THE EDGE-TRANSITIVE TETRAVALENT CAYLEY GRAPHS OF SQUARE-FREE ORDER

CAI HENG LI, ZHE LIU, AND ZAI PING LU

Abstract

A classification is given of connected edge-transitive tetravalent Cayley graphs of square-free order. The classification shows that, with a few exceptions, a connected edge-transitive tetravalent Cayley graph of square-free order is either arc-regular or edge-regular. It thus provides a generic construction of half-transitive graphs of valency 4 .

1. Introduction

Let $\Gamma=(V, E)$ be a graph with vertex set $V \Gamma=V$ and edge set $E \Gamma=E$. The number of vertices $|V|$ is called the order of the graph Γ. We say Γ to be edgetransitive or edge-regular if the automorphism group Aut Γ is transitive or regular on E, respectively. An arc of Γ is an ordered pair of adjacent vertices. Thus, an edge $\{u, v\}$ corresponds to two $\operatorname{arcs}(u, v)$ and (v, u). If $\operatorname{Aut} \Gamma$ is transitive or regular on the set of arcs of Γ, then Γ is called arc-transitive or arc-regular, respectively.

Edge-transitive graphs of square-free order have been extensively studied in some special cases. For example, see $[1,26,27,31,32]$ for those with order a product of two distinct primes, see [18] for a characterization of edge-transitive circulant graphs of square-free order, and [19] for a classification of pentavalent arc-regular graphs of square-free order.

A graph Γ is called a Cayley graph if its vertex set can be identified with a group G which has a subset $S \subset G$ such that two vertices g, h are adjacent whenever $g h^{-1} \in S$. In this case Γ is denoted by Cay (G, S). For the graph Cay (G, S) to be simple and undirected, $S=S^{-1}:=\left\{x^{-1} \mid x \in S\right\}$ must hold and S must not contain the identity of G.

In this paper, we classify connected edge-transitive Cayley graphs of square-free order and of valency 4 . Before stating our classification, we introduce some notation.

Throughout this paper, for two groups A and B, denote by $A \times B$ the direct product of A and B, by $A . B$ an extension of A by B, and by $A: B$ a semi-direct product of A by B, that is, a split extension of A by B. For example, the dihedral group $\mathrm{D}_{2 m}$ of order $2 m$ is a semi-direct product of \mathbb{Z}_{m} by \mathbb{Z}_{2}. For a group G and a subgroup $N \leq G$, by $N \unlhd G$ we mean that N is a normal subgroup of G.

For an integer $m \geq 3$, we denote by $\mathbf{C}_{m[2]}$ the lexicographic product of the empty graph $2 \mathrm{~K}_{1}$ of order 2 by a cycle \mathbf{C}_{m} of size m, which has vertex set $\{(i, j) \mid 1 \leq i \leq$ $m, 1 \leq j \leq 2\}$ such that (i, j) and $\left(i^{\prime}, j^{\prime}\right)$ are adjacent if and only if $i-i^{\prime} \equiv \pm 1(\bmod m)$.

Our main result is stated as follows.

Date: February 22, 2012.
This work was partially supported by grants of NNSF of China.

Line	Aut Γ	G (up to isomorphism)	Γ
1	PGL $(2,7)$	D_{14}	Example 2.5 (1)
2	$\operatorname{PGL}(2,7)$	$\mathbb{Z}_{7}: \mathbb{Z}_{6}$	Example 2.8
3	PSL $(3,3): \mathbb{Z}_{2}$	D_{26}	Example 2.5 (2)
4	$\operatorname{PSL}(2,23)$	$\mathbb{Z}_{23}: \mathbb{Z}_{11}$	Example 2.7
5	PSL $(2,23) \times \mathbb{Z}_{2}$	$\left(\mathbb{Z}_{23}: \mathbb{Z}_{11}\right) \times \mathbb{Z}_{2}$	Example 2.10 (3)
6	PSL $(2,23) \times \mathbb{Z}_{2}$	$\left(\mathbb{Z}_{23}: \mathbb{Z}_{11}\right) \times \mathbb{Z}_{2}$	Example 2.11
7	$\operatorname{PSL}(2,23) \times \mathrm{S}_{3}$	$\left(\mathbb{Z}_{23}: \mathbb{Z}_{11}\right) \times \mathrm{S}_{3}$	Example 2.14
8	$\operatorname{PGL}(2,11)$	$\mathbb{Z}_{11}: \mathbb{Z}_{5}$	Example 2.7
9	$\operatorname{PGL}(2,11) \times \mathbb{Z}_{2}$	$\left(\mathbb{Z}_{11}: \mathbb{Z}_{5}\right) \times \mathbb{Z}_{2}, \mathbb{Z}_{11}: \mathbb{Z}_{10}$	Example 2.10 (2)
10	$\left(\operatorname{PSL}(2,11) \times \mathbb{Z}_{3}\right): \mathbb{Z}_{2}$	$\left(\mathbb{Z}_{11}: \mathbb{Z}_{5}\right) \times \mathbb{Z}_{3}$	Example 2.12
11	$\mathbb{Z}_{2} \times\left(\left(\operatorname{PSL}(2,11) \times \mathbb{Z}_{3}\right): \mathbb{Z}_{2}\right)$	$\mathbb{Z}_{33}: \mathbb{Z}_{10},\left(\mathbb{Z}_{11}: \mathbb{Z}_{5}\right) \times \mathbb{Z}_{6}$	Example 2.13

