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Abstract. Let G be a finite abelian group (written additively) of rank
r with invariants n1, n2, . . . , nr, where nr is the exponent of G. In this
paper, we prove an upper bound for the Davenport constant D(G) of G
as follows; D(G) ≤ nr + nr−1 + (c(3) − 1)nr−2 + (c(4) − 1)nr−3 + · · · +
(c(r)− 1)n1 +1, where c(i) is the Alon–Dubiner constant, which depends
only on the rank of the group Z

i
nr

. Also, we shall give an application of
Davenport’s constant to smooth numbers related to the Quadratic sieve.
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1. Introduction. Let G be a finite abelian group written additively. By the
structure theorem, we know that G ∼= Zn1 ⊕ Zn2 ⊕ · · · ⊕ Znr

where the ni’s
are integers satisfying 1 < n1|n2| · · · |nr, and nr is the exponent (denoted by
exp(G)) of G, and r is the rank of G. Also, n1, n2, . . . , nr are called the invari-
ants of G. Let

D∗(G) = 1 +
r∑

i=1

(ni − 1).

The Davenport constant for the finite abelian group G, denoted by D(G), is
defined to be the least positive integer t such that any sequence of t elements
of G contains a non-empty subsequence whose sum is zero in G. Such a sub-
sequence is called a zero-sum subsequence.

It is trivial to see that D∗(G) ≤ D(G) ≤ |G| and the equality holds if and
only if G = Zn, the cyclic group of order n. Olson [17] proved that D(G) =
D∗(G) for all finite abelian groups of rank 2 and for all p-groups. It is also
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known that D(G) > D∗(G) for infinitely many groups (See for instance, [13]).
The best known upper bound is due to Emde Boas and Kruswjik [6, Theorem
7.1, p. 19], Meshulam [15], Alford et al. [1] and Rath et al. [19] which is as
follows

D(G) ≤ exp(G)
(

1 + log
|G|

exp(G)

)
. (1.1)

We do have the following conjectures.

Conjecture 1. (1) D(G) = D∗(G) for all G with rank r = 3 or G = Z
r
n (See

[9]);
(2) D(G) ≤∑r

i=1 ni (See for instance, [16]).

Concerning Conjecture 1(1), we refer to the most recent articles by Schmid
[21, Section 4.1], Girard [14, Proposition 2.1] and Geroldinger et al. [12].

We shall follow the notations as given in [8] (One may also refer to [11,22]).
For a non-empty subset I of natural numbers and a finite abelian group G, let
sI(G) denote the smallest l ∈ N ∪ {∞} such that every sequence S over G of
length |S| ≥ l has a zero-sum subsequence of length in I.

When I = N, then we see that sN(G) = D(G). When I = {1, 2, . . . ,m},
we denote sI(G) by s≤m(G). Also, when I = {exp(G)}, then the constant
s{exp(G)}(G) is nothing but the well-known constant s(G) in the literature.
Clearly,

D(G) ≤ s≤exp(G)(G) ≤ s(G) − exp(G) + 1. (1.2)

Alon and Dubiner [2] proved that s(Zr
n) ≤ cn for some positive constant c

which depends only on r. We define the smallest positive real number c(r)
depending only on r such that

s(Zr
n) ≤ c(r)n for all n ≥ 2. (1.3)

Then, we have c(1) ≤ 2 (due to Erdős et al. [5]), c(2) ≤ 4 (due to Reiher [20])
and c(r) can be defined inductively as,

c(r) ≤ 256(r log2 r + 5)c(r − 1) + (r + 1), (1.4)

for all r ≥ 3. In particular, c(3) ≤ 9994. We call c(r) as Alon–Dubiner con-
stants. From (1.2) and (1.3), we get

s≤n(Zr
n) ≤ s(Zr

n) − n + 1 ≤ (c(r) − 1)n + 1. (1.5)

Conjecture 2. (Gao [10]) We have, c(3) ≤ 9.

In this article, we prove the following main theorem.

Theorem 1.1. Let G be any finite abelian group of rank r with invariants
n1, n2, . . . , nr. Then

D(G) ≤ nr + nr−1 + (c(3) − 1)nr−2 + (c(4) − 1)nr−3 + · · · + (c(r) − 1)n1 + 1.

Theorem 1.1 is the extension of the result of Balasubramanian and Bhowmik
[3]. Also Theorem 1.1 is towards the Conjecture 1(2).
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Theorem 1.2. Let n ≥ 2 be any integer, and let ω(n) denote the number of
distinct prime factors of n. Then

D(Zr
n) ≤ rω(n)(n − 1) + 1.

Theorem 1.3. Let n = 3αp� be any integer such that p ≥ 3 be any prime
number. Then

3n − 2 ≤ D(Z3
n) ≤ 3n + 3α+1 − 7.

