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Abstract. A classification is given of connected edge-transitive tetravalent Cayley
graphs of square-free order. The classification shows that, with a few exceptions,
a connected edge-transitive tetravalent Cayley graph of square-free order is either
arc-regular or edge-regular. It thus provides a generic construction of half-transitive
graphs of valency 4.

1. Introduction

Let Γ = (V,E) be a graph with vertex set V Γ = V and edge set EΓ = E. The
number of vertices |V | is called the order of the graph Γ . We say Γ to be edge-
transitive or edge-regular if the automorphism group AutΓ is transitive or regular on
E, respectively. An arc of Γ is an ordered pair of adjacent vertices. Thus, an edge
{u, v} corresponds to two arcs (u, v) and (v, u). If AutΓ is transitive or regular on
the set of arcs of Γ , then Γ is called arc-transitive or arc-regular, respectively.
Edge-transitive graphs of square-free order have been extensively studied in some

special cases. For example, see [1, 26, 27, 31, 32] for those with order a product of
two distinct primes, see [18] for a characterization of edge-transitive circulant graphs
of square-free order, and [19] for a classification of pentavalent arc-regular graphs of
square-free order.
A graph Γ is called a Cayley graph if its vertex set can be identified with a group G

which has a subset S ⊂ G such that two vertices g, h are adjacent whenever gh−1 ∈ S.
In this case Γ is denoted by Cay(G,S). For the graph Cay(G,S) to be simple and
undirected, S = S−1 := {x−1 | x ∈ S} must hold and S must not contain the identity
of G.
In this paper, we classify connected edge-transitive Cayley graphs of square-free

order and of valency 4. Before stating our classification, we introduce some notation.
Throughout this paper, for two groups A and B, denote by A×B the direct product

of A and B, by A.B an extension of A by B, and by A:B a semi-direct product of
A by B, that is, a split extension of A by B. For example, the dihedral group D2m

of order 2m is a semi-direct product of Zm by Z2. For a group G and a subgroup
N ≤ G, by N �G we mean that N is a normal subgroup of G.
For an integer m ≥ 3, we denote by Cm[2] the lexicographic product of the empty

graph 2K1 of order 2 by a cycle Cm of size m, which has vertex set {(i, j) | 1 ≤ i ≤
m, 1 ≤ j ≤ 2} such that (i, j) and (i′, j′) are adjacent if and only if i−i′ ≡ ±1 (mod m).

Our main result is stated as follows.
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Line AutΓ G (up to isomorphism) Γ
1 PGL(2, 7) D14 Example 2.5 (1)
2 PGL(2, 7) Z7:Z6 Example 2.8
3 PSL(3, 3):Z2 D26 Example 2.5 (2)
4 PSL(2, 23) Z23:Z11 Example 2.7
5 PSL(2, 23)× Z2 (Z23:Z11)×Z2 Example 2.10 (3)
6 PSL(2, 23)× Z2 (Z23:Z11)×Z2 Example 2.11
7 PSL(2, 23)× S3 (Z23:Z11)×S3 Example 2.14
8 PGL(2, 11) Z11:Z5 Example 2.7
9 PGL(2, 11)×Z2 (Z11:Z5)×Z2,Z11:Z10 Example 2.10 (2)
10 (PSL(2, 11)×Z3):Z2 (Z11:Z5)×Z3 Example 2.12
11 Z2×((PSL(2, 11)×Z3):Z2) Z33:Z10, (Z11:Z5)×Z6 Example 2.13

Table 1

Line AutΓ G (up to isomorphism) Γ
1 S5 Z5 K5

2 S5×Z2 Z10,D10 K5,5 − 5K2

3 S5×S3 S3×Z5,D30 Example 2.14
4 PGL(2, 7) Z7:Z3 Example 2.7
5 PGL(2, 7)×Z2 (Z7:Z3)×Z2,Z7:Z6 Example 2.10 (1)
6 PGL(2, 7)×D2l (Z7:Z6)×Zl, (Z7:Z3)×D2l Example 2.15

Table 2

Theorem 1.1. Let G be a group of square-free order, and let Γ be a connected edge-
transitive tetravalent Cayley graph of G. Then one of the following statements holds.

(1) Γ ∼= Cm[2], AutΓ ∼= Zm
2 :D2m and G ∼= Z2m or D2m, where m ≥ 3;

(2) Γ is arc-regular, AutΓ = G:Z2
2 or G:Z4, and either G is cyclic or G ∼= D2m×Zl;

Γ is constructed as in Constructions 2.3 and 2.4;
(3) Γ is edge-regular, AutΓ = G:Z2 and G ∼= (Zm:Zn)×Zl, where the center

Z(G) ∼= Zl, and n ≥ 3; Γ is constructed as in Construction 2.6;
(4) Γ is isomorphic to one of the graphs listed in Tables 1 and 2.

A Cayley graph Γ = Cay(G,S) is said to be normal (with respect to G) if G is
normal in AutΓ , refer to [35]; and Γ is said to be normal-edge-transitive (with respect
to G) if the normalizer NAutΓ (G) is transitive on the edges of Γ , refer to [25]. It was
suggested in [25] to study the Cayley graphs which are not normal-edge-transitive or
are normal-edge-transitive but not normal. Our classification gives several examples
in this topic. The next corollary is proved at the end of this paper.

Corollary 1.2. The graphs in Table 1 are not normal-edge-transitive, and those in
Table 2 are normal-edge-transitive.

An edge-transitive graph Γ is said to be half-transitive if AutΓ is transitive on the
vertices but not on the arcs of Γ . Studying half-transitive graphs was initiated by
Tutte [30], and has received much attention in the literature, see [21] for references,
and see [4, 7, 16, 17, 20, 22, 23, 28, 29, 33] for some recent development in this topic.

Let Γ be a graph described as in Construction 2.6. By Theorem 1.1 and Corol-
lary 1.2, Γ is either edge-regular or isomorphic to one of the graphs in Examples



CAYLEY GRAPHS 3

2.7, 2.10 (1) and 2.15. Note that edge-regular Cayley graphs are half-transitive. A
straightforward consequence of our classification is the following corollary.

Corollary 1.3. Let Γj,k be described as in Construction 2.6. Then, with a few excep-
tions, Γj,k is half-transitive.

2. Examples

In this section we study the graphs appearing in Theorem 1.1.
Let Γ be a graph. For a subgroup X ≤ AutΓ , we say Γ to be X-edge-transitive or

X-arc-transitive if X is transitive on the edges or the arcs of Γ , respectively. For a
vertex u of Γ , denote by Γ (u) the set of neighbors of u in Γ .

2.1. Group automorphisms. For a given group G, a simple method to construct
edge-transitive Cayley graphs is by a suitable subgroup of the automorphism group
Aut(G) of G. Let Γ = Cay(G,S), and let

Aut(G,S) = {σ ∈ Aut(G) | Sσ = S}.
Then each element of Aut(G,S) induces an automorphism of Γ in the natural action
on G. Moreover, if Γ is connected, i.e., ⟨S⟩ = G, then Aut(G,S) can be identified
with a subgroup of AutΓ which fixes the vertex corresponding to the identity of G.
Each g ∈ G induces an automorphism, denoted by ĝ sometimes, of Γ by the right
multiplication on the elements of G. Then G can be identified with a subgroup of
AutΓ which acts regularly on V Γ .

Lemma 2.1. Let G be a finite group, and let H ≤ Aut(G). Let S = {gh, (g−1)h |
h ∈ H}, where g ∈ G. If ⟨S⟩ = G, then Γ = Cay(G,S) is a connected edge-transitive
graph.

This provides us with a generic method for constructing edge-transitive Cayley
graphs, refer to [13] for more examples.
Let G be a group of square-free order. We first determine the automorphisms of

G. It is well-known and easily shown that G = C×(A:B), where A = ⟨a⟩ ∼= Zm,
B = ⟨b⟩ ∼= Zn and C = ⟨c⟩ ∼= Zl, such that C is the center of G. If G is not cyclic,
then A:B has the presentation

A:B = ⟨a, b | am = bn = 1, b−1ab = ar⟩,
where r is such that rn ≡ 1 (mod m) and rk ̸≡ 1 (mod m) for 1 ≤ k < n. Write
D = A:B. Since (|C|, |D|) = 1 and G = C×D, we have Aut(G) = Aut(C)×Aut(D).
Each automorphism σ ∈ Aut(A) can be extended to an automorphism of D such that
a 7→ aσ and b 7→ b. Since D has trivial center, D ∼= Inn(D), the inner automorphism
group of D. Let Ā denote the subgroup of Inn(D) induced by A. Then Ā � Inn(D)
and Ā is a Hall subgroup of Inn(D), so Ā is a characteristic subgroup of Inn(D). Since
Inn(D) � Aut(D), we have Ā � Aut(D). Set CAut(G)(B) = {ρ ∈ Aut(G) | bρ = b}.
Then CAut(G)(B) ≥ Aut(C)×Aut(A). Further, Aut(G) is given in the next lemma.

Lemma 2.2. Aut(G) = Aut(C)×(Ā:Aut(A)) and CAut(G)(B) = Aut(C)×Aut(A).

Proof. It suffices to show Aut(D) = Ā:Aut(A). By the above discussion, we have
Aut(D) ≥ Ā:Aut(A). Note that |Ā| = m and bτ = aib for τ ∈ Ā. It follows that for
each value i ∈ {0, 1, · · · ,m− 1} there exists τ ∈ Ā such that bτ = aib.
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Now let α ∈ Aut(D). Since A is a normal Hall subgroup of D, we have aα, aα
−1 ∈

A. Then ab
αb−1

= b(b−1aα
−1
b)αb−1 = b((aα

−1
)r)αb−1 = barb−1 = a. Thus bαb−1 ∈

CD(⟨a⟩) = ⟨a⟩, and so bα = atb for some t. Take τ ∈ Ā with bτ = atb. Take
σ ∈ Aut(A) with aσ = aα, and extend σ to an automorphism of D by assigning
bσ = b. Then α = στ . Therefore, Aut(D) = Ā:Aut(A), and the result follows. �

Note that G is metacyclic, namely, G has a cyclic normal subgroup such that the
corresponding quotient group is also cyclic. A special case is that G is cyclic.

Construction 2.3. Let G = ⟨c⟩ ∼= Zl, where l is square-free.

(i) Assume that there is an integer k with k2 ≡ −1 (mod l). Then G has an

automorphism ρ such that cρ = ck. Let S = {c, ck, ck2 , ck3} = {c, ck, c−1, c−k}
and X = G:⟨ρ⟩ ∼= Zl:Z4.

(ii) Assume that l has two distinct odd prime divisors. Let τ ∈ Aut(G) be such
that cτ = c−1. Then Aut(G) contains an involution σ ∈ Aut(G) \ {τ} such
that στ = τσ. Let cσ = ck, where k2 ≡ 1 (mod l). Let S = {c, c−1, ck, c−k}
and X = G:⟨σ, τ⟩ ∼= Zl:Z2

2.

Then the Cayley graph Cay(G,S) is connected and X-arc-regular. �

We next consider the case where G has a dihedral direct factor.

Construction 2.4. Let G = (⟨a⟩:⟨b⟩)×⟨c⟩ ∼= D2m×Zl, where ml is odd square-free.

(i) Assume that l = 1. Suppose that there is an integer i with 1 < i < m− 1 and
i3 + i2 + i + 1 ≡ 0 (mod m). Take ρ ∈ Aut(G) with aρ = ai and bρ = b. Let

S = {ab, aib, ai2b, ai3b} and X = G:⟨ρ⟩ ∼= D2m:Z4.
(ii) Assume that l = 1 and m is not a prime. Let σ, τ ∈ Aut(G) be involutions,

say aσ = ai1 , aτ = ai2 and bσ = bτ = b, where i1 ̸≡ i2 (mod m) and (i1−1, i2−
1,m) = 1. Then ⟨σ, τ⟩ = Z2

2. Let S = {ab, ai1b, ai2b, ai1i2b} and X = G:⟨σ, τ⟩.
(iii) Assume that l > 1. Suppose that there is an integer k with k2 ≡ −1 (mod l).

Let ρ ∈ Aut(G) be such that aρ = a−1, bρ = b and cρ = ck. Let S =

{abc, a−1bck, abck
2
, a−1bck

3} = {abc, a−1bck, abc−1, a−1bc−k} and X = G:⟨ρ⟩ ∼=
(D2m×Zl):Z4.

(iv) Assume that l > 1. Set S = {abc, abc−1, a−1bck, a−1bc−k}, where 1 ≤ k < m
and k2 ≡ 1 (mod l). Take σ, τ ∈ Aut(G) with aσ = a−1, aτ = a, bσ = bτ = b,
cσ = ck and cτ = c−1. Then ⟨σ, τ⟩ ∼= Z2

2, and X = G:⟨σ, τ⟩ = (D2m×Zl):Z2
2.

Then the Cayley graph Cay(G,S) is connected and X-arc-regular. �

For m = 7 or 13, a Cayley graph of the dihedral group D2m can be constructed
geometrically.

Example 2.5. Let F = GF(p) be the Galois field of size p. Let U and W consist of
1-subspaces and 2-subspaces of F3, respectively.

(1) Let p = 2. Define a bipartite graph Γ with biparts U and W such that u ∈ U
and w ∈ W are adjacent if and only if u+w = F3. This is the point-line non-incidence
graph of the Fano plane PG(2, 2). Further, AutΓ = PGL(3, 2).Z2, and Γ is a Cayley
graph of G = D14. See [24], for example.