Table 1

Line	Aut Γ	G (up to isomorphism)	Γ
1	$\mathrm{~S}_{5}$	\mathbb{Z}_{5}	$\mathrm{~K}_{5}$
2	$\mathrm{~S}_{5} \times \mathbb{Z}_{2}$	$\mathbb{Z}_{10}, \mathrm{D}_{10}$	$\mathrm{~K}_{5,5}-5 \mathrm{~K}_{2}$
3	$\mathrm{~S}_{5} \times \mathrm{S}_{3}$	$\mathrm{~S}_{3} \times \mathbb{Z}_{5}, \mathrm{D}_{30}$	Example 2.14
4	$\mathrm{PGL}(2,7)$	$\mathbb{Z}_{7}: \mathbb{Z}_{3}$	Example 2.7
5	$\operatorname{PGL}(2,7) \times \mathbb{Z}_{2}$	$\left(\mathbb{Z}_{7}: \mathbb{Z}_{3}\right) \times \mathbb{Z}_{2}, \mathbb{Z}_{7}: \mathbb{Z}_{6}$	Example 2.10 (1)
6	$\operatorname{PGL}(2,7) \times \mathrm{D}_{2 l}$	$\left(\mathbb{Z}_{7}: \mathbb{Z}_{6}\right) \times \mathbb{Z}_{l},\left(\mathbb{Z}_{7}: \mathbb{Z}_{3}\right) \times \mathrm{D}_{2 l}$	Example 2.15

Table 2
Theorem 1.1. Let G be a group of square-free order, and let Γ be a connected edgetransitive tetravalent Cayley graph of G. Then one of the following statements holds.
(1) $\Gamma \cong \mathbf{C}_{m[2]}$, Aut $\Gamma \cong \mathbb{Z}_{2}^{m}: \mathrm{D}_{2 m}$ and $G \cong \mathbb{Z}_{2 m}$ or $\mathrm{D}_{2 m}$, where $m \geq 3$;
(2) Γ is arc-regular, Aut $\Gamma=G: \mathbb{Z}_{2}^{2}$ or $G: \mathbb{Z}_{4}$, and either G is cyclic or $G \cong \mathrm{D}_{2 m} \times \mathbb{Z}_{l}$; Γ is constructed as in Constructions 2.3 and 2.4;
(3) Γ is edge-regular, Aut $\Gamma=G: \mathbb{Z}_{2}$ and $G \cong\left(\mathbb{Z}_{m}: \mathbb{Z}_{n}\right) \times \mathbb{Z}_{l}$, where the center $\mathbf{Z}(G) \cong \mathbb{Z}_{l}$, and $n \geq 3 ; \Gamma$ is constructed as in Construction 2.6;
(4) Γ is isomorphic to one of the graphs listed in Tables 1 and 2.

A Cayley graph $\Gamma=\operatorname{Cay}(G, S)$ is said to be normal (with respect to G) if G is normal in Aut Γ, refer to [35]; and Γ is said to be normal-edge-transitive (with respect to G) if the normalizer $\mathbf{N}_{\mathrm{Aut} \Gamma}(G)$ is transitive on the edges of Γ, refer to [25]. It was suggested in [25] to study the Cayley graphs which are not normal-edge-transitive or are normal-edge-transitive but not normal. Our classification gives several examples in this topic. The next corollary is proved at the end of this paper.
Corollary 1.2. The graphs in Table 1 are not normal-edge-transitive, and those in Table 2 are normal-edge-transitive.

