New upper bounds for the Davenport and for the Erdős-Ginzburg-Ziv constants

M. N. Chintamani, B. K. Moriya, W. D. Gao, P. Paul, and R. Thangadurai

Abstract

Let G be a finite abelian group (written additively) of rank r with invariants $n_{1}, n_{2}, \ldots, n_{r}$, where n_{r} is the exponent of G. In this paper, we prove an upper bound for the Davenport constant $\mathrm{D}(G)$ of G as follows; $\mathrm{D}(G) \leq n_{r}+n_{r-1}+(c(3)-1) n_{r-2}+(c(4)-1) n_{r-3}+\cdots+$ $(c(r)-1) n_{1}+1$, where $c(i)$ is the Alon-Dubiner constant, which depends only on the rank of the group $\mathbb{Z}_{n_{r}}^{i}$. Also, we shall give an application of Davenport's constant to smooth numbers related to the Quadratic sieve.

Mathematics Subject Classification (2010). Primary 11B75;
Secondary 20K01.
Keywords. Finite abelian groups, Davenport constant, Lattice point problem.

1. Introduction. Let G be a finite abelian group written additively. By the structure theorem, we know that $G \cong \mathbb{Z}_{n_{1}} \oplus \mathbb{Z}_{n_{2}} \oplus \cdots \oplus \mathbb{Z}_{n_{r}}$ where the n_{i} 's are integers satisfying $1<n_{1}\left|n_{2}\right| \cdots \mid n_{r}$, and n_{r} is the exponent (denoted by $\exp (G))$ of G, and r is the rank of G. Also, $n_{1}, n_{2}, \ldots, n_{r}$ are called the invariants of G. Let

$$
\mathrm{D}^{*}(G)=1+\sum_{i=1}^{r}\left(n_{i}-1\right)
$$

The Davenport constant for the finite abelian group G, denoted by $\mathrm{D}(G)$, is defined to be the least positive integer t such that any sequence of t elements of G contains a non-empty subsequence whose sum is zero in G. Such a subsequence is called a zero-sum subsequence.

It is trivial to see that $\mathrm{D}^{*}(G) \leq \mathrm{D}(G) \leq|G|$ and the equality holds if and only if $G=\mathbb{Z}_{n}$, the cyclic group of order n. Olson [17] proved that $\mathrm{D}(G)=$ $\mathrm{D}^{*}(G)$ for all finite abelian groups of rank 2 and for all p-groups. It is also
known that $\mathrm{D}(G)>\mathrm{D}^{*}(G)$ for infinitely many groups (See for instance, [13]). The best known upper bound is due to Emde Boas and Kruswjik [6, Theorem 7.1, p. 19], Meshulam [15], Alford et al. [1] and Rath et al. [19] which is as follows

$$
\begin{equation*}
\mathrm{D}(G) \leq \exp (G)\left(1+\log \frac{|G|}{\exp (G)}\right) \tag{1.1}
\end{equation*}
$$

We do have the following conjectures.
Conjecture 1. (1) $\mathrm{D}(G)=\mathrm{D}^{*}(G)$ for all G with rank $r=3$ or $G=\mathbb{Z}_{n}^{r}$ (See [9]);
(2) $\mathrm{D}(G) \leq \sum_{i=1}^{r} n_{i}$ (See for instance, [16]).

Concerning Conjecture 1(1), we refer to the most recent articles by Schmid [21, Section 4.1], Girard [14, Proposition 2.1] and Geroldinger et al. [12].

We shall follow the notations as given in [8] (One may also refer to [11,22]). For a non-empty subset I of natural numbers and a finite abelian group G, let $\mathrm{s}_{I}(G)$ denote the smallest $l \in \mathbb{N} \cup\{\infty\}$ such that every sequence S over G of length $|S| \geq l$ has a zero-sum subsequence of length in I.

