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The generalized connectivity of a graph, which was introduced by Chartrand et al. in 1984, is a generalization
of the concept of vertex connectivity. Let S be a nonempty set of vertices of G, a collection {T1, T2, . . . , Tr} of
trees in G is said to be internally disjoint trees connecting S if E(Ti) ∩ E(Tj) = ∅ and V (Ti) ∩ V (Tj) = S

for any pair of distinct integers i, j, where 1 ≤ i, j ≤ r. For an integer k with 2 ≤ k ≤ n, the k-connectivity
κk(G) of G is the greatest positive integer r for which G contains at least r internally disjoint trees connecting S for
any set S of k vertices of G. Obviously, κ2(G) = κ(G) is the connectivity of G. Sabidussi’s Theorem showed that
κ(G2H) ≥ κ(G)+κ(H) for any two connected graphs G and H . In this paper, we prove that for any two connected
graphs G and H with κ3(G) ≥ κ3(H), if κ(G) > κ3(G), then κ3(G2H) ≥ κ3(G) + κ3(H); if κ(G) = κ3(G),
then κ3(G2H) ≥ κ3(G)+κ3(H)− 1. Our result could be seen as an extension of Sabidussi’s Theorem. Moreover,
all the bounds are sharp.

Keywords: Connectivity, Generalized connectivity, Internally disjoint path, Internally disjoint trees.

1 Introduction
All graphs in this paper are undirected, finite and simple. We refer to the book (1) for graph theoretic
notations and terminology not described here. For any graph G, the connectivity κ(G) of a graph G
is defined as min{|S| :S ⊆ V (G) and G − S is disconnected or trivial}. Whitney (14) showed an
equivalent definition of the connectivity of a graph. For each pair of vertices x, y of G, let κ(x, y) denote
the maximum number of internally disjoint paths connecting x and y in G. Then the connectivity κ(G)
of G is min{κ(x, y) : x, y are distinct vertices of G}.

The Cartesian product of graphs is an important method to construct a bigger graph, and plays a key
role in design and analysis of networks. In the past several decades, many authors have studied the (edge)
connectivity of the Cartesian product graphs. Specially, Sabidussi in (11) derived the following prefect
and well-known theorem on the connectivity of Cartesian product graphs.
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Theorem 1.1 (Sabidussi’s Theorem(11)) Let G and H be two connected graphs. Then κ(G2H) ≥
κ(G) + κ(H).

More information about the (edge) connectivity of the Cartesian product graphs can be found in (4; 5;
6; 11; 12; 15; 16).

The generalized connectivity of a graph G, which was introduced by Chartrand et al. in (2), is
a natural and nice generalization of the concept of vertex connectivity. A tree T is called an S-tree
({u1, u2, . . . , uk}-tree) if S ⊆ V (T ), where S = {u1, u2, . . . , uk} ∈ V (G). A family of trees T1, T2, . . . , Tr

are internally disjoint S-trees if E(Ti) ∩ E(Tj) = ∅ and V (Ti) ∩ V (Tj) = S for any pair of in-
tegers i and j, where 1 ≤ i < j ≤ r. We use κ(S) to denote the greatest number of internally
disjoint S-trees. For an integer k with 2 ≤ k ≤ n, the k-connectivity κk(G) of G is defined as
min{κ(S) |S ∈ V (G) and |S| = k}. Clearly, when |S| = 2, κ2(G) is nothing new but the connec-
tivity κ(G) of G, that is, κ2(G) = κ(G), which is the reason why one addresses κk(G) as the generalized
connectivity of G. By convention, for a connected graph G with less than k vertices, we set κk(G) = 1.
For any graph G, clearly, κ(G) ≥ 1 if and only if κ3(G) ≥ 1.

