equiv \mp 1 \pmod{8}$. Let $G = \operatorname{PGL}(2, p)$, $S_4 \cong H < \operatorname{soc}(G)$ and $S_3 \cong K < H$. Then $\mathbf{N}_G(K) \cong S_3 \times \mathbb{Z}_2$. Write $\mathbf{N}_G(K) = K \times \langle o \rangle$. Then $\Gamma = \operatorname{Cos}(G, H, HoH)$ is a connected (G, 2)-arc-transitive graph of valency 4. If p = 7, then Γ is the non-incidence graph of the projective plane $\operatorname{PG}(2, 2)$. \Box

Example 5.4. Let $\epsilon = \pm 1$ such that $p + \epsilon$ is divisible by 3.

(1) Let G = PSL(2, p) with $p \equiv \pm 3 \pmod{8}$ and $p \equiv \pm 1 \pmod{10}$. Then G has one conjugacy class of subgroups isomorphic to A_4 and two conjugacy classes of subgroups isomorphic to A_5 . Take $M_1, M_2 < G$ with $M_1 \cong M_2 \cong A_5$ and $H := M_1 \cap M_2 \cong A_4$.

Let K < H with $K \cong \mathbb{Z}_3$. Then $\mathbf{N}_{M_1}(K) \cong \mathbf{N}_{M_2}(K) \cong \mathbf{D}_6$. Set $\mathbf{N}_{M_i}(K) = K:\langle b_i \rangle$ for i = 1, 2. It is easily shown that $\mathbf{N}_{M_1}(K) \cup \mathbf{N}_{M_2}(K)$ contains 6 involutions, which form two distinct cosets Kb_1 and Kb_2 . Moreover, $b_1, b_2 \in \mathbf{N}_G(K) \cong \mathbf{D}_{p+\epsilon}$. Set $\mathbf{C}_G(K) = \langle a \rangle$. Then $\mathbf{N}_G(K) = \langle a, b_1 \rangle = \langle a, b_2 \rangle$. Write $b_2 = a^r b_1$ for some $1 \leq r \leq \frac{p+\epsilon}{2}$. Then $\langle a^r \rangle \not\leq K = \langle a^{\frac{p+\epsilon}{6}} \rangle$. Replacing b_1 by $a^{\frac{p+\epsilon}{6}} b_1$ or $a^{\frac{p+\epsilon}{3}} b_1$ if necessarily, we assume that $1 \leq r < \frac{p+\epsilon}{6}$. Then, for each j with $1 \leq j < \frac{r}{2}$ or $r < j < \frac{r}{2} + \frac{p+\epsilon}{12}$, the coset graph $\Gamma_j = \mathbf{Cos}(G, H, Ha^j b_1 H)$ is connected, (G, 2)-arc-transitive and of odd order.

(2) Let G = PSL(2, p) with $p \equiv \pm 1 \pmod{8}$. Then G has a maximal subgroup $M \cong S_4$. Let $A_4 \cong H < M$ and $\mathbb{Z}_3 \cong K < H$. Then $\mathbf{N}_G(K) \cong \mathbf{D}_{p+\epsilon}$. Set $M = H:\langle b \rangle$, where b is an involution normalizes K. Write $\mathbf{N}_G(K) = \langle a \rangle:\langle b \rangle$, where a has order $\frac{p+\epsilon}{2}$. For each $1 \leq j < \frac{p+\epsilon}{12}$, define $\Gamma_j = \text{Cos}(G, H, Ha^j bH)$. Then Γ_j is (G, 2)-arc-transitive. If $p \not\equiv \pm 1 \pmod{10}$ then it is easily shown that each Γ_j is connected.

Assume that $p \equiv \pm 1 \pmod{10}$. In this case, G has two conjugacy classes of subgroups isomorphic to A_4 and two conjugacy classes of subgroups isomorphic to A_5 . Computation shows that $H \cong A_4$ is contained exactly two subgroups isomorphic A_5 . Let $H < M_1 \cong A_5$. Then $H < M_2 := M_1^b$. Set $\mathbf{N}_{M_1}(K) = K:\langle b_1 \rangle$ and $b_2 = b_1^b$. Then $\mathbf{N}_{M_2}(K) = K:\langle b_2 \rangle$ and $b_1, b_2 \in \mathbf{N}_G(K)$. Choosing a suitable b_1 , we may set $b_1 = a^r b$ for some $1 \leq r < \frac{p+\epsilon}{6}$. For $1 \leq j < \frac{p+\epsilon}{12}$, the graph Γ_j is connected if and only if $a^j b \notin \mathbf{N}_{M_1}(K) \cup \mathbf{N}_{M_2}(K)$, that is, $j \neq r$.

(3) Let G = PGL(2, p) for $p \equiv \pm 3 \pmod{8}$. Then G has a maximal subgroup $M \cong S_4$. Let $A_4 \cong H < M$ and $\mathbb{Z}_3 \cong K < H$. Set $M = H:\langle z \rangle$, where z is an involution normalizes K. Then $\mathbf{N}_G(K) \cong \mathbf{D}_{2(p+\epsilon)}$. Write $\mathbf{N}_G(K) = \langle a \rangle:\langle z \rangle$, where a has order $p + \epsilon$. For each $1 \leq j < \frac{p+\epsilon}{6}$, the graph $\Gamma_j = \mathsf{Cos}(G, H, Ha^j zH)$ is a connected (G, 2)-arc-transitive graph. \Box

Example 5.5. Let $\epsilon = \pm 1$ such that $p + \epsilon$ is divisible by 4. Let G be an almost simple group with socle T = PSL(2, p). Suppose that G has a subgroup isomorphic to D_8 . Let $x \in G$ be of order 4 and $y \in G$ be an involution with $x^y = x^{-1}$. Then $x^2 \in \mathbf{C}_G(y) = \mathbf{N}_G(\langle y \rangle)$. Set $H = \langle x, y \rangle$ and write $\mathbf{C}_G(y) = \langle a \rangle : \langle x^2 \rangle$.

(1) Let G = PSL(2, p) with $p \equiv \pm 7, \pm 9$ or $\pm 15 \pmod{32}$. Then $a \in G$ is of order $\frac{p+\epsilon}{2}, y = a^{\frac{p+\epsilon}{4}}$ and $\mathbb{Z}_2^2 \cong \langle x^2, y \rangle \lhd \langle x, y, a^{\frac{p+\epsilon}{8}} \rangle \cong S_4$. For each $i \neq \frac{p+\epsilon}{8}$ with $1 \leq i < \frac{p+\epsilon}{4}$, the graph $\mathsf{Cos}(G, H, Ha^iH)$ is connected and G-arc-transitive.

(2) Let G = PGL(2, p) with $p \equiv \pm 7 \pmod{16}$. Then $x \in T$, and $\mathbf{C}_G(y) \cong \mathbf{D}_{2(p\pm\epsilon)}$. If $y \in T$ then, for each odd i with $1 \leq i < \frac{p+\epsilon}{2}$, the graph $\mathsf{Cos}(G, H, Ha^iH)$ is connected, bipartite and G-arc-transitive. If $y \notin T$ then, for each even i with $1 < j < \frac{p-\epsilon}{2}$, the graph $\mathsf{Cos}(G, H, Ha^jH)$ is of even order, connected and G-arc-transitive.

(3) Let G = PGL(2, p) with $p \equiv \pm 3 \pmod{8}$. If $y \in T$ then, for each $i \neq \frac{p+\epsilon}{4}$ with $1 \leq i < \frac{p+\epsilon}{2}$, the graph $\text{Cos}(G, H, Ha^iH)$ is connected and *G*-arc-transitive. If $y \in G \setminus T$ then, for each j with $1 \leq j < \frac{p-\epsilon}{2}$, the graph $\text{Cos}(G, H, Ha^jH)$ is connected and *G*-arc-transitive. \Box

Example 5.6. Let G = PSL(2, p) or PGL(2, p), and $\mathbb{Z}_2^2 \cong K < T := soc(G)$. Suppose that K is contained in a subgroup $H \cong D_{16}$ of G. Then $\mathbf{N}_G(K) \cong \mathbf{S}_4$. Write $\mathbf{N}_G(K) = K:(\langle y \rangle:\langle z \rangle)$ with $\langle y \rangle:\langle z \rangle \cong \mathbf{S}_3$. If H < T then $\mathsf{Cos}(T, H, HyzH)$ is a connected T-arc-transitive graph of valency 4; if $H \not\leq T$ then G = PGL(2, p) and Cos(G, H, HyzH) is a connected G-arc-transitive graph of valency 4.

5.2. Examples of normal covers. Now we construct some graphs which are normal covers of graphs admitting PSL(2, p).

Example 5.7. Let $\epsilon = \pm 1$ such that $p + \epsilon$ is divisible by 3. Let T = PSL(2, p), $\mathbb{Z}_2^2 \cong P < T$ and $x \in T$ such that $\langle P, x \rangle = P: \langle x \rangle \cong A_4$. Then $\mathbf{C}_T(x) \cong \mathbb{Z}_{\frac{p+\epsilon}{2}}$. Set $\mathbf{C}_T(x) = \langle a \rangle$. Then $\langle x \rangle = \langle a^{\frac{p+\epsilon}{6}} \rangle$.

(1) Assume that $p + \epsilon$ is divisible 12. Let $C = \langle y \rangle \cong \mathbb{Z}_3$ and $G = C \times T$. Take $H = P:\langle xy \rangle$ and $K = \langle xy \rangle$. Then $H \cong A_4$ and $\mathbf{N}_G(K) = \mathbf{C}_T(x) \times \langle y \rangle$ contains a unique involution $a^{\frac{p+\epsilon}{4}}$. It is easy to show that $\Gamma = \mathsf{Cos}(G, H, Ha^{\frac{p+\epsilon}{4}}H)$ is a connected (G, 2)-arc-transitive graph of valency 4.

Take involutions $\sigma \in \operatorname{Aut}(C)$ and $\tau \in \operatorname{PGL}(2,p) \setminus T$ such that $x^{\tau} = x^{-1}$ and $P:\langle x,\tau \rangle \cong S_4$. Then τ normalizes $\langle x \rangle$ and centralizes $a^{\frac{p+\epsilon}{4}}$. Thus $\sigma\tau$ centralizes $a^{\frac{p+\epsilon}{4}}$. Clearly, $\sigma\tau$ normalizes H. Define $\theta: Hg \mapsto Hg^{\sigma\tau}, g \in G$. Then $\operatorname{Aut}\Gamma \geq \langle \theta, G \rangle \cong (\mathbb{Z}_3 \times \operatorname{PSL}(2,p)):\mathbb{Z}_2$ with $\langle y, \theta \rangle \cong D_6$ and $\langle T, \theta \rangle \cong \operatorname{PGL}(2,p)$.

(2) Assume that $p \equiv \pm 3 \pmod{8}$. Let $C = \langle y \rangle \cong \mathbb{Z}_3$ and $G = (C \times T): \langle \theta \rangle$ such that $y^{\theta} = y^{-1}, x^{\theta} = x^{-1}, \langle P, x, \theta \rangle = P: \langle x, \theta \rangle \cong S_4$ and $\langle T, \theta \rangle = T: \langle \theta \rangle \cong PGL(2, p)$. Take $H = P: \langle xy \rangle$ and $K = \langle xy \rangle$. Then $\mathbf{N}_G(K) = (\langle a \rangle \times \langle y \rangle): \langle \theta \rangle = \langle xy \rangle: (\langle a \rangle: \langle \theta \rangle) \cong \mathbb{Z}_3: \mathbf{D}_{p+\epsilon}$. It is easily shown that $G = \langle a^i \theta, H \rangle$ if and only if $\langle a^i, P \rangle = T$. For $1 \leq i < \frac{p+\epsilon}{2}$ with $i \notin \{\frac{p+\epsilon}{6}, \frac{p+\epsilon}{4}, \frac{p+\epsilon}{3}\}$, define $\Gamma_i = \mathsf{Cos}(G, H, Ha^i \theta H)$. Then Γ_i is a connected (G, 2)-arc-transitive bipartite graph of valency 4.

(3) Assume that $p \equiv \pm 1 \pmod{8}$ and $p + \epsilon$ is divisible by 12. Let $G = C \times T$, where $C = \langle y \rangle \cong \mathbb{Z}_2$. Take an involution $b \in T$ with $x^b = x^{-1}$ and $\langle P, x, b \rangle = (P:\langle x \rangle):\langle b \rangle \cong S_4$. Set $H = \langle P, x \rangle:\langle by \rangle$ and $K = \langle x, by \rangle$. Then $H \cong S_4$, $K \cong S_3$ and $\mathbf{N}_G(K) = \langle a^{\frac{p+\epsilon}{4}} \rangle \times \langle x, b \rangle \times \langle y \rangle$. It is easily shown that both $\mathsf{Cos}(G, H, Ha^{\frac{p+\epsilon}{4}}H)$ and $\mathsf{Cos}(G, H, Ha^{\frac{p+\epsilon}{4}}yH)$ are connected (G, 2)-arc-transitive graphs of valency 4.

