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Abstract. We prove two conjectures of Brändén on the real-rootedness of
the polynomials Qn(x) and Rn(x) which are related to the Boros-Moll poly-
nomials Pn(x). In fact, we show that both Qn(x) and Rn(x) form Sturm
sequences. The first conjecture implies the 2-log-concavity of Pn(x), and the
second conjecture implies the 3-log-concavity of Pn(x).
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1 Introduction

In this paper, we prove two conjectures of Brändén [4] concerning the Boros-
Moll polynomials. Brändén introduced two polynomials based on the coeffi-
cients of the Boros-Moll polynomials and conjectured that these polynomials
have only real roots. As pointed out by Brändén, the first conjecture im-
plies the 2-fold log-concavity, or 2-log-concavity, for short, of the Boros-Moll
polynomials, whereas the second conjecture implies the 3-log-concavity.

Let us start with some definitions. Given a finite nonnegative sequence
{ai}ni=0, we say that it is unimodal if there exists an integer m ≥ 0 such that

a0 ≤ · · · ≤ am−1 ≤ am ≥ am+1 ≥ · · · ≥ an,

and we say that it is log-concave if

a2i − ai+1ai−1 ≥ 0

for 1 ≤ i ≤ n−1. Define L to be an operator acting on the sequence {ai}ni=0

as given by
L({ai}ni=0) = {bi}ni=0,

where bi = a2i − ai+1ai−1 for 0 ≤ i ≤ n under the convention that a−1 = 0
and an+1 = 0. Clearly, the sequence {ai}ni=0 is log-concave if and only if the
sequence {bi}ni=0 is nonnegative. Given a sequence {ai}ni=0, we say that it is
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k-fold log-concave, or k-log-concave, if Lj({ai}ni=0) is a nonnegative sequence
for any 1 ≤ j ≤ k. A sequence {ai}ni=0 is said to be infinitely log-concave if
it is k-log-concave for all k ≥ 1. Given a polynomial

f(x) = a0 + a1x+ · · ·+ anx
n,

we say that f(x) is log-concave (or k-log-concave, or infinitely log-concave)
if the sequence {ai}ni=0 is log-concave (resp., k-log-concave, infinitely log-
concave). Throughout this paper, we shall be concerned with polynomials
with real coefficients.

The notion of infinite log-concavity was introduced by Boros and Moll
[3] in their study of the following quartic integral∫ ∞

0

1

(t4 + 2xt2 + 1)n+1
dt.

For any x > −1 and any nonnegative integer n, they obtained the following
formula, ∫ ∞

0

1

(t4 + 2xt2 + 1)n+1
dt =

π

2n+3/2(x+ 1)n+1/2
Pn(x),

where

Pn(x) =
∑
j,k

(
2n+ 1

2j

)(
n− j
k

)(
2k + 2j

k + j

)
(x+ 1)j(x− 1)k

23(k+j)

are the Boros-Moll polynomials. Using Ramanujan’s Master Theorem, they
derived an alternative expression of Pn(x),

Pn(x) = 2−2n
∑
j

2j
(

2n− 2j

n− j

)(
n+ j

j

)
(x+ 1)j . (1.1)

For other proofs of (1.1), see Amdeberhan and Moll [1]. Write

Pn(x) =
n∑

i=0

di(n)xi. (1.2)

We call {di(n)}ni=0 a Boros-Moll sequence.

The log-concavity of {di(n)}ni=0 was conjectured by Moll [17], and it was
proved by Kauers and Paule [13] by establishing the following recurrence
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relations of di(n):

di(n+ 1) =
n+ i

n+ 1
di−1(n) +

4n+ 2i+ 3

2(n+ 1)
di(n), 0 ≤ i ≤ n+ 1, (1.3)

di(n+ 1) =
(4n− 2i+ 3)(n+ i+ 1)

2(n+ 1)(n+ 1− i)
di(n)

− i(i+ 1)

(n+ 1)(n+ 1− i)
di+1(n), 0 ≤ i ≤ n, (1.4)

di(n+ 2) =
8n2 + 24n+ 19− 4i2

2(n+ 2− i)(n+ 2)
di(n+ 1)

− (n+ i+ 1)(4n+ 3)(4n+ 5)

4(n+ 2− i)(n+ 1)(n+ 2)
di(n), 0 ≤ i ≤ n+ 1, (1.5)

di−2(n) =
(i− 1)(2n+ 1)

(n+ 2− i)(n+ i− 1)
di−1(n)

− i(i− 1)

(n+ 2− i)(n+ i− 1)
di(n), 0 ≤ i ≤ n. (1.6)

In fact, (1.5) and (1.6) can be derived from (1.3) and (1.4). Note that Moll
[18] independently derived the relation (1.5) and (1.6) via the WZ-method.