In addition to being a natural combinatorial measure, the generalized connectivity can be motivated
by its interesting interpretation in practice. For example, suppose that G represents a network. If one
considers to connect a pair of vertices of G, then a path is used to connect them. However, if one wants
to connect a set S of vertices of G with |S| ≥ 3, then a tree has to be used to connect them. This kind
of tree with minimum order for connecting a set of vertices is usually called a Steiner tree, and popularly
used in the physical design of VLSI, see (13). Usually, one wants to consider how tough a network can
be, for the connection of a set of vertices. Then, the number of totally independent ways to connect them
is a measure for this purpose. The generalized k-connectivity can serve for measuring the capability of a
network G to connect any k vertices in G.

In (8), Li and Li investigated the complexity of determining the generalized connectivity and derived
that for any fixed integer k ≥ 2, given a graph G and a subset S of V (G), deciding whether there
are k internally disjoint trees connecting S, namely deciding whether κ(S) ≥ k, is NP-complete. The
generalized connectivity of complete bipartite graphs was studied by Okamoto and Zhang in(10), and Li
and Li in (7).

Chartrand et al. (3) got the following result for complete graphs.

Theorem 1.2 (3) For every two integers n and k with 2 ≤ k ≤ n, κk(Kn) = n− dk/2e.
Theorem 1.3 (9) Let G be a connected graph with at least three vertices. If G has two adjacent vertices
with minimum degree δ, then κ3(G) ≤ δ − 1.

Theorem 1.4 (9) For any connected graph G, κ3(G) ≤ κ(G). Moreover, the upper bound is sharp.

In this paper, we study the 3-connectivity of Cartesian product graphs and get the following result.

Theorem 1.5 Let G and H be connected graphs such that κ3(G) ≥ κ3(H). The following assertions
holds:

(i) If κ(G) = κ3(G), then κ3(G2H) ≥ κ3(G) + κ3(H)− 1. Moreover, the bound is sharp;
(ii) If κ(G) > κ3(G), then κ3(G2H) ≥ κ3(G) + κ3(H). Moreover, the bound is sharp.

The paper is organized as follows. In Section 2, we recall the definition and properties of Cartesian
product graphs, and give some basic results about the internally disjoint S-trees. As usual, in order to get
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a general result, we begin with a special case. In Section 3, we study the 3-connectivity of the Cartesian
product of a graph G and a tree T . This section is a preparation of section 4. In Section 4, we study the
3-connectivity of the Cartesian product of two connected graphs G and H . Moreover, all the bounds are
sharp. Our result could be seen as an extension of Theorem 1.1.

2 Some basic results
We use Pn to denote a path with n vertices. A path P is called a u-v path, denoted by Pu,v , if u and v are
the endpoints of P .

Recall that the Cartesian product (also called the square product) of two graphs G and H , written as
G2H , is the graph with vertex set V (G) × V (H), in which two vertices (u, v) and (u′, v′) are adjacent
if and only if u = u′ and (v, v′) ∈ E(H), or v = v′ and (u, u′) ∈ E(G). Clearly, the Cartesian product
is commutative, that is, G2H ∼= H2G. The edge (u, v)(u′, v′) is called one-type edge if (u, u′) ∈ E(G)
and v = v′; similarly, the (u, v)(u′, v′) is called two-type edge if u = u′ and (v, v′) ∈ E(H).

Let G and H be two graphs with V (G) = {u1, u2, . . . , un} and V (H) = {v1, v2, . . . , vm}, respec-
tively. We use G(uj , vi) to denote the subgraph of G2H induced by the set {(uj , vi) | 1 ≤ j ≤ n}.
Similarly, we use H(uj , vi) to denote the subgraph of G2H induced by the set {(uj , vi) | 1 ≤ i ≤ m}.
It is easy to see G(uj1 , vi) = G(uj2 , vi) for different uj1 and uj2 of G. Thus, we can replace G(uj , vi)
by G(vi) for simplicity. Similarly, we can replace H(uj , vi) by H(uj). For any u, u′ ∈ V (G) and
v, v′ ∈ V (G), (u, v), (u, v′) ∈ V (H(u)), (u′, v), (u′, v′) ∈ V (H(u′)), (u, v), (u′, v) ∈ V (G(v)), and
(u, v), (u′, v) ∈ V (G(v)). We refer to (u, v′) and (u′, v) as the vertices corresponding to (u, v) in
G(v′) ( = G(u, v′) ) and H(u′) ( = H(u′, v) ), respectively. Similarly, we can define the path and tree
corresponding to some path and tree, respectively.

