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Abstract. In this paper, we investigate semisymmetric graphs of order 6p2 and
of prime valency. First, we give a classification of the quasiprimitive permutation
group of degree dividing 3p2, and then, on the basis of the classification result, we
prove that, for primes k and p, a connected graph Γ of order 6p2 and valency k is
semisymmetric if and only if k = 3 and either Γ is the Gray graph, or p ≡ 1 (mod 6)
and Γ is isomorphic to one known graph.
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1. Introduction

All graphs considered in this paper are assumed simple, finite and undirected.
Let Γ be a graph. We use V Γ, EΓ and AutΓ to denote its vertex set, edge set
and automorphism group, respectively. Each edge {u, v} of Γ gives two arcs which
are the ordered pair (u, v) and (v, u). We denote by ArcΓ the set of the arcs of
Γ. The action of AutΓ on vertices induces naturally actions on EΓ and ArcΓ by
{u, v}g = {ug, vg} and (u, v)g = (ug, vg), respectively. Then the graph Γ is said to be
vertex-transitive, edge-transitive, or arc-transitive if AutΓ acts transitively on V Γ , EΓ
or ArcΓ , respectively. An arc-transitive graph is also said to be symmetric. A regular
graph Γ is called semisymmetric if it is edge-transitive but not vertex-transitive.

The class of semisymmetric graphs was introduced by Folkman [13], who posed
a number of problems which spurred the interest in this topic. Afterwards, lots of
interesting examples and results were found, see [1, 2, 3, 5, 9, 10, 11, 12, 15, 16, 20,
21, 22, 23, 25] for references.

In [20], a group-theoretic description was given for semisymmetric graphs of prime
valency, which says that a semisymmetric graph of prime valency must be one of the
seven types. In this paper, we use this result to analyze such graphs of order 6p2.

A permutation group is quasiprimitve if its non-trivial normal subgroups are all
transitive. Our first result gives a complete list of quasiprimitve permutation groups
of degree dividing 3p2 for a prime p.

Theorem 1.1. Let G be a quasiprimitve permutation group of degree dividing 3p2 for
a prime p. Then G is described in Table 4.1, Theorems 4.4, 4.5, 4.6 and 4.9.
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On the basis of the above classification result, we get a complete classification for
semisymmetric graphs of order 6p2 and of prime valency.

Theorem 1.2. Let Γ be a connected graph of order 6p2 and valency k, where p and
k are primes. Then Γ is semisymmetric if and only if k = 3 and either Γ is the Gray
graph, or p ≡ 1 (mod 6) and Γ is isomorphic the graph Φ defined in Section 2.

Remarks on Theorem 1.2. A semisymmetric graph must have even order and,
by [13], there are no such graphs of orders 2p and 2p2. Thus a disconnected semisym-
metric graph of order 6p2 must be a union of p isomorphic semisymmetric graphs of
order 6p. By [11], all semisymmetric graphs of order 6p are known. Thus we consider
here only the connected graphs.

2. Two examples

In this section, we introduce two examples of graphs involved in Theorem 1.2.

The Gray graph was discovered by Gray in 1932 (unpublished), which was then
discovered independently and proved to be semisymmetric by Bouwer [1] in 1968. In
the literature, the Gray graph is the first known example of semisymmetric graphs.
The Gray graph can be constructed as follows: Taking three copies of the complete
bipartite graph K3,3 and, for each given edge, subdividing it in each of the three
copies, joining the resulting three vertices to a new vertex. Thus the Gray graph is
cubic and has order 54.

The next example was constructed in [20] by using voltage assignment on the arcs
of K3,3.

Let p be a prime with p ≡ 1 (mod 6). Take µ ∈ Zp with µ2 + µ + 1 ≡ 0 (mod p),
and set

V = {(l, i, j) | 1 ≤ l ≤ 6, i, j ∈ Zp}.

Define a graph Φ on V with edge set

EΦ = {{(1, i, j), (4, i, j)} | i, j ∈ Zp} ∪ {{(1, i, j), (5, i, j)} | i, j ∈ Zp}
∪{{(1, i, j), (6, i, j)} | i, j ∈ Zp} ∪ {{(2, i, j), (4, i, j)} | i, j ∈ Zp}
∪{{(3, i, j), (4, i, j)} | i, j ∈ Zp}
∪{{(2, i, j), (5, i+1, j)} | i, j ∈ Zp} ∪ {{(2, i, j), (6, i, j−1)} | i, j ∈ Zp}
∪{{(3, i, j), (5, i−µ, j)} | i, j ∈ Zp} ∪ {{(3, i, j), (6, i, j+µ)} | i, j ∈ Zp}.

Then Φ is a well-defined cubic bipartite graph of order 6p2.

In [20], it was shown that, up to isomorphism, the above graphs give the complete
list of semisymmetric cubic graphs of order 6p2.

Theorem 2.1 ([20]). Let Γ be a connected cubic graph of order 6p2 for an odd prime
p. Then Γ is semisymmetric if and only if either p = 3 and Γ is the Gary graph, or
p ≡ 1 (mod 6) and Γ is isomorphic to the graph Φ defined as above.
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3. Preliminaries

Let Γ be a bipartite graph with bipartition V Γ = U ∪W . Let X be a bi-transitive
subgroup of AutΓ , that is, X is transitive on both U and W . Then Γ is called
X-semisymmetric if it is regular and X acts transitively on EΓ .

Suppose that X contains a subgroup G which is regular on both U and W ; in
this case, Γ is called a bi-Cayley graph of G. Take an edge {u,w} with u ∈ U and
w ∈ W . Then each vertex in U can be written uniquely as ug for some g ∈ G, and
so does for the vertices in W . Let Γ (u) denote the set of neighbors of u in Γ . Set
S = {s ∈ G | ws ∈ Γ (u)}. Then 1 ∈ S and S is uniquely determined by the choice
of {u,w}, and uh and wg are adjacent if and only if gh−1 ∈ S. It is well-known that
Γ is connected if and only if ⟨S⟩ = G, and that Γ is vertex transitive if G is abelian,
refer to [11]. Let Y = NX(G) and y ∈ Yu. Noting that wy ∈ Γ (u) = {ws | s ∈ S},
there is a unique t ∈ S with wy = wt. Then (ug)y = ugy and (wg)y = wygy = (wt)g

y
,

so the next lemma holds, see [19].

Lemma 3.1. For y ∈ NX(G) with uy = u, there are t ∈ S and σ ∈ Aut(G) such that
tSσ = S, (ug)y = ugσ and (wg)y = (wt)g

σ
for all g ∈ G.