(4) Assume that $p \equiv \pm 1 \pmod{8}$ and $p+\epsilon$ is divisible by 12. Let $G = (\langle y \rangle : \langle y_1 \rangle) \times T \cong$ $D_6 \times PSL(2, p)$. Take an involution $b \in T$ with $x^b = x^{-1}$. Set $H = (\langle P \rangle : \langle xy \rangle) : \langle by_1 \rangle$ and $K = \langle xy, by_1 \rangle$. Then $H \cong S_4$, $K \cong S_3$ and $\mathbf{N}_G(K) = \langle a^{\frac{p+\epsilon}{4}} \rangle \times K$. It is easily shown that $\mathbf{Cos}(G, H, Ha^{\frac{p+\epsilon}{4}}H)$ is a connected (G, 2)-arc-transitive graph.

(5) Assume that $p \equiv \pm 3 \pmod{8}$ and $p + \epsilon$ is not divisible by 4. Let $z \in PGL(2, p) \setminus PSL(2, p)$ be an involution with $x^z = x^{-1}$ and $P^z = P$. Let $G = (\langle y \rangle : \langle y_1 \rangle) \times (T : \langle z \rangle) \cong D_6 \times PGL(2, p)$. Take $H = (P : \langle xy \rangle) : \langle y_1 z \rangle$ and $K = \langle xy \rangle : \langle y_1 z \rangle$. Then $H \cong S_4$, $K \cong S_3$ and $\mathbf{N}_G(K) = \langle o \rangle \times K$, where o is the unique involution in $\mathbf{C}_{T : \langle z \rangle}(x) \cong D_{2(p+\epsilon)}$. It is easily shown that $\mathsf{Cos}(G, H, HoH)$ is a connected (G, 2)-arc-transitive graph.

(6) Assume that $p \equiv \pm 3 \pmod{8}$. Let $G = \langle y \rangle : \langle y_1 \rangle \times T \cong D_6 \times PSL(2, p)$. Take $H = P : \langle xy \rangle \cong A_4$ and $K = \langle xy \rangle$. Take an involution $b \in T$ with $x^b = x^{-1}$. Then $\mathbf{N}_G(K) = (\langle a \rangle \times \langle y \rangle) : \langle by_1 \rangle = \langle xy \rangle (\langle a \rangle : \langle by_1 \rangle)$. For each $1 \leq i < \frac{p+2+\epsilon}{4}$, the coset graph $\mathsf{Cos}(G, H, Ha^i by_1 H)$ is a connected (G, 2)-arc-transitive graph. \Box

Example 5.8. Let X = PSL(2, p) or PGL(2, p) such that X has a Sylow 2-subgroup isomorphic to D_8 . Let $x \in X$ be of order 4 and $z \in X$ be an involution such that

 $x^{z} = x^{-1}$. Then $x^{2} \in \mathbf{C}_{X}(z)$. Write $\mathbf{C}_{X}(z) = \langle a, x^{2} \rangle$ with $a^{x^{2}} = a^{-1}$. Let $\epsilon = \pm 1$ such that $p + \epsilon$ is divisible by 4. Let $G = \langle y \rangle \times X$, where y has order 2.

(1) Let X = PGL(2, p) with $p \equiv \pm 3 \pmod{8}$. Then *a* has order $p \pm \epsilon$, and the following graphs are connected and *G*-arc-transitive.

(i) $\operatorname{Cos}(G, H, Hy^j a^i H)$, where $H = \langle xy, z \rangle$, $z \notin T$, j = 0, 1 and i is even with $1 \leq i < \frac{p-\epsilon}{2}$.

(ii) $\operatorname{Cos}(G, H, Ha^{i}H)$, where $H = \langle x, yz \rangle$ and either $1 \leq i < \frac{p-\epsilon}{2}$ for $z \notin \operatorname{PSL}(2, p)$, or $i \neq \frac{p+\epsilon}{4}$ with $1 \leq i < \frac{p+\epsilon}{2}$ for $z \in \operatorname{PSL}(2, p)$.

(iii) $\operatorname{Cos}(G, H, Ha^{i}H)$, where $H = \langle xy, yz \rangle$, $z \in \operatorname{PSL}(2, p)$ and $i \neq \frac{p+\epsilon}{4}$ with $1 \leq i < \frac{p+\epsilon}{2}$.

(2) Let X = PSL(2, p) with $p \equiv \pm 7 \pmod{16}$. Then $\mathbf{C}_X(z) \cong \mathbf{D}_{p+\epsilon}$, $z = a^{\frac{p+\epsilon}{4}}$. For $i \neq \frac{p+\epsilon}{8}$ with $1 \leq i < \frac{p+\epsilon}{4}$, the following graphs are connected and *G*-arc-transitive.

(iv) $\operatorname{Cos}(G, H, Ha^{i}H)$, where $H = \langle xy, z \rangle$, $\langle x, yz \rangle$ or $\langle xy, yz \rangle$.

(v) $\operatorname{Cos}(G, H, Hya^{i}H)$, where $H = \langle xy, z \rangle$.

Example 5.9. Let T = PSL(2, p) with $p \equiv \pm 15 \pmod{32}$. Then each Sylow 2subgroup of T is isomorphic to D_{16} . Let $D_8 \cong P < T$ and $\mathbb{Z}_2^2 \cong K < T$. Then $P < \mathbf{N}_T(K) \cong S_4$. Write $\mathbf{N}_T(K) = K:\langle a, b \rangle$, where a has order 3 and $b \in P$ is an involution with $a^b = a^{-1}$. Take an involution $z \in T$ such that $\langle P, z \rangle = P:\langle z \rangle \cong D_{16}$.

Let $G = \langle y \rangle \times T$, where y has order 2. Then $\mathbf{N}_G(K) = \langle y \rangle \times (K:\langle a, b \rangle)$. Set $H = P:\langle yz \rangle$. Then, for $g \in \mathbf{N}_G(K) \setminus H$, we have HgH = HaH or HayH. It is easily shown that $\mathsf{Cos}(G, H, HaH)$ and $\mathsf{Cos}(G, H, HayH)$ are connected and G-arc-transitive. \Box

Example 5.10. Let $p \equiv \pm 3 \pmod{8}$ and $\epsilon = \pm 1$ such that $p + \epsilon$ is divided by 4. Let T = PSL(2, p), X = PGL(2, p) and $z \in X \setminus T$ be an involution. Let $C = \langle c \rangle \cong \mathbb{Z}_l$, where l > 1 is coprime to |T|. Define a semidirect product G = C:X such that $c^z = c^{-1}$ and $CT = C \times T$.

(1) Take an involution $o \in T$ such that oz = zo. Set $H = \langle o, z \rangle$. For each $x \in T$ with $x^z = x^{-1}$ and $\langle x, o \rangle = T$, the graph $\mathsf{Cos}(G, H, HcxH)$ is a connected G-arc-transitive graph of valency 4. (It is easily shown there is at least such an x.)

(2) Let $H \cong D_8$ be a Sylow 2-subgroup of X containing z. Take an involution $o \in H \cap T$ which is not in the center of H. Then $\mathbf{C}_X(o) \cong D_{2(p+\epsilon)}$. Set $\mathbf{C}_X(o) = \langle a \rangle : \langle b \rangle$, where $b \in H \cap T$ and a has order $p + \epsilon$. Then, for each odd $i \neq \frac{p+\epsilon}{4}$ with $1 \leq i < \frac{p+\epsilon}{2}$, the graph $\mathbf{Cos}(G, H, Hca^iH)$ is a connected G-arc-transitive graph of valency 4. \Box

Example 5.11. Let $p \equiv \pm 3 \pmod{8}$. Let T = PSL(2, p) and $o \in T$ be an involution. Let $C = \langle c \rangle \cong \mathbb{Z}_l$ with l > 1 coprime to |T|. Set $G = C \times T$ and $H = \langle o \rangle$. Take an element $x \in T$ with $\langle x, o \rangle = T$ such that $x^{\sigma} \neq x^{-1}$ for each automorphism σ of T which fixes o. (It is easily shown there is at least such an x.) Then $\text{Cos}(G, H, H\{cx, c^{-1}x^{-1}\}H)$ is connected, G-half-transitive and of valency 4.

Example 5.12. Let X = PGL(2, p) with $p \equiv \pm 3 \pmod{8}$. Let $x \in X$ be of order 4 and $z \in T := \operatorname{soc}(X)$ be an involution such that $x^z = x^{-1}$. Then $x^2 \in \mathbf{C}_X(z) \cong D_{2(p+\epsilon)}$, where $\epsilon = \pm 1$ such that $p + \epsilon$ is divisible by 4. Write $\mathbf{C}_X(z) = \langle a, x^2 \rangle$ with $a^{x^2} = a^{-1}$. Then $X = T: \langle ax^2 \rangle$. Let $C = \langle c, y \rangle \cong \mathbb{Z}_{2l}$, where l > 1 is coprime to |T|,

c has order l and y is an inovlution. Define a semidirect product $G = (C \times T):\langle ax^2 \rangle$ such that $c^{ax^2} = c^{-1}$ and $y^{ax^2} = y$.

Set $H = \langle x, yz \rangle$ or $\langle xy, yz \rangle$. Then $\mathsf{Cos}(G, H, Hc^k a^i H)$ is connected and *G*-arc-transitive, where k is coprime to $l, i \neq \frac{p+\epsilon}{4}$ and $1 \leq i < \frac{p+\epsilon}{2}$.

Example 5.13. Let X = PSL(2, p) or PGL(2, p), and let $C = \langle c, y \rangle \cong D_{2l}$ with $c^y = c^{-1}$, where l > 1 is coprime to $|p(p^2 - 1)|$. Set $G = C \times X$. Suppose that X has a Sylow 2-subgroup $P \cong \mathbb{Z}_2^2$, D_8 or D_{16} . Write $P = Q:\langle z \rangle$, where z is an involution.

Set $H = Q:\langle yz \rangle$, and take K < Q with |Q : K| = 2. For each j coprime to l and a 2-element $x \in \mathbf{N}_X(K)$ with $x^2 \in K$ and $\langle x, P \rangle = X$, the coset graph $\mathsf{Cos}(G, H, Hc^j yxH)$ is connected, G-arc-transitive and of valency 4.

6. The almost simple case

Let $\Gamma = (V, E)$ be a connected tetravalent graph of square-free order, and $G \leq \operatorname{Aut}\Gamma$. Assume that G is almost simple and Γ is G-vertex-transitive and G-edge-transitive. By Theorem 4.7, we have $T := \operatorname{soc}(G) = \operatorname{soc}(G) = \operatorname{A}_7$, J₁, PSL(3,3) or PSL(2, p). We next determine the possible associated graphs.

Lemma 6.1. If T = PSL(3,3), then Γ is the incidence graph of the projective plane PG(2,3), and $Aut\Gamma = G = T.\mathbb{Z}_2$ has a regular subgroup isomorphic to D_{26} .

Proof. Let T = PSL(3,3). Then, by Lemma 2.6 and the information given in the Atlas [7], we know that $G = T.\mathbb{Z}_2$ and $T_{\alpha} = \mathbb{Z}_3^2:2S_4$. By [11], the lemma follows. \Box

Lemma 6.2. If $T = A_7$ or J_1 , then Γ satisfies one line of Table 1.

G	V	Γ
A_7, S_7	35	Odd graph \mathbf{O}_4
S_7	70	Standard double cover of O_4
S_7	210	Example 5.1
J_1		Example 5.2 $(1), (2)$

TABLE 1

Proof. Assume first that $T = J_1$. Then G = T and, by Lemma 2.6 and the information given in the Atlas [7], $T_{\alpha} \cong \mathbb{Z}_2^2$ or A_4 . If $T_{\alpha} = A_4$, then Γ is one of the graphs given in Example 5.2 (1). Thus we assume that $T_{\alpha} = \mathbb{Z}_2^2$.

Suppose that Γ is not *T*-arc-transitive. Let $\{\alpha, \alpha^x\}$ be an edge of Γ , where $x \in G$. Then $\langle G_{\alpha}, x \rangle = G$, and $G_{\alpha} \cap (G_{\alpha})^x = G_{\alpha} \cap G_{\alpha^x} = \langle h^x \rangle$ for an involution h in G_{α} . If $h^x = h$, then $\langle h \rangle \lhd \langle x, G_{\alpha} \rangle = G$, a contradiction. Thus $G_{\alpha} = \langle h, h^x \rangle$ and $G_{\alpha^x} = \langle h^x, h^{x^2} \rangle$. Let Y be the centralizer of h^x in T. Then $h, h^x, h^{x^2} \in Y \cong \mathbb{Z}_2 \times A_5$. Thus $h^x, h^{x^2} \in Y^x$, and so $G_{\alpha^x} \leq Y \cap Y^x$. By the argument in Example 5.2, we know that $Y = Y^x$, yielding $x \in Y$ as Y is maximal in T. Then $\langle G_{\alpha}, x \rangle = \langle h, h^x, x \rangle \leq Y$, a contradiction. Thus Γ is T-arc-transitive, and then Γ is isomorphic to one of the graphs given in Example 5.2 (2).

