
Tricyclic graphs with maximal revised Szeged index

Lily Chen, Xueliang Li, Mengmeng Liu

Center for Combinatorics, LPMC

Nankai University, Tianjin 300071, China

Email: lily60612@126.com, lxl@nankai.edu.cn, liumm05@163.com

Abstract

The revised Szeged index of a graphG is defined as Sz∗(G) =
∑

e=uv∈E
(nu(e)+

n0(e)/2)(nv(e)+n0(e)/2), where nu(e) and nv(e) are, respectively, the number

of vertices of G lying closer to vertex u than to vertex v and the number of

vertices of G lying closer to vertex v than to vertex u, and n0(e) is the number

of vertices equidistant to u and v. In this paper, we give an upper bound of

the revised Szeged index for a connected tricyclic graph, and also characterize

those graphs that achieve the upper bound.
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graph.
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1 Introduction

All graphs considered in this paper are finite, undirected and simple. We refer the reader

to [3] for terminology and notation not given here. Let G be a connected graph with vertex

set V (G) and edge set E(G). For u, v ∈ V (G), dG(u, v) denotes the distance between u and

v in G, we use d(u, v) for short, if there is no ambiguity. The Wiener index of G is defined as

W (G) =
∑

{u,v}⊆V (G)

dG(u, v).

This topological index has been extensively studied in the mathematical literature; see, e.g.,

[6, 9, 11,13]. Let e = uv be an edge of G, and define three sets as follows:

Nu(e) = {w ∈ V (G) : dG(u,w) < dG(v,w)},

Nv(e) = {w ∈ V (G) : dG(v,w) < dG(u,w)},

N0(e) = {w ∈ V (G) : dG(u,w) = dG(v,w)}.

Thus, {Nu(e), Nv(e), N0(e)} is a partition of the vertices of G respect to e. The number of

vertices of Nu(e), Nv(e) and N0(e) are denoted by nu(e), nv(e) and n0(e), respectively. A
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long time known property of the Wiener index is the formula [12,23]:

W (G) =
∑

e=uv∈E(G)

nu(e)nv(e),

which is applicable for trees. Motivated by the above formula, Gutman [10] introduced a

graph invariant, named as the Szeged index, as an extension of the Wiener index and defined

by

Sz(G) =
∑

e=uv∈E(G)

nu(e)nv(e).

The above defined graph invariant is based on counting of vertices of the underlying graph

and is sometimes referred to as the vertex Szeged index. Also the edge-variant of this invariant

has been considered, called ”edge Szeged index”, see [7, 17] and the references cited therein.

Recently, a ”revised edge Szeged index” has also been considered [8].

Randić [21] observed that the Szeged index does not take into account the contributions of

the vertices at equal distances from the endpoints of an edge, and so he conceived a modified

version of the Szeged index which is named as the revised Szeged index. The revised Szeged

index of a connected graph G is defined as

Sz∗(G) =
∑

e=uv∈E(G)

(

nu(e) +
n0(e)

2

)(

nv(e) +
n0(e)

2

)

.

Some properties and applications of these two topological indices have been reported

in [2, 4, 5, 14–16,18–20,22]. In [1], Aouchiche and Hansen showed that for a connected graph

G of order n and size m, an upper bound of the revised Szeged index of G is n2m
4 . In [24],

Xing and Zhou determined the unicyclic graphs of order n with the smallest and the largest

revised Szeged indices for n ≥ 5, and they also determined the unicyclic graphs of order n

with the unique cycle of length r (3 ≤ r ≤ n), with the smallest and the largest revised

Szeged indices. In [18], we identified those graphs whose revised Szeged index is maximal

among bicyclic graphs. In this paper, we give an upper bound of the revised Szeged index

for a connected tricyclic graph, and also characterize those graphs that achieve the upper

bound.

Theorem 1.1 Let G be a connected tricyclic graph G of order n ≥ 29. Then

Sz∗(G) ≤

{
(n3 + 2n2 − 16)/4, if n is even,

(n3 + 2n2 − 18)/4, if n is odd.

with equality if and only if G ∼= Fn (see Figure 1.1).
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Figure 1.1: The graph for Theorem 1.1

2 Main result

It is easy to check that

Sz∗(Fn) =

{
(n3 + 2n2 − 16)/4, if n is even,

(n3 + 2n2 − 18)/4, if n is odd.

i.e., Fn satisfies the equality of Theorem 1.1.