Suppose now that X has a normal subgroup N which is intransitive on one of U
and W . Let UN and WN denote the sets of N -orbits on U and W , respectively. Define
a graph ΓN on UN ∪WN with edge set {{uN , wN} | {u,w} ∈ EΓ}, called the normal
quotient of Γ with respect to X and N . The graph Γ is called a normal cover or an
N-cover of ΓN if, for each {u, v} ∈ EΓ , the induced subgraph [uN ∪wN ] is a matching
in Γ . The next lemma collects several well-known facts about normal quotient.

Lemma 3.2. Assume that N �X is intransitive on one of U and W .

(1) X induces a bi-transitive subgroup of AutΓN , which is transitive on EΓN if
further X acts transitively on EΓ.

(2) If Γ is connected and Γ is a normal cover of ΓN , then N is semiregular on
both U and W .

For connected semisymmetric graphs of prime valency, [20] gives a group-theoretic
description by using normal quotients, which classifies such graphs into seven types
as shown below.

Theorem 3.3. Let Γ be a connected X-semisymmetric graph of prime valency k.
Suppose that Γ is not a complete bipartite graph. Then X acts faithfully on both U
and W . Moreover, for a minimal normal subgroup N ∼= T l of X, one of the following
statements occurs.

(1) T = Zq for a prime q, Γ is a bi-Cayley graph of N , and Γ is a symmetric
graph;

(2) T is non-abelian simple, and Γ is a bi-Cayley graph of N ;
(3) N is non-abelian simple, and Γ is N -semisymmetric;
(4) t = 2, T is non-abelian simple, and Γ is a bi-Cayley graph of T
(5) Γ is, with respect to N , either a T l−1-cover of a graph described in (3) or a

T l−2-cover of a graph described in (4);
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(6) ΓN is a k-star, that is, N is transitive on one of U and W and has exactly k
orbits on the other one;

(7) Γ is a N-cover of a X/N-semisymmetric graph.

In general, we may reduce a semisymmetric graph by taking normal quotients to
an edge transitive bipartite graph which admits a group acting quasiprimitively on
at least one of its two parts.

Lemma 3.4 ([14]). Assume that X is faithful on both U and W , and that X is not
quasiprimitive on either U or W . Then X has a minimal normal subgroup acting
intransitively on both U and W .

Proof. Since X is not quasiprimitive on U , we may take a minimal normal subgroup
N of X which is intransitive on U . If N is intransitive on W , then the result follows.
Suppose that N is transitive on W . Take a minimal normal subgroup M of X which
is intransitive on W . Then N∩M = 1, and so M centralizes N . Since X is faithful on
W , it follows that M is semiregular on W . Thus, |M | is a proper divisor of |U | = |W |,
hence M is not transitive on U . This completes the proof.

Praeger [26] gave an analogous version of the O’Nan-Scott Theorem for quasiprim-
itive permutation groups, and classified them into several well-defined types. We just
quote here the basic facts for such groups. For a group G, the socle soc(G) is the
subgroup generated by all minimal normal subgroup of G.

Theorem 3.5. Let G be a finite quasiprimitive permutation group on Ω. Then G has
at most two minimal normal subgroups, and one of the following statements holds.

(1) G ≤ AGL(d, p), |Ω| = pd and soc(G) = Zd
p is the unique minimal normal

subgroup of G, where d ≥ 1 and p is a prime;
(2) soc(G) = T l for l ≥ 1 and a nonabelian simple group T , and either soc(G)

is the unique minimal normal subgroup of G, or soc(G) = M×N for two
minimal normal subgroups M and N of G with |M | = |N | = |Ω|.

Note that there is no a non-abelian simple group has order paqb, where p and q are
two primes. By Theorem 3.5, the next simple result holds.

Lemma 3.6. Let G be a quasiprimitive permutation group of degree paqb, where p
and q are primes. Then soc(G) is the unique minimal normal subgroup of G.

4. Quasiprimitive Groups with Degree Dividing 3p2

In this section we assume that G is a quasiprimitive permutation group on Ω of
degree n = 3p2, p2, 3p or p, where p is a prime. For α ∈ Ω, denote by Gα the stabilizer
of α in G.

4.1. The primitive case. Assume that G is primitive on Ω, that is, Gα is maximal
in G. If n = p then either Zp ≤ G ≤ AGL(1, p) or G is 2-transitive, refer to [7,
Corollary 3.5B]. Note that all 2-transitive permutation groups are explicitly known,
see [4, Chapter 7] for example. Thus all transitive permutation groups of degree p
are listed in Table 4.1.
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p 11 11 23 p p qd−1
q−1

soc(G) PSL(2, 11) M11 M23 Zp Ap PSL(d, q)
soc(G)α A5 M10 M22 1 Ap−1 parabolic

Table 4.1. Transitive groups of prime degree p

For further argument, we need some results on elementary number theory.

Lemma 4.1. There are no primes r and p such that re + 1 = p2 unless p = 2 or 3.

Proof. Suppose that p is an odd prime and p2 = re +1 for some prime r. Then r = 2
as p is odd. Then (p + 1)(p − 1) = p2 − 1 = 2e. So p + 1 = 2k and p − 1 = 2l with
l+ k = e and 2k − 2l = 2, which implies that l = 1 and k = 2, hence p = 3 and r = 2.

Now we list a well-known result in number theory. For integers a > 0 and n > 0, a
prime divisor of an− 1 is called primitive with respect to a and n if it does not divide
ai − 1 for any 0 < i < n.

Theorem 4.2 (Zsigmondy). For two integers a, n ≥ 2, if an − 1 has no primitive
prime divisors, then either (a, n) = (2, 6), or n = 2 and a+ 1 is a power of 2.

Lemma 4.3. Let q be a notrivial power of some prime and d ≥ 2. If qd−1
q−1

∈
{p, 3p, p2, 3p2} for an odd prime p, then p is primitive with respect to q and d.

Proof. The result is trivial for qd−1
q−1

= p. If p = 3, then q = 8 and d = 2, and the

result holds. If (q, d) = (2, 6), then qd−1
q−1

̸∈ {p, 3p, p2, 3p2} for any prime p. If d = 2,

then q+1 = qd−1
q−1

∈ {3p, 3p2} by Lemma 4.1, and the result also holds by noting that

p is not a divisor of q − 1. Thus we assume that p > 3, d > 2, qd−1
q−1

∈ {3p, p2, 3p2}
and there is a primitive prime divisor r with respect to q and d. If qd−1

q−1
= p2, then

r = p. Assume that qd−1
q−1

∈ {3p, 3p2}. Then 3 is a divisor of qd−1+ · · ·+q+1, yielding

q ≡ 1 (mod 3), so 3 is not primitive. Thus r = p. This completes the proof.