Let $T = A_7$ in the following. Then $|T_{\alpha}|$ is divided by 12, and hence Γ is (G, 2)-arctransitive. It is easily shown that $T_{\alpha} \cong A_4$, S_4 , $A_4 \times \mathbb{Z}_3$ or $(A_4 \times \mathbb{Z}_3):\mathbb{Z}_2$.

Assume that $T_{\alpha} \cong (A_4 \times \mathbb{Z}_3):\mathbb{Z}_2$. Then the vertices in each *T*-orbit on *V* can be viewed as 3-subsets of $\Pi := \{1, 2, 3, 4, 5, 6, 7\}$. Thus either *T* is transitive on *V* and Γ is isomorphic to the odd graph \mathbf{O}_4 of order 35, or $G = S_7$ and Γ is the standard double cover of \mathbf{O}_4 .

Now we deal with the other cases. We may set $T_{\alpha} = P:T_{\alpha\beta}$, where $\beta \in \Gamma(\alpha)$ and $P \cong \mathbb{Z}_2^2$. Consider the natural action of A_7 on Π . Then P is conjugate to $\langle (12)(34), (13)(24) \rangle$. Without loss of generality, we let $P = \langle (12)(34), (13)(24) \rangle$. Then $\mathbf{N}_T(P) = P: \langle (123), (567), (34)(67) \rangle$.

Assume that $T_{\alpha} \cong A_4$ or $A_4 \times \mathbb{Z}_3$. Then $|T : T_{\alpha}|$ is even, and it follows that T is transitive on V. Thus Γ is (T, 2)-arc-transitive. Write $\Gamma = \mathsf{Cos}(T, T_{\alpha}, T_{\alpha}xT_{\alpha})$ for a 2-element $x \in \mathbf{N}_T(T_{\alpha\beta})$ with $x^2 \in T_{\alpha\beta}$ and $\langle x, T_{\alpha} \rangle = T$. Then x is an involution. Since x is an even permutation, x is a product of two transpositions. Noting $T_{\alpha\beta}$ is a Sylow 3-subgroup of T_{α} , we may choose $T_{\alpha\beta} = \langle (123) \rangle$, $\langle (123)(567) \rangle$ or $\langle (123), (567) \rangle$. Suppose that $T_{\alpha\beta} = \langle (123) \rangle$. Then $\mathbf{N}_T(T_{\alpha\beta}) = \langle (123) \rangle : \langle (45)(67), (23)(45) \rangle$, and x is conjugate to $\langle (45)(67) \rangle$ or $\langle (23)(45) \rangle$ under $T_{\alpha\beta}$. But, for such an x, the group $\langle x, T_{\alpha} \rangle$ is intransitive on Π , and so $\langle x, T_{\alpha} \rangle \neq T$, a contradiction. If $T_{\alpha\beta} = \langle (123)(567) \rangle$ or $\langle (123), (567) \rangle$ then, noting that x fixes each $T_{\alpha\beta}$ -orbit on Π , x is conjugate to $\langle 2 3\rangle(67)$ under $T_{\alpha\beta}$, which gives a similar contradiction as above.

Assume that $T_{\alpha} \cong S_4$. Then $T_{\alpha\beta} \cong S_3$, and we may take $T_{\alpha\beta} = \langle (234), (34)(56) \rangle$ or $\langle (234)(567), (34)(56) \rangle$. Suppose that $T_{\alpha\beta} = \langle (234), (34)(56) \rangle$. Then $\mathbf{N}_T(T_{\alpha\beta}) = T_{\alpha\beta} \times \langle (17)(56) \rangle$. It is easily shown that, for $x \in \mathbf{N}_T(T_{\alpha\beta})$, the group $\langle T_{\alpha}, x \rangle$ fixes $\{5, 6\}$ set-wise; in particular, $\langle T_{\alpha}, x \rangle \neq T$. It follows that T is intransitive the vertices of Γ . Then $G = S_7$ and $G_{\alpha} = T_{\alpha}$, and hence $G_{\alpha\beta} = T_{\alpha\beta}$. Computation shows that $\mathbf{N}_G(T_{\alpha\beta}) = T_{\alpha\beta}: \langle (17), (23) \rangle$. Then $\langle G_{\alpha}, x \rangle \neq G$ for any $x \in \mathbf{N}_G(T_{\alpha\beta})$, a contradiction. Thus $T_{\alpha\beta} = \langle (234)(567), (34)(56) \rangle$. Then $\mathbf{N}_T(T_{\alpha\beta}) = T_{\alpha\beta}$, it implies that T is intransitive on V. Hence $G = S_7, G_{\alpha} = T_{\alpha}$ and $G_{\alpha\beta} = T_{\alpha\beta}$. Then $\mathbf{N}_G(T_{\alpha\beta}) = T_{\alpha\beta}: \langle \pi \rangle$, where $\pi = (25)(37)(46)$. It is easily shown that $\langle G_{\alpha}, \pi \rangle = G$. It implies that Γ is isomorphic to the graph constructed in Example 5.1.

Next we deal with the case where T = PSL(2, p). Let $\alpha \in V$. Note that G_{α} is a $\{2, 3\}$ -group and the subgroups of PGL(2, p) are all known, see [3] for example. Then G_{α} is isomorphic to one of \mathbb{Z}_2^2 , \mathbb{Z}_{2^s} , \mathbb{D}_{2^t} , \mathbb{A}_4 and \mathbb{S}_4 , where $s \geq 1$ and $t \geq 3$.

Lemma 6.3. Assume that T = PSL(2, p). If $\Gamma = (V, E)$ is not (G, 2)-arc-transitive, then one of the following statements holds.

- (1) $G_{\alpha} \cong \mathbb{Z}_2$ and Γ is G-half-transitive, or $G_{\alpha} \cong \mathbb{Z}_4$ and Γ is G-arc-transitive;
- (2) $G_{\alpha} \cong \mathbb{Z}_{2}^{2}$, either Γ is G-arc-transitive or one of the following occurs:
 - (i) $\mathbf{C}_{\mathsf{Aut}\Gamma}(G)$ contains an involution θ such that Γ is $\langle \theta, G \rangle$ -arc-transitive;
 - (ii) G = PSL(2, p) with $p \equiv \pm 3 \pmod{8}$, there exists $X \leq Aut\Gamma$ such that $G < X \cong PGL(2, p)$ and Γ is X-arc-transitive.
- (3) $G_{\alpha} \cong D_8$, either Γ is isomorphic to one of the graphs in Example 5.5, or $\mathbf{C}_{\mathsf{Aut}\Gamma}(G)$ contains an involution θ such that Γ is $\langle \theta, G \rangle$ -arc-transitive.
- (4) Γ is G-arc-transitive and isomorphic to one of the two graphs in Example 5.6.

Proof. Assume that Γ is not (G, 2)-arc-transitive. Let $\alpha \in V$. Then $G_{\alpha} \cong \mathbb{Z}_{2}^{2}, \mathbb{Z}_{2^{s}}$ or $D_{2^{t}}$, where $s \geq 1$ and $t \geq 3$.

Case 1. Assume that G_{α} is abelian. If $G_{\alpha} \cong \mathbb{Z}_{2^s}$ then, by Lemma 2.5, $G_{\alpha} \cong G_{\alpha}^{\Gamma(\alpha)} \cong \mathbb{Z}_2$ or \mathbb{Z}_4 , so part (1) follows. Thus we assume that $G_{\alpha} \cong \mathbb{Z}_2^2$ in the following. Suppose that Γ is *G*-half-transitive. Then $G_{\alpha\beta} \cong \mathbb{Z}_2$ for $\beta \in \Gamma(\alpha)$. Set $G_{\alpha\beta} = \langle o \rangle$ and $\beta = \alpha^x$. Then $o \in G_{\beta} = G_{\alpha}^x$, and so $o^{x^{-1}} \in G_{\alpha}$. Since Γ is connected, we have $G = \langle G_{\alpha}, x \rangle$. If x centralizes o then o lies in the center of G, which is impossible. Thus $o^{x^{-1}} \neq o$, so $G_{\alpha} = \langle o, o^{x^{-1}} \rangle$ and $G_{\beta} = \langle o, o^x \rangle$. Then $G_{\alpha}, G_{\beta} < \mathbb{C}_G(x) \cong \mathbb{D}_{l(p\pm 1)}$, where l = |G : T|. Set $\mathbb{C}_G(o) = \langle a \rangle : \langle o^{x^{-1}} \rangle$. Noting that all subgroups isomorphic to $\mathbb{C}_G(o)$ are conjugate in G, it is easily shown that two subgroups isomorphic to \mathbb{Z}_2^2 of $\mathbb{C}_G(o)$ are conjugate in $\mathbb{C}_G(o)$ if and only if they are conjugate in G. Thus $G_{\alpha}^{a^i} = G_{\beta} = G_{\alpha}^x$ for some *i*, and so $x \in \mathbb{N}_G(G_{\alpha})a^i \setminus \langle a \rangle$.

Assume that $p \equiv \pm 1 \pmod{8}$. Then G = T, $\mathbf{N}_G(G_\alpha) \cong \mathbf{S}_4$ and $\mathbf{N}_{\mathbf{C}_G(o)}(G_\alpha) \cong \mathbf{D}_8$. Thus we may write $\mathbf{N}_G(G_\alpha) = G_\alpha:(\langle y \rangle: \langle z \rangle)$, where y has order 3 and $z \in \mathbf{C}_T(o)$ is an involution normalizing G_α and $\langle y \rangle$. Computation shows that $\alpha^x = \alpha^{y^j a^k}$ for some integers j and k. Define $\theta: \alpha^g \mapsto \alpha^{y^j zg}, g \in G$. Then θ is an involution in $\mathbf{C}_{\mathsf{Aut}\Gamma}(G)$. It is easily shown that Γ is $(G \times \langle \theta \rangle)$ -arc-transitive.

Assume that $p \equiv \pm 3 \pmod{8}$ and $G = \operatorname{PGL}(2, p)$. If $G_{\alpha} < T$ then $\mathbf{N}_{G}(G_{\alpha}) \cong S_{4}$ and $\mathbf{N}_{\mathbf{C}_{G}(o)}(G_{\alpha}) \cong \mathbf{D}_{8}$; a similar argument as above implies that there is an involution $\theta \in \operatorname{Aut}\Gamma$ such that Γ is $(G \times \langle \theta \rangle)$ -arc-transitive. Suppose that $G_{\alpha} \not\leq T$. Then $\mathbf{N}_{G}(G_{\alpha}) \cong \mathbf{D}_{8}$ and $\mathbf{N}_{\mathbf{C}_{G}(o)}(G_{\alpha}) = G_{\alpha}$. Write $\mathbf{N}_{G}(G_{\alpha}) = G_{\alpha}:\langle z \rangle$ for an involution $z \in \operatorname{PSL}(2, p)$. Then $\alpha^{x} = \alpha^{za^{i}}$. Note that G_{α} and $\operatorname{PSL}(2, p)$ contain only one involution $oo^{x^{-1}}$ in common. This implies that $oo^{x^{-1}}$ lies in the center of $\mathbf{N}_{G}(G_{\alpha})$. Define $\theta : \alpha^{g} \mapsto \alpha^{oo^{x^{-1}}zg}, g \in G$. Then θ is an involution in $\mathbf{C}_{\operatorname{Aut}\Gamma}(G)$, and Γ is $(G \times \langle \theta \rangle)$ -arc-transitive.

Let $p \equiv \pm 3 \pmod{8}$ and $G = \operatorname{PSL}(2, p)$. Then $\mathbf{N}_G(G_\alpha) = G_\alpha : \langle y \rangle \cong A_4$, where $y \in T$ has order 3. Thus $\alpha^x = \alpha^{y^j a^i}$ for some integer j. Noting that $\mathbf{N}_{\operatorname{PGL}(2,p)}(G_\alpha) \cong S_4$, there is an involution $\sigma \in \mathbf{C}_{\operatorname{PGL}(2,p)}(o) \setminus T$ such that $G_\alpha^\sigma = G_\alpha$ and $y^\sigma = y^{-1}$. Define $\rho : \alpha^g \mapsto \alpha^{y^j g^\sigma}, g \in G$. Then $\rho \in \operatorname{Aut}\Gamma, \langle G, \rho \rangle \cong \operatorname{PGL}(2, p)$ and Γ is $\langle T, \rho \rangle$ -arc-transitive. Then part (2) follows.

Case 2. Assume that $G_{\alpha} \cong D_{2^t}$ for $t \ge 3$. Let $\beta \in \Gamma(\alpha)$.