(2) Let p = 3. Define a bipartite graph Γ with biparts U and W such that u ∈ U
and w ∈ W are adjacent if and only if u is a subspace of w. Then Γ is the point-line
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incidence graph of the projective plane PG(2, 3). Further, AutΓ = PGL(3, 3).Z2, and
Γ is a Cayley graph of G = D26. See [14, 15], for example. �

Next, we consider the case where G = (⟨a⟩:⟨b⟩)×⟨c⟩ ∼= (Zm:Zn)×Zl such that the
center Z(G) = ⟨c⟩ ∼= Zl and n ≥ 3. In particular, m is odd.

Construction 2.6. Let j be a positive integer such that (j, n) = 1. Let k be an
integer with k2 ≡ 1 (mod l), and let

Γj,k = Cay(G,Sj,k), where Sj,k = {abjc, (abjc)−1, a−1bjck, (a−1bjck)−1}.

Note that ⟨Sj,k⟩ = ⟨abjc, a−1bjck⟩ = ⟨abj, a−1bj, c⟩ = ⟨a2, abj, c⟩ = ⟨a, b, c⟩ = G. Then
Γj,k is connected. By Lemma 2.2, there exists an involution τ ∈ CAut(G)(⟨b⟩) such
that aτ = a−1, bτ = b and cτ = ck. So Γj,k is X-edge-regular, where X = G:⟨τ⟩. �

2.2. Coset graphs. Let X be a group and H a core-free subgroup of X, that is, H
does not contain non-trivial normal subgroups of X. Take g ∈ X \H and define the
coset graph

Γ = Cos(X,H,H{g, g−1}H)

with vertex set [X : H] := {Hx | x ∈ X} such that Hx and Hy are adjacent
whenever yx−1 ∈ H{g, g−1}H. Then Γ is well-defined, and X induces a subgroup of
AutΓ acting on [X : H] by right multiplication, namely, a : Hx 7→ Hxa for x, a ∈ X.
Label v, w to be the vertices of Γ corresponding to H and Hg, respectively. Then

(a) Γ (v) = {Hgh | h ∈ H} ∪ {Hg−1h | h ∈ H};
(b) Γ is X-edge-transitive and X is transitive on the vertices of Γ ;
(c) Γ is connected if and only if X = ⟨g,H⟩;
(d) Hg ∩H = Xvw, the stabilizer of the arc (v, w), where Hg is the conjugate of

H by g;
(e) Γ is X-arc-transitive if and only if HgH = Hg−1H, which yields that HgH =

HoH for some (2-element) o ∈ NX(Xvw)\H with o2 ∈ Xvw, refer to [16]. (An
element o in the group X is a 2-element if its order is a power of 2.)

Moreover, for any X-edge-transitive graph Σ, if X is transitive on V Σ then the map
ux 7→ Hx, x ∈ X gives an isomorphism form Σ to Cos(X,H,H{g, g−1}H), where
u ∈ V Σ, H = Xu and g ∈ X \H with ug ∈ Γ (u).
Here are a few of examples, that appear in our classification.

Example 2.7. (1) Let X = S5, PGL(2, 11) or PSL(2, 23). Then X has a maximal
subgroup H ∼= S4. Let K ≤ H and K ∼= S3. Checking the subgroups of X in the
Atlas [5], we conclude that NX(K) = ⟨o⟩×K ∼= D12, where o ∈ X \H is an involution.
Set Γ = Cos(X,H,HoH). Since H is a maximal subgroup of X, ⟨o,H⟩ = X. Then
Γ is a connected X-arc-transitive graph of valency 4. Moreover, X has a subgroup
G which is regular on the vertices, where G = Z5, Z11:Z5 or Z23:Z11, respectively.
We denote by P11,5 and P23,11 the graphs associated with PGL(2, 11) and PSL(2, 23),
respectively. By [16], AutP11,5 = PGL(2, 11) and AutP23,11 = PSL(2, 23).
(2) Let X = PGL(2, 7). Then X has a maximal subgroup H ∼= D16. Take a

subgroup K ≤ H with K ∼= Z2
2. Then D8

∼= NH(K) ≤ NX(K) ∼= S4. Take an
involution o ∈ NH(K) \K and an element z ∈ NX(K) of order 3 such that zo = z−1.
Then NX(K) = K:⟨o, z⟩, and H{g, g−1}H = HozH for any g ∈ NG(K) \ H. Set
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P7,3 = Cos(X,H,HozH). By [16], AutP7,3 = PGL(2, 7), and P7,3 is a connected
tetravalent arc-transitive Cayley graph of Z7:Z3. �

Example 2.8. Let X = PGL(2, 7), T = PSL(2, 7) and D8
∼= H ≤ T . Let o ∈ H be

an involution which is not in the center of H. Then NH(⟨o⟩) ∼= Z2
2, NT (⟨o⟩) ∼= D8

and NX(⟨o⟩) ∼= D16. Write NX(⟨o⟩) = NT (⟨o⟩):⟨z⟩ for an involution z ∈ X \ T . Let
y be an element of order 4 in NT (⟨o⟩). Set Γ = Cos(X,H,HxH), where x = z or yz.

Let M be a maximal subgroup of T such that H ≤ M ∼= S4. If M
xt = M for some

t ∈ T , then xt ∈ NX(M) = M by checking the subgroups of X, so x ∈ M ≤ T , a
contradiction. Thus Mx and M are not conjugate in T . By the information given
in the Atlas [5], T contains exactly two conjugation classes of subgroups isomorphic
to S4. Enumerating the Sylow 2-subgroups of T , we conclude that two subgroups
in the same conjugation class do not contain a common Sylow 2-subgroup. Thus
⟨H,Hx⟩ ≁= S4, yielding H = Hx or ⟨H,Hx⟩ = T .

Since NH(⟨o⟩) ∼= Z2
2, we know that NH(⟨o⟩) is normal in ⟨H,NT (⟨o⟩)⟩. Then

⟨H,NT (⟨o⟩)⟩ ∼= S4 by checking the subgroups of T . If Hx = H, then x normalizes
⟨H,NT (⟨o⟩)⟩, so x ∈ ⟨H,NT (⟨o⟩)⟩ ≤ T , a contradiction. Thus ⟨H,Hx⟩ = T , and
so ⟨H, x⟩ = ⟨H,Hx, x⟩ = X. If |H ∩ Hx| = 4, then H ∩ Hx � ⟨H,Hx⟩ = T , a
contradiction. Then |H ∩ Hx| = 2, and so |H : (H ∩ Hx)| = 4. Therefore, Γ is
connected, X-arc-transitive and of valency 4. It is easily shown that Γ is bipartite
and T -edge-transitive, and that X has a regular subgroup isomorphic to Z7:Z6. �

2.3. Normal covers. Let Γ = (V,E) be a connected graph. Assume that X ≤ AutΓ
is transitive on both V and E. Let N � X, and let VN be the set of N -orbits on
V . The normal quotient ΓN (with respect to N and X) is defined as the graph with
vertex set VN such that B1, B2 ∈ VN are adjacent if and only if some u ∈ B1 and
v ∈ B2 are adjacent in Γ . It is easily shown that the valency of ΓN is a divisor of the
valency of Γ . The graph Γ is a normal cover or an N -cover of ΓN (with respect to X
and N) if Γ and ΓN have the same valency. Let K be the kernel of X acting on VN .
Then X/K, viewed as a subgroup of AutΓN , is transitive on both the vertices and
the edges of ΓN . If Γ is a normal cover of ΓN , then it is easily shown that N = K is
semiregular on V , and Γ is X-arc-transitive if and only if ΓN is (X/N)-arc-transitive.

Lemma 2.9. If Γ is of valency 4 and X/N is insoluble, then Γ is an N-cover of ΓN .

Proof. Let u ∈ V and let B the N -orbit containing u. Then, by [3], the stabilizer
Xu is a {2, 3}-group, that is, |Xu| = 2i3j. In particular, Xu is soluble. Let K be the
kernel of X acting on VN . Then Ku � Xu, so Ku is soluble. Since K is transitive
on B, we have K = NKu. So K/N = NKu/N ∼= Ku/(N ∩ Ku) is soluble. Then
X/K ∼= (X/N)/(K/N) is insoluble as X/N is insoluble, so AutΓN is insoluble, hence
ΓN is not a cycle. Note that Γ is connected and the valency of ΓN is a divisor of the
valency of Γ . This implies that ΓN has valency 4, and the lemma follows. �

We now construct the normal covers of several known graphs.

Example 2.10. Let Γ = (V,E) be a connected arc-transitive Cayley graph. The
standard double cover Γ (2) is the graph with vertex set V ∪ {u′ | u ∈ V } such that
{u, v′} ∈ EΓ (2) whenever {u, v} ∈ E. For each x ∈ AutΓ , define x̃ : u 7→ ux, u′ 7→
(ux)′. Then AutΓ can be viewed as a subgroup of AutΓ (2) in the above way. Define
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ϵ : u 7→ u′, u′ 7→ u. Then ϵ ∈ AutΓ (2). Set X = ⟨AutΓ , ϵ⟩. Then X = AutΓ×⟨ϵ⟩, and
Γ (2) is an X-arc-transitive Cayley graph. For example,

(1) P
(2)
7,3 is a Cayley graph of (Z7:Z3)×Z2 and of Z7:Z6;

(2) P
(2)
11,5 is a Cayley graph of (Z11:Z5)×Z2 and of Z11:Z10;

(3) P
(2)
23,11 is a Cayley graph of (Z23:Z11)×Z2.

Here we just explain (2) briefly. Note that AutP
(2)
11,5 ≥ AutP11,5×⟨ϵ⟩. Take a sub-

group R ∼= Z11:Z10 of AutP11,5 = PGL(2, 11), and let L be the 2′-Hall subgroup of R.
Then L ∼= Z11:Z5 and R = L:⟨z⟩ for an involution z ∈ R. Then AutΓ (2) contains two
regular subgroups L×⟨ϵ⟩ ∼= (Z11:Z5)×Z2 and L:⟨zϵ⟩ ∼= Z11:Z10. �

Next we construct the Z2-covers of P23,11 which are not the standard double cover.

Example 2.11. Let X = T×K with T = PSL(2, 23) and K = ⟨z2⟩ ∼= Z2. Take
A4

∼= H1 ≤ T and an involution z1 ∈ T with ⟨H1, z1⟩ ∼= S4. Set z = z1z2 and
H = H1:⟨z⟩. Then H ∼= S4 and H∩T = H1. Let x ∈ H1 be of order 3 with xz1 = x−1.
Then NT (⟨x⟩) ∼= D24 and ⟨x, z1⟩ ∼= S3

∼= ⟨x, z⟩ ≤ H. Let o be the involution in the
center of NT (⟨x⟩). Checking the maximal subgroups of PSL(2, 23), we conclude that
⟨H1, o⟩ = ⟨H1, oz1⟩ = PSL(2, 23). Then ⟨H, o⟩ = ⟨H1, o, z1z2⟩ = X and ⟨H, oz2⟩ =
⟨H1, oz1, z1z2⟩ = X. Thus we get two connected graphs Γ1 := Cos(X,H,HoH) and
Γ2 := Cos(X,H,Hoz2H). Note that S3

∼= ⟨x, z⟩ ≤ H ∩ Ho. Then Γ1 has valency
|H : (H ∩Ho)| dividing |H : ⟨x, z⟩| = 4. Since Γ1 is connected, Γ1 is not a cycle as
X ≤ AutΓ1 is insoluble. Thus Γ1 has valency 4. Similarly, Γ2 has valency 4.
Let Γ = Γ1 or Γ2. Then, by Lemma 2.9, Γ is a normal cover of ΓK . Then ΓK is

an X/K-arc-transitive graph of order 253 and valency 4. Since X/K ∼= PSL(2, 23),
we have ΓK

∼= P23,11 by [16]. Take a subgroup Z23:Z11
∼= L < T . Then X contains a

regular subgroup L×K ∼= (Z23:Z11)×Z2. �

Next we construct the Z3- and Z6-covers of P11,5.

Example 2.12. Let X = (T×K):⟨z⟩ with T = PSL(2, 11), K = ⟨y⟩ ∼= Z3, Y :=
T :⟨z⟩ = PGL(2, 11) and yz = y−1. Take S4

∼= H1 ≤ Y . Let P be the normal subgroup
of order 4 in H1. Then P ∼= Z2

2, NY (P ) = H1 and H1 = P :⟨x, z⟩ for some x ∈ T of
order 3 with xz = x−1. Set H = P :⟨xy, z⟩. Then H ∼= S4 and ⟨xy, z⟩ ∼= S3.

For g ∈ NX(⟨xy, z⟩), we have (xy)g = (xy)±1 and zg = z(xy)
i
for some i, yielding g ∈

NX(⟨x⟩) = K:NY (⟨x⟩) and g(xy)−i ∈ CX(z). Thus g(xy)
−i ∈ CX(z)∩ (K:NY (⟨x⟩)).

Computation shows that CX(z) ∩ (K:NY (⟨x⟩)) = ⟨z, o⟩, where o is the involution
in the center of NY (⟨x⟩) ∼= D24, and so o ∈ T . Thus NX(⟨xy, z⟩) = ⟨z, o⟩⟨xy⟩ =
⟨xy, z⟩×⟨o⟩, so HgH = HoH for g ∈ NX(⟨xy, z⟩) \H. Let Γ = Cos(X,H,HoH).
Note that o ∈ T , z ∈ Y and P ≤ T . Suppose that M := ⟨o, P, z⟩ ̸= Y . Then

M ̸= ⟨P, z⟩; otherwise, o ∈ H ∼= S4 and o centralizes xy ∈ H, which is impossible.
Thus M contains two distinct Sylow 2-subgroups ⟨P, z⟩ and ⟨P, z⟩o of Y . Checking
the subgroups of PGL(2, 11) in the Atlas [5], we know that M ∼= S4 or D24, and M
is maximal in Y . If x ∈ M , then S4

∼= H1 = ⟨P, x, z⟩ ≤ M , so H1 = M , hence
o ∈ H1 and o centralizes the element x ∈ H, which is impossible. Then Y = ⟨M,x⟩ =
⟨o, P, z, x⟩, yielding ⟨o, P ⟩ � Y . Thus ⟨o, P ⟩ = T , so M = ⟨o, P, z⟩ ≥ ⟨o, P ⟩ = T , a
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contradiction. Then ⟨o, P, z⟩ = Y , so ⟨o,H⟩ = ⟨o, P, z, xy⟩ = ⟨Y, xy⟩ = ⟨Y, y⟩ = X.
Therefore, Γ = Cos(X,H,HoH) is connected.