We are ready to classify the primitive permutation groups of degree 3p, p2 and 3p2.

Theorem 4.4. Let G be a primitive permutation group of degree 3p, where p is prime.
Then either G ≤ Z2

3:GL(2, 3) ∼= Z2
3:2S4, or G is one of the groups listed in Table 4.2.

Proof. By [7, Appendix B], we can determine G when p = 2 or 3. If p = 2 then G
has degree 6 and soc(G) = A6 or A5. If p = 3 then G has degree 9, and so either G
is of affine type, or soc(G) = A9 or PSL(2, 8).

Assume next that p ≥ 5. If G is not 2-transitive then, by [27], G is one of the
groups listed in lines 2-5 of Table 4.2.

Assume that G is 2-transitive. By checking the degrees of 2-transitive permutation

groups, we conclude that (3p, soc(G)) is one of (3p,A3p), (15,A7) and ( q
d−1
q−1

,PSL(d, q)),

where q = re for a prime r. We assume that the third pair occurs in the following.
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Degree G Action or Remark
6 A5,S5 cosets of D10 in A5

15 A6,S6 2-subsets
21 A7,S7 2-subsets
21 PSL(3, 2).2 point-line incendent pairs
57 PSL(2, 19) cosets of A5 (two actions)
15 A7 cosets of PSL(2, 7) (two actions)
3p A3p,S3p
15 PSL(4, 2) points, hyperplanes
2e + 1 PSL(2, 2e),PΓL(2, 2e) ponits; e odd prime
q2 + q + 1 PSL(3, q).O points, hyperplanes; q ≡ 1 (mod 3)

Table 4.2. Primitive permutation groups of degree 3p.

Suppose that d ≥ 4 is even. Then 3p = qd−1
q−1

= (q
d
2
−1+ · · ·+ q+1)(q

d
2 +1), yielding

3 = q
d
2
−1 + · · · + q + 1 and p = q

d
2 + 1. The first equation implies that q = 2 and

d = 4. Hence p = 5 and soc(G) = PSL(4, 2) ∼= A8. Checking the maximal subgroups
of A8 and S8 in the Atlas [6], we know that G = PSL(4, 2) and Gα

∼= Z3
2:PSL(3, 2).

If d = 2, then 3p = q+1 = re +1, so r = 2 as 3p is odd, which implies that e is an
odd prime.

Finally, let d be odd. Note that 3p = qd−1
q−1

= qd−1 + · · · + q + 1. It follows that

q ≡ 1 (mod 3) and 3 is a divisor of d. If d is not a prime, then qd−1
q−1

= qs−1
q−1

((qs)t−1 +

· · · + qs + 1) for odd integers 1 < s ≤ t with d = st, yielding that 3 = qs−1
q−1

, which is

impossible. Thus d is a prime, so d = 3. Then 3p = q2 + q + 1 with q ≡ 1 (mod 3).

The next result gives a classification of primitive permutation groups of degree p2.

Theorem 4.5. Let G be a primitive permutation group of degree p2. Then one of the
following holds.

(1) G ≤ AGL(2, p);
(2) G = Ap2 or Sp2;
(3) either soc(G) = PSL(2, 8) and p = 3, or soc(G) = PSL(d, q), d is an odd

prime and p2 = qd−1
q−1

;

(4) T 2 � G ≤ H ≀ S2, where H is a transitive permutation group of degree p with
soc(H) = T is listed in Table 4.1.

Proof. If G is affine, then (1) holds. Thus we assume that soc(G) is nonabelian.
Assume that G is 2-transitive. Then, by [8], either soc(G) = Ap2 and (2) occurs, or

soc(G) = PSL(d, q) with p2 = qd−1
q−1

. If the latter case occurs, then p2 = qd−1
q−1

yields

that d is a prime and, by Lemma 4.1, p = 3 and q = 8 while d = 2, hence (3) holds.
Assume that G is not 2-transitive. Then G has a Sylow p-subgroup isomorphic to Z2

p,
and G has a normal subgroup of index 2 which is the direct product of two intransitive
groups, refer to [28, Theorems 25.2 and 27.2]. In particular, soc(G) is not simple.
Thus (4) follows from [18].
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Finally, we classify the primitive permutation groups of degree 3p2.

Theorem 4.6. Let G be a primitive permutation group of degree 3p2 for some prime
p. Then eithher G ≤ AGL(3, 3) or G is one of the groups listed in Table 4.3.

3p2 G 2-trans. ? Condition
12 PSL(2, 11),PGL(2, 11) Yes

M11 Yes
M12 Yes

27 PSU(4, 2),PSU(4, 2).2 No
3p2 A3p2 ,S3p2 Yes
q2 + q + 1 PSL(3, q).O Yes q ≡ 1 (mod 3)

Table 4.3. Primitive permutation groups of degree 3p2.

Proof. By [7, Appendix B], we can determine G when p = 2 or 3. If p = 2 then G
has degree 12, and G is one of A12 or S12, PSL(2, 11), PGL(2, 11), M11 and M12. If
p = 3, then G has degree 27, and so either G is of affine type, or G is one of A27, S27,
PSU(4, 2), and PSU(4, 2).2.

Assume next that p ≥ 5. In particular, 3p2 is odd and not a power of an integer
less than 3p2. By [18], soc(G) is a nonabelian simple group. Since G is primitive, T
is transitive on Ω; in particular, T has a subgroup of index 3p2. We next prove the
result by checking all possible candidates for L := soc(G) one by one. Let α ∈ Ω.
Then 3p2 = |Ω| = |L : Lα|.
Case 1. Assume that L is an alternating group Ac. Then 3p2 = |L : Lα| = (ck)

for 1 ≤ k < c
2
. Thus p2 divides c!, yielding c ≥ 2p. If k = 2, then 3p2 = c(c−1)

2
,

yielding p2 divides c or c−1, hence 3p2 ≥ p2(p2−1)
2

, which is impossible. If k ≥ 3, then

3p2 ≥ (c3) =
c(c−1)(c−2)

6
as k < c

2
, so

3p2 ≥ 2p(2p− 1)(2p− 2)

6
>

2p(2p− p
2
)(2p− p

2
)

6
=

3p3

4
> 3p2,

a contradiction. Then k = 1, c = 3p2 and L = A3p2 .

Case 2. Suppose that L is a sporadic simple group. Then, inspecting the orders of
sporadic simple groups, we get p ≤ 13 as p2 is a divisor of |L|. Then 3p2 < 1000. Thus
G is a primitive permutation group of degree less than 1000. Checking the tables in
[7, Appendix B], we conclude that there is no such a primitive permutation group, a
contradiction.