So, we are left to show that for any connected tricyclic graph Gn of order n ≥ 29, other

than Fn, Sz
∗(Gn) < Sz∗(Fn). Using the fact that nu(e) + nv(e) + n0(e) = n and m = n+ 2,

we have

Sz∗(G) =
∑

e=uv∈E(G)

(

nu(e) +
n0(e)

2

)(

nv(e) +
n0(e)

2

)

=
∑

e=uv∈E(G)

(
n+ nu(e)− nv(e)

2

)(
n− nu(e) + nv(e)

2

)

=
∑

e=uv∈E(G)

n2 − (nu(e)− nv(e))
2

4

=
mn2

4
−

1

4

∑

e=uv∈E(G)

(nu(e)− nv(e))
2.

=
n3 + 2n2

4
−

1

4

∑

e=uv∈E(G)

(nu(e)− nv(e))
2

For convenience, let δ(e) = |nu(e)− nv(e)|, where e = uv. We have

Sz∗(G) =
n3 + 2n2

4
−

1

4

∑

e=uv∈E(G)

δ2(e) (1)

3



2.1 Proof for tricyclic graphs with connectivity 1

Lemma 2.1 Let G be a connected tricyclic graph of order n ≥ 12 with at least one pendant

edge. Then

Sz∗(Gn) < Sz∗(Fn)

Proof. Let e′ = xy be a pendant edge and d(y) = 1. Then, for n ≥ 12, we have

∑

e=uv∈E

(nu(e)− nv(e))
2 ≥ (nx(e

′)− ny(e
′))2

= (n− 1− 1)2

> 18.

Combining with equality (1), the result follows.

Lemma 2.2 Let G be a connected tricyclic graph of order n ≥ 12 without pendant edges but

with a cut vertex. Then, we have

Sz∗(G) < Sz∗(Fn)

Proof. Suppose that u is a cut vertex. Since G is a tricyclic graph without pendant edge, G

is composed of a bicyclic graph B and a cycle C and V (B)∩ V (C) = {u}. It is obvious that

|V (B)| ≥ 4. If C is even, for every edge e in C, we have δ(e) = |V (B)| − 1 = n− |V (C)|. So

∑

e∈E(G)

δ2(e) ≥
∑

e∈E(C)

δ2(e) = |E(C)|(|V (B)| − 1)2 ≥ 4× 32 > 18.

If C is odd, for all edges in C but the edge xy such that d(u, x) = d(u, y), we have δ(e) =

|V (B)| − 1 = n− |V (C)|. So

∑

e∈E(G)

δ2(e) ≥
∑

e∈E(C)

δ2(e) = (|E(C)| − 1)(|V (B)| − 1)2.

If |E(C)| ≥ 5, then
∑

e∈E(G)

δ2(e) > 18. If |E(C)| = 3, then |V (B)| − 1 = n − |V (C)| ≥ 9, so

∑

e∈E(G)

δ2(e) > 18.

Combining with equality (1), this completes the proof.

2.2 Proof for 2-connected tricyclic graphs

In this section, κ(G) ≥ 2, then it must be one of the graphs depicted in Figure 2.2. The

letters a, b, . . . , f stand for the lengths of the corresponding paths between vertices of degree

greater than 2. For the sake of brevity, we refer to these paths as P (a), P (b), . . . , P (f),

respectively. In the statement of the following lemmas, we call these four graphs in Figure

2.2 as Θ1,Θ2,Θ3 and Θ4, respectively.
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Figure 2.2: Four cases for 2-connected tricyclic graphs.

Lemma 2.3 Let G be a Θ1-graph composed of four paths P1, P2, P3 and P4, and e = uv ∈

E(G). Then |nu(e) − nv(e)| ≤ 1 if and only if e is in the middle of an odd path of the four

paths P1, P2, P3 and P4.

Proof. Assume that e = uv belongs to Pi (1 ≤ i ≤ 4), the ith path connecting x and y.

Then, with respect to Nu(e) and Nv(e), there are three cases to discuss.

Case 1. x, y are in different sets. We claim that

|nu(e)− nv(e)| = 2|bi − ai|,

where ai (resp. bi) is the distance between x (resp. y) and the edge e.

To see this, assume that x ∈ Nu(e), y ∈ Nv(e). Then we have ai − bi vertices more in

Nu(e) than in Nv(e) on the path Pi, but on each path Pj (j 6= i), we have bi − ai vertices

more in Nu(e) than in Nv(e). Hence |nu(e)− nv(e)| = |3(bi − ai) + (ai − bi)| = 2|bi − ai|.

Case 2. x, y are in the same set. We claim that

|nu(e)− nv(e)| = |V (G)| − g,

where g is the length of the shortest cycle of G that contains e.