In order to show our main results, we need the following well-known theorem.

Theorem 2.1 (Menger’s Theorem (1)) Let G be a k-connected graph, and let x and y be a pair of
distinct vertices in G. Then there exist k internally disjoint paths P1, P2, . . . , Pk in G connecting x and
y.

Let G be a connected graph, and S = {x1, x2, x3} ⊆ V (G). We first have the following observation
about internally disjoint S-trees.

Observation 2.1 Let G be a connected graph, S = {x1, x2, x3} ⊆ V (G), and T be an S-tree. Then
there exists a subtree T ′ of T such that T ′ is also an S-tree such that 1 ≤ dT ′(xi) ≤ 2, |{xi | dT ′(xi) =
1}| ≥ 2 and {x | dT ′(x) = 1} ⊆ S. Moreover, if |{xi | dT ′(xi) = 1}| = 3, then all the vertices of
V (T ′)\{x1, x2, x3} have degree 2 except for one vertex, say x with dT ′(x) = 3; if there exists one vertex
of S, say x1, of degree 2 in T ′, then T ′ is an x2-x3 path.

Proof: It is easy to check that this observation holds by deleting vertices and edges of T . 2

Remark 2.1 (i) Since the path between any two distinct vertices is unique in T , the tree T ′ obtained from
T in Observation 2.1 is unique. Such a tree is called a minimal S-tree (or minimal {x1, x2, x3}-tree).

(ii) Let S = {x, y, z} ⊆ V (G). Throughout this paper, we can assume that each S-tree is a minimal
S-tree.
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Lemma 2.1 Let G be a graph with κ3(G) = k ≥ 2, S = {x, y, z} ⊆ V (G). Then, the following
assertions hold:

(i) If G[S] is a clique, then there exist k internally disjoint S-trees T1, T2, . . . , Tk, such that E(Ti) ∩
E(G[S]) = ∅ for 1 ≤ i ≤ k − 2.

(ii) If G[S] is not a clique, then there exist k internally disjoint S-trees T1, T2, . . . , Tk, such that
E(Ti) ∩ E(G[S]) = ∅ for 1 ≤ i ≤ k − 1.

Proof: We first prove (i). Clearly, by the definition of S-trees, we know |{Ti |E(Ti)∩E(G[S]) 6= ∅}| ≤
3. Let {T1, T2, . . . , Tk} be k internally disjoint S-trees. If |{Ti |E(Ti)∩E(G[S]) 6= ∅}| ≤ 2, we are done
by exchanging subscript. Thus, suppose |{Ti |E(Ti) ∩ E(G[S]) 6= ∅}| = 3. Without loss of generality,
we assume E(Ti)∩E(G[S]) 6= ∅, where i = k− 2, k− 1, k. It is easy to check that Tk−2, Tk−1, Tk must
have the structures as shown in Figures 1a and 1c. But, for these two cases, we can obtain T ′k−2, T

′
k−1, T

′
k

from Tk−2, Tk−1, Tk, such that E(T ′k−2) ∩ {xy, xz, yz} = ∅. See Figs. 1b. and 1d, where the tree T ′k−2

is shown by dotted lines. Thus T1, T2, . . . , Tk−3, T
′
k−2, T

′
k−1, T

′
k are our desired S-trees.

The proof of (ii) is similar to that of (i), and thus is omitted. 2

Fig. 1a.

Fig. 1d.

Fig. 1b.

Fig. 1c. Fig. 1e.

Figure 1. T ′k−2, T
′
k−1, T

′
k. An edge is shown by a straight line.

The edges (or paths) of a tree are shown by the same type of lines.

Remark 2.2 Let G be a graph with κ3(G) = k ≥ 2, S = {x, y, z} ⊆ V (G). If |{Ti |E(Ti)∩E(G[S]) 6=
∅}| ≥ 2 for any collection T of k internally disjoint S-trees, then G[S] is a clique. Moreover, Tk−1 ∪ Tk

must have the structure as shown in Figure 1e.