Case 3. Let L = L(q) be a simple group of Lie type over GF (q). The estimation
on the prime divisors of |L : Lα| excludes most of the candidates for L. These
computations are straightforward, but quite tedious. We give details only in the
cases L = PSL(d, q) and L = PSU(d, q).

Subcase 3.1. Let L = PSL(d, q), q = re for a prime r. Then Lα is a parabolic
subgroup of L and
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(1) |L : Lα| = (qd−1)(qd−1−1)···(qd−m+1−1)
(qm−1)(qm−1−1)···(q−1)

for m ≤ d
2
and G acts on m or (d − m)-

dimensional subspaces; or

(1’) |L : Lα| = (qd−1)(qd−1−1)···(qd−2m+1−1)
[(qm−1)(qm−1−1)···(q−1)]2

for 1 ≤ m < d
2
; or

(1”) |L : Lα| = qmd−m2
(qd−1)(qd−1−1)···(qd−m+1−1)

(qm−1)(qm−1−1)···(q−1)
for 1 ≤ m < d

2
.

First, (1”) can be easily excluded. Observe that r divides |L : Lα|, so r is odd. If
r = 3 then m = 1 and d = 2, a contradiction. Thus r = p, yielding md−m2 = 2, so

d = 3 and m = 1, hence 3p2 = q2 q
d−1
q−1

, which is impossible.

Suppose that q = 2. Assume that (1’) occurs. If m ≥ 2 then, by Theorem 4.2,
|L : Lα| has at least three distinct prime divisors. Thus m = 1 and 3p2 = |L : Lα| =
(2d − 1)(2d−1 − 1) with d ≥ 3, which is impossible. Thus, (1) occurs. If d −m ≥ 4
and m ≥ 4 then, by Theorem 4.2, |L : Lα| has at least three distinct prime divisors.
Thus either d−m < 4 or m < 4. So |L : Lα| is one of 2d − 1 for d−m = 1 or m = 1,
(2d−1)(2d−1−1)

3
for d −m = 2 or m = 2, (2d−1)(2d−1−1)(2d−2−1)

21
for d −m = 3 or m = 3.

The latter two cases all imply 9 = 2d−1−1, a contradiction. For the first case, setting
p = 2k + 1 with k ≥ 2, then 3k(k + 1) + 1 = 2d−2, which is not true.

Assume next that q ̸= 2. By Theorem 4.2, |L : Lα| has at least three distinct
prime divisors if m ≥ 3 for (1) or m ≥ 2 for (1’), which is not the case. For (1), if

m = 2 then |L : Lα| = (qd−1)(qd−1−1)
(q2−1)(q−1)

, which can not have the form 3p2 as q > 2 and

d ≥ 2m = 4. For (1’), if m = 1 then |L : Lα| = (qd−1)(qd−1−1)
(q−1)2

, which can not have

the form 3p2 as q > 2 and d ≥ 3. Thus we get 3p2 = |L : Lα| = qd−1
q−1

and G acts on

1 or (d − 1)-dim. subspaces. Further, 3p2 = qd−1
q−1

yields that d is a prime. Suppose

that d = 2. Then 3p2 = q + 1, yielding q = 2e for odd e > 6 as p ≥ 5 and 3 divides
q + 1. Hence p2 =

∑e−1
i=0 (−2)i, so p2 − 1 ≡ 2 (mod 4), a contradiction. Thus d is an

odd prime. Since 3 divides qd−1
q−1

, we conclude that d = 3 and q ≡ 1 (mod 3).

Subcase 3.2. Let L = PSU(d, q). Then Lα must be the stabilizer of some m-dim.

subspaces; otherwise, |L : Lα| is divided by qmd−m2
with m < d

2
, yielding m = 1,

d = 3, q = r = p, hence |L : Lα| = 3p2l for some l > 3, a contradiction. Thus

|L : Lα| =
∏d

i=d−2m+1(q
i − (−1)i)∏m

i=1(q
2i − 1)

= 3p2

for 1 ≤ m ≤ [d
2
]. Note that a primitive prime divisor of q2i − 1 must divide qi + 1.

If m = 1, then |L : Lα| = (qd−(−1)d)(qd−1−(−1)d−1)
q2−1

, yielding 3 = qd−(−1)d

q2−1
or qd−1−(−1)d−1

q2−1
,

hence d = 3 and p2 = q3+1, so q = 2; however PSU(3, 2) is not simple, a contradiction.
By Theorem 4.2, |L : Lα| = 3p2 yields that either m = 3 and d = 6, or m = 2 and
d = 4. For the first case, |L : Lα| = (q + 1)(q3 + 1)(q5 + 1) which has not the form
of 3p2. Thus m = 2, d = 4 and |L : Lα| = (q3 + 1)(q + 1), it follows that p = 3,
contradicts the assumption that p > 3.

4.2. The quasiprimitive case. In this part, we assume that G is a quasiprimitive
permutation group on Ω of degree n = 3p2, p2 or 3p.
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Let ∆ ̸= Ω be a block of G, that is, ∆ ∩ ∆g = ∅ or ∆ for all g ∈ G. Set
B = {∆g | g ∈ G}. Let GB be the permutation group induced by G on B. Then

GB has degree 3p2

|∆| . Since G is quasiprimitive on Ω, we know that G acts faithfully

on B, that is, GB ∼= G. Assume that GB is primitive on B. Note that the order of
a primitive permutation group of degree p is not divisible by p2, yielding the non-
existence of subgroups of index dividing by p2. It follows that (n, |∆|) is one of (3p, 1),
(3p, 3) with p ̸= 2, (p2, 1), (3p2, 1), (3p2, 3) with p ̸= 2, and (3p2, p). In particular, we
get the following lemma.

Lemma 4.7. Every quasiprimitive permutation group of degree p2 is also primitive.

Further, it is easily shown the following lemma holds.

Lemma 4.8. Every affine quasiprimitive permutation group is also primitive.

The next result classifies quasiprimitve permutation groups of degree dividing 3p2.

Theorem 4.9. Let G be a quasiprimitve group on Ω of degree n dividing 3p2. Let
N = soc(G). If G is imprimitive, then one of the following occurs.