Suppose that $G_{\alpha\beta}$ contains a cyclic subgroup C of order no less than 3. Then C is the unique subgroup of order |C| in both G_{α} and G_{β} . For an arbitrary edge $\{\gamma, \delta\}$, since G is transitive on E, there is $x \in G$ with $\{\gamma, \delta\} = \{\alpha, \beta\}^x$, so $G_{\gamma\delta} = G_{\alpha\beta}^x$. Then C^x is the unique subgroup of order |C| in both G_{γ} and G_{δ} . So $C \leq G_{\gamma}$ for $\gamma \in \Gamma(\alpha) \cup \Gamma(\beta)$. Since Γ is connected, C fixes each vertex of Γ , and so C = 1 as $C \leq \operatorname{Aut}\Gamma$, a contradiction. Thus $|G_{\alpha\beta}|$ is a divisor of 4, hence $G_{\alpha} \cong D_8$ or D_{16} .

Assume that $G_{\alpha} \cong D_8$ and Γ is *G*-arc-transitive. Then G_{α} is transitive on $\Gamma(\alpha)$. Set $G_{\alpha} = \langle x \rangle : \langle y \rangle$, where *x* has order 4 and *y* is an involution with $x^y = x^{-1}$. By Lemma 2.5, we know that $G_{\alpha}^{[1]} = 1$. It follows that $G_{\alpha\beta}$ dose not lies in the center of G_{α} . Thus we may choose a suitable *y* such that $G_{\alpha\beta} = \langle y \rangle$. Write Γ as a coset $\mathsf{Cos}(G, G_{\alpha}, G_{\alpha}gG_{\alpha})$ for $g \in \mathbf{N}_G \langle y \rangle = \mathbf{C}_G(y)$. Then Γ is constructed as in Example 5.5.

Assume that $G_{\alpha} \cong D_8$ and Γ is *G*-half-transitive. Then $G_{\alpha\beta} \cong \mathbb{Z}_2^2$. Hence $G_{\alpha\beta}$ is normal in $M := \langle G_{\alpha}, G_{\beta} \rangle$, yielding $\mathbf{N}_G(G_{\alpha\beta}) = M \cong \mathbf{S}_4$. Let $y \in M$ be an

involution such that $G_{\alpha\beta}:\langle y\rangle$ is the Sylow 2-subgroup of M other than G_{α} and G_{β} . Then $G_{\beta} = G_{\alpha}^{y}$. Let $x \in G$ with $\beta = \alpha^{x}$. Then $G_{\alpha}^{y} = G_{\beta} = G_{\alpha}^{x}$, so $xy \in \mathbf{N}_{G}(G_{\alpha})$. If $xy \in G_{\alpha}$ then $\langle x, G_{\alpha} \rangle \leq \langle M, G_{\alpha} \rangle = M$, which contradicts the connectedness of Γ . Thus $xy \notin \mathbf{N}_G(G_\alpha)$, and so $\mathbf{N}_G(G_\alpha) \neq G_\alpha$. It follows that $\mathbf{N}_G(G_\alpha) \cong \mathbf{D}_{16}$ is a Sylow 2-subgroup of G as $|G:G_{\alpha}|$ is square-free. Write $\mathbf{N}_{G}(G_{\alpha}) = G_{\alpha}:\langle z \rangle$ for some involution z. Then xy = hz for some $h \in G_{\alpha}$, so $G_{\alpha}xG_{\alpha} = G_{\alpha}xyyG_{\alpha} = G_{\alpha}zyG_{\alpha}$ and $(G_{\alpha}xG_{\alpha})^{z} = (G_{\alpha}zyG_{\alpha})^{z} = G_{\alpha}(zy)^{-1}G_{\alpha} = G_{\alpha}x^{-1}hG_{\alpha} = G_{\alpha}x^{-1}G_{\alpha}$. Define $\theta: \alpha^g \mapsto \alpha^{zg}, g \in G$. Then θ is an involution in $\mathbf{C}_{\mathsf{Aut}\Gamma}(G)$, and Γ is $(G \times \langle \theta \rangle)$ -arctransitive. Thus part (3) of this lemma follows.

Assume that $G_{\alpha} \cong D_{16}$. Then $G_{\alpha\beta} \cong \mathbb{Z}_2^2$ and Γ is G-arc-transitive. If $G_{\alpha\beta} \not\leq T$ then $\mathbf{N}_G(G_{\alpha\beta}) \cong \mathbf{D}_8$, and so $\mathbf{N}_G(G_{\alpha\beta}) \leq \tilde{G}_{\alpha}$, which is impossible. Thus $G_{\alpha\beta} \leq T$ and $T > \mathbf{N}_G(G_{\alpha\beta}) \cong \mathbf{S}_4$. Write $\mathbf{N}_{G_\alpha}(G_{\alpha\beta}) = G_{\alpha\beta}:\langle z \rangle$ and $\mathbf{N}_G(G_{\alpha\beta}) = G_{\alpha\beta}:\langle y \rangle:\langle z \rangle$. Then, for $x \in \mathbf{N}_G(G_{\alpha\beta})$ with $\langle x, G_\alpha \rangle = G$, we have $G_\alpha x G_\alpha = G_\alpha y^{\pm 1} G_\alpha$, and either G = T or $G_{\alpha} \not\leq T$. Noting $G_{\alpha}yG_{\alpha} = G_{\alpha}zyzG_{\alpha} = G_{\alpha}y^{-1}G_{\alpha}$ as $z \in G_{\alpha}$, it implies that Γ is isomorphic to one of the graphs in Example 5.6. Thus (4) occurs. \square

Lemma 6.4. Assume that T = soc(G) = PSL(2, p) and $\alpha \in V$. If Γ is (G, 2)-arctransitive, then one of the following statements holds.

- (1) Aut Γ = PSL(2, p), $7 \neq p \equiv \pm 1 \pmod{8}$, Γ is unique and of order $\frac{p(p^2-1)}{48}$; (2) Aut Γ = PGL(2, p), $p \equiv \pm 3 \pmod{8}$, Γ is unique and of order $\frac{p(p^2-1)}{24}$; (3) Aut Γ = PSL(2, p), $5 \neq p \equiv \pm 3 \pmod{8}$ and $p \neq 1 \pmod{10}$, Γ is of order $\frac{p(p^2-1)}{24}$ and isomorphic to one of $\left[\frac{p+\varepsilon}{12}\right]$ graphs, where $\epsilon = \pm 1$ such that $p + \epsilon$ is divisible by 3;
- (4) $G = PGL(2, p), S_4 \cong G_{\alpha} < T$ and Γ is constructed as in Example 5.3;
- (5) $G_{\alpha} = T_{\alpha} \cong A_4$ and Γ is isomorphic to one of the graphs in Example 5.4;
- (6) $G_{\alpha} = T_{\alpha} \cong A_4$ and $\mathbf{C}_{\mathsf{Aut}\Gamma}(G)$ contains an involution.

Proof. Assume that Γ is (G, 2)-arc-transitive. Then $G_{\alpha} \cong A_4$ or S_4 . If G_{α} is maximal in G, then, by [13], one of parts (1)-(3) occurs. Thus we assume further that G_{α} is not maximal in G. Then either $G_{\alpha} = T_{\alpha} \cong A_4$, or $S_4 \cong G_{\alpha} < T$ and G = PGL(2, p). Let $\epsilon = \pm 1$ with $p + \epsilon$ divisible by 3.

Let $S_4 \cong G_{\alpha} < T$ and G = PGL(2, p). Then $G_{\alpha\beta} \cong S_3$, and $N_G(G_{\alpha\beta}) \cong S_3 \times \mathbb{Z}_2$. If $p + \epsilon$ is divisible by 4, then $G_{\alpha\beta}$ is contained in a subgroup $M \cong D_{p+\epsilon}$ of T, so $\mathbf{N}_G(G_{\alpha\beta}) \geq \mathbf{N}_M(G_{\alpha\beta}) \cong S_3 \times \mathbb{Z}_2$, hence $\mathbf{N}_G(G_{\alpha\beta}) \leq T$, a contradiction. Thus $p + \epsilon$ is not divisible by 4, and Γ is isomorphic to the graph in Example 5.3. Thus (4) occurs.

We assume next that $G_{\alpha} = T_{\alpha} \cong A_4$ and $G_{\alpha\beta} \cong \mathbb{Z}_3$. Let $1 \neq x \in G$ a be 2-element with $(\alpha, \beta)^x = (\beta, \alpha)$. Since Γ is connected, $\langle x, G_\alpha \rangle = G$. Moreover, $x \in \mathbf{N}_G(G_{\alpha\beta})$ and $x^2 \in G_{\alpha\beta}$, and so x is an involution. Since G_{α} is not maximal in G, we have

- (i) G = PSL(2, p) with $p \equiv \pm 3 \pmod{8}$ and $p \equiv \pm 1 \pmod{10}$; or
- (ii) G = PSL(2, p) with $p \equiv \pm 1 \pmod{8}$; or
- (iii) G = PGL(2, p) with $p \equiv \pm 3 \pmod{8}$.

Case (i). Suppose that (i) occurs. Then G has one conjugacy class of subgroups isomorphic to A_4 and two conjugacy classes of subgroups isomorphic to A_5 . Thus G_{α} is contained in exactly two subgroups isomorphic to A₅. Take $M_1, M_2 < G$ with $M_1 \cong M_2 \cong A_5$ and $G_{\alpha} = M_1 \cap M_2$. Then $\mathbf{N}_{M_1}(G_{\alpha\beta}) \cong \mathbf{N}_{M_2}(G_{\alpha\beta}) \cong \mathbf{D}_6$. Set $\mathbf{N}_{M_i}(G_{\alpha\beta}) = G_{\alpha\beta}:\langle b_i \rangle$ for i = 1, 2. It is easily shown that $\mathbf{N}_{M_1}(G_{\alpha\beta}) \cup \mathbf{N}_{M_2}(G_{\alpha\beta})$

contains 6 involutions, which form two distinct cosets $G_{\alpha\beta}b_1$ and $G_{\alpha\beta}b_2$. Note that $b_1, b_2 \in \mathbf{N}_G(G_{\alpha\beta}) \cong \mathbf{D}_{p+\epsilon}$. Write $\mathbf{C}_G(G_{\alpha\beta}) = \langle a \rangle$. Then $\mathbf{N}_G(G_{\alpha\beta}) = \langle a, b_1 \rangle = \langle a, b_2 \rangle$. Set $b_1 = a^r b_2$ for some $1 \leq r \leq \frac{p+\epsilon}{2}$. Then $\langle a^r \rangle \not\leq G_{\alpha\beta} = \langle a^{\frac{p+\epsilon}{6}} \rangle$. Replacing b_1 by $a^{\frac{p+\epsilon}{6}}b_1$ or $a^{\frac{p+\epsilon}{3}}b_1$ if necessarily, we may choose $1 \leq r < \frac{p+\epsilon}{6}$. For an involution $x \in \mathbf{N}_G(G_{\alpha\beta})$ with $\langle x, G_{\alpha} \rangle = G$, we get

- (i.1) $G_{\alpha}xG_{\alpha} = G_{\alpha}a^{j}b_{1}G_{\alpha}$ for $1 \le j < \frac{p+\epsilon}{6}$ with $j \ne r$; or
- (i.2) $G_{\alpha}xG_{\alpha} = G_{\alpha}a^{\frac{p+\epsilon}{4}}G_{\alpha}$ and 4 is a divisor of $p + \epsilon$.

Take an involution $z \in \text{PGL}(2, p) \setminus G$ with $\langle G_{\alpha}, z \rangle \cong S_4$ and $\langle G_{\alpha\beta}, z \rangle \cong S_3$. Then $z \in \mathbb{N}_{\text{PGL}(2,p)}(G_{\alpha\beta}) \cong D_{2(p+\epsilon)}$, and so $\mathbb{N}_{\text{PGL}(2,p)}(G_{\alpha\beta}) = \langle a, b_1, z \rangle = \langle a, zb_1, z \rangle = \langle a, zb_1 \rangle : \langle z \rangle$; in particular, $zb_1 \notin \langle a \rangle$ and $\langle a, zb_1 \rangle \cong \mathbb{Z}_{p+\epsilon}$. It is easily shown that $M_1^z = M_2$, and so $\mathbb{N}_{M_2}(G_{\alpha\beta}) = (\mathbb{N}_{M_1}(G_{\alpha\beta}))^z$. Thus we may choose z such that $b_2 = b_1^z$. Then $(zb_1)^2 = b_1^zb_1 = a^r$.

Suppose that $2j \equiv r \pmod{\frac{p+\epsilon}{6}}$ for some $1 \leq j < \frac{p+\epsilon}{6}$. Then $2j = r + \frac{p+\epsilon}{6}$ by the choice of r. Note that $p + \epsilon$ is not divisible by 8. If $p + \epsilon$ is divisible by 4, then r is even, so a^r is of odd order, hence the order of zb_1 is not divisible by 4, which contradicts the fact that $\langle a, zb_1 \rangle \cong \mathbb{Z}_{p+\epsilon}$. Thus $\frac{p+\epsilon}{6}$ is odd, and so r is odd and j > r.