3 The Cartesian product of a connected graph and a path
In this section, we show the following proposition.
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Proposition 3.1 Let G be a graph and Pm be a path with m vertices. The following assertions holds:
(i) If κ3(G) = κ(G) ≥ 1, then κ3(G2Pm) ≥ κ3(G). Moreover, the bound is sharp;
(ii) If 1 ≤ κ3(G) < κ(G), then κ3(G2Pm) ≥ κ3(G) + 1. Moreover, the bound is sharp.

We shall prove Proposition 3.1 by a series of lemmas. Since the proofs of (i) and (ii) are similar,
we only show (ii). Let G be a graph with V (G) = {u1, u2, . . . , un} such that 1 ≤ κ3(G) < κ(G),
V (Pm) = {v1, v2, . . . , vm} such that vi and vj are adjacent if and only if |i− j| = 1.

Set κ3(G) = k for simplicity. To prove (ii), we need to show that for any S = {x, y, z} ⊆ V (G2H),
there exist k + 1 internally disjoint S-trees. We proceed our proof by the following three lemmas.

Lemma 3.1 If x, y, z belongs to the same V (G(vi)), 1 ≤ i ≤ m, then there exist k +1 internally disjoint
S-trees.

Proof: Without loss of generality, we assume x, y, z ∈ V (G(v1)). Since κ3(G) = k, there exist k
internally disjoint S-trees T1, T2, . . . , Tk in G(v1). We need another S-tree Tk+1 such that Tk+1 and Ti

are internally disjoint, for i = 1, 2, . . . , k. Let x′, y′, z′ be the vertices corresponding to x, y, z in G(v2),
and T ′1 be the tree corresponding to T1 in G(v2). Therefore, tree Tk+1 obtained from T ′1 by adding three
edges xx′, yy′, zz′ is a desired tree. 2

Lemma 3.2 If only two vertices of {x, y, z} belong to some copy G(vi), then there exist k + 1 internally
disjoint S-trees.

Proof: We may assume x, y ∈ V (G(v1)), z ∈ V (G(v2)). In the following argument, we can see that this
assumption has no influence on the correctness of our proof. Let x′, y′ be the vertices corresponding to
x, y in G(v2), z′ be the vertex corresponding to z in G(v1). Consider the following two cases.

x

yy

z′
z′

x

y

z′

x′

y′

z

x

y

z′

x′

y′

z

2a 2b 2d 2e

y

z′

2c

xx

G(v1) G(v2) G(v1) G(v2)

Figure 2. The edges (or paths) of a tree are shown by the same type of lines.
The lightest lines stand for edges (or paths) not contained in T ∗i .

Case 1. z′ 6∈ {x, y}.
Let S′ = {x, y, z′}, and T1, T2, . . . Tk be k internally disjoint S′-trees in G(v1) such that |{Ti |E(Ti)∩

E(G(v1)[S′]} 6= ∅| is as small as possible. We can assume that E(Ti) ∩ E(G(v1)[S′]) = ∅ for each i,
where 1 ≤ i ≤ k − 2 by Lemma 2.1.
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For a tree Ti with E(Ti) ∩ E(G(v1)[S′]) = ∅, let T ∗i be the tree obtained from Ti by adding ziz
′
i and

z′iz, and deleting z′, where zi is any one neighbor of z′ in Ti, and z′i is the vertex corresponding to zi in
G(v2).

If E(Tk) ∩ E(G(v1)[S′]) 6= ∅, say yz′ ∈ E(Tk) ∩ E(G(v1)[S′]). Let T ∗k = Tk + zz′ and T ∗k+1 =
T ′k + xx′ + yy′, where T ′k is the tree corresponding to Tk in G(v2).