An edge-transitive graph Γ is said to be half-transitive if $\mathrm{Aut} \Gamma$ is transitive on the vertices but not on the arcs of Γ. Studying half-transitive graphs was initiated by Tutte [30], and has received much attention in the literature, see [21] for references, and see $[4,7,16,17,20,22,23,28,29,33]$ for some recent development in this topic.
Let Γ be a graph described as in Construction 2.6. By Theorem 1.1 and Corollary $1.2, \Gamma$ is either edge-regular or isomorphic to one of the graphs in Examples
2.7, 2.10 (1) and 2.15. Note that edge-regular Cayley graphs are half-transitive. A straightforward consequence of our classification is the following corollary.
Corollary 1.3. Let $\Gamma_{j, k}$ be described as in Construction 2.6. Then, with a few exceptions, $\Gamma_{j, k}$ is half-transitive.

2. Examples

In this section we study the graphs appearing in Theorem 1.1.
Let Γ be a graph. For a subgroup $X \leq$ Aut Γ, we say Γ to be X-edge-transitive or X-arc-transitive if X is transitive on the edges or the arcs of Γ, respectively. For a vertex u of Γ, denote by $\Gamma(u)$ the set of neighbors of u in Γ.
2.1. Group automorphisms. For a given group G, a simple method to construct edge-transitive Cayley graphs is by a suitable subgroup of the automorphism group $\operatorname{Aut}(G)$ of G. Let $\Gamma=\operatorname{Cay}(G, S)$, and let

$$
\operatorname{Aut}(G, S)=\left\{\sigma \in \operatorname{Aut}(G) \mid S^{\sigma}=S\right\}
$$

Then each element of $\operatorname{Aut}(G, S)$ induces an automorphism of Γ in the natural action on G. Moreover, if Γ is connected, i.e., $\langle S\rangle=G$, then $\operatorname{Aut}(G, S)$ can be identified with a subgroup of Aut Γ which fixes the vertex corresponding to the identity of G. Each $g \in G$ induces an automorphism, denoted by \hat{g} sometimes, of Γ by the right multiplication on the elements of G. Then G can be identified with a subgroup of Aut Γ which acts regularly on $V \Gamma$.
Lemma 2.1. Let G be a finite group, and let $H \leq \operatorname{Aut}(G)$. Let $S=\left\{g^{h},\left(g^{-1}\right)^{h} \mid\right.$ $h \in H\}$, where $g \in G$. If $\langle S\rangle=G$, then $\Gamma=\operatorname{Cay}(G, S)$ is a connected edge-transitive graph.

This provides us with a generic method for constructing edge-transitive Cayley graphs, refer to [13] for more examples.

Let G be a group of square-free order. We first determine the automorphisms of G. It is well-known and easily shown that $G=C \times(A: B)$, where $A=\langle a\rangle \cong \mathbb{Z}_{m}$, $B=\langle b\rangle \cong \mathbb{Z}_{n}$ and $C=\langle c\rangle \cong \mathbb{Z}_{l}$, such that C is the center of G. If G is not cyclic, then $A: B$ has the presentation

$$
A: B=\left\langle a, b \mid a^{m}=b^{n}=1, b^{-1} a b=a^{r}\right\rangle,
$$

where r is such that $r^{n} \equiv 1(\bmod m)$ and $r^{k} \not \equiv 1(\bmod m)$ for $1 \leq k<n$. Write $D=A: B$. Since $(|C|,|D|)=1$ and $G=C \times D$, we have $\operatorname{Aut}(G)=\operatorname{Aut}(C) \times \operatorname{Aut}(D)$. Each automorphism $\sigma \in \operatorname{Aut}(A)$ can be extended to an automorphism of D such that $a \mapsto a^{\sigma}$ and $b \mapsto b$. Since D has trivial center, $D \cong \operatorname{lnn}(D)$, the inner automorphism group of D. Let \bar{A} denote the subgroup of $\operatorname{Inn}(D)$ induced by A. Then $\bar{A} \unlhd \operatorname{Inn}(D)$ and \bar{A} is a Hall subgroup of $\operatorname{Inn}(D)$, so \bar{A} is a characteristic subgroup of $\operatorname{Inn}(D)$. Since $\operatorname{Inn}(D) \unlhd \operatorname{Aut}(D)$, we have $\bar{A} \unlhd \operatorname{Aut}(D)$. Set $\mathbf{C}_{\text {Aut }(G)}(B)=\left\{\rho \in \operatorname{Aut}(G) \mid b^{\rho}=b\right\}$. Then $\mathbf{C}_{\mathrm{Aut}(G)}(B) \geq \operatorname{Aut}(C) \times \operatorname{Aut}(A)$. Further, $\operatorname{Aut}(G)$ is given in the next lemma.
Lemma 2.2. $\operatorname{Aut}(G)=\operatorname{Aut}(C) \times(\bar{A}: \operatorname{Aut}(A))$ and $\mathbf{C}_{\operatorname{Aut}(G)}(B)=\operatorname{Aut}(C) \times \operatorname{Aut}(A)$.
Proof. It suffices to show $\operatorname{Aut}(D)=\bar{A}: \operatorname{Aut}(A)$. By the above discussion, we have $\operatorname{Aut}(D) \geq \bar{A}: \operatorname{Aut}(A)$. Note that $|\bar{A}|=m$ and $b^{\tau}=a^{i} b$ for $\tau \in \bar{A}$. It follows that for each value $i \in\{0,1, \cdots, m-1\}$ there exists $\tau \in \bar{A}$ such that $b^{\tau}=a^{i} b$.