Noting that H ∩ Ho ≥ ⟨xy, z⟩, the index |H : (H ∩ Ho)| divides 4. Since X ≤
AutΓ is insoluble, Γ is not a cycle. Thus Γ is X-arc-transitive and of valency 4.
Take a subgroup L ∼= Z11:Z5 of T . Then X contains a regular subgroup L×K ∼=
(Z11:Z5)×Z3. �

Example 2.13. For the graph Γ in Example 2.12, the standard double cover Γ (2) is a
Cayley graph of (Z11:Z5)×Z6 and of Z33:Z10. In fact, if ϵ is defined as in Example 2.10,
then AutΓ (2) ≥ ((K×T ):⟨z⟩)×⟨ϵ⟩. Take L ≤ R ≤ T :⟨z⟩ = Y with z ∈ R, L ∼= Z11:Z5

and R ∼= Z11:Z10. Then AutΓ (2) has regular subgroups (K×L)×⟨ϵ⟩ and (K×L):⟨zϵ⟩
isomorphic to (Z11:Z5)×Z6 and Z33:Z10, respectively. �

The next example gives the S3-covers of K5 and of P23,11.

Example 2.14. Let X = Y×K with Y = S5 or PSL(2, 23) and K = ⟨y2⟩:⟨z2⟩ ∼= S3.
Take a subgroup H1

∼= S4 of Y . Then H1 has a normal subgroup P ∼= Z2
2. Write

H1 = P :(⟨y1⟩:⟨z1⟩) with ⟨y1⟩:⟨z1⟩ ∼= S3. Set y = y1y2, z = z1z2 and H = P :(⟨y⟩:⟨z⟩).
Then H ∼= S4 and ⟨y, z⟩ ∼= S3.

It is easily shown that NX(⟨y, z⟩) ≤ NX(⟨y1⟩) = NY (⟨y1⟩)×K, where NY (⟨y1⟩) ∼=
D12 or D24 for Y = S5 or PSL(2, 23), respectively. Note that ⟨y, z⟩ contains exactly
three involutions, say z, zy and zy

2
. Assume that g ∈ NX(⟨y1⟩) normalizes ⟨y, z⟩.

Then zg = zy
i
for some 0 ≤ i ≤ 2, yielding that yig−1 centralizes z = z1z2. Further

computation shows that yig−1 ∈ ⟨o, z⟩ = ⟨o⟩×⟨z⟩, where o is the involution in the
center of NY (⟨y1⟩). It follows that NX(⟨y, z⟩) = ⟨o⟩×(⟨y, z⟩).

It is easily shown that ⟨o,H⟩ = X. Then Γ = Cos(X,H,HoH) is connected, X-
arc-transitive and of valency 4. Moreover, X contains a regular subgroup isomorphic
to Z5×S3 or (Z23:Z11)×S3, respectively.

For Y = S5, we may take P = ⟨(1 2)(3 4), (1 3)(2 4)⟩, y1 = (1 2 3), z1 = (1 2) and
o = (4 5). Let g = (1 2 3 4 5) and h = (1 3)(2 4). Then X has two regular subgroups
⟨g⟩×K ∼= Z5×S3 and ⟨gy2⟩:⟨hz2⟩ ∼= D30. �

We finally give a normal cover of P
(2)
7,3. An X-edge-transitive graph Γ is said to be

X-half-transitive if X is transitive on the vertices but not on the arcs of Γ .

Example 2.15. (1) Let Y = PGL(2, 7), T = PSL(2, 7) and D8
∼= H ≤ T . Then

NY (H) ∼= D16. Let o be the involution in the center of H. It is easily shown that o lies
in the center of NY (H). Take M ≤ T with H ≤ M ∼= S4, and take an element y ∈ M
of order 3 with yo = y−1. Then ⟨y,H⟩ = M and H ∩Hy ∼= Z2

2. Let z ∈ NY (H)\T be
an involution. Then ⟨M, z⟩ = Y . Set x = zy. Then x ̸∈ T andH∩Hx = H∩Hy ∼= Z2

2,
so |H : (H∩Hx)| = 2. Note that ⟨H, x⟩ = ⟨H, (zy)o, zy⟩ = ⟨H, zy−1, zy⟩ = ⟨H, y, z⟩ =
⟨M, z⟩ = Y . Then Σ := Cos(Y,H,H{x, x−1}H) is connected, X-half-transitive and
of valency 4. Further, Y has a regular subgroup isomorphic to Z7:Z6.

(2) Let Σ be as in (1). Let X = Y×⟨c⟩, where ⟨c⟩ = Zl with odd l coprime to 21.
Define a graph

Γ = Cos(X,H,H{cx, (cx)−1}H).

Then Γ is a connected X-edge-transitive tetravalent Cayley graph of (Z7:Z6)×Zl. �
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Lemma 2.16. Let Σ and Γ be as in Example 2.15. Then Σ ∼= P
(2)
7,3, (Y×⟨c⟩):⟨θ⟩ ∼=

PGL(2, 7)×D2l for an involution θ ∈ AutΓ, and Γ is isomorphic to an arc-transitive
Cayley graph of (Z7:Z3)×D2l.

Proof. Recall that z ∈ NY (H) \ T is an involution. Define z̃ : Hg 7→ Hzg, g ∈ Y .
Then z̃ centralizes Y . Since yo = y−1 and o ∈ H lies in the center of NY (H), we
have zH{x, x−1}Hz = Hz{yz, (yz)−1}zHz = H{yz, (yz)−1}zoH = H{zy, y−1z}oH =
H{zy−1, yz}H = H{x, x−1}H. Then it is easily shown that z̃ is an automorphism
of Σ. Set Ỹ = T :⟨z̃z⟩. Then Ỹ ∼= PGL(2, 7), and Ỹ has exactly two orbits on
V Σ, say {Ht | t ∈ T} and {Hzt | t ∈ T}. Let u be the vertex corresponding to
H. Then Σ(u) = {Hg | g ∈ H{yz, zy−1}H}, and Ỹu = H:⟨z̃z⟩ ∼= D16 is a Sylow
2-subgroup of Ỹ . It is easily shown that Ỹu is transitive on Σ(u). Thus Σ is Ỹ -edge-
transitive. Note that Ỹ is normal in Y×⟨z̃⟩. For an arbitrary vertex v = Hg, we have
Ỹv = (Y×⟨z̃⟩)v ∩ Ỹ = (Y×⟨z̃⟩)gu ∩ Ỹ = Ỹ g

u
∼= D16, so Ỹv and Ỹu are conjugate in Ỹ .

Then, by [8, Lemma 3.4], Σ is the standard double cover of a Ỹ -arc-transitive graph

Σ1 of order 21 and valency 4. By [16], Σ1
∼= P7,3, so Σ ∼= P

(2)
7,3.

Now we extend σ := z̃z to an automorphism of Γ . Let τ ∈ Aut(⟨c⟩) with cτ = c−1.
Consider the direct product X̃ := Y×⟨z̃⟩×(⟨c⟩:⟨τ⟩). Then the element θ := τσ is
an involution which normalizes both Y and H. Thus θ induces an automorphism of
X = Y×⟨c⟩ by conjugation. Moreover, (HcxH)θ = H(cx)θH = H(cx)−1H. Then it
is easily shown that Hg 7→ Hgθ gives an automorphism of Γ , and X:⟨θ⟩ is transitive
on the arcs of Γ . Moreover, θz = τ z̃ centralizes Y . Let L be a subgroup of Y with
L ∼= Z7:Z3. Then X:⟨θ⟩ contains a regular subgroup L×(⟨c⟩:⟨θz⟩) ∼= (Z7:Z3)×D2l.
Noting that AutΓ ≥ ⟨Y, c, θ⟩ = ⟨Y, c, θz⟩ ∼= PGL(2, 7)×D2l, the lemma follows. �

3. Soluble automorphism groups

In this section we determine the graphs having soluble edge-transitive automor-
phism groups. We first list two basic facts about edge-transitive (Cayley) graphs.

Lemma 3.1. Let Γ = (V,E) be a connected regular X-edge-transitive graph, and let
N � X. Then, for any given vertex u ∈ V , all Nu-orbits on Γ (u) have the same
length. If further X is transitive on V , then the following statements hold:

(i) |Nu : Nuv| is constant while {u, v} runs over E; in particular, |Nu : Nuv| ̸= 1
if N is not semiregular on V ;

(ii) N has at most two orbits on V provided that Nu is transitive on Γ (u).

Proof. Since Γ is X-edge-transitive, either X is transitive on V , or X is intransitive
on V and Xu is transitive on Γ (u) for each u ∈ V . If Xu is transitive on Γ (u) then,
since Nu � Xu, all Nu-orbits on Γ (u) have the same length. Thus, to complete the
proof, we assume that X is transitive on V in the following.
Let ∆ be an Nu-orbit on Γ (u). Then |∆| = |Nu : Nuv| for v ∈ ∆. Let x ∈ X

with v = ux. Then Nv = Xux ∩ N = (Nu)
x; in particular, |Nu| = |Nv|, and so

|∆| = |Nv : Nuv|. Let {u′, v′} be an arbitrary edge of Γ . Since X is transitive
on E, there is y ∈ X with {u′, v′}y = {u, v}, so (u′, v′)y = (u, v) or (v, u). Thus
(Nu′)y = Xu′y ∩ N = Nu′y = Nu or Nv, and Nuv = Nu′yv′y = Xu′yv′y ∩ N = (Nu′v′)

y.
Then |Nu′ : Nu′v′| = |(Nu′)y : (Nu′v′)

y| = |Nu′y : Nu′yv′y | = |∆|.
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Assume that |Nu : Nuv| = 1 for some edge {u, v} ∈ E. Then Nu′ = Nv′ for any
{u′, v′} ∈ E. It follows from the connectedness that Nu = Nw for any w ∈ V . Thus
Nu = 1 as Nu ≤ AutΓ , so N is semiregular. Then (i) follows.

Assume further that Nu is transitive on Γ (u) but N is intransitive on V . Let B
and B′ be two N -orbits such that u ∈ B is adjacent to some u′ ∈ B′. By (i), since B′

is Nu-invariant, the subgraph [B,B′] induced by B ∪ B′ is regular and has the same
valency as Γ . Since Γ is connected, Γ = [B,B′], and so (ii) follows. �

Lemma 3.2. Let Γ = Cay(G,S) be a connected Cayley graph and G ≤ X ≤ AutΓ.
Let v be the vertex corresponding to the identity of G. Then Γ is X-half-transitive
if and only if S consists of two Xv-orbits S1 and S2 with S−1

2 = S1, in particular, S
contains no involutions.

Proof. Note that {1, s}ŝ−1
= {1, s−1} for s ∈ S. Then the sufficiency follows.

Assume that Γ is X-half-transitive. Then Xv has exactly two orbits S1 and S2 on
S, and |S1| = |S2|. Thus there is some x ∈ X such that {1, s1}x = {1, s2}, where
s1 ∈ S1 and s2 ∈ S2. Since X = GXv = XvG, write x = x1ĝ for x1 ∈ Xv and
1 ̸= g ∈ G. Then {g, s′1g} = {1, s1}x = {1, s2} for some s′1 ∈ S1 with x1 : s1 7→ s′1.
Thus g = s2 and s′1g = 1; in particular, s−1

2 = s′1 ∈ S1. Then S−1
2 ⊆ S1, and so

S−1
2 = S1. Since S1 ∩ S2 = ∅, there are no involutions in S. �

Let G be a group of square-free order, and Γ = (V,E) be a connected tetravalent
X-edge-transitive Cayley graph of G, where G ≤ X ≤ AutΓ and X is soluble.

Lemma 3.3. Either Γ ∼= Cm[2], or X has a normal regular subgroup R.

Proof. For an arbitrary prime divisor p of |X|, let Op(X) be the largest normal
p-subgroup of X. Set M = Op(X). Since Γ is of square-free order, either M = 1
or the orbits of M are of size p. Suppose that M is not semiregular on V . Then
1 ̸= Mu �Xu for u ∈ V . Since Γ has valency 4, the stabilizer Xu is a {2, 3}-group.
By Lemma 3.1, we know that p = 2, and so the orbits of M are of size 2. Since M is

not semiregular, we have that Γ ∼= Cm[2], where m = |V |
2
.

Assume now that Op(X) is semiregular on V for all primes p. (Since X ̸= 1 is
soluble, there exists a prime p such that Op(X) is nontrivial.) Then Op(X) has
order 1 or p, so Op(X) is cyclic. Let F be the Fitting subgroup of X, that is,
F = ⟨Op(X) | p divides |G|⟩. Then F is cyclic and acts semiregularly on V ; in
particular, |F | is a divisor of |G|. Since |G| is square-free, there exists a subgroup
L ≤ G of order |G|/|F |. Set R = F :L. Then |R| = |G| = |V |. Let B be an F -orbit on
V . Then GB is regular on B, and so |F | = |B| = |GB|. Thus |G| = |GB||L|, yielding
G = GBL. It follows that L acts transitively on the set of all F -orbits. Then R is
transitive on V , and so R is a regular subgroup of X.