Chen and Xia [7] showed that the polynomials Pn(x) are ratio monotone.
A sequence of positive real numbers {ai}0≤i≤n is said to be ratio monotone
if

an
a0
≤ an−1

a1
≤ · · · ≤ an−i

ai
≤ · · · ≤

an−[n−1
2

]

a[n−1
2

]

≤ 1 (1.7)

and
a0
an−1

≤ a1
an−2

≤ · · · ≤ ai−1
an−i

≤ · · · ≤
a[n

2
]−1

an−[n
2
]
≤ 1. (1.8)

Notice that for a positive sequence, the ratio monotone property implies both
log-concavity and the spiral property. It is worth mentioning that there are
approaches to proving log-concavity without using recurrence relations. L-
lamas and Mart́ınez-Bernal [15] proved that if f(x) is a polynomial with
nondecreasing and nonnegative coefficients, then f(x + 1) is log-concave.
Furthermore, Chen, Yang and Zhou [9] proved that if f(x) is a polynomi-
al with nondecreasing and nonnegative coefficients, then f(x + 1) is ratio
monotone. From (1.1) it is easily seen that the coefficients of Pn(x − 1)
are nondecreasing and nonnegative. Hence Pn(x) are log-concave and ratio
monotone. A combinatorial interpretation of the log-concavity of Pn(x) has
been found by Chen, Pang and Qu [6].

Boros and Moll [3] also proposed the following conjecture.

Conjecture 1.1 The sequence {di(n)}ni=0 is infinitely log-concave.

3



The infinite log-concavity of the Boros-Moll polynomials seems to be
a difficult problem. As remarked by Kauers and Paule [13], it seems that
there is little hope to prove the 2-log-concavity of {di(n)}ni=0 using recurrence
relations. By constructing an intermediate function, Chen and Xia [8] proved
the 2-log-concavity of Pn(x) by applying recurrence relations. Based on a
technique of McNamara and Sagan [16], Kauers verified the infinite log-
concavity of Pn(x) for n ≤ 129.

Brändén [4] presented an approach to Conjecture 1.1 by relating higher-
order log-concavity to real-rooted polynomials. Boros and Moll [3] conjec-
tured that for any nonnegative integer n the sequence {

(
n
k

)
}nk=0 is infinitely

log-concave. Fisk [12], McNamara and Sagan [16] and Stanley independent-
ly made the following conjecture which implies the conjecture of Boros and
Moll. This conjecture has been proved by Brändén [4].

Theorem 1.2 If f(x) = a0 + a1x + · · · + anx
n is a real-rooted polynomial

with nonnegative coefficients, the polynomial

a20 + (a21 − a0a2)x+ · · ·+ (a2n−1 − an−2an)xn−1 + a2nx
n

is also real-rooted.

Brändén’s proof is based on a symmetric function identity and the Grace-
Walsh-Szegö theorem concerning the location of zeros of multi-affine and
symmetric polynomials. Moreover, Brändén obtained a general result on the
characterization of nonlinear transformations preserving real-rootedness, in
the spirit of the characterization of linear transformations preserving stabil-
ity given by Borcea and Brändén [2]. From the viewpoint of total positivity,
Cardon and Nielsen [5] proposed a conjecture that implies Theorem 1.2. Al-
though the Boros-Moll polynomials Pn(x) are not real-rooted, Brändén [4]
introduced two polynomials related to Pn(x), and conjectured that they are
real-rooted.

Conjecture 1.3 ([4, Conjecture 8.5]) For any n ≥ 1, the polynomial

Qn(x) =
n∑

i=0

di(n)

i!
xi (1.9)

has only real zeros.