When $I=\mathbb{N}$, then we see that $\mathrm{s}_{\mathbb{N}}(G)=\mathrm{D}(G)$. When $I=\{1,2, \ldots, m\}$, we denote $\mathrm{s}_{I}(G)$ by $\mathrm{s}_{\leq m}(G)$. Also, when $I=\{\exp (G)\}$, then the constant $\mathrm{s}_{\{\exp (G)\}}(G)$ is nothing but the well-known constant $\mathrm{s}(G)$ in the literature. Clearly,

$$
\begin{equation*}
\mathrm{D}(G) \leq \mathrm{s}_{\leq \exp (G)}(G) \leq \mathrm{s}(G)-\exp (G)+1 \tag{1.2}
\end{equation*}
$$

Alon and Dubiner [2] proved that $\mathrm{s}\left(\mathbb{Z}_{n}^{r}\right) \leq c n$ for some positive constant c which depends only on r. We define the smallest positive real number $c(r)$ depending only on r such that

$$
\begin{equation*}
\mathrm{s}\left(\mathbb{Z}_{n}^{r}\right) \leq c(r) n \quad \text { for all } n \geq 2 \tag{1.3}
\end{equation*}
$$

Then, we have $c(1) \leq 2$ (due to Erdős et al. [5]), $c(2) \leq 4$ (due to Reiher [20]) and $c(r)$ can be defined inductively as,

$$
\begin{equation*}
c(r) \leq 256\left(r \log _{2} r+5\right) c(r-1)+(r+1) \tag{1.4}
\end{equation*}
$$

for all $r \geq 3$. In particular, $c(3) \leq 9994$. We call $c(r)$ as Alon-Dubiner constants. From (1.2) and (1.3), we get

$$
\begin{equation*}
\mathbf{s}_{\leq n}\left(\mathbb{Z}_{n}^{r}\right) \leq \mathbf{s}\left(\mathbb{Z}_{n}^{r}\right)-n+1 \leq(c(r)-1) n+1 \tag{1.5}
\end{equation*}
$$

Conjecture 2. (Gao [10]) We have, $c(3) \leq 9$.
In this article, we prove the following main theorem.
Theorem 1.1. Let G be any finite abelian group of rank r with invariants $n_{1}, n_{2}, \ldots, n_{r}$. Then
$\mathrm{D}(G) \leq n_{r}+n_{r-1}+(c(3)-1) n_{r-2}+(c(4)-1) n_{r-3}+\cdots+(c(r)-1) n_{1}+1$.
Theorem 1.1 is the extension of the result of Balasubramanian and Bhowmik [3]. Also Theorem 1.1 is towards the Conjecture 1(2).

Theorem 1.2. Let $n \geq 2$ be any integer, and let $\omega(n)$ denote the number of distinct prime factors of n. Then

$$
\mathrm{D}\left(\mathbb{Z}_{n}^{r}\right) \leq r^{\omega(n)}(n-1)+1
$$

Theorem 1.3. Let $n=3^{\alpha} p^{\ell}$ be any integer such that $p \geq 3$ be any prime number. Then

$$
3 n-2 \leq \mathrm{D}\left(\mathbb{Z}_{n}^{3}\right) \leq 3 n+3^{\alpha+1}-7
$$

In particular, when $\alpha=1$, then we get,

$$
3 n-2 \leq \mathrm{D}\left(\mathbb{Z}_{n}^{3}\right) \leq 3 n+2
$$

Remark 1.4. (a) Let $n \geq \exp \left(\prod_{\ell \mid \omega(n), \ell \neq 1} \Phi_{\ell}(r)\right)$ where $\Phi_{k}(X)$ denotes the $k^{t h}$ cyclotomic polynomial. Then Theorem 1.2 improves the bound (1.1). In particular, for all integers $n=p^{\ell} q^{m} \geq \exp (r+1)$ where $p \neq q$ are primes, Theorem 1.2 does improve the known bound (1.1).
(b) When $r=3$ and $n=q^{k} p^{\ell}$ for any primes $p \neq q$ in Theorem 1.2 , we get $\mathrm{D}\left(\mathbb{Z}_{n}^{3}\right) \leq 9 n-8$. Theorem 1.3 improves this result, when $n=3^{\alpha} p^{\ell}$, where $p \neq 3$.

Along the same lines of the proof of Theorem 1.1, we can prove the following Theorem for $\mathbf{s}(G)$ and $\mathbf{s}_{\leq \exp (G)}(G)$.
Theorem 1.5. Let G be a finite abelian group of rank r. Then

$$
\mathrm{s}(G) \leq c(1) n_{r}+c(2) n_{r-1}+\cdots+c(r) n_{1}
$$

and

$$
\mathbf{s}_{\leq \exp (G)}(G) \leq(c(1)-1) n_{r}+(c(2)-1) n_{r-1}+\cdots+(c(r)-1) n_{1}+1
$$

More recently, Fan et al. [7] have focused on $s\left(\mathbb{Z}_{n}^{r}\right)$ for higher ranks.
Given integers $r, n \geq 2$. A subset F of \mathbb{N} is called a factor base if $F=$ $\left\{p_{1}, p_{2}, \ldots, p_{r}\right\}$, where the p_{i} 's are distinct prime numbers. An integer $N>1$ is said to be smooth with respect to F if all the prime divisors of N are the members of F.