If E(Tk−1) ∩ E(G(v1)[S′]) 6= ∅ and E(Tk) ∩ E(G(v1)[S′]) 6= ∅. Then Tk−1 ∪ Tk must have one of
the structures as shown in Figures 2a, 2b and 2c by Remark 2.2. If Tk−1 and Tk have the structures as
shown in Figure 2a, then we can obtain trees T ∗k−1, T

∗
k and T ∗k+1 as shown in Figure 2d. If Tk−1 and Tk

have the structures as shown in Figure 2b, then we can obtain trees T ∗k−1, T
∗
k and T ∗k+1 as shown in Figure

2e. If Tk−1 and Tk have the structures as shown in Figure 2c, then we can obtain trees T ∗k−1, T
∗
k and T ∗k+1

similar to those in Figure 2d.

Case 2. z′ ∈ {x, y}.
Without loss of generality, assume z′ = y. Since κ(G) > κ3(G) = k, by Menger’s Theorem, there

exist at least k + 1 internally disjoint x-y paths P 1, P 2, . . . , P k+1 in G(v1). Assume that yi is the only
neighbor of y in P i, and that y′i is the vertex corresponding to yi in G(v2). If x and y are nonadjacent in
P i, let Ti be the tree obtained from P i by adding yiy

′
i and y′iz. If x and y are adjacent in P i, let Ti be the

tree obtained from P i by adding yz. Since G is a simple graph, there exists at most one path P i such that
x and y are adjacent on P i. Thus Ti, 1 ≤ i ≤ k + 1, are k + 1 internally disjoint S-trees. 2

Lemma 3.3 If x, y, z are contained in distinct G(vi)s, then there exist k + 1 internally disjoint S-trees.

Proof: We may assume that x ∈ V (G(v1)), y ∈ V (G(v2)), z ∈ V (G(v3)). In the following argument,
we can see that this assumption has no influence on the correctness of our proof. Let y′, z′ be the vertices
corresponding to y, z in G(v1), x′, z′′ be the vertices corresponding to x, z in G(v2) and x′′, y′′ be the
vertices corresponding to x, y in G(v3). We consider the following three cases.

Case 1. x, y′, z′ are distinct vertices in G(v1)
Let S′ = {x, y′, z′}, and T1, T2, . . . Tk be k internally disjoint S′-trees in G(v1) such that |{Ti |E(Ti)∩

E(G(v1)[S′]) 6= ∅}| is as small as possible. We can assume that E(Ti) ∩ E(G(v1)[S′]) = ∅ for each i,
where 1 ≤ i ≤ k − 2 by Lemma 2.1. For each Ti such that E(Ti) ∩E(G(v1)[S′]) = ∅, we can obtain an
S-tree T ∗i from Ti similar to that in Subcase 1.1 of Lemma 3.2.

If E(Tk−1) ∩ E(G(v1)[S′]) = ∅ or E(Tk−1) ∩ E(G(v1)[S′]) = ∅. Without loss of generality, we
assume E(Tk−1)∩E(G(v1)[S′]) = ∅. Let T ∗k be the tree obtained from Tk by adding edges y′y, z′z′′ and
z′′z, T ∗k+1 be the tree obtained from T ′′k by adding x′′x′, x′x and y′′y, where T ′′k is the tree corresponding
to Tk in G(v3). Thus, T ∗i s, 1 ≤ i ≤ k + 1, are k internally disjoint S-tree.

Otherwise, that is, E(Tk−1) ∩ E(G(v1)[S′]) 6= ∅ and E(Tk) ∩ E(G(v1)[S′]) 6= ∅. Then Tk−1 and Tk

must have the structures as shown in Figures 3a, 3b and 3c. If Tk−1 and Tk have the structures as shown
in Figure 3a, then we can obtain trees T ∗k−1, T

∗
k and T ∗k+1 as shown in Figure 3d. If Tk−1 and Tk have

the structures as shown in Figure 3b, then we can obtain trees T ∗k−1, T
∗
k and T ∗k+1 as shown in Figure 3e.

If Tk−1 and Tk have the structures as shown in Figure 3c, then we can obtain trees T ∗k−1, T
∗
k and T ∗k+1 as

shown in Figure 3f .