To see this, assume that x, y ∈ Nu(e). Thus all vertices from the paths Pj (j 6= i) are in

Nu(e). Therefore, nv(e) = ⌊g2⌋, while nu(e) = ⌊g2⌋+|V (G)|−g. So |nu(e)−nv(e)| = |V (G)|−g.
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Case 3. One of x, y is in N0(e). We claim that

|nu(e)− nv(e)| ≥ 2(a− 1),

with equality if and only if two paths of Pi (i = 1, 2, 3, 4) have length a, where a is the length

of a shortest path of the four paths Pi (i = 1, 2, 3, 4).

To see this, assume that x ∈ Nu(e), y ∈ N0(e). Then the shortest cycle C of G that

contains e is odd. Let zj ∈ Pj(Pj * C) be the furthest vertex from e such that zj ∈ N0(e).

Then |nu(e)− nv(e)| =
∑

j

(d(x, zj)− 1) ≥
∑

j

(a+ d(y, zj)− 1) ≥ 2(a− 1).

From the above, we know that |nu(e)−nv(e)| ≥ 2 in Case 2. In Case 3, |nu(e)−nv(e)| ≤ 1

if two paths of Pi (i = 1, 2, 3, 4) have length 1, which is impossible since G is simple. So,

|nu(e)−nv(e)| ≤ 1 if and only if x, y are in different sets and |bi − ai| = 0, that is, e is in the

middle position of an odd path of Pi (i = 1, 2, 3, 4).

Lemma 2.4 If G is a Θ1-graph of order n ≥ 12. Then, we have

Sz∗(G) < Sz∗(Fn)

Proof. Without loss of generality, assume that a ≤ b ≤ c ≤ d, then b ≥ 2. Now consider the

six edges which are incident with x and y but do not belong to P (a). Let e1 = xz be one of

them, by Lemma 2.3, δ(e1) ≥ 2. Similar thing is true for the other five edges. Hence

∑

e∈E(G)

δ2(e) ≥ 6× 22 = 24 > 18.

Combining with equality (1), this completes the proof.

Lemma 2.5 If G is a Θ2-graph of order n ≥ 12. Then, we have

Sz∗(G) < Sz∗(Fn)

Proof. Without loss of generality, let d ≥ b, e ≥ c. In order to complete the proof, we

consider the following four cases.

Case 1. d ≥ b+ 2.

Consider the two edges xx1, yy1 which belong to P (d), then

δ(xx1) = δ(yy1) =

{
a+ c+ e− 2, b ≤ a+ c,

b+ e− 2, b ≥ a+ c.

Therefrom, we get

δ(xx1) = δ(yy1) ≥ a+ c+ e− 2.

Since c+e ≥ 3, a+c+e ≥ 4. If a+c+e ≥ 6, then δ(xx1) = δ(yy1) ≥ 4, so
∑

e∈E(G) δ
2(e) ≥

2× 42 > 18.
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If a = 2, c = 1, e = 2, then δ(xx1) = δ(yy1) ≥ 3. Now consider the edge xx′ ∈

P (e), δ(xx′) ≥ 2. So
∑

e∈E(G) δ
2(e) ≥ 2× 32 + 22 > 18.

If a = 1, c = 1, e = 3, since n ≥ 12, b + d − 1 ≥ 8. Now consider the edge xx′ ∈

P (e), δ(xx′) ≥ b+ d− 1 ≥ 8. So
∑

e∈E(G) δ
2(e) ≥ 82 > 18.

If a = 1, c = 2, e = 2, then δ(xx1) = δ(yy1) ≥ 3. Now consider the edge xx′ ∈

P (e), δ(xx′) ≥ 2. So
∑

e∈E(G) δ
2(e) ≥ 2× 32 + 22 > 18.

If a = 1, c = 1, e = 2, if b ≥ 4 > 2 = a+ c, then δ(xx1) = δ(yy1) ≥ 4, so
∑

e∈E(G) δ
2(e) ≥

2 × 42 > 18. If b = 3 or 2, δ(xx1) = δ(yy1) ≥ 2, d ≥ 7. Now consider the edge zz′ ∈

P (e), δ(zz′) ≥ 4. So
∑

e∈E(G) δ
2(e) ≥ 2 × 22 + 42 > 18. If b = 1, then d ≥ 9. Now consider

the edge xx′ ∈ P (e), δ(xx′) ≥ d ≥ 9. So
∑

e∈E(G) δ
2(e) ≥ 92 > 18.

Case 2. d = b+ 1, e = c+ 1.

Subcase 2.1. a+ c− 1 ≥ b.

Consider two edges xx1 ∈ P (c) and xx2 ∈ P (e), δ(xx1) ≥ d− 1 + e− 2 = b+ e− 2,

δ(xx2) =

{
d+ b− 1, c ≤ a+ b,

d− 1 + c− 1, c ≥ a+ b.