In Quadratic sieve [18], to factor a given integer N with a factor base F, one needs to know how many smooth integers are needed to produce two squares x^{2} and y^{2} such that $x^{2} \equiv y^{2}(\bmod N)$. It is well-known that if we can find $|F|+1=r+1$ number of smooth integers with respect to factor base F, then we can find two squares which are equivalent modulo N. More generally, for any given integer $n \geq 2$, if we want to produce two nth powers of integers which are equivalent modulo N, how many smooth numbers with respect to F we need to have?

By $c(n, r)$, we denote the least positive integer t such that for any sequence U of smooth integers with respect to F, of cardinality at least t has a nonempty subsequence T such that the product of all the terms of T is an nth power of some integer. It is well-known that $c(2, r)=r+1$. We prove the following theorem,

Theorem 1.6. For all integers $n \geq 2$ and $r \geq 2$, we have $c(n, r)=\mathrm{D}\left(\mathbb{Z}_{n}^{r}\right)$.

Remark 1.7. Since

$$
\mathrm{D}\left(\mathbb{Z}_{p^{\ell}}^{r}\right)=\mathrm{D}^{*}\left(\mathbb{Z}_{p^{\ell}}^{r}\right)=1+r\left(p^{\ell}-1\right)
$$

for any prime p and any integer $\ell \geq 1$, we see that

$$
c\left(p^{\ell}, r\right)=1+r\left(p^{\ell}-1\right)
$$

2. Preliminaries.

Proposition 2.1. Let p be a prime number, and let $n_{1}, n_{2}, \ldots, n_{r}>1$ be integers such that $p^{k}\left|n_{1}\right| n_{2}|\cdots| n_{r}$. Let $m>1$ be the unique integer such that

$$
(m-1) \mathrm{D}\left(\mathbb{Z}_{p^{k}}^{r}\right) \leq \mathbf{s}_{\leq p^{k}}\left(\mathbb{Z}_{p^{k}}^{r}\right)<m \mathrm{D}\left(\mathbb{Z}_{p^{k}}^{r}\right)
$$

Let

$$
h:= \begin{cases}\mathrm{D}\left(\mathbb{Z}_{\frac{n_{1}}{p^{k}}} \oplus \cdots \oplus \mathbb{Z}_{\frac{n_{r}}{p^{k}}}\right) & \text { if } n_{1} \neq p^{k}, \\ \mathrm{D}\left(\mathbb{Z}_{\frac{n_{2}}{p^{k}}}^{p^{k}} \oplus \cdots \oplus \mathbb{Z}_{\frac{n_{r}}{p^{k}}}\right) & \text { if } n_{1}=p^{k}, n_{2} \neq p^{k}, \\ \cdots & \cdots \\ \mathrm{D}\left(\mathbb{Z}_{\frac{n_{r}}{p^{k}}}\right) & \text { if } n_{1}=n_{2}=\cdots=n_{r-1}=p^{k}, n_{r} \neq p^{k} .\end{cases}
$$

Then we have,

$$
\mathrm{D}\left(\mathbb{Z}_{n_{1}} \oplus \cdots \oplus \mathbb{Z}_{n_{r}}\right) \leq \begin{cases}(h-m+1) p^{k}+\mathbf{s}_{\leq p^{k}}\left(\mathbb{Z}_{p^{k}}^{r}\right) & \text { if } h \geq m-1 \\ \mathbf{s}_{\leq p^{k}}\left(\mathbb{Z}_{p^{k}}^{r}\right) & \text { otherwise }\end{cases}
$$