SinceX is soluble,CX(F ) ≤ F , yieldingCX(F ) = F . ThusX/F = NX(F )/CX(F )
is isomorphic to a subgroup of Aut(F ). Since F is cyclic, Aut(F ) is abelian, so X/F
is abelian. Then R/F �X/F , and so R�X. �

This lemma allows us to assume that X contains a normal regular subgroup R.
Set Γ = Cay(R, S) for some S ⊂ R. Choose v to be the vertex corresponding to the
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identity of R. Then we have a subgroup of Aut(R):

Aut(R, S) = {σ ∈ Aut(R) | xσ ∈ S for all x ∈ S},
which is contained in the stabilizer of v in AutΓ . Moreover, by [9, Lemma2.1], the
normalizer NAutΓ (R) = R:Aut(R,S). Since X ≤ NAutΓ (R), we have Xv ≤ Aut(R,S).
The next lemma determines Aut(R,S).

Lemma 3.4. The subgroup Aut(R,S) is isomorphic to Z2, Z4 or Z2
2.

Proof. Since Γ is connected, ⟨S⟩ = R, so Aut(R, S) acts faithfully on S. Since
|S| = 4, we have Aut(R, S) ≤ S4.
Write R = (A:B)×C, where A, B and C = Z(R) are cyclic. Then |A| is odd.

By Lemma 2.2, Ā � Aut(R) and Aut(R)/Ā ∼= Aut(C)×Aut(A) is abelian. Then the
commutator subgroup of Aut(R) has order dividing |Ā| = |A|. Thus the commuta-
tor subgroup of every subgroup of Aut(R) is of odd order. Then Aut(R,S) has no
subgroups isomorphic to D8, A4 or S4, so Aut(G,S) ∼= Z2, Z4 or Z2

2. �

The following lemma allows us to choose R = G.

Lemma 3.5. Assume that X contains a normal regular subgroup. Then G�X.

Proof. Let R be a normal regular subgroup of X. Then RG is a subgroup of X =
R:Xv, so |RG| = |R||G|/|R∩G| is a divisor of |X| = 2|R| or 4|R|. Then either R = G
or R ∩ G is the 2′-Hall subgroup of R (and of G). Assume the latter case occurs.
Then R ∩G is characteristic in R, and so R ∩G�X. Let P be a Sylow 2-subgroup
of X with Xv ≤ P . Then P = (RXv) ∩ P = (R ∩ P )Xv. Since R � X and |R| is
square-free, R∩P �P and |R∩P | = 2. It follows that P = (R∩P )Xv = (R∩P )×Xv

is abelain. Thus X/(R ∩G) = (RXv)/(R ∩G) = (R ∩G)P/(R ∩G) ∼= P is abelian,
so G/(R ∩G)�X/(R ∩G), and hence G�X. �

Thus we assume that G � X in the following. Write Γ = Cay(G,S) and G =
(⟨a⟩:⟨b⟩)×⟨c⟩ ∼= (Zm:Zn)×Zl with center Z(G) = ⟨c⟩ ∼= Zl.

Lemma 3.6. There exists ρ ∈ Aut(G) such that abjc ∈ Sρ and Xρ
v ≤ CAut(G)(⟨b⟩),

where (j, n) = 1 and v is the vertex corresponding to the identity of G.

Proof. Let A = ⟨a⟩, B = ⟨b⟩ and C = ⟨c⟩. By Lemma 2.2, since |Ā| = |A| = m is
odd, CAut(G)(B) = Aut(C)×Aut(A) contains a Sylow 2-subgroup of Aut(G). Recall
that Xv ≤ Aut(G,S) ∼= Z2, Z4 or Z2

2. Then there is some α ∈ Aut(G) such that
Xα

v ≤ CAut(G)(B). Note that α induces an isomorphism from Cay(G,S) to Cay(G,Sα)
such that vα = v, and that Xα is transitive on the edges of Cay(G,Sα). Clearly, Xα

contains G as a normal regular subgroup. Take x = aibjck ∈ Sα. Since Cay(G,Sα)
is connected and Xα is transitive on the edges of Cay(G,Sα), we have ⟨xσ | σ ∈
Xα

v ⟩ = G. Then G = ⟨aibjck, aii′bjckk′⟩ or ⟨aibjck, aii′bjckk′ , aii′′bjckk′′ , aii′′′bjckk′′′⟩,
where i′, i′′, i′′′, k′, k′′ and k′′′ are integers. It follows that ⟨ck⟩ = ⟨c⟩, ⟨ai⟩ = ⟨a⟩ and
⟨bj⟩ = ⟨b⟩, which implies that (k, l) = 1, (i,m) = 1 and (j, n) = 1, respectively. Take
β ∈ CAut(G)(B) with (ck)β = c and (ai)β = a. Set ρ = αβ. Then cabj ∈ Sρ and
Xρ

v ≤ CAut(G)(B), as desired. �

Now we determine the graphs when X is soluble and G is normal in X.
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Lemma 3.7. Assume that G is normal in X. Then one of the following holds.

(1) Aut(G,S) ∼= Z2
2 or Z4, and either G is cyclic or G ∼= Zl×D2m; Γ is constructed

as in Construction 2.3 and 2.4.
(2) Aut(G,S) ∼= Z2 and G ∼= Zl×(Zm:Zn), where n ≥ 3 and the center Z(G) ∼= Zl;

Γ is constructed as in Construction 2.6.

Proof. Since G is normal in X, we have X ≤ NAutΓ (G) = G:Aut(G,S) and Xv ≤
Aut(G,S). Note that G:Aut(G,S) is transitive on the edges of Γ as Γ is X-edge-
transitive. To complete the proof of Lemma 3.7, we may assume that Xv = Aut(G,S)
and X = G:Aut(G,S). By Lemma 3.6, up to isomorphism of graphs, we may assume
that abjc ∈ S andXv = Aut(G,S) ≤ CAut(G)(⟨b⟩), where 1 ≤ j ≤ n−1 with (j, n) = 1.

Assume first that G = ⟨c⟩ = Zl. Then a = b = 1 and c ∈ S. Since σ : ci 7→ c−i is
an automorphism of G, we have σ ∈ Aut(G,S). By Lemma 3.2, Γ is X-arc-transitive,
so Aut(G,S) ∼= Z4 or Z2

2. Thus the four elements of S are conjugate under Aut(G,S),
and Γ is given as in Construction 2.3.

Assume that n = 2 and l = 1. Then G = ⟨a⟩:⟨b⟩ ∼= D2m, and S contains the
involution ab. By Lemma 3.2, Γ is X-arc-transitive, hence Aut(G,S) is transitive
on S, and so Aut(G,S) ∼= Z4 or Z2

2. Suppose first that Aut(G,S) = ⟨ρ⟩ ∼= Z4.

Then aρ = ai and bρ = b for i4 ≡ 1 (mod m), and S = {ab, aib, ai2b, ai3b}. Since

Γ is connected, G = ⟨S⟩ = ⟨ai−1, ai
2−1, ai

3−1, ab⟩ = ⟨ai−1⟩:⟨ab⟩. Thus ⟨ai−1⟩ = ⟨a⟩,
so (i − 1,m) = 1, yielding i3 + i2 + i + 1 ≡ 0 (mod m). Thus Γ is given as in
Construction 2.4 (i). Now let Aut(G,S) = ⟨σ⟩×⟨τ⟩ ∼= Z2

2. Set a
σ = ai1 and aτ = ai2 ,

where i21 ≡ i22 ≡ 1 (mod m). Then S = {ab, ai1b, ai2b, ai1i2b}. Since G = ⟨S⟩ =
⟨ai1−1, ai2−1, ai1i2−1, ab⟩ = ⟨ai1−1, ai2−1⟩:⟨ab⟩, we have ⟨a⟩ = ⟨ai1−1, ai2−1⟩, yielding
(i1 − 1, i2 − 1,m) = 1. Then Γ is given as in Construction 2.4 (ii).

Assume that n = 2 and l > 1. Then abc ∈ S, l is odd and abc has order 2l.
By Lemma 3.2, since Γ is X-edge-transitive, there is ρ ∈ Xv = Aut(G,S) such that
(abc)ρ ̸= (abc)−1. Noting that ρ has order 2 or 4, we set aρ = ai and cρ = ck, where
i4 ≡ 1 (mod m) and k4 ≡ 1 (mod l). Then S−1 = S = {abc, aibck, abc−1, aibc−k}.
Since Γ is connected, G = ⟨S⟩ = ⟨abc, aibck⟩ = ⟨ai−1, ab, c⟩ = (⟨ai−1⟩:⟨ab⟩)×⟨c⟩.
It follows that ⟨ai−1⟩ = ⟨a⟩, so (i − 1,m) = 1. Suppose that ρ has order 4, then

S = {abc, aibck, ai2bck2 , ai3bck3}, so abc−1 = (abc)−1 = ai
2
bck

2
or ai

3
bck

3
, yielding

i2 ≡ 1 (mod m) and k2 ≡ −1 (mod l). Moreover, i ≡ −1 (mod m) as (i − 1,m) = 1.
Thus Γ is given as in Construction 2.4 (iii). Now let σ := ρ be of order 2. Then
i2 ≡ 1 (mod m) and k2 ≡ 1 (mod l). Thus i ≡ −1 (mod m), and Γ is given as in
Construction 2.4 (iv). Take τ ∈ Aut(G) such that aτ = a, bτ = b and cτ = c−1. Then
σ ̸= τ ∈ Aut(G,S), στ = τσ and τ 2 = 1, so Aut(G,S) = ⟨σ, τ⟩ ∼= Z2

2.
Finally, let n ≥ 3. Recall that abjc ∈ S. Since Γ is X-edge-transitive, by

Lemma 3.2, there is τ ∈ Xv = Aut(G,S) such that (abjc)τ ̸= (abjc)−1. Set aτ = ai

and cτ = ck. Then S = {abjc, aibjck, b−ja−1c−1, b−ja−ic−k}. It is easily shown that
{abjc, aibjck}σ ̸= {b−ja−1c−1, b−ja−ic−k} for any σ ∈ CAut(G)(⟨b⟩). Thus Aut(G,S)
is not transitive on S, and so Aut(G,S) = ⟨τ⟩ ∼= Z2. Then i2 ≡ 1 (mod m) and
k2 ≡ 1 (mod l). Since Γ is connected, G = ⟨S⟩ = ⟨abjc, aibjck⟩ = ⟨ai−1, abj, c⟩ =
(⟨ai−1⟩:⟨abj⟩)×⟨c⟩. Thus ⟨ai−1⟩ = ⟨a⟩, so (i − 1,m) = 1, hence i ≡ −1 (mod m) as
i2 ≡ 1 (mod m). Then Γ is given as in Construction 2.6. �
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4. Insoluble automorphism groups

In this section, we study the case where the automorphism groups are insoluble.
An s-arc of Γ = (V,E) is a sequence of s + 1 vertices v0, v1, . . . , vs such that vi is

adjacent to vi+1 and vi ̸= vi+2. For a subgroup X ≤ AutΓ , the graph Γ is said to be
(X, s)-arc-transitive if X acts transitively on V and on the set of all s-arcs of Γ , and
(X, s)-transitive if further X is intransitive on the set of all (s+ 1)-arcs of Γ .
The vertex stabilizer for s-arc-transitive graphs of valency 4 is known, refer to [34].

.

Lemma 4.1. Let Γ = (V,E) be a connected (X, s)-transitive graph of valency 4.
Then, for u ∈ V , the stabilizer Xu and s are listed in the following table,

s 2 3 4 7
Xu A4, S4 Z3×A4, (Z3×A4).Z2, S3×S4 Z2

3:GL(2, 3) [35]:GL(2, 3)

where [35] is a 3-group of order 35.

For a finite group X, the socle of X, denoted by soc(X), is the subgroup generated
by all minimal normal subgroups of X. The group X is said to be almost simple if
its socle soc(X) is a non-abelian simple group.
In the rest of this section, assume that Γ = (V,E) is a connected tetravalent graph

of square-free order such that a subgroup X ≤ AutΓ is transitive on both V and E.

Lemma 4.2. If Γ has order |V | = 21 then X ̸= PSL(2, 7).

Proof. Suppose that X = PSL(2, 7) and Γ is a connected X-edge-transitive graphs
of valency 4 and order 21. Then X is transitive on V and, for u ∈ V , the stabilizer
Xu

∼= D8 is a Sylow 2-subgroup of X. Let v ∈ Γ (u). Then |Xu : Xuv| = 2 or 4. Set
v = ux for some x ∈ X. Since Γ is connected, ⟨Xu, x⟩ = X; in particular, x ̸∈ Xu.
Let |Xu : Xuv| = 4. Then Xu is transitive on Γ (u), so Γ is X-arc-transitive. We

may choose x such that (u, v)x = (v, u), yielding x ∈ NX(Xuv) ∼= D8. In particular,
NX(Xuv) ̸= Xu. Then |NXu(Xuv)| = 4. Thus NXu(Xuv) is normal in both NX(Xuv)
and Xu, so NXu(Xuv)� ⟨Xu,NX(Xuv)⟩. Checking the subgroups of PSL(2, 7), we get
⟨Xu,NX(Xuv)⟩ ∼= S4, which contradicts ⟨Xu, x⟩ = X.
Let |Xu : Xuv| = 2. Then |Xuv| = 4, so Xuv �M := ⟨Xu, Xv⟩, and hence M ∼= S4.