Therefrom, we get δ(xx2) ≥ d + b − 1 = 2b. So, δ2(xx1) + δ2(xx2) = (b + e − 2)2 + 4b2 =

5b2 + 2(e− 1)b+ (e− 1)2 + 3.

If b ≥ 2 or e ≥ 4,
∑

e∈E(G) δ
2(e) ≥ δ2(xx1) + δ2(xx2) > 18.

If b = 1, and e ≤ 3, Now consider the edge xx′ ∈ P (d), δ(xx′) ≥ 4. So
∑

e∈E(G) δ
2(e) ≥

12 + 22 + 42 > 18.

Subcase 2.2. b ≥ a+ c+ 1.

Consider the edge xx1 ∈ P (c), since b ≥ a + c + 1, y ∈ Nx1
(xx1). Let u be the furthest

vertex in P (d) such that u ∈ Nx(xx1), u
′ be the vertex incident with u but not in Nx(xx1). If

the cycle P (d)∪P (c)∪P (a) is even, then d(u, x) = d(u′, y)+a+c−1, that is d(u, x)−d(u′, y) =

a+ c− 1. If the cycle P (d) ∪ P (c) ∪ P (a) is odd, then d(u, x) + 1 = d(u′, y) + a+ c− 1, that

is d(u, x) − (d(u′, y)− 1) = a+ c− 1. So we have δ(xx1) = e− 2 + a+ c− 1 = a+ 2c− 2.

Then consider the edge xx2 ∈ P (e), since b ≥ a + c + 1, y ∈ Nx2
(xx2). Let ui(i =

1, 2) be the furthest vertex in P (b) and P (d) such that ui ∈ Nx(xx2), u
′
i(i = 1, 2) be the

vertex incident with ui but not in Nx(xx2). If the cycle P (b) ∪ P (c) ∪ P (a) is even, then

d(u1, x) = d(u′1, y) + a+ c, d(u2, x) + 1 = d(u′2, y) + a+ c. If the cycle P (b) ∪ P (c) ∪ P (a) is

odd, then d(u1, x) + 1 = d(u′1, y) + a + c, d(u2, x) = d(u′2, y) + a + c. So we have δ(xx2) =

d(u1, x) + d(u2, x) ≥ 2a+ 2c− 1.

From above, we have

∑

e∈E(G)

δ2(e) ≥ (a+ 2c− 2)2 + (2a+ 2c− 1)2 > 18.

unless a = c = 1. If a = c = 1, now consider the edge zz′ belonging to P (e), δ(zz′) ≥ 3, so
∑

e∈E(G) δ
2(e) ≥ 12 + 32 + 32 > 18.
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Subcase 2.3. b = a+ c.

Consider the edge xx1 ∈ P (e), then δ(xx1) = d− 1 + b− 1 = 2b− 1.

If b ≥ 3, then
∑

e∈E(G) δ
2(e) ≥ 52 > 18.

If b = 2, then a = c = 1, e = 2, d = 3, which is impossible since n ≥ 12.

Case 3. d = b+ 1, e = c.

First, we know that e = c ≥ 2.

Subcase 3.1. a+ c− 1 ≥ b.

Consider the edges xx1 ∈ P (c) and xx2 ∈ P (e), then

δ(xx1) = δ(xx2) ≥ d− 1 + e− 1 = d+ e− 2.

Since d ≥ 2 and e ≥ 2, d+ e ≥ 4.

If d+ e ≥ 6, then
∑

e∈E(G) δ
2(e) ≥ 2× 42 > 18.

If 4 ≤ d + e ≤ 5, now consider the edge xx′ ∈ P (d). If d = 3, e = 2, then b = c = 2, a ≥

5, δ(xx′) ≥ 3. If d = 2, e = 3, then b = 1, c = 3, a ≥ 5, δ(xx′) ≥ 5. If d = 2, e = 2, then

b = 1, c = 2, a ≥ 7, δ(xx′) ≥ 4. So
∑

e∈E(G) δ
2(e) > 18.

Subcase 3.2. b > a+ c− 1.

Consider the edge xx1 ∈ P (c), since b > a+c−1, then y ∈ Nx1
(xx1). Let u be the furthest

vertex in P (d) such that z ∈ Nx(xx1), u
′ be the vertex incident with u but not in Nx(xx1).

If the cycle P (d)∪P (c)∪P (a) is even, then d(u, x) = d(u′, y)+ a+ c− 1, d(u, x)− d(u′, y) =

a + c − 1 . If the cycle P (b) ∪ P (c) ∪ P (a) is odd, then d(u, x) + 1 = d(u, y) + a + c − 1,

d(u, x) − (d(u′, y)− 1) = a+ c− 1. So we have δ(xx1) = (e− 1) + (a+ c− 1) = a+ 2c− 2.