Furthermore, if $\mathbf{s}_{\leq p^{k}}\left(\mathbb{Z}_{p^{k}}^{r}\right)-(m-1) \mathrm{D}\left(\mathbb{Z}_{p^{k}}^{r}\right) \geq p^{k}$, then we have

$$
\mathrm{D}\left(\mathbb{Z}_{n_{1}} \oplus \cdots \oplus \mathbb{Z}_{n_{r}}\right) \leq(h-m) p^{k}+\mathrm{s}_{\leq p^{k}}\left(\mathbb{Z}_{p^{k}}^{r}\right)
$$

provided $h \geq m-1$.
Proof. If $G \cong \mathbb{Z}_{n_{1}} \oplus \cdots \oplus \mathbb{Z}_{n_{r}}$ is a p-group, then it is known that $\mathrm{D}(G)=\mathrm{D}^{*}(G)$. So, we assume that G is not a p-group and hence $n_{i} \neq p^{k}$ for some $i \leq r$. Let ℓ be an integer defined as

$$
\ell= \begin{cases}(h-m+1) p^{k}+\mathbf{s}_{\leq p^{k}}\left(\mathbb{Z}_{p^{k}}^{r}\right) & \text { if } h \geq m-1 \\ \mathbf{s}_{\leq p^{k}}\left(\mathbb{Z}_{p^{k}}^{r}\right) & \text { otherwise }\end{cases}
$$

Let $\Phi: G \longrightarrow \mathbb{Z}_{p^{k}}^{r}$ be the canonical homomorphism. Let $S=a_{1} a_{2} \cdots a_{\ell}$ be a sequence of elements of G of length ℓ.

Assume that $h<m-1$. Then, clearly,

$$
h \mathrm{D}\left(\mathbb{Z}_{p^{k}}^{r}\right)<(m-1) \mathrm{D}\left(\mathbb{Z}_{p^{k}}^{r}\right) \leq \mathbf{s}_{\leq p^{k}}\left(\mathbb{Z}_{p^{k}}^{r}\right)
$$

Therefore, there are pairwise disjoint subsets $A_{1}, A_{2}, \ldots, A_{h}$ of $\{1,2, \ldots, \ell\}$ such that

$$
\sum_{i \in A_{j}} \Phi\left(a_{i}\right)=\Phi\left(\sum_{i \in A_{j}} a_{i}\right)=0
$$

for each $j=1,2, \ldots, h$. That is, for each j, we have $\sum_{i \in A_{j}} a_{i} \in \operatorname{Ker}(\Phi)$. Since $h=\mathrm{D}(\operatorname{Ker}(\Phi))$, there exists a subset $A \subset\{1,2, \ldots, h\}$ such that

$$
\sum_{j \in A} \sum_{f \in A_{i_{j}}} a_{f}=0 \quad \text { in } G .
$$

Now, we assume that $h \geq m-1$. Since $\ell \geq \mathrm{s}_{\leq p^{k}}\left(\mathbb{Z}_{p^{k}}^{r}\right)$, then, we can extract $h-m+1$ disjoint zero-sum subsequences $\Phi\left(B_{1}\right), \Phi\left(B_{2}\right), \ldots, \Phi\left(B_{h-m+1}\right)$ of $\Phi(S)$ such that the length of each B_{i} is at most p^{k}. The length of the remaining sequence S^{\prime}, which is obtained by deleting all the elements of $\Phi\left(B_{i}\right)$ from $\Phi(S)$, is at least

$$
\ell-(h-m+1) p^{k} \geq \mathbf{s}_{\leq p^{k}}\left(\mathbb{Z}_{p^{k}}^{r}\right) \geq(m-1) \mathrm{D}\left(\mathbb{Z}_{p^{k}}^{r}\right) .
$$

Therefore, there are $m-1$ disjoint zero-sum subsequences say $\Phi\left(B_{h-m+2}\right), \ldots$, $\Phi\left(B_{h}\right)$ of $\Phi(S)$. Note that the sum of the elements of B_{i} lies in the kernel of Φ which is a proper subgroup H with $\mathrm{D}(H)=h$, which proves the proposition.