Now let $\alpha \in \operatorname{Aut}(D)$. Since A is a normal Hall subgroup of D, we have $a^{\alpha}, a^{\alpha^{-1}} \in$ A. Then $a^{b^{\alpha} b^{-1}}=b\left(b^{-1} a^{\alpha^{-1}} b\right)^{\alpha} b^{-1}=b\left(\left(a^{\alpha^{-1}}\right)^{r}\right)^{\alpha} b^{-1}=b a^{r} b^{-1}=a$. Thus $b^{\alpha} b^{-1} \in$ $\mathbf{C}_{D}(\langle a\rangle)=\langle a\rangle$, and so $b^{\alpha}=a^{t} b$ for some t. Take $\tau \in \bar{A}$ with $b^{\tau}=a^{t} b$. Take $\sigma \in \operatorname{Aut}(A)$ with $a^{\sigma}=a^{\alpha}$, and extend σ to an automorphism of D by assigning $b^{\sigma}=b$. Then $\alpha=\sigma \tau$. Therefore, $\operatorname{Aut}(D)=\bar{A}: \operatorname{Aut}(A)$, and the result follows.

Note that G is metacyclic, namely, G has a cyclic normal subgroup such that the corresponding quotient group is also cyclic. A special case is that G is cyclic.
Construction 2.3. Let $G=\langle c\rangle \cong \mathbb{Z}_{l}$, where l is square-free.
(i) Assume that there is an integer k with $k^{2} \equiv-1(\bmod l)$. Then G has an automorphism ρ such that $c^{\rho}=c^{k}$. Let $S=\left\{c, c^{k}, c^{k^{2}}, c^{k^{3}}\right\}=\left\{c, c^{k}, c^{-1}, c^{-k}\right\}$ and $X=G:\langle\rho\rangle \cong \mathbb{Z}_{l}: \mathbb{Z}_{4}$.
(ii) Assume that l has two distinct odd prime divisors. Let $\tau \in \operatorname{Aut}(G)$ be such that $c^{\tau}=c^{-1}$. Then $\operatorname{Aut}(G)$ contains an involution $\sigma \in \operatorname{Aut}(G) \backslash\{\tau\}$ such that $\sigma \tau=\tau \sigma$. Let $c^{\sigma}=c^{k}$, where $k^{2} \equiv 1(\bmod l)$. Let $S=\left\{c, c^{-1}, c^{k}, c^{-k}\right\}$ and $X=G:\langle\sigma, \tau\rangle \cong \mathbb{Z}_{l}: \mathbb{Z}_{2}^{2}$.
Then the Cayley graph Cay (G, S) is connected and X-arc-regular.
We next consider the case where G has a dihedral direct factor.
Construction 2.4. Let $G=(\langle a\rangle:\langle b\rangle) \times\langle c\rangle \cong \mathrm{D}_{2 m} \times \mathbb{Z}_{l}$, where $m l$ is odd square-free.
(i) Assume that $l=1$. Suppose that there is an integer i with $1<i<m-1$ and $i^{3}+i^{2}+i+1 \equiv 0(\bmod m)$. Take $\rho \in \operatorname{Aut}(G)$ with $a^{\rho}=a^{i}$ and $b^{\rho}=b$. Let $S=\left\{a b, a^{i} b, a^{i^{2}} b, a^{i^{3}} b\right\}$ and $X=G:\langle\rho\rangle \cong \mathrm{D}_{2 m}: \mathbb{Z}_{4}$.
(ii) Assume that $l=1$ and m is not a prime. Let $\sigma, \tau \in \operatorname{Aut}(G)$ be involutions, say $a^{\sigma}=a^{i_{1}}, a^{\tau}=a^{i_{2}}$ and $b^{\sigma}=b^{\tau}=b$, where $i_{1} \not \equiv i_{2}(\bmod m)$ and $\left(i_{1}-1, i_{2}-\right.$ $1, m)=1$. Then $\langle\sigma, \tau\rangle=\mathbb{Z}_{2}^{2}$. Let $S=\left\{a b, a^{i_{1}} b, a^{i_{2}} b, a^{i_{1} i_{2}} b\right\}$ and $X=G:\langle\sigma, \tau\rangle$.