Noting that Xu and Xv are two Sylow 2-subgroups of M , there is some y ∈ M such
that Xy

u = Xv = Xx
u . Thus xy−1 ∈ NX(Xu) = Xu, so ⟨Xu, x⟩ ≤ ⟨Xu, xy

−1, y⟩ ≤ M ,
again a contradiction. Then the lemma follows. �

Lemma 4.3. Assume that X is almost simple and contains a regular subgroup G.
Then, for u ∈ V , the triple (X,G,Xu) is one of the triples listed in Table 3.

Proof. By the assumption, X = GXu, so |X| = |G||Xu| for u ∈ V . Since Γ is of
valency 4 and |G| is square-free, either

(i) Xu is a 2-group, and hence r2 does not divide |X| for any odd prime r; or
(ii) Xu is given in Lemma 4.1, and hence none of 26, 38 and r2 is a divisor of |X|,

where r is a prime with r ≥ 5.

In particular, |X| is not divisible by 26 · 32. Next we consider the socle T of X. Since
T is normal in X, the T -orbits on V have the same length |T : Tu|. Thus |T : Tu| is
square-free, and T has a {2, 3}-subgroup of square-free index.
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X G Xu

A5 Z5 A4

S5 Z5 S4

PGL(2, 7) D14 S4

Z7:Z3 D16

Z7:Z6 D8

PSL(2, 11) Z11:Z5 A4

PGL(2, 11) Z11:Z5 S4

PGL(2, 11) Z11:Z10 A4

PSL(2, 23) Z23:Z11 S4

PSL(3, 3):Z2 D26 Z2
3:GL(2, 3)

Table 3

Suppose that T is a sporadic simple group. Since |T | is not divisible by 26 · 32, we
have X = T = M11 or J1, and further, by the Atlas [5], J1 does not have a proper
subgroup of index a {2, 3}-number. Thus X = M11, and then 3 · 23 divides |Xu| and
|Xu| divides 24 · 32. By Lemma 4.1, Xu

∼= S4, (3×A4).2 or S4×S3. Checking the
subgroups of M11 in the Atlas [5], we get Xu

∼= S4, so |V | = |X : Xu| = 330. Then
|G| = 330 as G is regular on V ; however, M11 has no such a subgroup, a contradiction.

Let T = An. Since 52 does not divide |X|, we have n ≤ 9. The groups A8 and
A9 are excluded as their orders are divisible by 26 · 32. For A7, neither A7 nor S7

has a subgroup of index dividing |Xv| other than A7. Suppose that T = A6. Then
X ≤ Aut(T ) ∼= A6.Z2

2, so |Xu| is divisible by 3 but not by 33. Examming the maximal
subgroups of X in the Atlas [5], it follows that Xu

∼= A4 or S4; however, X does not
have a subgroup of order divisible by 15, a contradiction. Thus T = A5, and G ∼= Z5.

Assume now that T is a simple group of Lie type defined over GF(q), where q = pf

is a power of a prime p. Then we can get T by checking the orders of finite simple
groups of Lie type (see [12, Table 5.1.A and Table 5.1.B], for example). Since r2 does
not divide |T | for any prime r ≥ 5, either T = PSL(2, p), or p ∈ {2, 3}.

Case 1. Let T = PSL(2, p) for a prime p ≥ 5. In this case, X = T or PGL(2, p), a
Sylow 2-subgroup of X is dihedral, and a Sylow 3-subgroup of X is cyclic. Thus, by
Lemma 4.1, either Xu is a 2-group, or Xu

∼= A4 or S4.
Note that TG is a subgroup of X as T � X. Then |TG : G| is a divisor of

|X : G| = |Xu|. If X ̸= TG then G ≤ T , so |G| = |T : Tu| = |X : Xu|, yielding
|Xu : Tu| = 2. Since |TG| = |T ||G|/|T ∩ G|, we have |TG : G| = |T : (T ∩ G)|, so
|T : (T ∩G)| = |Xu| or |Tu| depending on whether or not X = TG, respectively.

Assume that Xu
∼= A4 or S4. Then Tu

∼= A4 or S4. Consider the action of T
on [T : (T ∩ G)] induced by right multiplication. Then T has a (faithful) transitive
representation of degree 12 or 24. It follows from [12, Table 5.2 A] that p ≤ 23.
Checking the subgroups of PSL(2, p) and PGL(2, p) in the Atlas [5], we conclude that
p = 5, 7, 11 or 23, and the triple (X,G,Xu) is described as in Table 4.3.

Now let Xu be a 2-group. Then |T : (T ∩G)| is a power of 2. By [10], |T : (T ∩G)| =
p+ 1 = 2e for e ≥ 3. It follows that |Tu| = 2e−1 or 2e. Thus Tu

∼= D2e or D2e−1 .
Suppose that 32 divides |Tu|. Let v ∈ Γ (u). By Lemma 3.1, Tuv has index 2 or 4

in both Tu and Tv, then Tuv contains a subgroup C ∼= Z4. It is easily shown that C
is normal in both Tu and Tv, and so C � ⟨Tu, Tv⟩. Thus T ̸= ⟨Tu, Tv⟩ := Q as T is
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simple. Checking the subgroups of T (see [11, 8.27], for example), we conclude that
Tu

∼= Tv
∼= D2e−1 , and Q ∼= D2e = Dp+1 which is maximal in T . Let w ∈ Γ (v). Then

a similar argument implies that Q1 := ⟨Tv, Tw⟩ ∼= Dp+1. Note that Tv is normal in
both Q and Q1. Thus Tv � ⟨Q,Q1⟩, yielding Q = Q1. By the connectedness of Γ , we
conclude that Q = ⟨Tv | v ∈ V ⟩. Thus, for any x ∈ X, we have T x

v = (Xv ∩ T )x =
Xvx ∩ T = Tvx ≤ Q. Then Q � T , a contradiction. Therefore, |Tu| divides 16, and
so 2e = 8, 16 or 32. Then p = 2e − 1 = 7 or 31, and T = PSL(2, 7) or PSL(2, 31),
respectively.
Suppose that T = PSL(2, 31). Then Tu

∼= D16 as |T : Tu| is square-free and |Tu| is
not divisible by 32. Checking the subgroups of T , we know that T has no subgroups
of order |T : Tu| = 930. Thus X = PGL(2, 31) and Xu

∼= D32. Note that each Sylow
2-subgroup of X is a maximal subgroup. Then a similar argument as above implies
that X has a normal Sylow 2-subgroup, which is impossible.
Therefore, T = PSL(2, 7), so X = T or PGL(2, 7). By Lemma 4.2, checking the

subgroups of X implies that X = PGL(2, 7) and G ∼= Z7:Z3 or Z7:Z6.
Case 2. Let p ∈ {2, 3}. Assume that Xu is a 2-group. Then T has a subgroup of

square-free order with index a power of 2. By [10], T = PSL(t, s) and ts−1
s−1

is a power
of 2, where t is a prime and s is a power of some odd prime. Recall that, in this case,
|X| is not divisible by r2 for any odd prime. It follows that t = 2 and s is a prime, so
T = PSL(2, s). By Case 1, X = PGL(2, 7) ∼= PSL(3, 2):Z2 and G ∼= Z7:Z3 or Z7:Z6.
We next assume that Xu is not a 2-group. Then, by Lemma 4.1, |Xu| is not

divisible by 25 and 37. Thus |X| = |G||Xu| is not divisible by p8. We check the orders
of simple groups. Taking into account the isomorphisms among simple groups (see
[12, Proposition 2.9.1]), we know that T is one of PSL(2, q), PSL(3, 2), PSL(3, 3),
PSL(3, 9), PSL(4, 2), PSL(4, 3), PSU(3, 3), PSU(3, 9), PSp(4, 3), Sz(8) and G2(3).
However, PSL(3, 9), PSL(4, 2), PSL(4, 3) and the last four groups are excluded as
they have orders divisible by 26 or 52. Recalling that T has a {2, 3}-subgroup of
square-free index, PSU(3, 3) is excluded by checking its subgroups in the Atlas [5].
For T = PSL(3, 2) or PSL(3, 3), checking the subgroups of X, the triple (X,G,Xu)
is known as in Table 4.3.
To complete the proof, we let T = PSL(2, pf ) with f ≥ 2 and p = 2 or 3. Then a

Sylow p-subgroup of T has order pf . Suppose that f ≥ 4. Then p3 is a divisor of |Tu|.
Checking the subgroups of T (see [11, 8.27], for example), we know that Tu

∼= Zf
p :Zt

or Zf−1
p :Zt, where t divides p

f −1; however, none of the groups in Lemma 4.1 has such
a subgroup of index no more than 2, a contradiction. Thus f ≤ 3. Further, by the
Atlas [5], neither PSL(2, 8) nor PSL(2, 27) has subgroups of square-free index. Noting
that PSL(2, 9) ∼= A6, we have T = PSL(2, 4) ∼= A5. Then the Lemma follows. �

We now determine the structure of insoluble groupsX. LetK be the largest soluble
normal subgroup of X. Consider the normal quotient ΓK . By Lemma 2.9, since X/K
is insoluble, Γ is a normal cover of ΓK . Thus K is the kernel of X acting on V ΓK ,
and K is semiregular on V ; in particular, |K| is square-free.

Lemma 4.4. Assume that X is insoluble. Let K be the largest soluble normal sub-
group of X. Then X = K:Y , where Y is almost simple such that the socle soc(Y ) is
normal in X, the greatest common divisor (|Y |, |K|) is a divisor of 6, and Xu

∼= YB

for a K-orbit B and u ∈ V . If further X has a regular subgroup G, then we may
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choose the group Y such that X contains a regular subgroup K:(G∩ Y ); in this case,
Y , G ∩ Y and YB are known respectively as in the three columns of Table 3.

Proof. We first show that X is a split extension of K and some Y ≤ X by induction
on the order of K. This is trivial if K = 1. Let K ̸= 1, p be the largest prime divisor
of |K|, and P be the Sylow p-subgroup of K. Then P has order p and is normal in
X and, by Lemma 2.9, Γ is a normal cover of ΓP as X/P is insoluble. Let u ∈ V
and ∆ be the P -orbit containing u. Since |V | is square-free, |∆| = p is coprime to
|X : X∆|. Then X∆ = P :Xu contains a Sylow p-subgroup of X. It follows from
Gaschtz’ Theorem (see [2, 10.4]) that the extension X = P.(X/P ) splits over P , that
is, X = P :X1 for X1 ≤ X with X1∩P = 1. Since Γ is a normal cover of ΓP , the kernel
of X acting on V ΓP equals to P . Thus X1 is faithful and transitive on both V ΓP and
EΓP . Further, K = K ∩PX1 = P (K ∩X1) and K ∩X1�X1. Since |V ΓP | < |V |, we
may assume by induction that X1 = (K ∩X1):Y . Then X = P ((K ∩X1)Y ) = KY ,
and K ∩ Y ≤ K ∩X1 yielding K ∩ Y ≤ K ∩X1 ∩ Y = 1. Thus X = K:Y .

Since Γ is a normal cover of ΓK , we know that Y is faithful and transitive on both
V ΓK and EΓK . Let N be a minimal normal subgroup of Y . Then KN is normal
in X, so KN is insoluble by the choice of K. Thus N is insoluble, so N is a direct
product of isomorphic non-abelain simple groups. Recalling that |X| is not divided
by r2 for a prime r ≥ 5, it follows that N is simple. Since ΓK has square-free order,
N is not semiregular on V ΓK . Thus either N is transitive on V ΓK , or ΓK is not a
normal cover of its quotient graph with respect to N . By Lemma 2.9, Y/N is soluble.
It follows that N is the unique minimal normal subgroup of Y . Then Y is almost
simple. Since K �X, we have X/CX(K) = NX(K)/CX(K) . Aut(K). Noting that
Aut(K) is soluble as |K| is square-free, N = soc(Y ) < CX(K), yielding N �X.

Let B be the K-orbit containing u ∈ V . Then K:Xu = XB = XB∩(K:Y ) = K:YB,
so Xu

∼= YB is a {2, 3}-group. Noting that |Y | = |V ΓK ||YB|, since |V | is square-free,
we have (|K|, |V ΓK |) = 1. Thus (|Y |, |K|) = (|YB|, |K|) is a divisor of 6.

Finally, assume that G is a regular subgroup of X. Let L ≤ G with |G| = |K||L|.
Then R := K:L is a regular subgroup ofX, and R = R∩X = R∩(K:Y ) = K:(R∩Y ).
Note L and R ∩ Y are Hall subgroups of R. Then L and R ∩ Y are conjugate in R,
that is, L = (R∩Y )h for some h ∈ R. Thus, replacing Y by Y h, we may assume that
L = R ∩ Y , and so L = G ∩ Y . It is easily shown that L is regular on the set of all
K-orbits on V . Then, identifying Y with a subgroup of AutΓK , the quotient graph
ΓK is a Y -edge-transitive Cayley graph of L. Further, since Y is almost simple, the
triple (Y, L, YB) is known by Lemma 4.3. �

5. Graphs with insoluble automorphism groups

Let G be a group of square-free order, and Γ = (V,E) be a connected X-edge-
transitive tetravalent Cayley graph of G, where G ≤ X ≤ AutΓ and X is insoluble.
Set X = K:Y as in Lemma 4.4. Then X has a regular subgroup K:L for L = G∩ Y .

5.1. 2-arc-transitive graphs. Assume that Γ is (X, 2)-arc-transitive. Then, for
u ∈ V , the stabilizer Xu is 2-transitive on Γ (u). Since T := soc(Y )�X, by Lemma
3.1 (i), Tu acts nontrivially on Γ (u), and so Tu acts transitively on Γ (u). Then, by
Lemma 3.1 (ii), T has at most two orbits on V . It follows that Γ is T -edge-transitive.