Corollary 2.2. Let $p \geq 3$ be a prime number, and let n_{1}, n_{2} and n_{3} be integers such that $p^{k}\left|n_{1}\right| n_{2} \mid n_{3}$. Let

$$
h:= \begin{cases}\mathrm{D}\left(\mathbb{Z}_{\frac{n_{1}}{p^{k}}} \oplus \mathbb{Z}_{\frac{n_{2}}{p^{k}}} \oplus \mathbb{Z}_{\frac{n_{3}}{p^{k}}}\right) & \text { if } n_{1} \neq p^{k}, \\ \mathrm{D}\left(\mathbb{Z}_{\frac{n_{2}}{p^{k}}}^{p^{k}} \oplus \mathbb{Z}_{\frac{n_{3}}{p^{k}}}\right) & \text { if } n_{1}=p^{k}, n_{2} \neq p^{k}, \\ \mathrm{D}\left(\mathbb{Z}_{\frac{n_{3}}{p^{k}}}\right) & \text { if } n_{1}=n_{2}=p^{k}, n_{3} \neq p^{k} .\end{cases}
$$

Then, we have

$$
\mathrm{D}\left(\mathbb{Z}_{n_{1}} \oplus \mathbb{Z}_{n_{2}} \oplus \mathbb{Z}_{n_{3}}\right) \leq(h-3) p^{k}+\mathrm{s}_{\leq p^{k}}\left(\mathbb{Z}_{p^{k}}^{3}\right)
$$

Proof. By the result (due to Edel et al. [4]), we know that $\mathrm{s}_{\leq n}\left(\mathbb{Z}_{n}^{3}\right) \geq 8 n-7$, for all odd integer n. Therefore, the integer m is ≥ 3 in Proposition 2.1. Since $8 p^{k}-7-2 \mathrm{D}\left(\mathbb{Z}_{p^{k}}^{3}\right)=8 p^{k}-7-2\left(3 p^{k}-2\right)=2 p^{k}-3 \geq p^{k}$, by Proposition 2.1, we get the result.

Proposition 2.3. Let G be a non-cyclic abelian group. If H be any subgroup of G, then

$$
\mathrm{D}(G) \leq(\mathrm{D}(G / H)-1) \mathrm{D}(H)+2
$$

Proof. Clearly, for any integer $m>1$, we have

$$
\mathrm{D}(G) \leq \mathbf{s}_{\leq m}(G / H)+m(\mathrm{D}(H)-1) .
$$

By choosing $m=\mathrm{D}(G / H)-1$ and by noting that $\mathrm{s}_{\leq(\mathrm{D}(G)-1)}(G)=\mathrm{D}(G)+1$, we get the desired result.

3. Proof of Theorems.

Proof of Theorem 1.1. Given that G is a finite abelian group of rank r. We prove the upper bound by the induction on r. When $r \leq 2$, the result of Olson [17] implies that

$$
\mathrm{D}(G)=\mathrm{D}^{*}(G) \leq n_{2}+n_{1}
$$

and hence the theorem follows. So, we assume the result for some $r=k \geq 3$ and we shall prove the result for $r=k+1$.
If $n_{1}=n_{2}=\cdots=n_{r}$, then, by (1.5),

$$
\mathrm{D}(G) \leq \mathbf{s}_{\leq \exp (G)}(G)=\mathbf{s}_{\leq n_{1}}\left(\mathbb{Z}_{n_{1}}^{r}\right) \leq(c(r)-1) n_{1}+1
$$

Therefore, the result is true. Hence we assume that $n_{r}>n_{1}$. Let

$$
H=\mathbb{Z}_{n_{1}}^{r} \text { and } K \cong G / H \cong \mathbb{Z}_{\frac{n_{r}}{n_{1}}} \oplus \cdots \oplus \mathbb{Z}_{\frac{n_{2}}{n_{1}}}
$$

Let $\varphi: G \rightarrow H$ be a canonical homomorphism from G onto H. Then, $\operatorname{Ker}(\varphi)=$ K. Let S be a sequence of elements of G of length

$$
|S|=n_{r}+n_{r-1}+(c(3)-1) n_{r-2}+\cdots+(c(r)-1) n_{1}+1
$$

Since $\mathbf{s}_{\leq n_{1}}(H) \leq(c(r)-1) n_{1}+1$, we can find disjoint subsequences $S_{1}, S_{2}, \ldots, S_{\ell}$ of S, where

$$
\ell=\frac{n_{r}}{n_{1}}+\frac{n_{r-1}}{n_{1}}+(c(3)-1) \frac{n_{r-2}}{n_{1}}+\cdots+(c(r-1)-1) \frac{n_{2}}{n_{1}}+1
$$