In particular, when α = 1, then we get,

3n − 2 ≤ D(Z3
n) ≤ 3n + 2.

Remark 1.4. (a) Let n ≥ exp(
∏

�|ω(n),� �=1 Φ�(r)) where Φk(X) denotes the
kth cyclotomic polynomial. Then Theorem 1.2 improves the bound (1.1).
In particular, for all integers n = p�qm ≥ exp(r + 1) where p 	= q are
primes, Theorem 1.2 does improve the known bound (1.1).

(b) When r = 3 and n = qkp� for any primes p 	= q in Theorem 1.2, we get
D(Z3

n) ≤ 9n−8. Theorem 1.3 improves this result, when n = 3αp�, where
p 	= 3.

Along the same lines of the proof of Theorem 1.1, we can prove the following
Theorem for s(G) and s≤exp(G)(G).

Theorem 1.5. Let G be a finite abelian group of rank r. Then

s(G) ≤ c(1)nr + c(2)nr−1 + · · · + c(r)n1

and

s≤exp(G)(G) ≤ (c(1) − 1)nr + (c(2) − 1)nr−1 + · · · + (c(r) − 1)n1 + 1.

More recently, Fan et al. [7] have focused on s(Zr
n) for higher ranks.

Given integers r, n ≥ 2. A subset F of N is called a factor base if F =
{p1, p2, . . . , pr}, where the pi’s are distinct prime numbers. An integer N > 1
is said to be smooth with respect to F if all the prime divisors of N are the
members of F .

In Quadratic sieve [18], to factor a given integer N with a factor base F , one
needs to know how many smooth integers are needed to produce two squares
x2 and y2 such that x2 ≡ y2 (mod N). It is well-known that if we can find
|F | + 1 = r + 1 number of smooth integers with respect to factor base F , then
we can find two squares which are equivalent modulo N . More generally, for
any given integer n ≥ 2, if we want to produce two nth powers of integers
which are equivalent modulo N , how many smooth numbers with respect to
F we need to have?

By c(n, r), we denote the least positive integer t such that for any sequence
U of smooth integers with respect to F , of cardinality at least t has a non-
empty subsequence T such that the product of all the terms of T is an nth
power of some integer. It is well-known that c(2, r) = r + 1. We prove the
following theorem,

Theorem 1.6. For all integers n ≥ 2 and r ≥ 2, we have c(n, r) = D(Zr
n).
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Remark 1.7. Since

D(Zr
p�) = D∗(Zr

p�) = 1 + r(p� − 1)

for any prime p and any integer � ≥ 1, we see that

c(p�, r) = 1 + r(p� − 1).

2. Preliminaries.

Proposition 2.1. Let p be a prime number, and let n1, n2, . . . , nr > 1 be integers
such that pk|n1|n2| · · · |nr. Let m > 1 be the unique integer such that

(m − 1)D(Zr
pk) ≤ s≤pk(Zr

pk) < mD(Zr
pk).

Let

h :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

D(Z n1
pk

⊕ · · · ⊕ Z nr
pk

) if n1 	= pk,

D(Z n2
pk

⊕ · · · ⊕ Z nr
pk

) if n1 = pk, n2 	= pk,

· · · · · ·
D(Z nr

pk
) if n1 = n2 = · · · = nr−1 = pk, nr 	= pk.

Then we have,

D(Zn1 ⊕ · · · ⊕ Znr
) ≤

{
(h − m + 1)pk + s≤pk(Zr

pk) if h ≥ m − 1,

s≤pk(Zr
pk) otherwise.

Furthermore, if s≤pk(Zr
pk) − (m − 1)D(Zr

pk) ≥ pk, then we have

D(Zn1 ⊕ · · · ⊕ Znr
) ≤ (h − m)pk + s≤pk(Zr

pk),

provided h ≥ m − 1.

Proof. If G ∼= Zn1 ⊕· · ·⊕Znr
is a p-group, then it is known that D(G) = D∗(G).

So, we assume that G is not a p-group and hence ni 	= pk for some i ≤ r. Let
� be an integer defined as

� =
{

(h − m + 1)pk + s≤pk(Zr
pk) if h ≥ m − 1,

s≤pk(Zr
pk) otherwise.

Let Φ : G −→ Z
r
pk be the canonical homomorphism. Let S = a1a2 · · · a� be a

sequence of elements of G of length �.
Assume that h < m − 1. Then, clearly,

hD(Zr
pk) < (m − 1)D(Zr

pk) ≤ s≤pk(Zr
pk).