Similarly

δ(xx2) = a+ 2c− 2.

where xx2 is the edge belonging to P (e).

Since c ≥ 2, a + 2c ≥ 5.

If a+ 2c ≥ 6, then
∑

e∈E(G) δ
2(e) ≥ 2× 42 > 18.

If a + 2c = 5, that is a = 1, c = e = 2, then b ≥ 4. Now consider yy′ ∈ P (d), then

δ(yy′) ≥ 3. So
∑

e∈E(G) δ
2(e) > 18.

Case 4. d = b, e = c.

Subcase 4.1. b = d = c = e ≥ 2.

Consider the edge xx1 ∈ P (b), then δ(xx1) = 2(e− 1). Similarly for the other three edges

incident with x.

If e ≥ 3, then
∑

e∈E(G) δ
2(e) ≥ 4× 42 > 18.

If e = 2, since n ≥ 12, a ≥ 6. Now consider the edges yy′, zz′ belonging to P (a), δ(yy′) =

δ(zz′) ≥ 2, so
∑

e∈E(G) δ
2(e) ≥ 4× 22 + 22 > 18.

Subcase 4.2. b = d > c = e ≥ 2.
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Consider the edge xx1 ∈ P (b), δ(xx1) = d − 1 + e − 1 = d + e − 2. For xx2 ∈ P (d), we

also have δ(xx2) = d+ e− 2.

If d+ e ≥ 6, then
∑

e∈E(G) δ
2(e) ≥ 2× 42 > 18.

If d+ e = 5, that is d = 3, e = 2, then a ≥ 4. Now consider xx′ ∈ P (c), then δ(xx′) ≥ 4.

So
∑

e∈E(G) δ
2(e) > 18.

Combining with equality (1), this completes the proof.

Lemma 2.6 If G is a Θ3-graph of order n ≥ 12. Then, we have

Sz∗(G) < Sz∗(Fn)

Proof. Without loss of generality, let f ≥ d, e ≥ c. In order to complete the proof, we

consider the following four cases.

Case 1. e ≥ c+ 2.

Consider the edge ww1, yy1 ∈ P (e),

δ(yy1) = δ(ww1) =

{
a+ b+ d+ f − 2, c ≤ a+ b+ d,

c+ f − 2, c ≥ a+ b+ d.

Therefrom we get

δ(yy1) = δ(ww1) ≥ a+ b+ d+ f − 2.

Since d+ f ≥ 3, a+ b+ d+ f ≥ 5.

If a+ b+ d+ f ≥ 6, then
∑

e∈E(G) δ
2(e) ≥ 2× 42 > 18 .

If a+ b+ d+ f = 5, that is a = b = d = 1, f = 2. Now consider the edge zz′ ∈ P (f) then

δ(zz′) ≥ 2, so
∑

e∈E(G) δ
2(e) ≥ 2× 32 + 22 > 18 .

Case 2. e = c+ 1, f = d+ 1.

Subcase 2.1. a+ c− 1 ≥ b+ d.

Consider the edge yy1 ∈ P (c), yy2 ∈ P (e), then δ(yy1) = e− 2 + f − 1 = c+ d− 1,

δ(yy2) =

{
b+ d+ f − 1, c ≤ a+ b+ d,

c+ f − 2, c ≥ a+ b+ d.

Therefrom, we get δ(yy2) ≥ b+ d+ f − 1 = b+ 2d.

If d ≥ 2 or b ≥ 3 or c ≥ 4, then
∑

e∈E(G) δ
2(e) > 18 .

If d = 1, b ≤ 3, c ≤ 3, then consider the edge xx′ ∈ P (f), we have δ(xx′) ≥ 3, so
∑

e∈E(G) δ
2(e) ≥ 12 + 32 + 32 > 18 .

Subcase 2.2. a+ c ≤ b+ d− 1.

It’s similar to the Subcase 2.1.

Subcase 2.3. a+ c = b+ d.
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Consider the edge yy1 ∈ P (e), xx1 ∈ P (f), then δ(yy1) = b + d + f − 2 = b + 2d − 1,

δ(xx1) = a + c + e − 2 = a + 2c − 1. Since n = a + b + c + d + e + f − 2 ≥ 12, then

(a+ 2c− 1) + (b+ 2d− 1) ≥ 10, so
∑

e∈E(G) δ
2(e) ≥ (a+ 2c− 1)2 + (b+ 2d− 1)2 > 18 .

Case 3. e = c+ 1, f = d.

Subcase 3.1. a+ d− 1 ≥ b+ c.