such that $1 \leq\left|S_{i}\right| \leq n_{1}$ for every $i=1,2, \ldots, \ell$ and $\sigma\left(\varphi\left(S_{i}\right)\right):=\varphi\left(\sum_{a \in S_{i}} a\right)$ $=0$ in H. Therefore, $\sigma\left(S_{1}\right), \sigma\left(S_{2}\right), \ldots, \sigma\left(S_{\ell}\right) \in \operatorname{Ker}(\varphi)=K$. Since the rank of K is $r-1$, by the induction hypothesis, we have

$$
\mathrm{D}(K) \leq \frac{n_{r}}{n_{1}}+\frac{n_{r-1}}{n_{1}}+(c(3)-1) \frac{n_{r-2}}{n_{1}}+\cdots+(c(r-1)-1) \frac{n_{2}}{n_{1}}+1=\ell
$$

and hence, we can find a subsequence T of the sequence $\sigma\left(S_{1}\right) \sigma\left(S_{2}\right) \cdots \sigma\left(S_{\ell}\right)$ whose sum is zero in K. That in turn produces a zero-sum subsequence of S in G. Therefore the result follows.

Proof of Theorem 1.2. We shall prove this result by induction on $\omega(n)$, the number of distinct prime factors of n. Let $\omega(n)=1$. Since $n=p^{\alpha}$, by Olson's Theorem the result is true. We shall assume that the result is true for integers m satisfying $\omega(m)<k$. Let $\omega(n)=k$ and $n=p^{\alpha} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$, where $\alpha, \alpha_{i}>0$ are integers.

Set $H=\mathbb{Z}_{n / p^{\alpha}}^{r}$. Since p^{α} divides n, clearly H is a subgroup of \mathbb{Z}_{n}^{r}. Therefore we have $G / H=\mathbb{Z}_{p^{\alpha}}^{r}$. Hence by Proposition 2.3, we get,

$$
\begin{aligned}
\mathrm{D}\left(\mathbb{Z}_{n}^{r}\right) & \leq\left(\mathrm{D}\left(\mathbb{Z}_{p^{\alpha}}^{r}\right)-1\right) \mathrm{D}(H)+2=r\left(p^{\alpha}-1\right) \mathrm{D}(H)+2 \\
& \leq r\left(p^{\alpha}-1\right)\left(r^{\omega\left(n / p^{\alpha}\right)}\left(\frac{n}{p^{\alpha}}-1\right)+1\right)+2 \\
& =r^{\omega(n)} \frac{\left(p^{\alpha}-1\right)}{p^{\alpha}} n-\left(p^{\alpha}-1\right)\left(r^{\omega(n)}-r\right)+2 .
\end{aligned}
$$

To prove the theorem, it is enough to prove that

$$
\begin{equation*}
r^{\omega(n)} \frac{\left(p^{\alpha}-1\right)}{p^{\alpha}} n-\left(p^{\alpha}-1\right)\left(r^{\omega(n)}-r\right)+2 \leq r^{\omega(n)}(n-1)+1 \tag{3.1}
\end{equation*}
$$

Since

$$
\frac{r^{\omega(n)} n}{2}>r^{\omega(n)}-\left(r^{\omega(n)}-r\right)
$$

by a little calculation (3.1) follows. Hence the theorem.
Proof of Theorem 1.3. Note that $\mathbf{s}_{\leq 3}\left(\mathbb{Z}_{3}^{3}\right)=17=8 \times 3-7$ and if $f(p)=$ $\mathrm{s}_{\leq p}\left(\mathbb{Z}_{p}^{3}\right)=8 p-7$, then $f\left(p^{\alpha}\right) \leq 8 p^{\alpha}-7$. To show this, it is enough to prove that

$$
f\left(p^{\alpha}\right) \leq\left(f\left(p^{\alpha-1}\right)-1\right) p+f(p)
$$

which follows easily by arguing similar to the proof of Proposition 2.1 and hence we omit the proof here.

Put $p=3$ in $f\left(p^{\alpha}\right)$. We get $f\left(3^{\alpha}\right) \leq 8 \times 3^{\alpha}-7$. But we know that $\mathrm{s}_{\leq n}\left(\mathbb{Z}_{n}^{3}\right) \geq$ $8 n-7$, for all odd integers n (see [4]). So $f\left(3^{\alpha}\right) \geq 8 \times 3^{\alpha}-7$ and hence we get $f\left(3^{\alpha}\right)=8 \times 3^{\alpha}-7$. Now, apply Corollary 2.2 , by putting $n=3^{\alpha} p^{\ell}$ for all primes $p>3$ to get

$$
\mathrm{D}\left(\mathbb{Z}_{n}^{3}\right) \leq\left(3 p^{\ell}-5\right) 3^{\alpha}+8 \times 3^{\alpha}-7 \leq 3 n+3^{\alpha+1}-7
$$

Hence the theorem.
The proof of Theorem 1.5 is similar to the proof of Theorem 1.1 and hence we omit the proof here.