(1) n = 12 or 15, N = A5 and Nα
∼= Z5 or Z2

2 respectively;
(2) n = 21, N = PSL(3, 2) and Nα = D8;
(3) n = 39, N = PSL(3, 3) and Nα = Z2

3:2D8;
(4) n = 3p = 3(1+ 22

s
), N = PSL(2, 22

s
) for integer s ≥ 1, and Nα = Z2s

2 :Z 22
s−1
3

;

(5) n = 3 qd−1
q−1

= 3p or 3p2, N = PSL(d, q) with odd prime d and q ≡ 1 (mod 3(q−
1, d)), and Nα = [qd−1].Z(q−1,d−1).PSL(d− 1, q).Z q−1

3(q−1,d)
;

(6) n = 75, N = A5 × A5, Nα = Z4
2:Z3;

(7) n = 3(1 + 22
s
)2, N = PSL(2, 22

s
) × PSL(2, 22

s
) and Nα = (Z2s

2 :Z 22
s−1
3

×
Z2s

2 :Z 22
s−1
3

):Z3;

(8) n = 3( q
d−1
q−1

)2, N = PSL(d, q)×PSL(d, q) with odd prime d and q ≡ 1 (mod 3(q−
1, d)), and Nα = (M1 × M2).Z3 with M1

∼= M2
∼= [qd−1].Z(q−1,d−1).PSL(d −

1, q).Z q−1
3(q−1,d)

.

Proof. Assume thatG is not primitive on Ω. Let ∆ ̸= Ω be a block ofG such thatGB is
a primitive permutation group on B = {∆g | g ∈ G}. Then (n, |∆|) = (3p, 3), (3p2, 3)
or (3p2, p), and so GB is of degree p, p2 or 3p, respectively. Moreover, by Lemma 4.8,
both G and GB are not of affine type. Then soc(GB) is listed in Tables 4.1, 4.2 or
Theorem 4.5 (2)-(4). Let N be socle of G. Then N = soc(GB) as G ∼= GB, and N is
transitive on both Ω and B. Take α ∈ ∆. Then |∆| = |N∆ : Nα|, that is, N∆ has a
subgroup Nα of index |∆|.
Assume that p = 2. Then (n, |∆|) = (12, 2) and GB is of degree 6. Thus N =

soc(GB) = A6 or A5. Note that A6 has no subgroups of index 12. Thus, N = A5 and
Nα

∼= Z5. Therefore, we assume next that p is odd.

Suppose that (n, |∆|) = (3p2, p). Then GB is a primitive permutation group of
degree 3p listed in Table 4.2. Note that |G| is divisible by p2. By Lemma 4.3 and
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checking orders of candidates for N , the only possibility is that N = A3p. But, in
this case, N∆ = A3p−1 has no subgroups of index p.

Case 1. Assume that (n, |∆|) = (3p, 3). Then N is a nonabelian simple group
listed in Table 4.1. Checking those groups and their stabilizers, either N = A5, p = 5

and Nα
∼= Z2

2, or N = PSL(d, q) and p = qd−1
q−1

for a prime d.

Assume that N = PSL(d, q). Then

N∆ = [qd−1].Z(q−1,d−1).PSL(d− 1, q).Z q−1
(q−1,d)

.

Note that Nα is a subgroup of N∆ of index 3. If PSL(d− 1, q) is nonabelian simple,
then q ≡ 1 (mod 3(q − 1, d)) and

Nα = [qd−1].Z(q−1,d−1).PSL(d− 1, q).Z q−1
3(q−1,d)

.

If d = 3 and q ∈ {2, 3}, then N = PSL(3, 2) and Nα = D8, or N = PSL(3, 3) and
Nα = Z2

3:2D8. Let d = 2. Then q > 3 and, since q + 1 = p is prime, we know
q = 22

s
for some integer s ≥ 1. So N∆ = Z2s

2 :Z22s−1. Thus q ≡ 1 (mod 3) and
Nα = Z2s

2 :Z 22
s−1
3

. Thus one of parts (1)-(5) occurs.

Case 2. Let (n, |∆|) = (3p2, 3). Then either GB is 2-transitive and N = Ap2 or
PSL(d, q), or N = T 2 with T nonabelian simple and listed in Table 4.1. Noting that
Ap2−1 is simple, we know it has no subgroups of index 3. Thus N ̸= Ap2 .

Assume first N = PSL(d, q). Then p2 = qd−1
q−1

, yielding d a prime. A similar

argument as in above case implies that

Nα = [qd−1].Z(q−1,d−1).PSL(d− 1, q).Z q−1
3(q−1,d)

with q ≡ 1 (mod 3(q − 1, d));

or d = 2 with q > 3; or d = 3 with q ∈ {2, 3}. The last case implies that qd−1
q−1

is

a prime, which is impossible. The second case implies that p2 = 1 + q, so q = 8
and p = 3 by Lemma 4.1. However, PSL(2, 8) has no a subgroup of index 27, a
contradiction. Thus G is described as in part (5) of the theorem.

Assume that N = T 2 with T listed in Table 4.1. By Theorem 4.5, N �G ≤ H ≀ S2

and G has product action. Then, writing N = T1×T2 and choosing a suitable ‘point’
∆ in B, we may assume thatN∆ = H1×H2 with |T1 : H1| = |T2 : H2| = p. Further, we
may take g ∈ Gα such that α ∈ ∆, T g

1 = T2, T
g
2 = T1, H

g
1 = H2 and Hg

2 = H1. Then
H1, H2 ̸≤ Nα, so H1Nα = H2Nα = N∆. Thus 3 = |NαHi : Nα| = |Hi : (Hi ∩ Nα)|,
where i = 1, 2. Thus both H1 and H2 have subgroups of index 3.

By the above argument, we know that one of the following holds:

N = A5 × A5, p = 5 and Nα ∩Hi
∼= Z2

2;
N = PSL(3, 2)× PSL(3, 2) and Nα ∩Hi = D8;
N = PSL(3, 3)× PSL(3, 3) and Nα ∩Hi = Z2

3:2D8;
N = PSL(2, 22

s
)× PSL(2, 22

s
) and Nα ∩Hi = Z2s

2 :Z 22
s−1
3

;

N = PSL(d, q)×PSL(d, q) andNα∩Hi = [qd−1].Z(q−1,d−1).PSL(d−1, q).Z q−1
3(q−1,d)

with odd prime d and q ≡ 1 (mod 3(q − 1, d)).
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Noting that (H1 ∩ Nα) × (H2 ∩ Nα) � Nα, we can easily exclude N = PSL(3, 2) ×
PSL(3, 2) or PSL(3, 3)× PSL(3, 3). Thus one of parts (6)-(8) of the theorem occurs.

Finally, Theorem 1.1 follows from the arguments in the above two subsections.

5. Proof of Theorem 1.2

Let Γ be a connected bipartite regular graph of order 6p2 with bipartition V Γ =
U ∪W . Assume that Γ is G-semisymmetric and of prime valency k, where G ≤ AutΓ
and p is a prime. Thus |U | = |W | = 3p2.