For (i.1), we have

$$(G_{\alpha}xG_{\alpha})^{z} = G_{\alpha}a^{-j}b_{1}^{z}G_{\alpha} = G_{\alpha}a^{r-j}b_{1}G_{\alpha} = \begin{cases} G_{\alpha}a^{r-j}b_{1}G_{\alpha}, \text{ if } 1 \le j < \frac{r}{2}; \\ G_{\alpha}a^{\frac{p+\epsilon}{6}+r-j}b_{1}G_{\alpha}, \text{ if } r < j < \frac{r}{2} + \frac{p+\epsilon}{12}; \\ G_{\alpha}a^{j}b_{1}G_{\alpha}, \text{ if } j = \frac{r}{2} + \frac{p+\epsilon}{12}, \frac{p+\epsilon}{6} \text{ is odd} \end{cases}$$

Thus Γ is one of the graphs in Example 5.4 (1), or $\Gamma \cong \mathsf{Cos}(G, G_\alpha, G_\alpha a^{\frac{r}{2} + \frac{p+\epsilon}{12}} b_1 G_\alpha)$ with odd $\frac{p+\epsilon}{6}$. For the latter case, define $\rho : \alpha^g \mapsto \alpha^{g^z}, g \in G$. Then $\rho \in \mathbf{N}_{\mathsf{Aut}\Gamma}(G_\alpha)$, $\alpha^{\rho} = \alpha$ and $X := \langle G, \rho \rangle \cong \mathrm{PGL}(2, p)$. Moreover, $X_\alpha = \langle G_\alpha, \rho \rangle$ is maximal in X. Thus Γ is isomorphic to the graph described in part (2).

For (i.2), $D_{2(p+\epsilon)} \cong \mathbf{N}_{\mathrm{PGL}(2,p)}(G_{\alpha\beta}) = \langle z, \mathbf{N}_G(G_{\alpha\beta}) \rangle$. It implies that $a^{\frac{p+\epsilon}{4}}$ lies in the center of $\mathbf{N}_{\mathrm{PGL}(2,p)}(G_{\alpha\beta})$. Then z induces an automorphism of Γ by $\alpha^g \mapsto \alpha^{g^z}$, $g \in G$. Arguing as above, we know that Γ is isomorphic to the graph described in part (2).

Case (ii). Suppose that (ii) occurs, that is, G = PSL(2, p) with $p \equiv \pm 1 \pmod{8}$. Then $G_{\alpha} \cong A_4$ is contained a maximal subgroup $M \cong S_4$. Set $M = G_{\alpha}:\langle b \rangle$, where b is an involution normalizing $G_{\alpha\beta}$. Then $b \in \mathbf{N}_G(G_{\alpha\beta}) \cong \mathbf{D}_{p+\epsilon}$. Write $\mathbf{N}_G(G_{\alpha\beta}) = \langle a \rangle:\langle b \rangle$, where a has order $\frac{p+\epsilon}{2}$. By a similar argument as in Case (i), for an involution $x \in \mathbf{N}_G(G_{\alpha\beta})$ with $\langle x, G_{\alpha} \rangle = G$, either $G_{\alpha}xG_{\alpha} = G_{\alpha}a^jbG_{\alpha}$ for some $1 \leq j < \frac{p+\epsilon}{6}$, or $G_{\alpha}xG_{\alpha} = G_{\alpha}a^{\frac{p+\epsilon}{4}}G_{\alpha}$ if further 4 is a divisor of $p + \epsilon$. Moreover,

$$(G_{\alpha}xG_{\alpha})^{b} = G_{\alpha}x^{b}G_{\alpha} = \begin{cases} G_{\alpha}a^{\frac{p+\epsilon}{6}-j}bG_{\alpha} \text{ for } 1 \le j < \frac{p+\epsilon}{6}; \text{ or} \\ G_{\alpha}a^{\frac{p+\epsilon}{4}}G_{\alpha}. \end{cases}$$

Assume that $p+\epsilon$ is a divisible by 4 and $G_{\alpha}xG_{\alpha} = G_{\alpha}a^{\frac{p+\epsilon}{4}}G_{\alpha}$ or $G_{\alpha}a^{\frac{p+\epsilon}{12}}bG_{\alpha}$. Define $\theta: \alpha^{g} \mapsto \alpha^{bg}, g \in G$. Then θ is an involution in $\mathbf{C}_{\mathsf{Aut}\Gamma}(G)$. Thus part (6) occurs.

Assume that $G_{\alpha}xG_{\alpha} = G_{\alpha}a^{j}bG_{\alpha}$, where $j \neq \frac{p+\epsilon}{12}$ and $1 \leq j < \frac{p+\epsilon}{6}$. Define σ : $G_{\alpha}g \mapsto G_{\alpha}bg, g \in G$. Then σ is an isomorphism from $\mathsf{Cos}(G, G_{\alpha}, G_{\alpha}a^{j}bG_{\alpha})$ to $\mathsf{Cos}(G, G_{\alpha}, G_{\alpha}a^{\frac{p+\epsilon}{6}-j}bG_{\alpha})$. Thus Γ is isomorphic a graph in Example 5.4 (2).

Case (iii). Suppose that (iii) occurs, that is, G = PGL(2, p) with $p \equiv \pm 3 \pmod{8}$. Then $G_{\alpha} = T_{\alpha} \cong A_4$ is contained a maximal subgroup $M \cong S_4$ of G. Set M =

 $G_{\alpha}:\langle z \rangle$, where $z \in G \setminus T$ is an involution normalizing $G_{\alpha\beta}$. Then $z \in \mathbf{N}_G(G_{\alpha\beta}) \cong D_{2(p+\epsilon)}$. Write $\mathbf{N}_G(G_{\alpha\beta}) = \langle a \rangle:\langle z \rangle$, where *a* has order $p + \epsilon$. For an involution $x \in \mathbf{N}_G(G_{\alpha\beta})$ with $\langle x, G_{\alpha} \rangle = G$, either $G_{\alpha}xG_{\alpha} = G_{\alpha}a^j zG_{\alpha}$ for some $1 \leq j < \frac{p+\epsilon}{3}$, or $G_{\alpha}xG_{\alpha} = G_{\alpha}a^{\frac{p+\epsilon}{2}}G_{\alpha}$. Note that $(G_{\alpha}a^j zG_{\alpha})^z = G_{\alpha}a^{-j}zG_{\alpha} = G_{\alpha}a^{\frac{p+\epsilon}{3}-j}zG_{\alpha}$ for $1 \leq j < \frac{p+\epsilon}{3}$. It follows that Γ is isomorphic to a graph in Example 5.4 (3) or one of $\mathbf{Cos}(G, G_{\alpha}, G_{\alpha}a^{\frac{p+\epsilon}{6}}zG_{\alpha})$ and $\mathbf{Cos}(G, G_{\alpha}, G_{\alpha}a^{\frac{p+\epsilon}{2}}G_{\alpha})$. For the latter, $\mathbf{Aut}\Gamma$ has an involution $\alpha^g \mapsto \alpha^{zg}, g \in G$, which centralizes G, and so part (6) occurs.

7. Normal covers

In this section we give a proof of Theorem 1.1.

Let $\Gamma = (V, E)$ be a connected tetravalent graph of square-free order. Assume that Γ is both vertex-transitive and edge-transitive. Let $G = \operatorname{Aut}\Gamma$. If G is soluble then, by Theorem 3.3, one of of Theorem 1.1 (1) and (2) occurs. If G is almost simple then, by the argument in Section 6, either $\operatorname{soc}(G) = \operatorname{PSL}(3,3)$ and Γ is a Cayley graph or one of parts (3)-(5) of Theorem 1.1 occurs.

By Theorem 4.7, we assume next that G = C:X, $C \neq 1$, $T := \operatorname{soc}(X) \triangleleft G$ and $T = A_7$, J_1 , $\operatorname{PSL}(3,3)$ or $\operatorname{PSL}(2,p)$, where $p \geq 5$ is a prime. Let B be a C-orbit on V and $\alpha \in B$. Then $G_{\alpha} \cong X_B$ by Lemma 2.7. Note that Γ is 2-arc-transitive if and only if Γ_C is (X, 2)-arc-transitive. We shall characterizes Γ in three lemmas.

Lemma 7.1. Assume that Γ is 2-arc-transitive. Then one of Theorem 1.1 (4), (6) and (10) occurs.

Proof. Since Γ has square-free order, T is not semiregular on V, and so $T_{\alpha} \neq 1$. By Lemma 2.4, $T_{\alpha}^{\Gamma(\alpha)} \neq 1$. Since Γ is (G, 2)-arc-transitive, G_{α} is 2-transitive on $\Gamma(\alpha)$. Noting that $T_{\alpha} \triangleleft G_{\alpha}$ as $T \triangleleft G$, it follows that T_{α} is transitive on $\Gamma(\alpha)$. Then T has at most two orbits on V by Lemma 2.2. Thus T_B has at most two orbits on B

Since $(CT)_B = C \times T_B$ and C is regular on B, we conclude that T_{α} is the kernel of T_B acting on B, and so $T_{\alpha} \triangleleft T_B$. Let B' be the T_B -orbit on B containing α . Then either $C_{B'} = C$, or $C_{B'}$ is the unique 2'-Hall subgroup of C. Moreover, $C_{B'}$ and T_B induce two regular permutation groups on B'. Thus $C_{B'} \cong T_B/T_{\alpha}$ by [8, Theorem 4.2A]. Then T_B/T_{α} is isomorphic to C or the 2'-Hall subgroup of C, and hence |C| = 2, 3 or 6 by noting that T_B is a $\{2,3\}$ -group. Note that |C| = |B| is coprime to $|V_C| = |X : X_B|$. Applying Lemmas 6.1, 6.2 and 6.4 to Γ_C and X, we get a table as follows, where lines 1-6 arise if $C \cong T_B/T_{\alpha}$ and lines 7-10 arise otherwise.

line	Т	T_B	T_{α}	C	Γ_C	remark
1	A_7	$(\mathbb{Z}_3 \times A_4):\mathbb{Z}_2$	$\mathbb{Z}_3 \times A_4$	\mathbb{Z}_2	\mathbf{O}_4	
2		$(\mathbb{Z}_3 \times A_4):\mathbb{Z}_2$	A_4	D_6	\mathbf{O}_4	
3	J_1	A_4	\mathbb{Z}_2^2	\mathbb{Z}_3	5.2(1)	$G = \mathbb{Z}_3 \times J_1$
4	PSL(2, p)	A_4	\mathbb{Z}_2^2	\mathbb{Z}_3	6.4(2), (3), (5), (6)	
5	$(p \ge 5)$	S_4	A_4	\mathbb{Z}_2	6.4(1)	$G = C \times T$
6		S_4	\mathbb{Z}_2^2	D_6	6.4(1)	$G = C \times T$
7	A_7	$(\mathbb{Z}_3 \times A_4):\mathbb{Z}_2$	$(\mathbb{Z}_3 \times A_4):\mathbb{Z}_2$	\mathbb{Z}_2	\mathbf{O}_4	
8	PSL(2, p)	A_4	A_4	\mathbb{Z}_2	5.4(1), 6.4(2), (3)	
9		S_4	S_4	\mathbb{Z}_2	6.4(1)	$G = C \times T$
10		A_4	\mathbb{Z}_2^2	M = 6	5.4(1), 6.4(2), (3)	

If line 1 or 2 occurs, then Γ is $(A_7, 2)$ -arc-transitive; however, by Lemma 6.2, there is no such a graph, a contradiction. For line 3, Γ is J₁-arc-transitive, and so Γ isomorphic to one of the graphs in Example 5.2 (3), and so Theorem 1.1 (4) occurs.