Proof of Theorem 1.6. To prove $c(n, r) \leq \mathrm{D}\left(\mathbb{Z}_{n}^{r}\right)$, let $\ell=\mathrm{D}\left(\mathbb{Z}_{n}^{r}\right)$ and let $U=$ $m_{1} m_{2} \cdots m_{\ell}$, be a sequence of smooth numbers with respect to F of length ℓ. Therefore, let $m_{i}=p_{1}^{e_{i 1}} p_{2}^{e_{i 2}} \cdots p_{r}^{e_{i r}}$, for each $i=1,2, \ldots, \ell$, where $e_{i j} \geq 0$ are integers. We associate each m_{i} to $a_{i} \in \mathbb{Z}_{n}^{r}$ as follows;

$$
m_{i} \mapsto a_{i}:=\left(e_{i 1}, e_{i 2}, \ldots, e_{i r}\right) \quad(\bmod n)
$$

for all $i=1,2, \ldots, \ell$. Thus, we get a sequence $S=a_{1} a_{2} \cdots a_{\ell}$ of elements of \mathbb{Z}_{n}^{r} of length $\ell=\mathrm{D}\left(\mathbb{Z}_{n}^{r}\right)$. Therefore, there exists a non-empty zero-sum subsequence T^{\prime} of S in \mathbb{Z}_{n}^{r}, and let $T^{\prime}=a_{j_{1}} a_{j_{2}} \cdots a_{j_{t}}$. That is,

$$
\begin{equation*}
\sum_{i=1}^{t} e_{j_{i} k} \equiv 0 \quad(\bmod n), \quad \text { for all } k=1,2, \ldots, r \tag{3.2}
\end{equation*}
$$

Consider the subsequence T of U corresponding to T^{\prime}. Clearly, $T=m_{j_{1}} m_{j_{2}} \ldots$ $m_{j_{t}}$, and by Eq. (3.2), we get

$$
\prod_{m \in T} m=\prod_{k=1}^{r} p_{k}^{\sum_{i=1}^{t} e_{j_{i} k}}=\left(\prod_{k=1}^{r} p_{k}^{l_{k}}\right)^{n}
$$

for some integers $l_{k} \geq 0$, for all $k=1,2, \ldots, r$.
To prove $\mathrm{D}\left(\mathbb{Z}_{n}^{r}\right) \leq c(n, r)$, let $\ell=c(n, r)$ and $S=a_{1} a_{2} \cdots a_{\ell}$ be a sequence of elements of \mathbb{Z}_{n}^{r} of length ℓ, where for each $i=1,2, \ldots, \ell$ we have

$$
a_{i}=\left(e_{i 1}, e_{i 2}, \ldots, e_{i r}\right) \in \mathbb{Z}_{n}^{r}
$$

Let

$$
m_{i}=p_{1}^{e_{i 1}} p_{2}^{e_{i 2}} \cdots p_{r}^{e_{i r}}
$$

for all $i=1,2, \ldots, \ell$. Clearly, the sequence $U=m_{1} m_{2} \cdots m_{\ell}$ of integers is a sequence of smooth numbers with respect to F. Since $\ell=c(n, r)$, there exists a non-empty subsequence T of U such that

$$
\prod_{a \in T} a=b^{n}, \quad \text { where } b=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}}
$$

for some integers $k_{i} \geq 0$. If we let $T=m_{j_{1}} m_{j_{2}} \cdots m_{j_{t}}$, then the subsequence T^{\prime} of S corresponding to T will sum upto the identity in \mathbb{Z}_{n}^{r}. Hence $\mathrm{D}\left(\mathbb{Z}_{n}^{r}\right) \leq$ $c(n, r)$ and the theorem follows.

Acknowledgements. We would like to thank the referee for the valuable comments and suggestions which improved the presentation of the paper considerably.