Clearly, a cycle is symmetric. By [16], all semisymmetric graphs of order 24 have
valency 4 or 6. So we assume further both p and k are odd primes.

Note that 3p2 is not a prime as p is odd. Then Γ is not a complete bipartite graph.
By Theorem 3.3, G acts faithfully on both U and W . Denote by GU and GW the
permutation groups induced by G on U and W , respectively. Then GU ∼= GW ∼= G.

Lemma 5.1. Suppose that G is quasiprimitive on one of U and W . Then Γ is a
bi-Cayley graph of Z3

3.

Proof. Without loss of generality, we assume that GU is a quasiprimitive permutation
group. Let N = soc(G). Then, by Lemma 3.6 and Theorems 4.6 and 4.9, N is the
unique minimal normal subgroup of G and one of the following three cases occurs:
N ∼= Z3

3, or N is given in Theorem 4.9 (6)-(8), or N is nonabelain simple.

Assume that N ∼= Z3
3. Then, by Theorem 3.3, either Γ is a bi-Cayley graph of

Z3
3 or ΓN is a k-star. Suppose that ΓN is a k-star. Then k = 3, that is, Γ is a

cubic G-semisymmetric graph of order 54. However, by [20] or [22], G has a normal
subgroup of order 9 acting semiregularly on both U and W , which is a contradiction.
Thus Γ is a bi-Cayley graph of Z3

3.

Thus we shall suppose that N is insoluble and deduce a contradiction.

Case 1. Suppose that GU is described as in Theorem 4.9 (6)-(8). Then N = T 2

and T = A5, PSL(2, 2
2s) or PSL(d, q) with q ≡ 1 (mod 3). Then, by Theorem 3.3,

we conclude that ΓN is a k-star, that is, N has k-orbits on W ; in particular, k is a
divisor of 3p2.

If k = 3 then, by [25], G has a semiregular normal subgroup M such that G/M
is either soluble or almost simple, which is not the case. Thus k = p. Then each
N -orbit on W has size 3p.

Let B be an N -orbit onW and consider the action of N on B. Writing N = T1×T2.
Then T1 and T2 is the only minimal normal subgroups of N . If both T1 and T2

are transitive on B, then both of them are regular on B, so |B| = |T |, which is
impossible. Thus we may assume that T1 is intransitive on B. Then T1 acts trivially
on B; otherwise one of T1 and T2 will have a transitive permutation representation of
degree 3, which is impossible as T is nonabelian simple. Let w ∈ B and u ∈ Γ (w).
Then uT1 ⊆ Γ (w), and so k ≥ |uT1| = |T1 : (T1)u|. Since N is a minimal normal
subgroup of G, there is some g ∈ G such that T g

1 = T2. Thus (T2)u = (T g
1 )u =
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T g
1 ∩ Gu = (T1 ∩ Gg−1

u )g = (T1 ∩ Gug−1 )g = ((T1)ug−1 )g. Since N is transitive on U
and T1 is normal in N , we know that all T1-orbits on U have the same size. It follows
that |(T1)ug−1 | = |(T1)u|. Thus |(T2)u| = |(T1)u|. Noting (T1)u× (T2)u ≤ Nu, we know
that 3p2 = |N : Nu| is a divisor of |N : ((T1)u × (T2)u| = |T1 : (T1)u|2; in particular,
|T1 : (T1)u| > p. Thus k ≥ |uT1 | = |T1 : (T1)u| > p, a contradiction.

Case 2. Suppose that N is nonabelian simple, that is, G is almost simple.

Assume first that GU is primitive. Then G is known by Theorem 4.6. Suppose
that soc(G) = PSU(4, 2) acting on 27 points. Then G is also primitive on W as
G has no a subgroup of index properly dividing 27 by the Atlas [6]. Moreover, all
subgroups of index 27 in G are all conjugate. Thus the actions of G on U and W are
permutationally equivalent, which implies that Γ has valency the size of a suborbit
of GU . Then Γ has valency 16 or 10, a contradiction.

Suppose that GU is 2-transitive. By [17, Theorem 5.2.2], G has no a permutation
representation of degree properly dividing 3p2. It follows that GW is also 2-transitive.
Thus either Γ is the complete bipartite graph with a matching deleted, or Γ is
the point-line incidence graph of the projective plane PG(2, q). So Γ has valency
k = 3p2 − 1 or q + 1. Since k is an odd prime, k = q + 1 and Γ is the point-line
incidence graph of the projective plane PG(2, q) with q ≡ 1 (mod 3). So q + 1 is an
odd prime, yielding q = 4 and 3p2 = q2 + q + 1 = 21, a contradiction.

Note that the above argument is also available when we consider the action of
G on W . Thus, assume now that GU and GW are both imprimitive. Since GU is
quasprimitive, N = PSL(d, q) and Nu = [qd−1].Z(q−1,d−1).PSL(d − 1, q).Z q−1

3(q−1,d)
by

Theorem 4.9, where u ∈ U , p2 = qd−1
q−1

, q ≡ 1 (mod 3(q− 1, d)) and d is an odd prime.

Suppose that N is not transitive on W . Note that all N -orbits on W have the same
size dividing 3p2. Since PSL(d, q) has no a permutation representation of degree less

than p2 = qd−1
q−1

(see [17, Table 5.2.A], for example), we conclude that N has exactly

three orbits on W . Thus Γ has valency 3, which is impossible by [25]. Therefore, N
is also transitive on W . Then GW is also quasiprimitive, and Γ is N -semisymmetric.

By Theorem 4.9 again, Nw
∼= Nu for w ∈ W . Then it is easily shown that the

induced permutation group N
Γ (u)
u by Nu on Γ (u) is PSL(d − 1, q).O, where O is

cyclic and of order dividing q−1
3(q−1,d)

. Since Γ has prime valency k = |Γ (u)| and
Γ is N -semisymmetric, N

Γ (u)
u is a transitive permutation group of prime degree k.

Checking the groups given in Table 4.1 and noting that A5
∼= PSL(2, 4), we know that

(soc(N
Γ (u)
u ), k) = (PSL(2, 11), 11) or (PSL(d− 1, q), q

d−1−1
q−1

). The former case implies

that d = 3, q = 11 and p2 = qd−1
q−1

= 133, a contradiction. Assume that k = qd−1−1
q−1

.

Then d − 1 is a prime as k is a prime. Since d is a prime, d = 3. Thus k = q + 1 is
an odd prime, it follows that q = 22

s
for some s ≥ 0. Since q ≡ 1 (mod 3(q − 1, d)),

we know that s > 1 and q − 1 is divisible by 9, which is impossible.