Case 2. Two of x, y′, z′ are the same vertex in G(v1).
If y′ = z′, since κ(G) > κ3(G) = k, by Menger’s Theorem, it is easy to construct k + 1 internally

disjoint S-trees. See Figure 3g. The other cases (x = y′ or x = z′) can be proved with similar arguments.
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3a 3b 3c

y′

z′
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z′
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y′y′

xx
x x′ x′′

z′ z′′ z

y′ y y′′

G(v1) G(v2) G(v3)

3d. T ∗

k
and T ∗

k+1

x x′ x′′

z′ zz′′

y′ y y′′

G(v1) G(v2) G(v3)

3e T ∗

k−1, T
∗

k and T ∗

k+1

x x′ x′′

z′ z′′ z

y′ y y′′

G(v1) G(v2) G(v3)

3f. T ∗

k
and T ∗

k+1

x

y z

G(v1) G(v2) G(v3)

3g. T1, T2, ..., Tk+1

y′(z′)

x′ x′′ x y z

G(v1) G(v2) G(v3)

3h. T1, T2, ..., Tk+1

w w′′w′

Figure 3. The edges (or paths) of a tree are shown by the same type of lines.
The lightest lines stand for edges (or paths) not contained in T ∗i .
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Case 3. x, y′, z′ are the same vertex in G(v1).
Since κ(G) > κ3(G) = k, by Menger’s Theorem, it is easy to construct k + 1 internally disjoint

S-trees. See Figure 3h. 2

We have the following observation by the argument in the proof of Proposition 3.1.

Observation 3.1 The k + 1 internally disjoint S-trees consist of three kinds of edges — the edges of
original trees (or paths), the edges corresponding the edges of original trees (or paths) and two-type
edges.

Note that Qn
∼= P22P22 · · ·2P2, where Qn is the n-hypercube. We have the following corollary.

Corollary 3.1 Let Qn be the n-hypercube with n ≥ 2. Then κ3(Qn) = n− 1.

Proof: Recall that κ(Qn) = n so that Proposition 3.1 (ii) inductively applies. It is easy to check that
κ3(Q2) = 1. Suppose that the result holds for Qn−1, where n ≥ 3. We have κ3(Qn) ≥ n − 1 by
Proposition 3.1. On the other hand, since Qn is n-regular, we have κ3(Qn) ≤ n − 1 by Theorem 1.3.
Thus κ3(Qn) = n− 1. 2

Example 3.1 Let K2n be the complete graph with vertex set V (K2n) = {u1, u2, . . . , u2n}, and let Gn

be the graph obtained from K2n by adding a new vertex u and edges uui, 1 ≤ i ≤ n.
For any S = {x, y, z} ⊆ V (G), if u 6∈ S, then there exist k internally disjoint S-trees in Gn by

Theorem 1.2. If u ∈ S, without loss of generality, assume x = u, y = u1, z = u2. Let T1 be the path
u, u1, uk+1, u2, T2 be the path u, u2, uk+2, u1, and Ti be the tree obtained from a path u, un+i, u1 by
adding an edge un+iu2 for 3 ≤ i ≤ n. Clearly, Ti, 1 ≤ i ≤ n, are n internally disjoint S-trees. So
κ3(Gn) ≥ n. Since δ(Gn) = n, κ3(Gn) = n by Theorem 1.4. By Proposition 3.1, κ3(Gn2K2) ≥ n.
Since Gn has two adjacent vertices of degree n + 1, κ3(Gn) = n by Theorem 1.3. Moreover, clearly,
κ(G) = n. Thus κ3(G2K2) = κ3(G) = n.

Remark 3.1 We know that the bounds of (i) and (ii) in Theorem 3.1 are sharp by Example 3.1 and
Corollary 3.1.

Proposition 3.2 Let G be a connected graph and T be a tree. The following assertions holds:
(i) If κ3(G) = κ(G) ≥ 1, then κ3(G2T ) ≥ κ3(G). Moreover, the bound is sharp;
(ii) If 1 ≤ κ3(G) < κ(G), then κ3(G2T ) ≥ κ3(G) + 1. Moreover, the bound is sharp.