CAYLEY GRAPHS 17

Since K is semiregular, |K| is a divisor of |V |. Then each odd prime divisor of |K|
is also a divisor of |T |. Recalling that (|Y |, |K|) divides 6, we have |K| = 1, 2, 3 or 6.

Lemma 5.1. Let B be a K-orbit on V and u ∈ B. Then Tu � TB, and

(1) |K| = 1 or 3, TB/Tu
∼= K; or

(2) |K| = 2 or 6, TB/Tu
∼= K, and T is transitive on V ; or

(3) |K| = 2 or 6, |TB/Tu| = |K|
2

and T has two orbits on V .

Proof. Let N = K × T . Assume that |K| = 1 or 3. Then either T is transitive on V
or both N and T have two orbits on V . Thus the K-orbit B lies in one of T -orbits,
so TB is transitive on B. Denote by TB

B the permutation group induced by TB on B.
Noting that KTB = K×TB and K is regular on B, it follows from [6, Theorem 4.3A]
that TB

B
∼= KB ∼= K and TB

B is regular on B, and so Tu�TB, hence K ∼= TB
B

∼= TB/Tu.
Assume that |K| = 2 or 6. Then N is transitive on V . If T is transitive on V ,

then TB is transitive on B, so K ∼= TB
B

∼= TB/Tu. Suppose that T has two orbits

on V . Then TB has exactly two orbits on B with length |K|
2
. Let B1 be the TB-

orbit containing u. Considering the action of KB1×TB on B1, we get Tu � TB and
KB1

∼= TB1
B

∼= TB/Tu. Then the lemma follows. �

Lemma 5.2. If T = PSL(3, 3), then Γ is the point-line incidence graph of the pro-
jective plane PG(2, 3), which is a 4-transitive Cayley graph of D26.

Proof. Let T = PSL(3, 3). Then L ∼= D26, |K| = 1 or 3, and YB = TB
∼= Z2

3:GL(2, 3).
It is easily shown that TB has no normal subgroups of index 3. By Lemma 5.1, K = 1.
Then X = Y = PSL(3, 3):Z2. By [14], the lemma follows. �

Noting that PSL(2, 7) ∼= PSL(3, 2) and S4 has no normal subgroups of index 3, a
similar argument as above implies the following lemma.

Lemma 5.3. If T = PSL(2, 7), then Γ is the point-line non-incidence graph of the
projective plane PG(2, 2), which is a Cayley graph of D14.

Lemma 5.4. If T = A5, then Γ is isomorphic to one of K5, K5,5 − 5K2 and the
S3-cover of K5 given in Example 2.14.

Proof. Let T = A5. If K is cyclic, then Γ is a circulant and, by [18], Γ is one of K5

and K5,5−5K2. Thus we assume that K = S3. Since X/CX(K) = NX(K)/CX(K) .
Aut(K) = Inn(K) ∼= S3, we have Y ≤ CX(K), so X = K×Y . Then, for a K-orbit B
and u ∈ B, we have Xu

∼= YB
∼= A4 or S4, XB = K×YB, so |V | = |K||Y : YB| = 30.

Recalling that Tu is transitive on Γ (u), it follows that |Tu| is divided by 4, so T is not
transitive on V . Then T has two orbits on V , so |Tu| = 4, hence Tu

∼= Z2
2 as Tu �Xu.

Noting that Tu is regular on Γ (u), we have Xu = Tu:Xuv, where v ∈ Γ (u)
Let Y = S5. Then TB

∼= A4, Xu
∼= YB

∼= S4, and Xuv
∼= S3. Write Xuv = ⟨g⟩:⟨h⟩,

where g is of order 3 and h is an involution with gh = g−1. Clearly, g, h ̸∈ K. Since
|Tu| = 4, we have |Yu| = 4 or 8 as |Y :T | = 2. Consider the action of YB on B. Since
K is regular on B, it follows from [6, Theorem 4.3A] that Y B

B is semiregular on B. So
Yu�YB

∼= S4. It follows that Yu = Tu
∼= Z2

2. Thus g, h ̸∈ Y , so g = y1y2 and h = z1z2,
where y1 ∈ Y , y2 ∈ K, z1 ∈ Y and z2 ∈ K. It is easily shown that ⟨y1, z1⟩ ∼= S3 and
⟨Tu, y1, z1⟩ ∼= S4. Thus Γ is the S3-cover of K5 given in Example 2.14.
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Now let Y = T = A5. Then Xu
∼= YB = TB

∼= A4 and Xuv
∼= Z3. It is easily shown

that Xuv = ⟨y1y2⟩, where y1 ∈ Y and y2 ∈ K are of order 3. Further, NX(⟨y1y2⟩) =
⟨y1, y2⟩:⟨z1z2⟩ = ⟨y1y2⟩:⟨y2, z1z2⟩, where z1 ∈ Y is an involution such that ⟨y1⟩:⟨z1⟩ ∼=
S3. Write Γ ∼= Cos(X,Xu, XuxXu) for a 2-element x ∈ NX(⟨y1y2⟩) with ⟨x,Xu⟩ =
X. Then XuxXu = Xuy

i
2z1z2Xu. Noting that Xy2

u = Xu and (Xuy
i
2z1z2Xu)

y2 =
Xuy

i+1
2 z1z2Xu, it follows that Γ ∼= Cos(X,Xu, Xuz1z2Xu), that is, Γ is unique up to

isomorphism. Note that the graph in the above paragraph is (KT, 2)-arc-transitive.
Thus Γ is isomorphic to the S3-cover of K5 given in Example 2.14. �

Lemma 5.5. If T = PSL(2, 23), then Γ is isomorphic to one of the following graphs:

P23,11, P
(2)
23,11, the graphs in Examples 2.11 and 2.14.

Proof. Assume that T = PSL(2, 23). Then X = K×T and Xu
∼= TB

∼= S4, where
u ∈ V and B is the K-orbit containing u. Noting that S4 has no quotients isomorphic
to Z3 and Z6, it follows from Lemma 5.1 that K is one of 1, Z2 and S3.

If K = 1, then X = T and Xu is a maximal subgroup, so AutΓ = X and Γ ∼= P23,11

by [16]. If K = S3, then Tu = Z2
2 and a routine argument similar as in Lemma 5.4

implies that Γ is the S3-cover of P23,11 given in Example 2.14.
Let K = Z2. Then Tu

∼= A4 or S4 by Lemma 5.1.
Assume first that Tu

∼= S4. Then Xu = Tu ≤ T , and T has two orbits on V , say
U and U z, where ⟨z⟩ = K. Note that Xuz = (Xu)

z = Xu. It follows that all vertex
stabilizers are conjugate in T . Recalling that Γ is T -edge-transitive, it follows from
[8, Lemma 3.4] that Γ is the standard double cover of a T -arc-transitive graph Σ of

valency 4 and order 253. By [16], Σ ∼= P23,11, and so Γ ∼= P
(2)
23,11.

Assume now that Tu
∼= A4. Then Xu

∼= S4 and Xuv
∼= S3. Set Xu = Tu:⟨z1z2⟩ and

Xuv = ⟨x⟩:⟨z1z2⟩, where z1 ∈ T and z2 ∈ K are involutions, and x ∈ Tu has order 3.
Let z = z1z2. For g ∈ NX(Xuv), it is easily shown that g normalizes ⟨x⟩. It follows
that NX(Xuv) ≤ NT (⟨x⟩)×K. By the Atlas [5], NT (⟨x⟩) ∼= D24 and NT (⟨x, z1⟩) ∼=
D12. We may write NT (⟨x, z1⟩) = ⟨x⟩:⟨z1⟩×⟨o⟩, where o is the involution in the
center of NT (⟨x⟩). Note that all involutions of ⟨x, z⟩ are conjugate under ⟨x⟩. Then
an element h ∈ NT (⟨x⟩) normalizes ⟨x, z⟩ if and only if zh = zx

i
for some 0 ≤ i ≤ 2,

yielding xih−1 ∈ CT (z), so xih−1 ∈ CT (z1), and hence xih−1 ∈ CT (z1) ∩NT (⟨x, z1⟩).
It follows that h ∈ NX(⟨x, z⟩) ∩ NT (⟨x⟩) if and only if xih−1 ∈ ⟨z1, o⟩, yielding
h ∈ NT (⟨x, z1⟩). Therefore, NX(Xuv) = NT (⟨x, z1⟩)×K = ⟨x⟩:⟨z1⟩×⟨o⟩×⟨z2⟩ =
⟨x, z⟩×⟨o⟩×⟨z2⟩. Then, for g ∈ NX(⟨x, z⟩) \Xu, we have XugXu = HoH, Hoz2H or
Hz2H. Note that ⟨H, z2⟩ = ⟨H1, z1, z2⟩ ∼= S4×Z2. Thus, writing Γ as a coset graph,
Γ is one of the graphs in Example 2.11. �

We next determine the 2-arc-transitive graphs associated with PSL(2, 11).

Lemma 5.6. Let Γ = (V,E) be a connected tetravalent (PSL(2, 11), 2)-arc-transitive
graph of order 55. Then Γ ∼= P11,5.

Proof. Let X = PSL(2, 11). Then Xu
∼= A4 and Xuv

∼= Z3 for u ∈ V and v ∈ Γ (u).
Write Γ as a coset graph Cos(X,Xu, XuxXu), where x ∈ NX(Xuv) with ⟨x,Xu⟩ = X
and x2 ∈ Xuv. By the Atlas [5], NX(Xuv) ∼= D12 = Z3:Z2

2. Then XuxXu = XuyXu for
some involution y ∈ NX(Xuv). Checking the subgroups of PSL(2, 11), we know that
Xu = NX(P ) for a Sylow 2-subgroup P ofX. It follows that the subgroups isomorphic
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to A4 are all conjugate in X. Then there are two non-conjugate maximal subgroups
M1 and M2 of X such that Xu ≤ Mi

∼= A5, i = 1, 2. Note that NMi
(Xuv) ∼=

S3. Then NX(Xuv) = NMi
(Xuv)×⟨o⟩, where o is the involution in the center of

NX(Xuv). It is easily shown that ⟨Xu,NMi
(Xuv)⟩ = Mi, i = 1, 2. Thus NM1(Xuv) ∩

NM2(Xuv) contains no involutions; otherwise, NM1(Xuv) = NM2(Xuv), so M1 = M2, a
contradiction. Then NM1(Xuv)∪NM2(Xuv) contains exactly 6 of the 7 involutions in
NX(Xuv), and so we have XuxXu = XuyXu = XuoXu. Thus Γ = Cos(X,Xu, XuoXu)
is unique. Since P11,5 is (PSL(2, 11), 2)-arc-transitive, Γ ∼= P11,5. �

Lemma 5.7. If T = PSL(2, 11) and K ̸= 1, then K is isomorphic to Z2, Z3 or Z6.

Proof. Assume T = soc(Y ) = PSL(2, 11) and K ̸= 1. Then |K| = 2, 3 or 6.
Suppose that K ∼= S3. Recall that X = K:Y has a regular subgroup K:(G ∩ Y ).

Then |G ∩ Y | is odd. By Lemmas 4.4 and 4.3, TB
∼= A4 and G ∩ Y ∼= Z11:Z5.

Thus, by Lemma 5.1, Tu
∼= Z2

2 and T = PSL(2, 11) has two orbits on V . It is
easily shown that Γ is (KT, 2)-arc-transitive. Without loss of generality, we assume
X = K×T . Then Xuv = ⟨xy⟩ ∼= Z3 and Xu = Tu:Xuv for v ∈ Γ (u), where x ∈ T and
y ∈ K are of order 3 such that Tu:⟨x⟩ ∼= A4. Computation shows that NX(Xuv) =
⟨o⟩×(⟨x⟩×⟨y⟩):⟨z1z2⟩, where o is the involution in the center of NT (⟨x⟩), z1 ∈ T and
z2 ∈ K are involutions with xz1 = x−1 and yz2 = y−1. For an arbitrary element
g = oixsyt(z1z2)

j ∈ NX(⟨xy⟩), set W = ⟨g,Xu⟩. Then W ≤ ⟨Tu, x, o
izj1⟩×⟨y, zj2⟩. If

j ≡ 0 (mod 2), thenW ̸= X. Assume that j ≡ 1 (mod 2). ThenW ≤ ⟨Tu, x, o
iz1⟩×K.

Checking the subgroups of T = PSL(2, 11), we conclude that NT (Tu) = Tu:⟨x⟩.
Let M1 and M2 be two non-conjugate maximal subgroups of T with Mi

∼= A5 and
Tu ≤ Mi, i = 1, 2. Then NMi

(Tu) ∼= A4 for i = 1, 2. Thus M1 ∩ M2 = Tu:⟨x⟩.
Noting that NM1(⟨x⟩) ∼= S3

∼= NM2(⟨x⟩), a similar argument as in the proof of
Lemma 5.6 implies that NM1(⟨x⟩) ∪ NM2(⟨x⟩) contains 6 of the 7 involutions in
NT (⟨x⟩) = ⟨o⟩×⟨x, z1⟩. Since A5 has no elements of order 6, we have o ̸∈ Mi for
i = 1, 2. Thus oiz1 ∈ NM1(⟨x⟩)∪NM2(⟨x⟩). Then ⟨Tu, x, o

iz1⟩ ∼= A5, and so W ̸= X.
Thus there is no g ∈ NX(Xuv) with ⟨g,Xu⟩ = X, a contradiction.
Therefore, K ̸∼= S3, so K is isomorphic to one of Z2, Z3 and Z6. �

Lemma 5.8. Assume that T = PSL(2, 11). Then Γ is isomorphic to one of P11,5,

P
(2)
11,5, the graph in Example 2.12 and its standard double cover.