Lemma 5.2. Either Γ is a bi-Cayley graph of an abelian group, or G has a normal
subgroup of order p2 which is semiregular on both U and W .
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Proof. Assume that Γ is not a bi-Cayley graph of Z3
3. Then, by Lemma 5.1, G is not

quasiprimitive on either U or W . By Lemma 3.4, there is a minimal normal subgroup
of G, says N , which is intransitive on both U and W . Then, by Theorem 3.3 and
Lemma 3.2, we know that N is semiregular on both U and W , Γ is a normal cover of
Σ := ΓN and Σ is G/N -semisymmetric by identifying G/N with a subgroup of AutΣ.
In particular, ΓN has valency k. Denote by VN the vertex set of Σ, and by UN and
WN the two bipartition subsets of Σ corresponding to U and W , respectively.

Note that |N | is a divisor of 3p2 as N is semiregular on U . Then |N | = 3, p, or
p2. If |N | = p2 then the lemma holds. Thus in the following we assume that |N | is a
prime. Then Σ is not a complete bipartite graph as it has prime valency. Thus G/N
is faithful on both UN and WN by Theorem 3.3.

Case 1. Assume that p = 3. In this case G/N is a transitive permutation group
of degree 9 on both UN and WN .

Suppose first that G/N is not qusiprimitive on either UN or WN . By Lemma 3.4,
G/N has a minimal normal subgroup, says M/N , which is intransitive on both UN

and WN . Then, by Theorem 3.3, we know that M/N is semiregular on both UN and
WN , which yields |M/N | = 3. Then M is a normal subgroup of G of order 9 and acts
semiregularly on both U and W .

Thus, without loss of generality, we suppose that G/N is qusiprimitive on UN .
Then G/N is primitive on UN by Lemma 4.7. Thus either G/N ≤ AGL(2, 3), or
soc(G/N) is one of A9 and PSL(2, 8).

Assume that G/N ≤ AGL(2, 3). Then for α ∈ UN the stabilizer (G/N)α has order
dividing |GL(2, 3)| = 48, yielding k = 3 as k is an odd prime dividing |(G/N)α|. Thus
Γ has valency 3 and order 54. By [20] or [22], G has a normal subgroup of order 9
acting semiregularly on both U and W .

Suppose that soc(G/N) = A9 or PSL(2, 8). Then G/N is 2-transitive on UN . Note
G/N has no a permutation representation of degree 3. It follows that G/N is also
2-transitive on WN . Then, it is easily shown that Σ is isomorphic to the complete
bipartite graph K9,9 with a complete matching deleted; in particular, Σ has non-prime
valency 8, a contradiction.

Case 2. Assume that |N | = 3 and p > 3. In this case G/N is a transitive
permutation group of degree p2 on both UN and WN .

Subcase 2.1. Suppose first that G/N is not qusiprimitive on either UN or WN .
Then, by Lemma 3.4 and Theorem 3.3, G/N has a minimal normal subgroup, says
M/N , which is intransitive and semiregular on both UN and WN . Then M/N has
order p. Then M is normal in G and of order 3p. Since p > 3, we know that M ∼= Z3p.
Clearly M is intransitive on both U and W . By [14, Lemma 5.1], Γ is a normal cover
of ΓM which has order 2p. Let UM andWM be theM -orbits on U andW , respectively.

Assume that G/M is faithful on one of UM and WM . Then G/M is listed in
Table 4.1; in particular, p2 is not a divisor of |G/M |. Let R/M be a Sylow subgroup
of G/M . Then |R/M | = p and it is easily shown that R/M is transitive on both
UM and WM . Thus R has order 3p2 and is regular on both U and W . Then Γ is a
bi-Cayley graph of R. Recalling that N � R and N has order 3, it follows that N
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lies in the center of R. Noting that R/N ∼= Z2
p or Zp2 , it follows that R ∼= Z3×Z2

p or
Z3×Zp2 . Thus, R is an abelian group.

Assume that G/M is unfaithful on both UM and WM . Then ΓM
∼= Kp,p and

G/M ≤ AutKp,p = (Sp × Sp):Z2, hence G/M ≤ Sp × Sp as G/M is intransitive on
V ΓM . It follows that G/M has a subgroup of order p, says R/M , which is transitive
on both UM and WM . Then arguing similarly as above implies that Γ is a bi-Cayley
graph of an abelian group of order 3p2.

Subcase 2.2. Thus, without loss of generality, we may assume that G/N is qusiprim-
itive on UN . Then G/N is primitive on UN by Lemma 4.7, hence G/N is known as in
Theorem 4.5. Thus, by Lemma 4.3, a Sylow p-subgroup of G/N must have order p2.
Let R/N be a Sylow p-subgroup of G/N . It is easily shown that R/N is transitive on
both UN and WN . Then a similar argument as above implies that Γ is a bi-Cayley
graph of an abelian group of order 3p2.

Case 3. Assume |N | = p > 3. In this case G/N is a transitive permutation group
of degree 3p on both UN and WN .

Subcase 3.1. Suppose that G/N is not qusiprimitive on either UN or WN . Then,
by Lemma 3.4 and Theorem 3.3, G/N has a minimal normal subgroup, says M/N ,
which is intransitive and semiregular on both UN and WN . Then M/N has order 3
or p. In particular, M is intransitive on both U and N . Then, by [14], Γ is a normal
cover of ΓM ; in particular, Γ and ΓM have the same valency k.

If |M/N | = p then M has order p2, and the lemma follows. Thus we assume that
|M | = 3p. If M is cyclic then M has a unique Sylow 3-subgroup which has order 3
and is normal in G, so the lemma holds by the above case. Thus, we assume further
M is not cyclic; in particular, p ≡ 1 (mod 3).

Assume that G/M is faithful on one of UM and WM , where UM and WM denote the
M -orbits on U andW , respectively. Then G/M is known as in Table 4.1, soc(G/M) =

Zp, Ap or PSL(d, q) (with p = qd−1
q−1

, yielding d a prime) as p ≡ 1 (mod 3).

Suppose that soc(G/M) = Ap or PSL(d, q). Then it is easily shown that Γ is either
Kp,p with a complete matching deleted or the point-hyperplane incidence graph of the
projective geometry PG(d − 1, q). For the former case, Γ has degree p − 1 which is

not a prime, a contradiction. For the latter case, Γ has valency k = qd−1−1
q−1

. Since

k is an odd prime, d − 1 must be a prime. So d = 3, and q = 22
s
for s ≥ 0. Since

p = q2 + q + 1 and 3 divides p − 1, we get q = 2, p = 7 and G/M = PSL(3, 2). In
particular, k = 3. Then G has a normal subgroup of order p2 = 49 by [20]; however,
G = (Z7:Z3).PSL(3, 2) has no such a normal subgroup, a contradiction.