Proof: Since the proofs of (i) and (ii) are similar, we only show (ii). It suffices to show that for any
S = {x, y, z} ⊆ V (G2H), there exist k + 1 internally disjoint S-trees. Set κ3(G) = k, V (G) =
{u1, u2, . . . , un}, and V (T ) = {v1, v2, . . . , vm}.

Let x ∈ V (G(vi)), y ∈ V (G(vj)), z ∈ V (G(vk)) be three distinct vertices. If there exists a path in T
containing vi, vj and vk, then we are done from Proposition 3.1. If i, j and k are not distinct integers, such
a path must exist. Thus, suppose that i, j and k are distinct integers, and that there exists no path containing
vi, vj and vk. By Observation 2.1, there exists a tree T ′ in T such that dT ′(vi) = dT ′(vj) = dT ′(vk) = 1
and all the vertices of V (T ) \ {vi, vj , vk} have degree 2 except for one vertex, say v4 with dT (v4) = 3.
Without loss of generality, we set i = 1, j = 2, k = 3. Furthermore, we assume viv4 ∈ E(T ′), where
1 ≤ i ≤ 3. In the following argument, we can see that this assumption has no influence on the correctness
of our proof.
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Let P be the unique path in T ′ connecting v1 and v2. By Proposition 3.1, we can construct k + 1
internally disjoint {x, y, z′}-trees Ti, 1 ≤ k + 1, in G2P , where z′ is the vertex corresponding to z in
G(v4). By a similar method of Proposition 3.1, we can construct k +1 internally disjoint S-trees in G2T
on the basis of these trees. 2

Remark 3.2 We know that the bounds of (i) and (ii) in Proposition 3.2 are sharp by Example 3.1 and
Corollary 3.1.

Observation 3.2 The k + 1 internally disjoint S-trees consist of three kinds of edges — the edges of
original trees (or paths), the edges corresponding the edges of original trees (or paths) and two-type
edges.

4 The Cartesian product of two general graphs
Observation 4.1 Let G and H be two connected graphs, x, y, z be three distinct vertices in H , and
T1, T2, . . . , Tk be k internally disjoint {x, y, z}-trees in H . Then G2

⋃k
i=1 Ti =

⋃k
i=1(G2Ti) has the

structure as shown in Figure 4. Moreover, (G2Ti) ∩ (G2Tj) = G(x) ∪G(y) ∪G(z) for i 6= j. In order
to show the structure of G2

⋃k
i=1 Ti clearly, we take k copies of G(y), and k copies of G(z). Note that,

these k copes of G(y) (resp. G(z)) represent the same graph.

G(x)

G(y)

G(z)

G(y)G(z) G Tk

G T1

k

Figure 4. The structure of G2
⋃k

i=1 Ti.

Example 5.1. Let H be the complete graph of order 4. The structure of G2(T1∪T2) is shown in Figure 5.
Now we are ready to prove Theorem 1.5.

Proof of Theorem 1.5: Since the proofs of (i) and (ii) are similar, we only show (ii). Without loss of gen-
erality, we set κ3(G) := k, κ3(H) := `. It suffices to show that for any S = {x, y, z} ⊆ V (G2H), there
exist k + ` internally disjoint S-trees. Assume V (G) = {u1, u2, . . . , un} and V (T ) = {v1, v2, . . . , vm}.

Let x ∈ V (G(vi)), y ∈ V (G(vj)), z ∈ V (G(vk)) be three distinct vertices in G2H . We will do only
the case that i, j, k are distinct integers. Other two possibilities are similar. Without loss of generality, set
i = 1, j = 2, k = 3. Since κ3(H) = `, there exist ` internally disjoint {v1, v2, v3}-trees Ti, 1 ≤ i ≤ `,
in H . We use Gi to denote G2Ti. By Observation 5.1, we know that G2

⋃`
i=1 Ti =

⋃`
i=1 Gi and

Gi ∩ Gj = G(v1) ∪ G(v2) ∪ G(v3) for i 6= j. Let y′, z′ be the vertices corresponding to y, z in G(v1),
respectively.