Assume that line 4 occurs. Then $(CT)_{\alpha} \cong T_B \cong A_4$ by Lemma 2.7, and $(CT)_{\alpha} =$ $T_{\alpha}:\langle xy\rangle$ such that $A_4 \cong T_{\alpha}:\langle x\rangle \leq T$ and $C = \langle y\rangle$. If T is transitive on V then Γ is (CT, 2)-arc-transitive, it follows that Γ is isomorphic to a graph in Example 5.7 (1); in this case, Theorem 1.1 (6) occurs. Thus we assume further that T has two orbits on V. Then $|T:T_{\alpha}|$ is odd, and $C \times T$ has two orbits on V. Hence $G_{\alpha} = (CT)_{\alpha}$ and $X = \operatorname{PGL}(2,p)$. We may choose $\beta \in \Gamma(\alpha)$ such that $G_{\alpha\beta} = \langle xy \rangle$. Let $\theta \in X \setminus T$ with $x^{\theta} = x^{-1}$. If θ centralizes C, then $\mathbf{N}_G(\langle xy \rangle) = \mathbf{C}_T(x) \times \langle y \rangle$ contains no 2-element $g \in G$ with $\langle g, G_{\alpha} \rangle = G$, a contradiction. Thus $\langle C, \theta \rangle \cong D_6$. Note that $|V_C| = |X|$: $X_B = \frac{p(p^2-1)}{12}$ is square-free and coprime to |C| = 3. Then $(p^2 - 1)$ is not divisible by 9 and 16; in particular, $p \equiv \pm 3 \pmod{8}$. Let $\epsilon = \pm 1$ such that $p + \epsilon$ is divisible by 3. Set $\mathbf{C}_T(x) = \langle a \rangle$. Then $\mathbf{N}_G(\langle xy \rangle) = (\langle a \rangle \times \langle y \rangle) : \langle \theta \rangle = \langle xy \rangle : (\langle a \rangle : \langle \theta \rangle) \cong \mathbb{Z}_3 : \mathbb{D}_{p+\epsilon}$. It is easily shown that $G = \langle a^i \theta^j, G_\alpha \rangle$ if and only if $\langle a^i, P \rangle = T$ and j = 1. Thus either Γ is isomorphic to a graph in Example 5.7 (2), or $\Gamma \cong \mathsf{Cos}(G, G_{\alpha}, G_{\alpha}a^{\frac{p+\epsilon}{4}}\theta G_{\alpha})$ and $p + \epsilon$ is divisible by 12. The former case yields Theorem 1.1 (6). Suppose that the latter case occurs. Note that $a^{\frac{p+\epsilon}{4}}$ lies in the center of $\mathbf{N}_{T:\langle\theta\rangle}(\langle xy\rangle) = \langle a\rangle:\langle\theta\rangle$, and so $(G_{\alpha}a^{\frac{p+\epsilon}{4}}\theta G_{\alpha})^{\theta} = G_{\alpha}a^{\frac{p+\epsilon}{4}}\theta G_{\alpha}$. Define $\rho: \alpha^g \mapsto \alpha^{\theta g}, g \in G$. It is easily shown that ρ is an automorphism of Γ . Moreover, ρ centralizes G. Thus $C\langle\rho\rangle$ is normal in $G = \operatorname{Aut}\Gamma$. By the choice of C, we have $\rho \in C \cong \mathbb{Z}_3$, and so $\rho = 1$ as $\rho^2 = 1$. Then $\alpha = \alpha^{\rho} = \alpha^{\theta}$, hence $\theta \in G_{\alpha} = T_{\alpha} \langle xy \rangle$, yielding $\theta \in T_{\alpha}$, a contradiction.

Similarly, line 5 or 6 implies that Γ is isomorphic to a graph in Example 5.7 (3) or (4), respectively. Thus Theorem 1.1 (6) follows.

For one of lines 7-9, it is easily shown that Γ is the standard double cover of Γ_C which is one of the odd graph \mathbf{O}_4 and the graphs in Example 5.4 (1) and Lemma 6.4 (1)-(3), and so Theorem 1.1 (10) occurs.

Assume finally that line 10 occurs. Then $C \cong \mathbb{Z}_6$ or D_6 , $T_{\alpha} \cong \mathbb{Z}_2^2$, and CT is transitive on V. By Lemma 2.7, $(CT)_{\alpha} \cong T_B$, and so Γ is (CT, 2)-arc-transitive. Set $T_B = T_{\alpha}:\langle x \rangle$ and $C = \langle y \rangle:\langle y_1 \rangle$, where x and y are of order 3 and y_1 is an involution. Since $(CT)_{\alpha} \not\leq T$, without loss of generality, we may assume that $(CT)_{\alpha} = T_{\alpha}:\langle xy \rangle$.

Let $C \cong \mathbb{Z}_6$. Then Γ is the standard double cover of a $(\langle y \rangle \times T, 2)$ -arc-transitive graph Σ of odd order satisfying line 4 of the above table. Thus, by the foregoing argument, Σ is isomorphic to a graph described in Example 5.7 (1). Thus Theorem 1.1 (10) occurs. Thus we assume next that $C \cong D_6$.

Suppose that X = PGL(2, p). Then $G_{\alpha} \cong X_B \cong S_4$. Take an involution $z \in X \setminus T$ such that $x^z = x^{-1}$ and $X_B = \langle x, z, T_{\alpha} \rangle \cong S_4$. Then $X = \langle T, z \rangle \cong \langle T, y_1 z \rangle$, and it is easily shown that one of z and $y_1 z$ centralizes C. Thus, without loss of generality, we assume that $G = C \times X$. Then $\mathbf{N}_G((CT)_{\alpha}) = (CT)_{\alpha} : \langle y_1, z \rangle$. Since $A_4 \cong (CT)_{\alpha} \triangleleft G_{\alpha} \cong S_4$, we conclude that $G_{\alpha} = (CT)_{\alpha} : \langle z \rangle$ or $(CT)_{\alpha} : \langle y_1 z \rangle$. Suppose that $G_{\alpha} = (CT)_{\alpha} : \langle z \rangle$. Then $G_{\alpha\beta} = \langle xy \rangle : \langle z \rangle$ for some $\beta \in \Gamma(\alpha)$. Computation shows that $\mathbf{N}_G(G_{\alpha\beta}) = \langle o \rangle \times G_{\alpha\beta}$, where o is the involution in $\mathbf{C}_X(x) \cong \mathbb{Z}_{p+\epsilon}$. Thus, for any $g \in \mathbf{N}_G(G_{\alpha\beta})$, we have $\langle g, G_\alpha \rangle \leq \langle o, xy, z, T_\alpha \rangle \leq \langle y \rangle \times X \neq G$, which contradicts the connectedness of Γ . Therefore, $G_\alpha = (CT)_\alpha : \langle y_1 z \rangle = (T_\alpha : \langle xy \rangle) : \langle y_1 z \rangle$ and $G_{\alpha\beta} = \langle xy \rangle : \langle y_1 z \rangle$ for some $\beta \in \Gamma(\alpha)$. Computation shows that $\mathbf{N}_G(G_{\alpha\beta}) = \langle o \rangle \times G_{\alpha\beta}$. Suppose that $p + \epsilon$ is divisible by 4. Then it is easily shown that $o \in T$. For each $g \in \mathbf{N}_G(G_{\alpha\beta})$, we have $\langle g, G_\alpha \rangle \leq \langle o, xy, y_1 z, T_\alpha \rangle \leq (\langle y \rangle \times T) : \langle y_1 z \rangle \neq G$, a contradiction. Thus $p + \epsilon$ is not divisible by 4, and Γ is isomorphic the graph in Example 5.7 (5), and so Theorem 1.1 (6) occurs.

Suppose that X = T. Then $G = C \times T$ and $T_{\alpha}: \langle xy \rangle = G_{\alpha} \cong T_B \cong A_4$. Thus $G_{\alpha\beta} =$ $\langle xy \rangle$ for some $\beta \in \Gamma(\alpha)$, and $\mathbf{N}_G(G_{\alpha\beta}) = (\mathbf{C}_T(x) \times \langle y \rangle): \langle by_1 \rangle = \langle xy \rangle: (\mathbf{C}_T(x): \langle by_1 \rangle),$ where $b \in T$ is an involution with $x^b = x^{-1}$. Set $\mathbf{C}_T(x) = \langle a \rangle$. Then *a* has order $\frac{p+\epsilon}{2}$, where $\epsilon = \pm 1$ with $p + \epsilon$ divisible by 3. Since Γ is connected and G-arc-transitive, there is a 2-element $h \in \mathbf{N}_G(G_{\alpha\beta})$ with $\beta = \alpha^h$ and $\langle h, G_\alpha \rangle = G$. Then such an element h must be an involution, and $G_{\alpha}hG_{\alpha} = G_{\alpha}a^{i}by_{1}G_{\alpha}$ for some $0 \leq i < \frac{p+\epsilon}{2}$. Note $G = C \times T < C \times \text{PGL}(2, p)$. Take an involution $z \in \text{PGL}(2, p) \setminus T$ with $x^z = x^{-1}$ and $\langle T_{\alpha}, x, z \rangle \cong S_4$. Then $z, b \in \mathbf{N}_{\mathrm{PGL}(2,p)}(\langle x \rangle) \cong D_{2(p+\epsilon)}$. We may write $\mathbf{N}_{\mathrm{PGL}(2,p)}(\langle x \rangle) =$ $\langle a_0 \rangle : \langle b \rangle$, where a_0 has order $p + \epsilon$ with $a_0^2 = a$. Then, since $z \notin T$, we may set $z = a_0^s b$ for some odd integer s. Replacing b by $a_0^{1-s}b$ if necessary, we assume further that z = $a_0 b$. Then $(G_{\alpha} a^i b y_1 G_{\alpha})^{y_1 z} = G_{\alpha} a^{1-i} b y_1 G_{\alpha}$. It follows that $\mathsf{Cos}(G, G_{\alpha}, G_{\alpha} a^i b y_1 G_{\alpha}) \cong$ $Cos(G, G_{\alpha}, G_{\alpha}a^{1-i}by_1G_{\alpha})$. Thus either Γ is isomorphic a graph in Example 5.7 (6), or $p + \epsilon$ is not divisible by 4 and $\Gamma \cong \mathsf{Cos}(G, G_\alpha, G_\alpha a^{\frac{p+2+\epsilon}{4}} by_1 G_\alpha)$. For the latter case, Γ has an automorphism $\theta: \alpha^g \mapsto \alpha^{g^{y_1 z}}, g \in G$, and so $D_6 \times PSL(2, p) \cong G = Aut\Gamma \ge C$ $\langle G, \theta \rangle = \langle C, T, y_1 \theta \rangle \cong D_6 \times PGL(2, p)$, a contradiction. Then Γ is isomorphic to a graph in Example 5.7 (6), and so Theorem 1.1 (6) occurs.

Lemma 7.2. Assume that $C \cong \mathbb{Z}_2$ and Γ is not 2-arc-transitive. Then one of Theorem 1.1 (7) and (10) occurs.

Proof. By the assumption, $\operatorname{Aut}\Gamma = G = C \times X$ and the quotient graph Γ_C has odd order. Applying Lemmas 6.1-6.4 to the pair (X, Γ_C) , we conclude that T = $\operatorname{soc}(X) = \operatorname{PSL}(2, p)$ and Γ_C is X-arc-transitive, and so Γ is arc-transitive. Moreover, $G_{\alpha} \cong X_B \cong \mathbb{Z}_2^2$, D_8 or D_{16} , where B is a C-orbit and $\alpha \in B$. If $X_B = X_{\alpha}$ then $G_{\alpha} \leq X$; in this case, it is easily shown that Γ is isomorphic to the standard double cover of Γ_C , and so Theorem 1.1 (10) occurs. Thus we assume next that $X_B \neq X_{\alpha}$, that is, X_B is transitive on B. In particular, $|X_B : X_{\alpha}| = 2$.

Since Γ_C has odd order, T is transitive on the vertices of Γ_C . It implies that $|X:X_B| = |T:T_B|$, and so $|X_B:T_B| = |X:T|$. Set $C = \langle y \rangle$.

Assume first that T_B is intransitive on B. Then $T_B = T_{\alpha}$. Since $T = \operatorname{soc}(X) = \operatorname{PSL}(2, p)$, we have $X = \operatorname{PGL}(2, p)$ and $X_{\alpha} = T_B = T_{\alpha}$. Take an involution $z \in X_B \setminus T$. Then $X_B = T_{\alpha}:\langle z \rangle$ and z interchanges the vertices of Γ contained in B. Thus $yz \in G_{\alpha}$, and so $G_{\alpha} = T_{\alpha}:\langle yz \rangle$. Set $X_1 = T:\langle yz \rangle$. Then $G_{\alpha} < X_1 \cong \operatorname{PGL}(2, p)$ and $G = C \times X_1$. It follows that Γ is isomorphic to the standard double cover of an X_1 -arc-transitive graph (which is isomorphic to Γ_C). Thus Theorem 1.1 (10) occurs.

Assume that T_B is transitive on B. Then $|X_B : X_{\alpha}| = |T_B : T_{\alpha}| = 2$, and both Xand T are transitive on V. If $X_B \cong \mathbb{Z}_2^2$, then X = PSL(2, p) and Γ is arc-regular, and hence Theorem 1.1 (7) occurs. We next deal with the cases: $X_B \cong D_8$ and $X_B \cong D_{16}$. **Case** 1. Let $X_B \cong D_8$. We shall show that Γ is isomorphic to a graph in Example 5.8, and thus Theorem 1.1 (7) occurs.

Let $x \in X_B$ be of order 4. Then x or xy is contained in G_{α} . By Lemma 2.5, we conclude $\langle x \rangle$ is regular on $\Gamma_C(B)$. Let $\beta \in \Gamma(\alpha)$ and $B' \in \Gamma_C(B)$ the C-orbit containing β . Take an involution $z \in X_B$ which fixes B' set-wise. Since Γ is a cover of Γ_C , it is easily shown that either z or yz fixes $B \cup B'$ point-wise. Thus $G_{\alpha\beta} = \langle z \rangle$ or $\langle yz \rangle$. By the choices of x and z, we have $x^z = x^{-1}$, $X_B = \langle x, z \rangle$ and G_{α} is one of $\langle x \rangle$: $G_{\alpha\beta}$ and $\langle xy \rangle$: $G_{\alpha\beta}$. Recalling that $G_{\alpha} \neq X_B$, either $G_{\alpha\beta} = \langle z \rangle$ and $G_{\alpha} = \langle xy, z \rangle$, or $G_{\alpha\beta} = \langle yz \rangle$ and $G_{\alpha} = \langle x, yz \rangle$ or $\langle xy, yz \rangle$.