Conjecture 1.4 ([4, Conjecture 8.6]) For any n ≥ 1, the polynomial

Rn(x) =

n∑
i=0

di(n)

(i+ 2)!
xi (1.10)

has only real zeros.
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As pointed out by Brändén [4], by Craven and Csordas’s results on iter-
ated Turán inequalities obtained in [10], the real-rootedness of Qn(x) implies
the 2-log-concavity of Pn(x), and the real-rootedness of Rn(x) implies the
3-log-concavity of Pn(x). Brändén’s approach suggests that it might be pos-
sible to prove the k-log-concavity of Pn(x) for k ≥ 4 by using the higher
iterated Turán inequalities for real entire functions in the Laguerre-Pólya
class. However, little is known about the k-th iterated Turán inequalities
when k ≥ 4. It is worth mentioning that Csordas [11] proved the real-
rootedness of some polynomials related to Qn(x).

In this paper, we shall prove the above conjectures by showing that
the polynomials Qn(x) and Rn(x) form Sturm sequences. We say that a
polynomial is standard if it is zero or its leading coefficient is positive. Let RZ
denote the set of polynomials with only real zeros. Suppose that f(x) ∈ RZ is
a polynomial of degree n with zeros {rk}nk=1, and g(x) ∈ RZ is a polynomial
of degree m with zeros {sk}mk=1. We say that g(x) interlaces f(x) if n = m+1
and

rn ≤ sn−1 ≤ rn−1 ≤ · · · ≤ r2 ≤ s1 ≤ r1,

and we say that g(x) strictly interlaces f(x) if, in addition, they have no
common zeros. We use g(x) � f(x) to denote that g(x) interlaces f(x), and
use g(x) ≺ f(x) to denote that g(x) strictly interlaces f(x). For any real
numbers a, b and c, we assume that a ∈ RZ and a ≺ bx + c. A sequence
{fn(x)}n≥0 of standard polynomials is said to be a Sturm sequence if, for
n ≥ 0, we have deg fn(x) = n and

fn(x) ∈ RZ and fn(x) ≺ fn+1(x).

To prove that Qn(x) and Rn(x) are Sturm sequences, we shall use the
following sufficient condition, due to Liu and Wang [14], for a polynomial
sequence {fn(x)}n≥0 to form an interlacing sequence.

Theorem 1.5 ([14, Corollary 2.4]) Let {fn(x)}n≥0 be a sequence of poly-
nomials with nonnegative coefficients and deg fn(x) = n, which satisfy the
following recurrence relation:

fn+1(x) = an(x)fn(x) + bn(x)f ′n(x) + cn(x)fn−1(x), (1.11)

where an(x), bn(x), cn(x) are some polynomials with real coefficients. As-
sume that, for some n ≥ 1, the following conditions hold:

(i) fn−1(x), fn(x) ∈ RZ and fn−1(x) ≺ fn(x); and

(ii) for any x ≤ 0 both of bn(x) and cn(x) are nonpositive, and at least one
of them is nonzero.

Then we have fn+1(x) ∈ RZ and fn(x) ≺ fn+1(x).
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2 Proofs of Brändén’s Conjectures

We first derive recurrence relations for Qn(x) and Rn(x) based on the re-
currence relations (1.3) and (1.5) of the coefficients di(n) of the Boros-Moll
polynomials Pn(x).

Theorem 2.1 For n ≥ 1, we have the following recurrence relation

Qn+1(x) =

(
(2n+ 1)x

(n+ 1)2
+

8n2 + 8n+ 3

2(n+ 1)2

)
Qn(x)

− (4n− 1)(4n+ 1)

4(n+ 1)2
Qn−1(x) +

x

(n+ 1)2
Q′n(x). (2.1)

Proof. For n ≥ 1, relation (2.1) can be rewritten as

4(n+ 1)2di(n+ 1) = 2(8n2 + 8n+ 3 + 2i)di(n) + 4i(2n+ 1)di−1(n)

− (16n2 − 1)di(n− 1), (2.2)

where 0 ≤ i ≤ n+ 1. From (1.3) it follows that

di−1(n) =
n+ 1

n+ i
di(n+ 1)− 4n+ 2i+ 3

2(n+ i)
di(n). (2.3)

Substituting (2.3) into (2.2), we get

di(n+ 1) =
8n2 + 8n+ 3− 4i2

2(n+ 1− i)(n+ 1)
di(n)

− (n+ i)(4n− 1)(4n+ 1)

4n(n+ 1)(n+ 1− i)
di(n− 1). (2.4)

It is easily checked that the above relation (2.4) coincides with (1.5) with n
replaced by n− 1. This completes the proof.