Therefore, soc(G/M) = Zp. Then G/M ≤ Zp:Zp−1. Let R/M be the Sylow p-
subgroup of G/M . Then R/M �G/M and so R � G. Since p > 3, we know that R
has a unique Sylow p-subgroup P , which has order p2. Then P �R�G, and so P is
normal in G as P is also a Sylow p-subgroup of G.

Assume that G/M is unfaithful on both of UM and WM . Then ΓM
∼= Kp,p and

G/M ≤ Sp×Sp as G/M is faithful on V ΓM . Let H/M be a Sylow p-subgroup of G/M .
Then H/M ∼= Z2

p and ΓM is (H/M)-semisymmetric. Thus Γ is H-semisymmetric,
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and hence ΓN is (H/N)-semisymmetric. Moreover, Γ , ΓN and ΓM has the same
valency k = p.

It is easily shown that H/M has a subgroup R/M of order p which is regular on
both parts of ΓM . Then R�H, R̄ := R/N �H/N := H̄, and R is regular on both U
and W , which yields that R̄ is regular on both parts of ΓN . Thus ΓN is a bi-Cayley
graph of R̄. Let α be a vertex of ΓN . Then H̄α

∼= Zp. Let H̄ = ⟨σ⟩ and β be a
neighbor of α. Then, by Lemma 3.1, there are t ∈ R̄ and τ ∈ Aut(R̄) such that
(βx)σ = (βt)x

τ
for all x ∈ R̄. Thus the neighborhood of α is {βs | s ∈ S}, where

S = {t, ttτ , ttτ tτ2 , . . . , ttτ tτ2 · · · tτp−1
= 1}.

Recalling that R̄ has a normal subgroup M/N of order 3, it follows that R̄ is a
cyclic group of order 3p. Since τ ∈ Aut(R̄), there is a positive integer i such that

tτ = ti. It follows from ttτ tτ
2 · · · tτp−1

= 1 that ip−1 + · · · + i + 1 ≡ 0 (mod 3p), so
ip ≡ 1 (mod 3p). On the other hand, since ΓN is connected, R̄ = ⟨S⟩ = ⟨t⟩. Thus
τ is an automorphism of R̄ ∼= Z3p of order dividing p. Since Aut(R̄) ∼= Z2×Zp−1, we
have τ = 1. Then i ≡ 1 (mod 3p), and so p ≡ ip−1 + · · · + i + 1 ≡ 0 (mod 3p), a
contradiction.

Subcase 3.2. Thus, without loss of generality, we may assume that G/N is qusiprim-
itive on UN . Then G/N is known as in Table 4.2 or (1)-(5) of Theorem 4.9; in par-
ticular, G/N is almost simple. Suppose that soc(G/N) is intransitive on WN . Then
it has 3 orbits with size p on WN , and so Γ has valency k = 3. By [20], G has
a normal subgroup of order p2. It follows that G/N has solvable normal subgroup,
which is impossible as G/N is almost simple. Thus soc(G/N) is transitive on WN .
Since ΓN has prime valency k, then ΓN is soc(G/N)-semisymmetric. Let α ∈ V ΓN . If
soc(G/N)α is a {2, 3} group, then ΓN must have valency 2 or 3, which is not the case.
Thus soc(G/N)α is not a {2, 3}-group. Then, by Theorems 4.4 and 4.9, soc(G/N) is
listed in the following table.

Line 3p soc(G/N) soc(G/N)α or actions
1 3p A3p A3p−1

2 21 A7 S5

3 57 PSL(2, 19) A5, two actions
4 15 A7 PSL(2, 7), two actions
5 15 PSL(4, 2) Z3

2:PSL(3, 2), two actions
6 2e + 1 PSL(2, 2e) Ze

2:Z2e−1, e odd prime
7 q2 + q + 1 PSL(3, q) on points or hyperplanes, q ≡ 1 (mod 3)
8 3(1 + 22

s
) PSL(2, 22

s
) Z2s

2 :Z 22
s−1
3

9 3 qd−1
q−1

PSL(d− 1, q) [qd−1].Z(q−1,d−1).PSL(d− 1, q).Z q−1
3(q−1,d)

q ≡ 1 (mod 3)

We set soc(G/N) = M/N . Then M is a central extension of N by soc(G/N). Let
T be the derived subgroup of M . Suppose that T = M . Then N = Zp is (isomorphic
to) a subgroup of the Schur multiplier of soc(G/N). By [17, Theorem 5.1.4], the
Schur multiplier of soc(G/N) is one of 1, Z2, Z3 (for lines 1-8) and Z(q−1,d) (for line
9); however, they all have order less than p, a contradiction. It follows that T ̸= M ,
and hence T ∼= M/N and M = N × T .
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Suppose that T is as in line 1 of the above table. Then ΓN is the complete bipartite
graph K3p,3p with a complete matching deleted. So ΓN and hence Γ has valency 3p−1,
which is not a prime, a contradiction.

Thus we assume that T is one of the simple groups from line 2 to line 9. Clearly,
for each of lines 2-5, |T | is not divisible by p2. For each of lines 6-9, by Lemma 4.3,
we conclude that p2 is not a divisor of |T |. Then T , as a normal subgroup of M ,
is intransitive on both U and W . Recalling that ΓN is soc(G/N)-semisymmetric
and Γ is a normal cover of ΓN , we conclude that Γ is M -semisymmetric. Thus, by
Theorem 3.3 and Lemma 3.2, T is semiregular on both U and W , so |T | is a divisor
of 3p2, a contradiction. This complete the proof.

Now we are ready to give a proof of Theorem 1.2.

Proof of Theorem 1.2 Let Γ be a connected semisymmetric graph, with bipartition
V Γ = U ∪ W , of order 6p2 and valency k for odd primes p and k. Let G = AutΓ .
Then, by Lemma 5.2, either Γ is a bi-Cayley graph of an abelian group or G contains
a normal subgroup of order p2. By [11], the former case implies that Γ is vertex
transitive, which is not the case. Thus we assume that G has a normal subgroup N of
order p2. Clearly, N is intransitive on both U and W . Note that 3p2 is not a prime.
Thus Γ ̸∼= K3p2,3p2 . It follows from [14, Lemma 5.1] that Γ is a normal cover of ΓN ;
in particular, N is semiregular. Then ΓN

∼= K3,3, and so Γ is of valency 3. Thus
Theorem 1.2 follows from Theorem 2.1.
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