Since Γ is connected and arc-transitive, $\Gamma \cong \operatorname{Cos}(G, G_{\alpha}, G_{\alpha}gG_{\alpha})$ for some 2-element $g \in \mathbf{N}_X(G_{\alpha\beta}) = \langle y \rangle \times \mathbf{C}_X(z)$ with $\langle g, G_{\alpha} \rangle = G$ and $g^2 \in G_{\alpha\beta} \cong \mathbb{Z}_2$. Noting that $x^2 \in \mathbf{C}_X(z)$ and $\mathbf{C}_X(z)$ is dihedral, write $\mathbf{C}_X(z) = \langle a, x^2 \rangle$ with $a^{x^2} = a^{-1}$. Then $g = y^j a^i (x^2)^k$ for some integers i, j and k. Thus $G = \langle g, G_{\alpha} \rangle \leq \langle y, x, z, a^i \rangle$, yielding that $\langle x, z, a^i \rangle = X$. It follows that $a^i \neq z$. If a^i has order 4 then $a^{2i} = z$ and $(a^i)^{x^2} = a^{-i}$, and so $(x^2)^{a^i} = x^2 z \in \langle x^2, z \rangle$, yielding $\langle x^2, z \rangle \triangleleft \langle x, z, a^i \rangle = X$, a contradiction. Thus a^i is not of order 4. Let $\epsilon = \pm 1$ such that $p + \epsilon$ is divisible by 4.

Let $X = \operatorname{PGL}(2, p)$. Then $p \equiv \pm 3 \pmod{8}$ and $|T_{\alpha}| = 2$. Thus $T_{\alpha} = \langle x^2 \rangle$. Assume that $G_{\alpha\beta} = \langle z \rangle$. Then $G_{\alpha} = \langle xy, z \rangle$, $z \in X \setminus T$, $\mathbf{C}_X(z) \cong \mathbf{D}_{2(p-\epsilon)}$ and $z = a^{\frac{p-\epsilon}{2}}$. Noting that $G_{\alpha}gG_{\alpha} = G_{\alpha}y^j a^i G_{\alpha} = G_{\alpha}y^j a^i z G_{\alpha}$, we conclude that Γ is isomorphic to a graph in Example 5.8 (1.i). Assume that $G_{\alpha\beta} = \langle yz \rangle$. If $G_{\alpha} = \langle x, yz \rangle$ then $z = a^{\frac{p-\epsilon}{2}}$ or $z = a^{\frac{p+\epsilon}{2}}$ and $G_{\alpha}gG_{\alpha} = G_{\alpha}y^j a^i G_{\alpha} = G_{\alpha}y^j a^i y z G_{\alpha}$, which implies that Γ is isomorphic to a graph in Example 5.8 (1.ii). Suppose that $G_{\alpha} = \langle xy, yz \rangle$. Then $xz \in X_{\alpha}$. Since $T_{\alpha} = \langle x^2 \rangle$, we have $xz \notin T$, and so $z \in T$. It follows that Γ is isomorphic to a graph in Example 5.8 (1.ii).

Let X = PSL(2, p). Then $p \equiv \pm 7 \pmod{16}$, $\mathbf{C}_X(z) \cong \mathbf{D}_{p+\epsilon}$ and $z = a^{\frac{p+\epsilon}{4}}$. It is easily shown that Γ is isomorphic a graph in Example 5.8 (2).

Case 2. Let $X_B \cong D_{16}$. Then $X_{\alpha} \cong D_8$ and $G_{\alpha} \cong D_{16}$. Recall that X is transitive on V. Suppose that Γ is X-arc-transitive. Then, by Lemma 2.5, we conclude that the cyclic subgroup of X_{α} with order 4 must regular on $\Gamma(\alpha)$. It follows that $G_{\alpha} \cong D_{16}$ can be written as a product of two subgroups of order 4, which is impossible. Then X_{α} is not transitive on $\Gamma(\alpha)$. Thus, by Lemma 2.5, $|X_{\alpha\beta}| = 4$ for $\beta \in \Gamma(\alpha)$. Hence $G_{\alpha\beta} = X_{\alpha\beta}$. Note that G_{α} contains a unique cyclic subgroup of order 4. Again by Lemma 2.5, we conclude that $G_{\alpha\beta} = X_{\alpha\beta} \cong \mathbb{Z}_2^2$. Suppose that X = PGL(2, p). Recalling that $|X_B : X_{\alpha}| = |T_B : T_{\alpha}| = 2$, we know that T_{α} has order 4. Since Tis not semiregular on V, we have $T_{\alpha} \neq T_{\alpha\beta}$. It follows that $G_{\alpha\beta} = X_{\alpha\beta} \not\leq T$. Then $X_{\alpha} \leq \mathbf{N}_X(G_{\alpha\beta}) \cong D_8$, and so $\mathbf{N}_G(G_{\alpha\beta}) = C \times \mathbf{N}_X(G_{\alpha\beta}) = C \times X_{\alpha}$. Thus there is no $g \in \mathbf{N}_G(G_{\alpha\beta})$ with $\langle g, G_{\alpha} \rangle = G$, a contradiction. Then X = T = PSL(2, p), and so $\mathbf{N}_G(G_{\alpha\beta}) = C \times \mathbf{N}_X(G_{\alpha\beta}) \cong \mathbb{Z}_2 \times S_4$. This implies that Γ is isomorphic a graph in Example 5.9, and so Theorem 1.1 (7) occurs.

By the foregoing argument, we assume finally that |C| > 2 and Γ is not 2-arctransitive. Applying the argument in Section 6 to the pair (Γ_C, X) , we have $T = \text{soc}(X) = J_1$ or PSL(2, p). The following lemma will fulfill the proof of Theorem 1.1.

Lemma 7.3. Assume that |C| > 2 and Γ is not 2-arc-transitive. Then one of Theorem 1.1 (8)-(10) occurs.

Proof. Let B be a C-orbit on V and $\alpha \in B$. Since Γ is not 2-arc-transitive, G_{α} is a 2-group. Recall Aut $\Gamma = G = C:X$, $G_{\alpha} \cong X_B$ and C semiregular on V. Since $|V| = |G : G_{\alpha}| = |C||X : X_B|$ is square-free, |C| and |X| have no common prime divisors other than 2. Since $T = \operatorname{soc}(X) \triangleleft G$, all T-orbits on V has the same length $|T : T_{\alpha}|$. Then the number of T-orbits equals to $\frac{|V|}{|T:T_{\alpha}|} = |C|\frac{|X:X_B|}{|T:T_{\alpha}|}$, which is no less than 3 as |C| > 2. Thus the quotient graph Γ_T is a cycle. Let N be the kernel of G acting on V_T . Then $T \leq N$ and G/N is isomorphic to a subgroup of Aut Γ_T which is a dihedral group. Moreover, G/N is transitive on both the vertices and edges of Γ_T . It implies that G/N is either cyclic or isomorphic to Aut Γ_T . Note that $N = TN_{\alpha}$, $T \leq X$ and N_{α} is a 2-group. Then |C| and |N| have no common prime divisors other than 2. In particular, $|C \cap N| \leq 2$. Since $C/(C \cap N) \cong N/N \leq G/N$ and |C| is square-free, we conclude that C is cyclic or dihedral. We shall discuss in two cases according to the parity of |C|.

Case 1. Assume first that |C| is odd. Then $C \cap N = 1$, C is cyclic and X contains a Sylow 2-subgroup of G. Since G_{α} is a 2-group, let $G_{\alpha} < X$ by choosing α suitably. Then $G_{\alpha} \leq X_B$. Thus we assume next that $G_{\alpha} = X_B$ as $G_{\alpha} \cong X_B$.

Subcase 1.1. Let Γ_C be X-arc-transitive. Then Γ is arc-transitive, and so G acts transitively on the arcs of Γ_T . Thus $G/N \cong \operatorname{Aut}\Gamma_T$ is dihedral. In particular, N = T and $G = CX \neq C \times X$. Recalling that $T = \operatorname{soc}(X) = J_1$ or $\operatorname{PSL}(2, p)$, it follows that $T = \operatorname{PSL}(2, p)$ and $X = \operatorname{PGL}(2, p)$. Set $X = T:\langle z \rangle$ for an involution $z \in X \setminus T$.

Take a 2-element $g \in G$ with $(\alpha, \beta)^g = (\beta, \alpha)$ for some $\beta \in \Gamma(\alpha)$. Write $g = cxz^j$ for some $c \in C$, $x \in T$ and j = 0 or 1. Then $cc^{(xz^j)^{-1}}(xz^j)^2 = g^2 \in G_{\alpha\beta} < X$, yielding $c^{-1} = c^{xz^j} = c^{z^j}$ and $(xz^j)^2 \in G_{\alpha\beta}$. In particular, g = cxz, $c^z = c^{-1}$ and $(xz)^2 \in G_{\alpha\beta}$. Since Γ is connected, $G = \langle g, G_\alpha \rangle \leq \langle x, cz, G_\alpha \rangle \cap \langle c, xz, G_\alpha \rangle$. It follows that $\langle c \rangle = C$ and $G_\alpha \not\leq T$. Thus we may choose $z \in G_\alpha$.

Recalling that $G_{\alpha} = X_B$, we have $T_B = T_{\alpha}$ and $G_{\alpha} = T_{\alpha}:\langle z \rangle$. Since $CT/N = CT/T \cong C$ is cyclic, CT is transitive on the edges but not on the arcs of Γ_T , it implies that Γ is CT-half-transitive. Then Γ_C is T-half-transitive, and so, by Lemma 6.3, $T_{\alpha} = T_B \cong \mathbb{Z}_2, \mathbb{Z}_2^2$ or \mathbb{D}_8 . Moreover, since Γ is CT-half-transitive, we have $|T_{\alpha}: T_{\alpha\beta}| = 2$. Then $|G_{\alpha}: T_{\alpha\beta}| = 4$, hence $G_{\alpha\beta} = T_{\alpha\beta}$.

Suppose that $T_{\alpha} \cong D_8$. Then $G_{\alpha\beta} = T_{\alpha\beta} \cong \mathbb{Z}_2^2$, and so $S_4 \cong \mathbf{N}_X(G_{\alpha\beta}) < T$. Thus $\mathbf{N}_G(G_{\alpha\beta}) = C\mathbf{N}_G(G_{\alpha\beta}) = C \times \mathbf{N}_T(T_{\alpha\beta})$, and so $g \notin \mathbf{N}_G(G_{\alpha\beta})$, a contradiction.

Assume that $T_{\alpha} \cong \mathbb{Z}_2$. Then $G_{\alpha\beta} = T_{\alpha\beta} = 1$, so xz is an involution, and hence $x^z = x^{-1}$. By $G = \langle g, G_{\alpha} \rangle = \langle cxz, T_{\alpha}, z \rangle = \langle c, x, T_{\alpha}, z \rangle$, we know $\langle x, T_{\alpha} \rangle = T$. Then Γ is isomorphic to a graph given in Example 5.10 (1), and so Theorem 1.1 (8) occurs.

Assume that $T_{\alpha} \cong \mathbb{Z}_2^2$. Then $G_{\alpha} \cong D_8$ and $G_{\alpha\beta} = T_{\alpha\beta} \cong \mathbb{Z}_2$. If $p \equiv \pm 1 \pmod{8}$ then $S_4 \cong N_X(T_{\alpha}) < T$, and hence $z \in N_X(T_{\alpha}) < T$, a contradiction. Thus $p \equiv \pm 3 \pmod{8}$. Set $G_{\alpha\beta} = \langle o \rangle$ for an involution $o \in T$. Then $T_{\alpha} < \mathbb{C}_T(o)$, and $g = cxz \in \mathbb{N}_G(G_{\alpha\beta}) = \mathbb{C}_G(o) = C:\mathbb{C}_X(o)$, and so $xz \in \mathbb{C}_X(o)$. If $G_{\alpha} = \mathbb{N}_{\mathbb{C}_X(o)}(T_{\alpha})$ then $z \in \mathbb{C}_X(o)$, so $G = \langle cxz, T_{\alpha}, z \rangle \leq C\mathbb{C}_X(o)$, a contradiction. Thus $z \notin \mathbb{C}_X(o)$, and hence Γ is isomorphic to a graph in Example 5.10 (2). Then Theorem 1.1 (8) occurs.