Therefore, there are pairwise disjoint subsets A1, A2, . . . , Ah of {1, 2, . . . , �}
such that

∑

i∈Aj

Φ(ai) = Φ

⎛

⎝
∑

i∈Aj

ai

⎞

⎠ = 0,
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for each j = 1, 2, . . . , h. That is, for each j, we have
∑

i∈Aj
ai ∈ Ker(Φ). Since

h = D(Ker(Φ)), there exists a subset A ⊂ {1, 2, . . . , h} such that
∑

j∈A

∑

f∈Aij

af = 0 in G.

Now, we assume that h ≥ m − 1. Since � ≥ s≤pk(Zr
pk), then, we can extract

h − m + 1 disjoint zero-sum subsequences Φ(B1),Φ(B2), . . . ,Φ(Bh−m+1) of
Φ(S) such that the length of each Bi is at most pk. The length of the remain-
ing sequence S′, which is obtained by deleting all the elements of Φ(Bi) from
Φ(S), is at least

� − (h − m + 1)pk ≥ s≤pk(Zr
pk) ≥ (m − 1)D(Zr

pk).

Therefore, there are m−1 disjoint zero-sum subsequences say Φ(Bh−m+2), . . . ,
Φ(Bh) of Φ(S). Note that the sum of the elements of Bi lies in the kernel of
Φ which is a proper subgroup H with D(H) = h, which proves the proposi-
tion. �

Corollary 2.2. Let p ≥ 3 be a prime number, and let n1, n2 and n3 be integers
such that pk|n1|n2|n3. Let

h :=

⎧
⎪⎨

⎪⎩

D(Z n1
pk

⊕ Z n2
pk

⊕ Z n3
pk

) if n1 	= pk,

D(Z n2
pk

⊕ Z n3
pk

) if n1 = pk, n2 	= pk,

D(Z n3
pk

) if n1 = n2 = pk, n3 	= pk.

Then, we have

D(Zn1 ⊕ Zn2 ⊕ Zn3) ≤ (h − 3)pk + s≤pk(Z3
pk).

Proof. By the result (due to Edel et al. [4]), we know that s≤n(Z3
n) ≥ 8n − 7,

for all odd integer n. Therefore, the integer m is ≥ 3 in Proposition 2.1. Since
8pk − 7 − 2D(Z3

pk) = 8pk − 7 − 2(3pk − 2) = 2pk − 3 ≥ pk, by Proposition 2.1,
we get the result. �

Proposition 2.3. Let G be a non-cyclic abelian group. If H be any subgroup of
G, then

D(G) ≤ (D(G/H) − 1)D(H) + 2.

Proof. Clearly, for any integer m > 1, we have

D(G) ≤ s≤m(G/H) + m(D(H) − 1).

By choosing m = D(G/H) − 1 and by noting that s≤(D(G)−1)(G) = D(G) + 1,
we get the desired result. �
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3. Proof of Theorems.

Proof of Theorem 1.1. Given that G is a finite abelian group of rank r. We
prove the upper bound by the induction on r. When r ≤ 2, the result of Olson
[17] implies that

D(G) = D∗(G) ≤ n2 + n1,

and hence the theorem follows. So, we assume the result for some r = k ≥ 3
and we shall prove the result for r = k + 1.
If n1 = n2 = · · · = nr, then, by (1.5),

D(G) ≤ s≤exp(G)(G) = s≤n1(Z
r
n1

) ≤ (c(r) − 1)n1 + 1.

Therefore, the result is true. Hence we assume that nr > n1. Let

H = Z
r
n1

and K ∼= G/H ∼= Z nr
n1

⊕ · · · ⊕ Z n2
n1

.

Let ϕ : G → H be a canonical homomorphism from G onto H. Then, Ker(ϕ) =
K. Let S be a sequence of elements of G of length

|S| = nr + nr−1 + (c(3) − 1)nr−2 + · · · + (c(r) − 1)n1 + 1.

Since s≤n1(H) ≤ (c(r) − 1)n1 + 1, we can find disjoint subsequences
S1, S2, . . . , S� of S, where

� =
nr

n1
+

nr−1

n1
+ (c(3) − 1)

nr−2

n1
+ · · · + (c(r − 1) − 1)

n2

n1
+ 1,

such that 1 ≤ |Si| ≤ n1 for every i = 1, 2, . . . , � and σ(ϕ(Si)) := ϕ(
∑

a∈Si
a)

= 0 in H. Therefore, σ(S1), σ(S2), . . . , σ(S�) ∈ Ker(ϕ) = K. Since the rank
of K is r − 1, by the induction hypothesis, we have

D(K) ≤ nr

n1
+

nr−1

n1
+ (c(3) − 1)

nr−2

n1
+ · · · + (c(r − 1) − 1)

n2

n1
+ 1 = �

and hence, we can find a subsequence T of the sequence σ(S1)σ(S2) · · · σ(S�)
whose sum is zero in K. That in turn produces a zero-sum subsequence of S
in G. Therefore the result follows. �

Proof of Theorem 1.2. We shall prove this result by induction on ω(n), the
number of distinct prime factors of n. Let ω(n) = 1. Since n = pα, by Olson’s
Theorem the result is true. We shall assume that the result is true for integers
m satisfying ω(m) < k. Let ω(n) = k and n = pαpα2

2 · · · pαk

k , where α, αi > 0
are integers.