Proof. Let K be the largest soluble normal subroup of X. Then, by Lemma 5.7,
either K = 1, or K is isomorphic to one of Z2, Z3 and Z6.
Case 1. Let K = 1. By Lemma 4.3, G ∼= Z11:Z5 or Z11:Z10. If |G| = 55, then

Tu
∼= A4 and Γ is (T, 2)-arc-transitive, so Γ ∼= P11,5 by Lemma 5.6. Thus we assume

next that X = PGL(2, 11), G ∼= Z11:Z10 and Xu
∼= A4. Then G ∩ T ∼= Z11:Z5,

Xu = Tu
∼= A4 and Xuv

∼= Z3 for v ∈ Γ (u). Let M be a maximal subgroup of X with
Xu ≤ M ∼= S4. Then M = X ∩M = GXu ∩M = (G ∩M)Xu = Xu:(G ∩M). Let
G ∩ M = ⟨z⟩. Then z is an involution. Replacing v by vh for h ∈ Xu if necessary,
we assume that z normalizes Xuv. Then Xuv:⟨z⟩ ∼= S3. By the Atlas [5], we conclude
that NX(Xuv) = (Xuv×⟨y⟩):⟨z⟩ ∼= D24, where y ∈ X has order 4.
Write Γ = Cos(X,Xu, XuxXu) for x ∈ NX(Xuv) with ⟨x,Xu⟩ = X and x2 ∈ Xuv.

It implies that x = hyiz for i ∈ {1, 2, 3} and h ∈ Xuv, so X = ⟨x,Xu⟩ = ⟨yiz,Xu⟩.
In particular, yiz ̸∈ T as Xu ≤ T . It is easy to know that y2 ∈ T , y ̸∈ T , z ̸∈ T ,
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⟨y, z⟩ ∼= D8 and T ∩ ⟨y, z⟩ ∼= Z2
2. It follows that yz, y3z ∈ T . Thus i = 2, and so

XuxXu = Xuy
2zXu. Hence Γ = Cos(X,Xu, Xuy

2zXu).
Identify V Γ with U∪U ′, where U = {Xug | g ∈ G∩T} and U ′ = {Xuzg | g ∈ G∩T}

are in fact the bipartition subsets of Γ . Then Xug and Xuzg1 are adjacent whenever
zg1g

−1 ∈ Xuy
2zXu = zXuy

2Xu, i.e., g1g
−1 ∈ Xuy

2Xu. Noting that Tu = Xu, it
follows that Γ is the standard double cover of Σ := Cos(T, Tu, Tuy

2Tu). Clearly, Σ is

(T, 2)-arc-transitive and of order 55. By Lemma 5.6, Σ ∼= P11,5, so Γ ∼= P
(2)
11,5.

Case 2. Let K ∼= Z2. Then X = Y×K. By Lemmas 4.4 and 4.3, (Y, YB) =
(PSL(2, 11),A4) or (PGL(2, 11), S4). Then TB

∼= A4. By Lemma 5.1, Tu
∼= A4

and T has two orbits on V . Moreover, Γ is (K×T, 2)-arc-transitive. Recalling that
Γ is T -edge-transitive, by [8, Lemma 3.4], Γ is the standard double cover of a T -
edge-transitive graph Σ of order 55. It is easily shown that Σ is (PSL(2, 11), 2)-arc-

transitive. By Lemma 5.6, Σ ∼= P11,5, and so Γ ∼= P
(2)
11,5.

Case 3. Let K = Z3. By Lemma 5.1, TB
∼= A4 and Tu

∼= Z2
2, where u ∈ V and

B is the K-orbit containing u. Since Tu is normal in Xu and transitive on Γ (u),
we have Xu = Tu:Xuv for v ∈ Γ (u). Write Γ ∼= Cos(X,Xu, XugXu) for a 2-element
g ∈ NX(Xuv) with ⟨g,Xu⟩ = X and g2 ∈ Xuv.

Assume first that T is transitive on V . Then |V | = |T : Tu| is odd, and (Y,Xu) =
(PSL(2, 11),A4) or (PGL(2, 11), S4) by Lemmas 4.4 and 4.3.

Suppose that (Y,Xu) = (PSL(2, 11),A4). Then Xuv
∼= Z3. Write Xuv = ⟨xy⟩,

where x ∈ T and y ∈ K are of order 3. Then NX(Xuv) = ⟨o⟩×⟨x⟩×⟨y⟩, and so
Γ ∼= Cos(X,Xu, XuoXu) is unique up to isomorphism. Noting that the graph in Ex-
ample 2.12 is (K×T, 2)-arc-transitive, Γ is isomorphic to the graph in Example 2.12.

Suppose that (Y,Xu) = (PGL(2, 11), S4). Then Xuv
∼= S3 and, since T is transitive,

K:Y = X = (K×T )Xu = (K×T )Xuv. Since |X : (K×T )| = 2, we conclude that the
Sylow 3-subgroup of Xuv is contained in K×T . Then we may set Xuv = ⟨xy⟩:⟨z⟩,
where x ∈ T , y ∈ K and z is an involution. Then X = (K×T ):⟨z⟩. If y = 1 then
x ∈ T ∩ Xu = Tu

∼= Z2
2, a contradiction. If x = 1 then Xu = Tu:Xuv = ⟨Tu, y, z⟩ =

(Tu×⟨y⟩)⟨z⟩ ̸∼= S4, again a contradiction. Thus both x and y have order 3. Since
Xuv

∼= S3, we have (xy)z = (xy)−1, so xz = x−1 and yz = y−1. Then a routine
argument implies that Γ is isomorphic to the graph in Example 2.12.

Assume now that T has two orbits on V . Then (X,Xu) = (K:PGL(2, 11),A4). It
follows that Xuv = ⟨xy⟩, where x ∈ T and y ∈ K are of order 3 such that Tu:⟨x⟩ ∼= A4.

Let z ∈ PGL(2, 11)\T be an involution with xz = x−1 and Tu:⟨x, z⟩ ∼= S4. Let o be
the involution in the center ofNT (⟨x⟩) ∼= D12. If yz = zy,NX(⟨xy⟩) = ⟨o⟩×⟨x, y⟩, and
⟨g,Xv⟩ ≤ K × T , a contradiction. Thus yz = y−1, and NX(⟨xy⟩) = ⟨o⟩×⟨x, y⟩:⟨z⟩ =
⟨xy⟩:⟨x, z⟩×⟨o⟩. Then we may take g = zo, xzo or x2zo. Noting that Xx

u = Xu and
(Xux

izoXu)
x = Xux

i−2zoXu, it follows that Γ ∼= Cos(X,Xu, XuzoXu).
Write V Γ = {Xug | g ∈ KT} ∪ {Xuzg | g ∈ KT}. Then Xuzg2 and Xug1 are

adjacent in Γ if and only if zg2g
−1
1 ∈ XuzoXu = zXuoXu, that is, g2g

−1 ∈ XuoXu.
Noting that Xu = Tu:Xuv ≤ K×T , it follows that Γ is the standard double cover of
Σ := Cos(KT,Xu, XuoXu). By the argument in the third paragraph of this case, Σ
is isomorphic to the graph in Example 2.12.

Case 4. K = Z6. Then (X,Xu) = (K×PSL(2, 11),A4) or (K:PGL(2, 11), S4). In
this case, T = PSL(2, 11) has two orbits on V , and Γ is (KT, 2)-arc-transitive. It is
easily shown that A4

∼= (KT )u ≤ Q×T , where Q ∼= Z3 is the Sylow 3-subgroup of K.
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By [8, Lemma 3.4], Γ is the standard double cover of a (QT, 2)-arc-transitive graph
Σ. By the argument in the third paragraph of Case 3, Σ is isomorphic to the graph
in Example 2.12. This completes the proof. �

5.2. Graphs associated with PSL(2, 7). Now we consider graphs associated with
the simple group PSL(2, 7). If Γ is (X, 2)-arc-transitive, then Γ is known. Thus we
assume that X = K:Y , Y = PGL(2, 7) and Xu

∼= YB
∼= D16 or D8, where B is the

K-orbit containing u ∈ V . In particular, |V | = 21|K| or 42|K|, and (|K|, |Y |) ≤ 2.

Lemma 5.9. If X = PGL(2, 7), then either Γ ∼= P7,3, or Γ is bipartite and is

isomorphic one of P
(2)
7,3 and the graphs in Example 2.8.

Proof. Assume that X = PGL(2, 7). If Xu = D16, then Xu is maximal in X, so
Γ ∼= P7,3 by [16]. Thus we assume further that Xu

∼= D8 in the following.
Suppose that Xu ̸≤ T = PSL(2, 7). Then |Tu| = 4. Note that X has a factorization

X = GXu with G ∩ Xu = 1, where G ∼= Z7:Z6. Let P be a Sylow 2-subgroup of X
with Xu < P . Then P ∼= D16, and P contains exactly two subgroups isomorphic to
D8: one is Xu and the other one, say Q, is a Sylow 2-subgroup of T . It is easily shown
that Xu ∩Q ∼= Z4. Then Xu = ⟨h⟩:⟨z1⟩, where h ∈ T is of order 4 and z1 ∈ X \ T is
an involution. Noting that P = X ∩ P = (G ∩ P )Xu, we find that G ∩ P = ⟨z2⟩ and
P = Xu:⟨z2⟩ for an involution z2. Since T has no subgroups isomorphic to Z7:Z6, we
have z2 ∈ X \ T . Clearly, z2 ̸∈ Xu. Thus P contains another subgroup ⟨h, z2⟩ which
is isomorphic to D8 and not contained in T , a contradiction. Therefore, Xu = Tu. In
particular, T has two orbits on V , and so Γ is a bipartite graph.
Suppose that Γ is X-half-transitive. Write Γ ∼= Cos(X,Tu, Tu{x, x−1}Tu), where

x ∈ X with ⟨Tu, x⟩ = X. Then |Tu : (Tu ∩ T x
u )| = 2, so Tu ∩ T x

u is normal in both T u

and T x
u , hence Tu∩T x

u �M := ⟨Tu, T
x
u ⟩. Checking the subgroups of T , since Tu ̸= T x

u ,
we have M ∼= S4. Then there is an element y ∈ M of order 3 such that T x

u = T y
u ,

so xy−1 ∈ NX(Tu) ∼= D16. Write NX(Tu) = Tu:⟨z⟩ for an involution z ̸∈ T . Then
xy−1 = hzi for h ∈ Tu and i = 0 or 1, so x = hziy. Since ⟨Tu, x⟩ = X = PGL(2, 7),
we have i = 1. Thus Tu{x, x−1}Tu = Tu{zy, (zy)−1}Tu, so Γ is isomorphic to the

graph in Example 2.15 (1). Then Γ ∼= P
(2)
7,3 by Lemma 2.16.

Suppose that Γ is X-arc-transitive. Then |Tu : Tuv| = 4, so Tuv
∼= Z2. By the

information given in the Atlas [5], we have NX(Tuv) ∼= D16 and NT (Tuv) ∼= D8. Write
NX(Tuv) = NT (Tuv):⟨z⟩ for an involution z ̸∈ T . Set Tuv = ⟨o⟩. If o lies in the center
of Tu, then NT (Tuv) = Tu, so |Tuv| = |Tu ∩ Tv| ≥ 4 by noting that |NTv(Tuv)| ≥ 4,
a contradiction. Thus NTu(Tuv) ∼= Z2

2. Let y be an element of order 4 in NT (Tuv).
Then y2 = o, NT (Tuv) = NTu(Tuv)⟨y⟩, and so NX(Tuv) = (NTu(Tuv)⟨y⟩):⟨z⟩. Thus
TuNX(Tuv)Tu = Tu∪(TuyTu)∪(TuzTu)∪(TuyzTu). Since Γ is connected, we conclude
that Γ is isomorphic to one of the graphs in Example 2.8. �

Lemma 5.10. If K ∼= Z2 then Γ ∼= P
(2)
7,3 and X ∼= PGL(2, 7)×Z2.

Proof. Assume that K = Z2. Then X = Y×K, ΓK
∼= P7,3 and |V | = 21|K| = 42.

Suppose that T is transitive on V . Then |Tu| = 4, so Tu
∼= Z4 as Tu is normal

in Xu
∼= D16. Since T is not regular, either Tuv

∼= Z2 or Tu is transitive on Γ (u),
where v ∈ Γ (u). The latter case yields that Γ is T×K-arc-transitive, so ΓK is a
T -arc-transitive graph of order 21, which contradicts Lemma 4.2. By Lemma 3.1, the
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former case implies that Tvw
∼= Z2 for w ∈ Γ (v), so Tuv = Tvw as Tv

∼= Z4 has a
unique subgroup of order 2. By the connectedness of Γ we conclude that Tuv fixes
every vertex of Γ , a contradiction. Therefore, T is intransitive on V . Noting that
Tu is a 2-group, Tu

∼= D8 and T has exactly two orbits. Then Γ is bipartite with
two parts being T -orbits on V . Let Ỹ be the maximal subgroup of X preserving
the bipartition of Γ . Then PGL(2, 7) ∼= Ỹ = Y or T :⟨z1z2⟩, where z1 ∈ Y \ T and
z2 ∈ K are involutions. It is easily shown that X = Ỹ×K. Note that Ỹ , viewed
as a subgroup of AutΓK , is transitive on the arcs of ΓK

∼= P7,3. It follows that Γ

is X-arc-transitive, so Ỹu is transitive on Γ (u), hence Γ is Ỹ -edge-transitive. By [8,
Lemma 3.4], Γ is isomorphic to the standard double cover of a Ỹ -arc-transitive graph
Σ of order 21. Then, by Lemma 5.9, Σ ∼= P7,3, and this lemma follows. �

Lemma 5.11. If |K| > 3 is odd then YB
∼= Xu

∼= D8 for a K-orbit B containing u.