Consider the edge zz1 ∈ P (d), δ(zz1) ≥ e−1+f−1 = c+d−1. Similarly δ(zz2) ≥ c+d−1,

where zz2 is the edge belonging to P (f).

Since d ≥ 2, otherwise G is not simple, then c+ d ≥ 3.

If c+ d ≥ 5, then
∑

e∈E(G) δ
2(e) ≥ 2× 42 > 18.

If c = 1, d = 3, then δ(zz1), δ(zz2) ≥ 3. Now consider the edge yy′ ∈ P (e), δ(yy′) ≥ 3, so
∑

e∈E(G) δ
2(e) ≥ 2× 32 + 32 > 18.

If c = 2, d = 2, then δ(zz1), δ(zz2) ≥ 3. Now consider the edge yy′ ∈ P (e), δ(yy′) ≥ 3, so
∑

e∈E(G) δ
2(e) ≥ 2× 32 + 32 > 18.

If c = 1, d = 2, then δ(zz1), δ(zz2) ≥ 2 and e = f = 2. Now consider the edge yy′ ∈ P (e),

no matter b ≥ 2 or b = 1, we both have δ(yy′) ≥ 4, so
∑

e∈E(G) δ
2(e) ≥ 2× 22 + 42 > 18.

Subcase 3.2. a+ d ≤ b+ c.

Now consider the edge ww1 ∈ P (e), then

δ(ww1) =

{
a+ d+ f − 2, c ≤ a+ b+ d,

c+ f − 2, c ≥ a+ b+ d.

Therefrom, we get δ(ww1) = a+ d− 1 + f − 1 = a+ 2d− 2.

Since d ≥ 2, a+ 2d ≥ 5.

If a+ 2d ≥ 7, then δ(ww1) ≥ 5. So
∑

e∈E(G) δ
2(e) ≥ 52 > 18.

If a+ 2d = 6, that is a = 2, d = 2, then δ(ww1) ≥ 4. Now consider the edge yy′ ∈ P (e),

δ(yy′) ≥ 2. So
∑

e∈E(G) δ
2(e) ≥ 42 + 22 > 18.

If a+ 2d = 5, that is a = 1, d = 2, then δ(ww1) ≥ 3. Now consider the edge yy′ ∈ P (e),

then we have δ(yy′) ≥ ⌈ b+c+3
2 ⌉ − 1. Since n ≥ 12, b+ 2c ≥ 8. Then we have b+ c ≥ 6 unless

b = 1, c = 4. When b = 1, c = 4, we can draw the graph exactly, we also have δ(yy′) ≥ 4. So
∑

e∈E(G) δ
2(e) ≥ 32 + 42 > 18.

Case 4. d = f, e = c.

We may assume that a ≤ b.

Subcase 4.1. c = e > d = f ≥ 2.

Consider the edge ww1 ∈ P (e), δ(ww1) = f − 1 + c− 1 = c+ f − 2. For ww2 ∈ P (c), we

also have δ(ww2) = c+ f − 2.

Since c ≥ 3 and f ≥ 2, c+ f ≥ 5.

If c+ f ≥ 6, then δ(ww1) = δ(ww2) ≥ 4, so
∑

e∈E(G) δ
2(e) ≥ 2× 42 > 18.
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If c + f = 5, that is c = 3, f = 2, then δ(ww1) = δ(ww2) ≥ 3. Now consider the edge

yy′ ∈ P (e), then we have δ(yy′) ≥ 1. So
∑

e∈E(G) δ
2(e) ≥ 2× 32 + 12 > 18.

Subcase 4.2. c = e = d = f ≥ 3.

Consider the edge ww1 ∈ P (e), ww2 ∈ P (c), δ(ww1) = δ(ww2) = f−1+c−1 = 2(c−1) ≥ 4.

So
∑

e∈E(G) δ
2(e) ≥ 2× 42 > 18.

Subcase 4.3. c = e = d = f = 2.

If b ≥ a + 4, then we consider the edge ww1 ∈ P (e), δ(ww1) = 2. Similar for ww2 ∈

P (c), xx1 ∈ P (d), xx2 ∈ P (f). Then consider the edge yy′ ∈ P (b), δ(yy′) ≥ 2, so
∑

e∈E(G) δ
2(e) ≥

5× 22 > 18.

If a ≤ b ≤ a + 1, then we consider the edge ww1 ∈ P (e), δ(ww1) = 2. Similar for

ww2 ∈ P (c), xx1 ∈ P (d), xx2 ∈ P (f). Then consider the edge ywi, zxi, (i = 1, 2), δ(ywi) ≥

1, δ(zxi) ≥ 1, so
∑

e∈E(G) δ
2(e) ≥ 4× 22 + 4× 12 > 18.