Using the above recurrence relation and the criterion of Liu and Wang,
we can deduce that the polynomials Qn(x) form a Sturm sequence. This
leads to an affirmative answer to Conjecture 1.3.

Theorem 2.2 The polynomial sequence {Qn(x)}n≥0 is a Sturm sequence.

Proof. Clearly, we have deg(Qn(x)) = n. It suffices to prove that Qn(x) ∈
RZ and Qn(x) ≺ Qn+1(x) for any n ≥ 0. We use induction on n. By
convention,

Q0(x), Q1(x) ∈ RZ and Q0(x) ≺ Q1(x).

Assume that

Qn−1(x), Qn(x) ∈ RZ and Qn−1(x) ≺ Qn(x).
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We proceed to verify that

Qn+1(x) ∈ RZ and Qn(x) ≺ Qn+1(x).

We see that the recurrence relation (2.1) of Qn(x) is of the form (1.11) in
Theorem 1.5, where the polynomials an(x), bn(x), cn(x) are given by

an(x) =
(2n+ 1)x

(n+ 1)2
+

8n2 + 8n+ 3

2(n+ 1)2
,

bn(x) =
x

(n+ 1)2
,

cn(x) = −(4n− 1)(4n+ 1)

4(n+ 1)2
.

For n ≥ 1 and x ≤ 0, one can check that

bn(x) ≤ 0 and cn(x) < 0.

In view of Theorem 1.5, we find that Qn+1(x) ∈ RZ and Qn(x) ≺ Qn+1(x).
This completes the proof.

The following recurrence relation for Rn(x) can be proved in a way sim-
ilar to the proof of Theorem 2.1.

Theorem 2.3 For n ≥ 1, we have

Rn+1(x) =

(
(2n+ 1)x

(n+ 1)(n+ 3)
+

8n2 + 8n+ 7

2(n+ 1)(n+ 3)

)
Rn(x)

− (4n− 1)(4n+ 1)(n− 2)

4n(n+ 1)(n+ 3)
Rn−1(x) +

5x

(n+ 1)(n+ 3)
R′n(x).

(2.5)

Using the above recurrence relation, we obtain the following theorem,
which leads to an affirmative answer to Conjecture 1.4.

Theorem 2.4 The polynomial sequence {Rn(x)}n≥0 is a Sturm sequence.

Proof. The proof is analogous to that of Theorem 2.2. It is routine to verify
that

R0(x), R1(x), R2(x), R3(x) ∈ RZ and R0(x) ≺ R1(x) ≺ R2(x) ≺ R3(x).

It remains to show that Rn(x) ∈ RZ and Rn−1(x) ≺ Rn(x) for n ≥ 3. We
use induction n. Assume that

Rn−1(x), Rn(x) ∈ RZ and Rn−1(x) ≺ Rn(x).
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We wish to prove that

Rn+1(x) ∈ RZ and Rn(x) ≺ Rn+1(x).

The recurrence relation (2.5) of Rn(x) is of the form (1.11) in Theorem 1.5,
and the polynomials an(x), bn(x), cn(x) are given by

an(x) =
(2n+ 1)x

(n+ 1)(n+ 3)
+

8n2 + 8n+ 7

2(n+ 1)(n+ 3)
,

bn(x) =
5x

(n+ 1)(n+ 3)
,

cn(x) = −(4n− 1)(4n+ 1)(n− 2)

4n(n+ 1)(n+ 3)
.

For n ≥ 3 and x ≤ 0, we find that

bn(x) ≤ 0 and cn(x) < 0.

By Theorem 1.5, we conclude that Rn+1(x) ∈ RZ and Rn(x) ≺ Rn+1(x).
This completes the proof.
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