Subcase 1.2. Let Γ_C be X-half-transitive. Then, by the argument in Section 6, we know that T = PSL(2, p) and $G_{\alpha} = X_B \cong \mathbb{Z}_2$, \mathbb{Z}_2^2 or D₈. Suppose that $G \neq C \times X$. Then X = PGL(2, p) and there is an involution $z \in X \setminus T$ such that z dose not centralize C. It follows that N = T, and so $G/N \cong C:\langle z \rangle$ is not abelian. Then

G/N is dihedral, and so G acts transitively on the arcs of Γ_T , it implies that Γ is arc-transitive, a contradiction. Thus $G = C \times X$.

Suppose that $X_B \cong \mathbb{Z}_2^2$ or D_8 . By Lemma 6.3 (2) and (3), we conclude that $\operatorname{Aut}\Gamma_C \setminus X$ contains an involution θ which normalizes X and X_B . Define a map $\rho: V \to V$; $\alpha^{c^i x} \mapsto \alpha^{c^{-i} x^{\theta}}$, $0 \leq i \leq |C| - 1$, $x \in X$. It is easily shown that $\rho \in \operatorname{Aut}\Gamma$ but $\rho \notin G$; however, $G = \operatorname{Aut}\Gamma$, a contradiction.

Let $G_{\alpha} = X_B \cong \mathbb{Z}_2$. Take $\beta \in \Gamma(\alpha)$ and $g \in G$ with $\beta = \alpha^g$. Then $\Gamma \cong Cos(G, X_B, X_B\{g, g^{-1}\}X_B)$. Set g = cx with $c \in C$ and $x \in X$. Since Γ is connected, we have $G = \langle g, X_B \rangle = \langle c, x, X_B \rangle = \langle c \rangle \times \langle x, X_B \rangle$. It implies that $C = \langle c \rangle$ and $\langle x, X_B \rangle = X$. Thus we get a connected X-half-transitive graph $Cos(X, X_B, X_B\{x, x^{-1}\}X_B)$, which is of valency 4. Then Γ is constructed as in Example 5.11, and so Theorem 1.1 (9) occurs.

Case 2. Assume that |C| is even. Then Γ_C has odd order, and so X_B is a Sylow 2-subgroup of X. Applying Lemmas 6.1-6.4 to the pair (Γ_C, X) , we conclude that $T = \operatorname{soc}(X) = \operatorname{PSL}(2, p), G_{\alpha} \cong X_B \cong \mathbb{Z}_2^2$, D_8 or D_{16} , and Γ_C is X-arc-transitive. Then Γ is arc-transitive. Since |C| is square-free, C has a unique 2'-Hall subgroup, say L. Then L is a characteristic subgroup of C, and hence $L \triangleleft G$. Recall that C is cyclic or dihedral. We set $L = \langle c \rangle \cong \mathbb{Z}_l$, where l > 1 is odd and square-free.

Subcase 2.1. Assume that $C \cong \mathbb{Z}_{2l}$ and set $C = L \times \langle y \rangle$. Then $G = \langle y \rangle \times (L:X)$. Consider the quotient graph $\Gamma_{\langle y \rangle}$. Then $\Gamma_{\langle y \rangle}$ is LX-arc-transitive and, by the argument in Case 1, $\Gamma_{\langle y \rangle}$ is isomorphic to a graph in Example 5.10 (2). In particular, X = $PGL(2, p), p \equiv \pm 3 \pmod{8}$ and $c^g = c^{-1}$ for each involution $g \in X \setminus T$. If $G_\alpha < LX$ then it is easily shown that Γ is isomorphic to the standard double cover of $\Gamma_{\langle y \rangle}$, and then Theorem 1.1 (10) occurs. Thus we assume next that $G_\alpha \leq LX$.

Let B_1 be the $\langle y \rangle$ -orbit containing α . Then $G_{\alpha} \cong (LX)_{B_1}$ by Lemma 2.7, and $(LX)_{B_1}$ is a Sylow 2-subgroup of LX, and so $G_{\alpha} \cong (LX)_{B_1} \cong D_8$. Since X contains a Sylow 2-subgroup of LX, we may assume that $(LX)_{B_1} < X$. Thus $(LX)_{B_1} = X_{B_1} \neq G_{\alpha}$. Let $x \in X_{B_1}$ be of order 4. Then x or xy is contained in G_{α} . By Lemma 2.5, X_{B_1} is faithful on $\Gamma_{\langle y \rangle}(B_1)$. Thus $\langle x \rangle$ is regular on $\Gamma_{\langle y \rangle}(B_1)$. Let $B'_1 \in \Gamma_{\langle y \rangle}(B_1)$, and let $z \in X_{B_1}$ be an involution which fixes B'_1 set-wise. Since Γ is a cover of $\Gamma_{\langle y \rangle}$, it is easily shown that either z or yz fixes $B_1 \cup B'_1$ point-wise. Let $\beta \in B'_1 \cap \Gamma(\alpha)$. Then $G_{\alpha\beta} = \langle z \rangle$ or $\langle yz \rangle$. By the choices of x and z, we have $x^z = x^{-1}$, $X_{B_1} = \langle x, z \rangle$ and $G_{\alpha} = \langle xy; G_{\alpha\beta}$. It follows that either $G_{\alpha\beta} = \langle z \rangle$ and $G_{\alpha} = \langle xy, z \rangle$, or $G_{\alpha\beta} = \langle yz \rangle$ and $G_{\alpha} = \langle x, yz \rangle$ or $\langle xy, yz \rangle$.

Suppose that $z \in X \setminus T$. Then $c^z = c^{-1}$. Computation shows that $\mathbf{N}_G(G_{\alpha\beta}) = \mathbf{C}_G(z) = \langle y \rangle \times \mathbf{C}_X(z)$. Then there is no $g \in \mathbf{N}_G(G_{\alpha\beta})$ with $\langle g, G_{\alpha} \rangle = G$, which contradicts that Γ is a connected *G*-arc-transitive graph. Thus $z \in T$.

If $G_{\alpha\beta} = \langle yz \rangle$ then, writing Γ as a coset graph, Γ is constructed as in Example 5.12, and so Theorem 1.1 (8) occurs. Assume that $G_{\alpha\beta} = \langle z \rangle$ and $G_{\alpha} = \langle xy, z \rangle$. Set $X_1 = T:\langle xyz \rangle$. Then $X_1 \cong \text{PGL}(2, p), G = \langle y \rangle \times (LX_1)$ and $G_{\alpha} < X_1 < LX_1$. It follows that Γ is the standard double cover of an LX_1 -arc-transitive graph, which is isomorphic to $\Gamma_{\langle y \rangle}$. Thus Theorem 1.1 (10) occurs.

Subcase 2.2. Assume that $C \cong D_{2l}$. We claim that $G = C \times X_1$ for a subgroup X_1 of G. This is clear if X = T. Assume that X = PGL(2, p). Recall that N is the kernel of G acting on T-orbits. Since C is dihedral and $|C \cap N| \leq 2$, we have $C \cap N = 1$. If G = CN then the claim hold by taking $X_1 = N$. Suppose that $G \neq CN$. Then

N = T and $G = (C \times T):\langle z \rangle$ for an arbitrary involution $z \in X \setminus T$. It follows that $G/N = G/T \cong C:\langle z \rangle < G$. Since Γ is arc-transitive, Γ_T is G/N-arc-transitive. Then G/N is dihedral, and so either $c^z = c^{-1}$ or z lies in the center of $C\langle z \rangle$. The latter case yields $G = C \times X$. Suppose that $c^z = c^{-1}$. Note that the set of involutions in C is invariant under the conjugation of z. We may take an involution $y \in C$ with $y^z = y$. Then yz centralizes C, and our claim holds by taking $X_1 = T:\langle yz \rangle$.

Without loss of generality, we assume that $G = C \times X$. Then $G_B = C \times X_B$. Recall that |C| and |X| has no prime divisors in common other that 2. Considering the action of X_B on B, we conclude that either X_B fixes B point-wise, or $|X_B : X_{\alpha}| = 2$ for $\alpha \in B$. The former case implies that $X_B \leq G_{\alpha}$, and so $G_{\alpha} = X_B$ as $G_{\alpha} \cong X_B$; in this case, there is no a 2-element g with $\langle g, G_{\alpha} \rangle = G$, a contradiction. Thus $|X_B : X_{\alpha}| = 2$, and so $|G_{\alpha} : X_{\alpha}| = 2$; in this case LX is transitive on V. Clearly, there is no 2-element g in LX with $\langle g, X_{\alpha} \rangle = LX$. It follows that Γ is not LX-arctransitive, and so X_{α} is intransitive on $\Gamma(\alpha)$. By Lemmas 2.4 and 2.5, $|X_{\alpha} : X_{\alpha\beta}| = 2$ for $\beta \in \Gamma(\alpha)$. Since Γ is arc-transitive, $|G_{\alpha} : G_{\alpha\beta}| = 4$. It implies that $G_{\alpha\beta} = X_{\alpha\beta}$, and so Γ is isomorphic to a graph constructed in Example 5.13. Theorem 1.1 (9) occurs. This completes the proof.

References

- B. Alspach and M.Y. Xu, ¹/₂-transitive graphs of order 3p, J. Algebraic Combin. 3 (1994), 347-355.
- [2] M. Aschbacher, Finite group theory, Cambridge University Press, Cambridge, 1993.
- [3] P.J. Cameron, G.R Omidi and B. Tayfeh-Rezaie, 3-Design from PGL(2,q), The Electronic Journal of Combinatorics 13 (2006), #R50.
- [4] C.Y. Chao, On the classification of symmetric graphs with a prime number of vertices, Trans. Amer. Math. Soc. 158 (1971), 247-256.
- [5] Y. Cheng and J. Oxley, On weakly symmetric graphs of order twice a prime, J. Combin. Theory Ser. B 42 (1987), 196-211.
- [6] M.D. Conder, C.H Li and C.E. Praeger, On the Weiss conjucture for finite locally primitive graphs, Pro. Edinburgh Math. Soc. 43 (2000), 129-138.
- [7] J.H. Conway, R.T. Curtis, S.P. Noton, R.A. Parker and R.A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
- [8] J.D. Dixon and B. Mortimer, *Permutation Groups*, Springer-Verlag, New York, 1996.
- [9] A. Hassani, L.R. Nochefranca and C.E. Praeger, Two-arc transitive graphs admitting a twodimensional projective linear group, J. Group Theory 2 (1999), 335-353.
- [10] B. Huppert, Endliche Gruppen I, Springer-Verlag, 1967.
- [11] C.H. Li, The finite vertex-primitive and vertex-biprimitive s-transitive graphs for $s \ge 4$, Trans. Amer. Math. Soc. **353** (2001) 3511-3529.
- [12] C.H. Li, Finite s-arc transitive Cayley graphs and flag-transitive projective planes, Proc. Amer. Math. Soc. 133 (2004), 31-41.
- [13] C.H. Li, Z.P. Lu and D. Marušič, On primitive permutation groups with small suborbits and their orbital graphs, J. Algebra 279 (2004), 749-770.
- [14] C. H. Li, Z. Liu and Z. P. Lu, Edge-transitive tetravalent Cayley graphs of square-free order, Discrete Math. 312 (2012), 1952-1967.
- [15] C. H. Li, Z. P. Lu and G. X. Wang, Vertex-transitive cubic graphs of square-free order, J. Graph Theory 75 (2014), 1-19.
- [16] C.H. Li, Z.P. Lu and G.X. Wang, On edge-transitive graphs of square-free order, submitted.
- [17] D. Marušič and P. Potočnik, Classifying 2-arc-transitive graphs of order a product of two primes, Discrete Math. 244 (2002), 331C338.

- [18] C.E. Praeger, R.J. Wang and M.Y. Xu, Symmetric graphs of order a product of two distinct primes, J. Combin. Theory Ser. B 58 (1993), 299-318.
- [19] C.E. Praeger and M.Y. Xu, Vertex-primitive graphs of order a product of two distinct primes, J. Combin. Theory Ser. B 59 (1993), 245-266.
- [20] M. Suzuki, On a class of doubly transitive groups, Ann. Math.(2) 75 (1962), 105-145.
- [21] R.J. Wang, Half-transitive graphs of order a product of two distinct primes, Comm. Alg. 22 (1994), 915-927.
- [22] R.J. Wang and M.Y. Xu, A classification of symmetric graphs of order 3p, J. Combin. Theory Ser. B 58 (1993), 197-216.
- [23] R. M. Weiss, s-transitive graphs, Algebraic Methods in Graph Theory 2 (1981), 827-847.

C. H. LI, SCHOOL OF MATHEMATICS AND STATISTICS, THE UNIVERSITY OF WESTERN AUS-TRALIA, CRAWLEY, WA 6009, AUSTRALIA *E-mail address*: li@maths.uwa.edu.au

Z. P. LU, CENTER FOR COMBINATORICS, LPMC-TJKLC, NANKAI UNIVERSITY, TIANJIN 300071, P. R. CHINA

E-mail address: lu@nankai.edu.cn

G. X. WANG, DEPARTMENT OF APPLIED MATHEMATICS, ANHUI UNIVERSITY OF TECHNOL-OGY, MAANSHAN 243002, P. R. CHINA

E-mail address: gxwang@ahut.edu.cn