Proof. Assume that |K| > 3 is odd. Set Y = T :⟨z⟩, where T = PSL(2, 7) and
z ∈ Y \ T is an involution. Then X = (T×K):⟨z⟩. Since Γ is X-edge-transitive,
we may write Γ = Cos(X,Xu, Xu{x, x−1}Xu), where x ∈ X \Xu with ⟨x,Xu⟩ = X.
Write x = yzic for c ∈ K, y ∈ T and i = 0 or 1.

Suppose that Xu
∼= D16. Then Xu is a Sylow 2-subgroup of X. Since |K| is odd, we

may assume that z ∈ Xu ≤ Y . Then YB = Xu = Tu:⟨z⟩. Since YB
∼= D16, the quotient

ΓK
∼= P7,3 is Y -arc-transitive, and so Γ is X-arc-transitive. Thus we may choose x

such that x2 ∈ Xu. So x2 = yzicyzic = ycz
i
yz

i
c = yyz

i
cz

i
c ∈ Xu. Since yyz

i ∈ T and
cz

i
c ∈ K has odd order, cz

i
c = 1. Since X = ⟨x,Xu⟩ = ⟨yzic,Xu⟩ ≤ ⟨yzi, c,Xu⟩ ≤

K:⟨yzi, Xu⟩, we have c ̸= 1 and Y = ⟨yzi, Xu⟩. It implies that i = 1, x = yzc, yyz ∈ Tu

and ccz = 1, so cz = c−1. Recalling Y = ⟨yz,Xu⟩, we have T :⟨z⟩ = Y = ⟨yz, Tu:⟨z⟩⟩ =
⟨y, Tu, z⟩ = ⟨y, yz, Tu, z⟩ = ⟨y, yz, Tu⟩:⟨z⟩ = ⟨y, Tu⟩:⟨z⟩. Then T = ⟨y, Tu⟩, and so
Σ := Cos(T, Tu, Tu{y, y−1}Tu) is a connected T -edge-transitive graph of order 21.
Since Γ is X-arc-transitive, |Xu : (Xu ∩ Xx

u)| = 4, so |Xu ∩ Xx
u | = 4. Noting that

Xu∩Xx
u ≤ Y and Tu, T

y
u ≤ T , we have 4 = |Xu∩Xx

u | = |Xu∩Xyzc
u | = |Xu∩Xyc−1z

u | =
|Xu ∩Xc−1y

u | = |(Tu:⟨z⟩) ∩ (T y
u :⟨c2zy⟩)| = |Tu ∩ T y

u |. Thus |Tu : (Tu ∩ T y
u )| = 2, and Σ

has valency 4, which contradicts Lemma 4.2. Then the lemma follows. �

Lemma 5.12. Assume that |K| > 3. Then Γ is isomorphic to the graph in Exam-
ple 2.15, X ∼= PGL(2, 7)×Zl or PGL(2, 7)×D2l, where l is odd and square-free.

Proof. Assume first |K| = l is odd. Then YB
∼= Xu

∼= D8, |V | = 42l and Y contains
a Sylow 2-subgroup of X. Thus, without loss of generality, we assume that Xu < Y ,
and so Xu = YB. Let z ∈ Y \ T be an involution such that ⟨Xu, z⟩ ∼= D16. Then
Y = T :⟨z⟩ and X = (T×K):⟨z⟩ = ⟨z⟩(T×K). Write Γ = Cos(X,Xu, Xu{x, x−1}Xu),
where x ∈ X \Xu with ⟨x,Xu⟩ = X. Write x = zigc for c ∈ K, g ∈ T and i = 0 or 1.

Since T centralizes K, we have ⟨c, cz⟩ = ⟨cy | y ∈ Y ⟩; in particular, Y normal-
izes ⟨c, cz⟩. Noting that Γ is connected, K:Y = X = ⟨zigc,Xu⟩ ≤ ⟨zig, c,Xu⟩ ≤
⟨c, cz, zig,Xu⟩ = ⟨c, cz⟩:⟨zig,Xu⟩. It follows that K = ⟨c, cz⟩ and Y = ⟨zig,Xu⟩.

Note that the quotient ΓK is Y -edge-transitive and of order 42. By Lemma 5.9,
ΓK is bipartite, so Γ is also bipartite. It is easily shown that T×K is the maximal
subgroup preserving the bipartition of Γ . Thus Xu ≤ T×K, and so Xu = Tu as
|K| = l is odd. Since Y = ⟨zig,Xu⟩ and g ∈ T , we have i = 1, so Y = ⟨zg, Tu⟩.
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Suppose that ΓK is Y -arc-transitive. Then Γ is X-arc-transitive, so we may choose
x with x2 ∈ Tu. Since x2 = zgczgc = gzczgc = gzgczc, we have czc = 1, so cz = c−1,
hence zc has order 2. Then X = ⟨zgc, Tu⟩ ≤ ⟨g, Tu, cz⟩ ≤ ⟨T, cz⟩ ∼= PGL(2, 7), a

contradiction. Therefore, by Lemma 5.9, ΓK
∼= P

(2)
7,3 is Y -half-transitive.

Note that T :(⟨c, z⟩) = (T×K):⟨z⟩ = X = ⟨zgc, Tu⟩ ≤ ⟨g, Tu, zc⟩ ≤ T ⟨zc⟩ ≤ X.
Thus ⟨c, z⟩ ∼= X/T ∼= (T ⟨zc⟩)/T is cyclic. Then cz = c andK = ⟨c⟩. ThusX = Y×K.
Since ΓK is Y -half-transitive, Γ is X-half-transitive, so 2 = |Xu : (Xu ∩Xx

u)| = |Tu :
(Tu ∩ T zg

u )|. Recalling that ⟨Tu, z⟩ = ⟨Xu, z⟩ ∼= D16, we know that z normalizes Tu,
so |Tu ∩ T g| = |Tu ∩ T zg

u | = 4. It follows that Tu ∩ T g
u is normal in M := ⟨Tu, T

g
u ⟩,

so M ∼= S4 by checking the subgroups of T . Then T g
u = T y

u for an element y ∈ M
of order 3. Thus gy−1 ∈ NT (Tu) = Tu, so g = hy for h ∈ Tu. Then Tu{x, x−1}Tu =
Tu{zhyc, (zhyc)−1}Tu = Tu{hzzyc, (hzzyc)−1}Tu = Tu{zyc, (zyc)−1}Tu. Noting that
S4

∼= M = ⟨Tu, y⟩, it follows that Γ is the graph in Example 2.15.
Now let |K| = 2l. Then ΓK

∼= P7,3 and Xu
∼= YB

∼= D16. In this case, Γ is X-arc-
transitive as ΓK is Y -arc-transitive. Since K is of square-free order, K has a unique
2′-Hall subgroup K2′ , which is characteristic in K. It implies that K2′ � X, and
X/K2′

∼= PGL(2, 7)×Z2. Then the quotient graph ΓK2′ is X/K2′-arc-transitive. By

Lemma 5.10, ΓK2′
∼= P

(2)
7,3. It is easily shown that X/K2′ contains a subgroup Z/K2′

∼=
PGL(2, 7) acting transitively on the edges of ΓK2′ . Then Γ is Z-edge-transitive. By

the argument for the odd |K| case, we conclude that K2′
∼= Zl, Z = Ỹ×K2′ with

Ỹ ∼= PGL(2, 7), and Γ is isomorphic to the graph in Example 2.15.
Recalling that |V | = 42l is square-free, we conclude that Ỹ is a Hall subgroup of

Z, so Ỹ is characteristic in Z. Thus Ỹ is normal in X as Z has index 2 in X. Let z
be an involution in K. Then ⟨Ỹ , z⟩ = Ỹ×⟨z⟩. Thus X = Z:⟨z⟩ = Ỹ×K.
Suppose that K is not a dihedral group. Then K = N×M , where N ̸= 1 is cyclic

and of odd order. By Lemma 2.9, Γ is normal cover of Σ := ΓM . Identify X̄ := Ỹ×N
with a subgroup of AutΣ. Then Σ is X̄-edge-transitive as Γ is X-edge-transitive.
Since |N | is odd, for α ∈ V Σ, X̄α

∼= D8 by Lemma 5.11; in particular, |V Σ| = 42|N |.
Thus |V | = 42|N ||M | = 42|K| = 84l, a contradiction. Then K ∼= D2l is dihedral. �

6. Proofs of Theorem 1.1 and Corollary 1.2

LetG be a finite group of square-free order, and let Γ be a connected edge-transitive
Cayley graph of G of valency 4. If AutΓ is soluble then, by Lemmas 3.3 and 3.7, one
of Theorem 1.1 (1-3) occurs. Thus we assume next that X := AutΓ is insoluble.
Then Γ and X are known and listed in either Table 1 by Lemmas 4.3, 4.4, 5.2, 5.3,
5.5, 5.8 and 5.9, or Table 2 by Lemmas 5.4, 5.9, 5.10 and 5.12.

Proof of Theorem 1.1. It suffices to determine G up to isomorphism. If X is
almost simple, then all possible G are known by checking the subgroups of X in the
Atlas [5]. Thus we assume that X is not almost simple. By Lemma 4.4 and checking
the automorphism group X listed in Tables 1 and 2, we know that X = K:Y has a
regular subgroup R := L×K, where L ≤ T ∩ G, T = soc(Y ) and K is the largest
soluble normal subgroup of X. Thus G ≤ NX(G) ≤ NX(L) = K:NY (L) = NX(R),



24 LI, LIU, AND LU

and further Y , K, L and NY (L) are known as in the following table:

Y K L NY (L)
PSL(2, 23) Z2, S3 Z23:Z11 L
PGL(2, 11) Z2,Z3,Z6 Z11:Z5 Z11:Z10

S5 Z2, S3 Z5 Z5:Z4

PGL(2, 7) Z2,D2l Z7:Z3 Z7:Z6

Let K2′ be the 2′-Hall subgroup of K. Then L×K2′ is the unique 2′-Hall subgroup
of R. It follows that L×K2′ � NX(R). Let Q be a Sylow 2-subgroup of K. Then
NX(R) has a Sylow 2-subgroup Q:P , where P is a Sylow 2-subgroup of NY (L).
Noting that |Q| ≤ 2, we have QP = Q×P , and so QP is abelain. Considering the
subgroup (L×K2′)G, we conclude that L×K2′ ≤ G and G �NX(R). In particular,
G = (L×K2′):⟨z⟩ for an involution z ∈ Q×P . Checking all possible involutions z, we
conclude that G is listed in Tables 1 and 2 up to isomorphism.

Proof of Corollary 1.2. It is easy to check that NX(G) = G:Z3 or G while Γ is a
graph listed in Lines 1 to 7 of Table 1, so Γ is not normal-edge-transitive. For Lines
1 to 3 of Table 2, we have NX(G) ∼= G:Z4, so Γ is normal-edge-transitive. We next
deal with the rest of the graphs in Tables 1 and 2.

Suppose that X is not almost simple. Then, by the argument in Proof of Theorem
1.1, X = K:Y has a regular subgroup R = L×K, where L ≤ T ∩G, T = soc(Y ) and
K is the largest soluble normal subgroup of X. Recalling that NX(G) ≤ NX(L) =
K:NY (L) = NX(R) and G�NX(R), we have NX(G) = NX(R) = K:NY (L). Then
Γ is normal-edge-transitive with respect to G whenever Γ is a normal-edge-transitive
Cayley graph of R. Noting that K is a normal Hall subgroup of R, it follows that
NX(R)/K = NX/K(R/K) ∼= NY (L). Note that the quotient graph ΓK has automor-
phism group isomorphic to Y . Thus, it suffices to determine whether or not ΓK is a
normal-edge-transitive Cayley graph of L.

Therefore, the above argument allows us to assume that X is almost simple, that
is, Γ is described as either Line 8 of Table 1 or Line 4 of Table 2.

Suppose that Γ is described as Line 8 of Table 1. Then X = PGL(2, 11) and,
for u ∈ V Γ , the stabilizer Xu

∼= S4 and X = GXu. Hence Z11:Z10
∼= NX(G) =

G:(NX(G) ∩ Xu). Thus NX(G) ∩ Xu = ⟨o⟩ ∼= Z2. It is easily shown that o ̸∈ T =
soc(X). Noting that Tu

∼= A4, it follows that o induces an odd permutation on Γ (u);
in particular, o fixes at least one vertex in Γ (u). Thus Γ is not normal-edge-transitive.

Finally, let Γ be described as Line 4 of Table 2. Then X = PGL(2, 7), Z7:Z3
∼= G <

T = PSL(2, 7) and NX(G) ∼= Z7:Z6. Write Γ = Cay(G,S) with S = {x, x−1, y, y−1}.
Then Aut(G,S) ∼= Z2. Let u be the vertex corresponding to the identity of G. Then
Xu

∼= D16 and Tu
∼= D8. By Lemma 4.2, Γ is not T -edge-transitive, it follows

from Lemma 3.2 that Tu has two orbits {x, x−1} and {y, y−1} on S. Noting that
NX(G) ̸≤ T , we have Xu = Tu:Aut(G,S). Then, since Γ is arc-transitive, there is
σ ∈ Aut(R, S) such that xσ = y or y−1. Thus Γ is normal-edge-transitive.

Acknowledgments: The authors are very grateful to the referees for their con-
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