10 Hengzhe Li and Xueliang Li and Yuefang Sun

G(x) G(w)

G(y)

G(z)

G(x) G(w)

G(y)

G(z)

G(x) G(y) G(z)

H T1
T2

G (T1 ∪ T2) G T1

G T2

x

y

z

w

x

w

y

z

x y z

Figure 5. The structure of G2(T1 ∪ T2).

If x, y′, z′ are distinct vertices in G(v1). Since κ3(G(v1)) = k, there exist k internally disjoint
{x, y′, z′}-trees T ′j , 1 ≤ j ≤ k, in G(v1). Let k0, k1, . . . , k` be integers such that 0 = k0 < k1 < · · · <
k` = k. Similar to the proofs of Proposition 3.1, we can construct ki−ki−1 +1 internally disjoint S-trees
Ti,ji

, 1 ≤ ji ≤ ki − ki−1 + 1, in (
⋃ki

j=ki−1+1 T ′j)2Ti for each i, where 1 ≤ i ≤ `. By Observation 3.1
and 3.2, Ti,ji

and Tr,jr
are internally disjoint for i 6= r. Thus Ti,ji

, 1 ≤ i ≤ `, 1 ≤ ji ≤ ki− ki−1 + 1 are
k + ` internally disjoint S-trees.

If exactly two of x, y′, z′ are the same vertex in G(vi). Without loss of generality, assume y′ = z′. Since
κ(G(v1)) > k, there exist k + 1 internally disjoint x− y′ paths Pi, 1 ≤ i ≤ k + 1, in G(v1) by Menger’s
Theorem. Note that at most one of them is a path of length 1. Let Pk+1 be such a path if xy′ ∈ E(G(v1)),
and let k0, k1, . . . , k` be integers such that 0 = k0 < k1 < · · · < k` = k + 1. Similar to the proofs of
Proposition 3.1, we can construct ki − ki−1 + 1 internally disjoint S-trees Ti,ji

, 1 ≤ ji ≤ ki − ki−1 + 1,
in (

⋃ki

j=ki−1+1 Pj)2Ti for each i, where 1 ≤ i ≤ ` − 1, and k` − k`−1 internally disjoint S-trees

T`,j`
, 1 ≤ ji ≤ k` − k`−1, in (

⋃k`

j=k`−1+1 Pj)2Ti. By Observation 3.1 and 3.2, Ti,ji
and Tr,jr

are
internally disjoint for i 6= r. Thus Ti,ji , 1 ≤ i ≤ `, 1 ≤ ji ≤ ki − ki−1 + 1 are k + ` internally disjoint
S-trees.

If all of x, y′, z′ are the same vertex in G(vi). Since δ(G(v1)) ≥ κ(G(v1)) > k, x has k neighbors, say
x1, x2, . . . , xk, in G(v1)). Let Pi be the path xxi, and let k0, k1, . . . , k` be integers such that 0 = k0 <
k1 < · · · < k` = k. Similar to the proofs of Proposition 3.1, we can construct ki − ki−1 + 1 internally
disjoint S-trees Ti,ji , 1 ≤ ji ≤ ki − ki−1 + 1, in (

⋃ki

j=ki−1+1 Pj)2Ti for each i, where 1 ≤ i ≤ `. By
Observation 3.1 and 3.2, Ti,ji

and Tr,jr
are internally disjoint for i 6= r. Thus Ti,ji

, 1 ≤ i ≤ `, 1 ≤ ji ≤
ki − ki−1 + 1 are k + ` internally disjoint S-trees.

We now show that bounds of Theorem 1.5 are sharp. For (i), Example 3.1 is a sharp example. Let Kn be
a complete graph with n vertices, and Pm be a path with m vertices, where m ≥ 2. We have κ3(Pm) = 1,
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and κ3(Kn) = n− 2 by Theorem 1.2. It is easy to check that κ3(Kn2Pm) = n− 2 + 1 = n− 1. Thus,
Kn2Pm is a sharp example for (ii). 2
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