If b = a+ 3, then we get Tn with n being odd. If b = a+ 2, then we get Tn with n being

even.

Combining with equality (1), this completes the proof.

Lemma 2.7 If G is a Θ4-graph of order n ≥ 29. Then, we have

Sz∗(G) < Sz∗(Fn)

Proof. Without loss of generality, assume that a = max{a, b, c, d, e, f}. Since n ≥ 29,

then a ≥ 6. Now consider the edge ww1 ∈ P (a). Then z ∈ Nw(ww1) or z ∈ N0(ww1), since

d(z, w) ≤ d(z, w1) by the choice of a. And z ∈ N0(ww1) if and only if a = c ≤ b+d and e = 1.

We can obtain the similar result for y. Next, let C be the shortest cycle containing ww1.

Then x ∈ Nw(ww1), if a > |C|+1
2 ; x ∈ N0(ww1), if a = |C|+1

2 ; x ∈ Nw1
(ww1), if a < |C|+1

2 .

Case 1. a > |C|+1
2 .

Since x ∈ Nw(ww1), we can easily get y, z ∈ Nw(ww1). So we have δ(ww1) = n − |C|.

Similarly, δ(xx1) = n− |C|, where xx1 ∈ P (a).

If n− |C| ≥ 4, then
∑

e∈E(G) δ
2(e) ≥ 2× 42 > 18.

If n−|C| = 1 and C is composed of paths P (a), P (f) and P (b), then V (G)−V (C) = {z},

and e = c = d = 1. Since P (a)∪P (f)∪P (b) is the shortest cycle, then f = b = 1 and a ≥ 26,

by n ≥ 29. Now consider every edge e in P (a) except the middle one in P(a) when a is odd,

we have δ(e) = 1. So
∑

e∈E(G) δ
2(e) ≥ a− 1 > 18.

If n−|C| = 1 and C is composed of paths P (a), P (f), P (d) and P (c), which is impossible.

If n−|C| = 2 and C is composed of paths P (a), P (f) and P (b), then e+c+d ≤ 4, f+b ≤ 3.

Since n ≥ 29, a ≥ 24. Now consider the six edges ei(1 ≤ i ≤ 6) in P (a) such that the distance

between ei and x or w no more than 2, then we have δ(ei) = 2. So
∑

e∈E(G) δ
2(e) ≥ 6×22 > 18.

If n − |C| = 2 and C is composed of paths P (a), P (f), P (d) and P (c), then one of the

two vertices is in P (b), another vertex is in P (e). It is the case when C is composed of paths

P (a), P (f) and P (b).
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If n−|C| = 3 and C is composed of paths P (a), P (f) and P (b), then e+c+d ≤ 5, f+b ≤ 4.

Since n ≥ 29, a ≥ 22. Now consider the four edges ei(1 ≤ i ≤ 4) in P (a) such that the distance

between ei and x or w no more than 1, then we have δ(ei) = 3. So
∑

e∈E(G) δ
2(e) ≥ 4×32 > 18.

If n − |C| = 3 and C is composed of paths P (a), P (f), P (d) and P (c), then either one of

the two vertices in P (b), another two vertices are in P (e), or one of the two vertices in P (e),

another two vertices are in P (b). It is the case when C is composed of paths P (a), P (f) and

P (b).

Case 2. a = |C|+1
2 .

Subcase 2.1. C is composed of paths P (a), P (f), P (d) and P (c).

In this case, y, z ∈ Nw(ww1) and b > d + c. Let u be the furthest vertex in P (e)

such that u ∈ Nw(ww1), u
′ be the vertex incident with u but not in Nw(ww1). If the cycle

P (a)∪P (c)∪P (e) is even, then d(x, u′)+a−1 = d(u, z)+c, that is d(u, z) = a−c−1+d(x, u′).

If the cycle P (a) ∪ P (c) ∪ P (e) is odd, then d(x, u′) + a − 1 = d(u, z) + 1 + c, that is

d(u, z) = a − c − 2 + d(x, u′). Then δ(ww1) = b − 1 + d(u, z) ≥ a + b − c − 3 ≥ a − 1 ≥ 5,

since b > d+ c. So
∑

e∈E(G) δ
2(e) ≥ 52 > 18.

Subcase 2.2. C is composed of paths P (a), P (f) and P (b).

In this case, y ∈ Nw(ww1) and b ≤ d+ c.

If z ∈ N0(ww1), then a = c ≤ b + d and e = 1. So δ(ww1) ≥ c − 1 = a − 1 ≥ 5. Hence
∑

e∈E(G) δ
2(e) ≥ 52 > 18.