Set H = Z
r
n/pα . Since pα divides n, clearly H is a subgroup of Z

r
n. Therefore

we have G/H = Z
r
pα . Hence by Proposition 2.3, we get,

D(Zr
n) ≤ (D(Zr

pα) − 1)D(H) + 2 = r(pα − 1)D(H) + 2

≤ r(pα − 1)
(

rω(n/pα)

(
n

pα
− 1
)

+ 1
)

+ 2

= rω(n) (pα − 1)
pα

n − (pα − 1)(rω(n) − r) + 2.
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To prove the theorem, it is enough to prove that

rω(n) (p
α − 1)
pα

n − (pα − 1)(rω(n) − r) + 2 ≤ rω(n)(n − 1) + 1. (3.1)

Since
rω(n)n

2
> rω(n) − (rω(n) − r),

by a little calculation (3.1) follows. Hence the theorem. �

Proof of Theorem 1.3. Note that s≤3(Z3
3) = 17 = 8 × 3 − 7 and if f(p) =

s≤p(Z3
p) = 8p − 7, then f(pα) ≤ 8pα − 7. To show this, it is enough to prove

that

f(pα) ≤ (f(pα−1) − 1)p + f(p),

which follows easily by arguing similar to the proof of Proposition 2.1 and
hence we omit the proof here.

Put p = 3 in f(pα). We get f(3α) ≤ 8×3α−7. But we know that s≤n(Z3
n) ≥

8n − 7, for all odd integers n (see [4]). So f(3α) ≥ 8 × 3α − 7 and hence we
get f(3α) = 8 × 3α − 7. Now, apply Corollary 2.2, by putting n = 3αp� for all
primes p > 3 to get

D(Z3
n) ≤ (3p� − 5)3α + 8 × 3α − 7 ≤ 3n + 3α+1 − 7.

Hence the theorem. �

The proof of Theorem 1.5 is similar to the proof of Theorem 1.1 and hence
we omit the proof here.

Proof of Theorem 1.6. To prove c(n, r) ≤ D(Zr
n), let � = D(Zr

n) and let U =
m1m2 · · · m�, be a sequence of smooth numbers with respect to F of length �.
Therefore, let mi = pei1

1 pei2
2 · · · peir

r , for each i = 1, 2, . . . , �, where eij ≥ 0 are
integers. We associate each mi to ai ∈ Z

r
n as follows;

mi 
→ ai := (ei1, ei2, . . . , eir) (mod n)

for all i = 1, 2, . . . , �. Thus, we get a sequence S = a1a2 · · · a� of elements of
Z

r
n of length � = D(Zr

n). Therefore, there exists a non-empty zero-sum subse-
quence T ′ of S in Z

r
n, and let T ′ = aj1aj2 · · · ajt

. That is,
t∑

i=1

ejik ≡ 0 (mod n), for all k = 1, 2, . . . , r. (3.2)

Consider the subsequence T of U corresponding to T ′. Clearly, T = mj1mj2 · · ·
mjt

, and by Eq. (3.2), we get

∏

m∈T

m =
r∏

k=1

p
∑t

i=1 ejik

k =

(
r∏

k=1

plk
k

)n

,

for some integers lk ≥ 0, for all k = 1, 2, . . . , r.
To prove D(Zr

n) ≤ c(n, r), let � = c(n, r) and S = a1a2 · · · a� be a sequence
of elements of Z

r
n of length �, where for each i = 1, 2, . . . , � we have
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ai = (ei1, ei2, . . . , eir) ∈ Z
r
n.

Let

mi = pei1
1 pei2

2 · · · peir
r ,

for all i = 1, 2, . . . , �. Clearly, the sequence U = m1m2 · · · m� of integers is a
sequence of smooth numbers with respect to F . Since � = c(n, r), there exists
a non-empty subsequence T of U such that

∏

a∈T

a = bn, where b = pk1
1 pk2

2 · · · pkr
r ,

for some integers ki ≥ 0. If we let T = mj1mj2 · · · mjt
, then the subsequence

T ′ of S corresponding to T will sum upto the identity in Z
r
n. Hence D(Zr

n) ≤
c(n, r) and the theorem follows. �
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