References

[1] W. R. Alford, A. Granville, and C. Pomerance, There are infinitely many Carmichael numbers, Annals of Math. 140 (1994), 703-722.
[2] N. Alon and M. Dubiner, A lattice point problem and additive number theory, Combinatorica, 15 (1995), 301-309.
[3] R. Balasubramanian and G. Bhowmik, Upper bounds for the Davenport constant, Combinatorial number theory, 61-69, de Gruyter, Berlin, 2007.
[4] Y. Edel, et al. Zero-sum problems in finite abelian groups and affine caps, Q. J. Math., 58 (2007), 159-186.
[5] P. Erdős, A. Ginzburg, and A. Ziv, Theorem in the additive number theory, Bull. Res. Council Israel, 10 F(1961), 41-43.
[6] P. van Emde Boas and D. Kruswjik, A combinatorial problem on finite abelian group III, Z. W. 1969-008 (Math. Centrum, Amsterdam).
[7] Y. Fan, W. Gao, and Q. Zhong, On the Erdős-Ginzburg-Ziv constant of finite abelian groups of high rank, J. Number Theory 131 (2011), 1864-1874.
[8] M. Freeze and W. A. Schmid, Remarks on a generalization of the Davenport constant, Discrete Math. 310 (2010), 3373-3389.
[9] W. D. GaO, On Davenport's constant of finite abelian groups with rank three, Discrete Math., 222 (2000), 111-124.
[10] W. D. Gao and A. Geroldinger, Zero-sum problems in finite abelian groups; a survey, Expo. Math. 24 (2006), 337-369.
[11] A. Geroldinger and F. Halter-Koch, Non-Unique Factorizations. Algebraic, Combinatorial and Analytic Theory, Pure and Applied Mathematics, Vol. 278, Chapman \& Hall/CRC, 2006.
[12] A. Geroldinger, M. Liebmann, and A. Philipp, On the Davenport constant and on the structure of extremal sequences, Period. Math. Hung.
[13] A. Geroldinger and R. Schneider, On Davenport's constant, J. Combin. Theory, Ser. A, 61 (1992), 147-152.
[14] B. Girard, Inverse zero-sum problems and algebraic invariants, Acta Arith., 135 (2008), 231-246.
[15] R. Meshulam, An uncertainty inequality and zero subsums, Discrete Math., 84 (1990), 197-200.
[16] W. Narkiewicz and J. ŚLiwa, Finite abelian groups and factorization prob-lems-II, Colloq. Math., 46 (1982), 115-122.
[17] J. E. Olson, A combinatorial problem in finite abelian groups, I and II, J. Number Theory, 1 (1969), 8-10 and 195-199.
[18] C. Pomerance A tale of two sieves. Notices Amer. Math. Soc. 43 (1996), 14731485.
[19] P. Rath, K. Srilakshmi, and R. Thangadurai, On Davenport's constant, Int. J. Number Theory, 4 (2008), 107-115.
[20] C. Reiher, On Kemnitz' conjecture concerning lattice-points in the plane., Ramanujan J. 13 (2007), 333-337.
[21] W. Schmid, The inverse problem associated to the Davenport constant for $C_{2} \oplus$ $C_{2} \oplus C_{2 n}$, and applications to the arithmetical characterization of class groups, Electron. J. Comb., 18, Research Paper 33, (2011).
[22] D. Smertnig, On the Davenport constant and group algebras, Colloq. Math. 121 (2010), 179-193.
M. N. Chintamani and B. K. Moriya

The Institute of Mathematical Sciences, 4th Cross Street, CIT Campus,
Taramani,
Chennai 600 113,
India
e-mail: mchintamani@imsc.res.in
B. K. Moriya
e-mail: bhavinkm@imsc.res.in
W. D. GaO

Center for Combinatorics,
Nankai University,
Tianjin 300071,
China
e-mail: gao@cfc.nankai.edu.cn
P. PAUL
C.R. Rao Advanced Institute of Mathematics,

Statistics and Computer Science (AIMSCS),
University of Hyderabad Campus,
Central University Post Office,
Hyderabad 500 046,
AP, India
e-mail: prabal.paul@gmail.com
R. Thangadurai

Harish-Chandra Research Institute,
Chhatnag Road,
Jhunsi, Allahabad 211019,
India
e-mail: thanga@hri.res.in

Received: 6 June 2011
Revised: 13 October 2011