If z ∈ Nw(ww1), similar to Subcase 2.1, we have

d(u, z) ≥

{
a− c− 2, c ≤ b+ d,

a− (b+ d)− 2, c ≥ b+ d.

Then δ(ww1) = d − 1 + c + d(u, z) ≥ a + d − 3 ≥ a − 2 ≥ 4. Now consider the edge

xx1 ∈ P (a). In this case, w ∈ N0(xx1), y ∈ Nx(xx1). By the above analysis, if z ∈ N0(xx1),

then δ(xx1) ≥ 5. Hence
∑

e∈E(G) δ
2(e) ≥ 52 > 18. If z ∈ Nx(xx1), then δ(xx1) ≥ 4. Hence

∑

e∈E(G) δ
2(e) ≥ 2× 42 > 18.

Case 3. a < |C|+1
2 .

Subcase 3.1. Both of y and z are in N0(ww1).

In this case, a = b = c, e = f = 1. Then δ(ww1) = c − 1 = a − 1 ≥ 5. Hence
∑

e∈E(G) δ
2(e) ≥ 52 > 18.

Subcase 3.2. Both of y and z are in Nw(ww1).

In this case, we get

δ(ww1) ≥

{
a+ d− 2, d ≥ |b− c|,

a+ |b− c| − 2, d ≤ |b− c|.

Then δ(ww1) ≥ a+ d− 2 ≥ a− 1 ≥ 5. Hence
∑

e∈E(G) δ
2(e) ≥ 52 > 18.

Subcase 3.3. One of y, z is in N0(ww1).
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We may assume that z ∈ N0(ww1), then a = c ≤ b+ d, e = 1.

If z /∈ V (C), then C = P (a) ∪ P (f) ∪ P (b). So δ(ww1) ≥ c − 1 = a − 1 ≥ 5. Hence
∑

e∈E(G) δ
2(e) ≥ 52 > 18.

If z ∈ V (C), for y ∈ Nw(ww1), then C = P (a) ∪ P (e) ∪ P (c). Otherwise C = P (a) ∪

P (f) ∪ P (d) ∪ P (c), since z ∈ N0(ww1), then y ∈ Nw1
(ww1), a contradiction. Let u1 be the

furthest vertex in P (f) such that u1 ∈ Nw(ww1), u
′
1 be the vertex incident with u1 but not

in Nw(ww1). If the cycle P (a)∪P (f)∪P (b) is even, then d(u1, y)+ b = d(u′1, x)+a− 1, that

is d(u1, y)−d(u′1, x) = a− b−1. If the cycle P (a)∪P (f)∪P (b) is odd, then d(u1, y)+ b+1 =

d(u′1, x) + a− 1, that is d(u1, y)− (d(u′1, x)− 1) = a− b− 1. Let u2 be the furthest vertex in

P (d) such that u2 ∈ Nw(ww1), u
′
2 be the vertex incident with u2 but not in Nw(ww1). If the

cycle P (c)∪P (e)∪P (b) is even, then d(u2, y)+b = d(u′2, z)+c = d(u′2, z)+a, that is d(u2, y) =

a− b+ d(u′2, z). If the cycle P (c) ∪ P (e) ∪ P (b) is odd, then d(u2, y) + b+ 1 = d(u′2, z) + a,

that is d(u2, y) = a−b−1+d(u′2, z). Then δ(ww1) = b+2(a−b−1) ≥ 2a−b−2 ≥ a−2 ≥ 4.

Then consider the edge xx1 in P(a), in this case, we have w ∈ Nx1
(xx1), z ∈ Nx(xx1). If

y ∈ N0(xx1), by the above analysis, we have δ(xx1) ≥ 4. So
∑

e∈E(G) δ
2(e) ≥ a× 42 > 18. If

y ∈ Nx(xx1), this is the Subcase 3.2.

Combining with equality (1), this completes the proof.

From Lemma 2.1, 2.2, 2.4, 2.5, 2.6 and 2.7, we have proved Theorem 1.1.

Remark: In fact, Theorem 1.1 can be improved to n ≥ 23, which needs more details of the

proof. But n can not be decrease, because the revised Szeged index of the graph Θ4 with

b = c = d = e = f = 1 is no less than Fn.
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[15] A. Ilić, Note on PI and Szeged indices, Math. Comput. Model. 52(2010), 1570-1576.
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[22] S. Simić, I. Gutman, V. Baltić, Some graphs with extremal Szeged index, Math. Slovaca

50(2000), 1-15.

[23] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc.

69(1947), 17-20.

[24] R. Xing, B. Zhou, On the revised Szeged index, Discrete Appl. Math. 159(2011), 69-78.

14