(iii) Assume that $l>1$. Suppose that there is an integer k with $k^{2} \equiv-1(\bmod l)$. Let $\rho \in \operatorname{Aut}(G)$ be such that $a^{\rho}=a^{-1}, b^{\rho}=b$ and $c^{\rho}=c^{k}$. Let $S=$ $\left\{a b c, a^{-1} b c^{k}, a b c^{k^{2}}, a^{-1} b c^{k^{3}}\right\}=\left\{a b c, a^{-1} b c^{k}, a b c^{-1}, a^{-1} b c^{-k}\right\}$ and $X=G:\langle\rho\rangle \cong$ $\left(\mathrm{D}_{2 m} \times \mathbb{Z}_{l}\right): \mathbb{Z}_{4}$.
(iv) Assume that $l>1$. Set $S=\left\{a b c, a b c^{-1}, a^{-1} b c^{k}, a^{-1} b c^{-k}\right\}$, where $1 \leq k<m$ and $k^{2} \equiv 1(\bmod l)$. Take $\sigma, \tau \in \operatorname{Aut}(G)$ with $a^{\sigma}=a^{-1}, a^{\tau}=a, b^{\sigma}=b^{\tau}=b$, $c^{\sigma}=c^{k}$ and $c^{\tau}=c^{-1}$. Then $\langle\sigma, \tau\rangle \cong \mathbb{Z}_{2}^{2}$, and $X=G:\langle\sigma, \tau\rangle=\left(\mathrm{D}_{2 m} \times \mathbb{Z}_{l}\right): \mathbb{Z}_{2}^{2}$.
Then the Cayley graph $\operatorname{Cay}(G, S)$ is connected and X-arc-regular.
For $m=7$ or 13, a Cayley graph of the dihedral group $\mathrm{D}_{2 m}$ can be constructed geometrically.
Example 2.5. Let $\mathbb{F}=\operatorname{GF}(p)$ be the Galois field of size p. Let U and W consist of 1 -subspaces and 2 -subspaces of \mathbb{F}^{3}, respectively.
(1) Let $p=2$. Define a bipartite graph Γ with biparts U and W such that $u \in U$ and $w \in W$ are adjacent if and only if $u+w=\mathbb{F}^{3}$. This is the point-line non-incidence graph of the Fano plane $\operatorname{PG}(2,2)$. Further, Aut $\Gamma=\operatorname{PGL}(3,2) \cdot \mathbb{Z}_{2}$, and Γ is a Cayley graph of $G=\mathrm{D}_{14}$. See [24], for example.
(2) Let $p=3$. Define a bipartite graph Γ with biparts U and W such that $u \in U$ and $w \in W$ are adjacent if and only if u is a subspace of w. Then Γ is the point-line
incidence graph of the projective plane $\operatorname{PG}(2,3)$. Further, Aut $\Gamma=\operatorname{PGL}(3,3) \cdot \mathbb{Z}_{2}$, and Γ is a Cayley graph of $G=\mathrm{D}_{26}$. See [14, 15], for example.

Next, we consider the case where $G=(\langle a\rangle:\langle b\rangle) \times\langle c\rangle \cong\left(\mathbb{Z}_{m}: \mathbb{Z}_{n}\right) \times \mathbb{Z}_{l}$ such that the center $\mathbf{Z}(G)=\langle c\rangle \cong \mathbb{Z}_{l}$ and $n \geq 3$. In particular, m is odd.

Construction 2.6. Let j be a positive integer such that $(j, n)=1$. Let k be an integer with $k^{2} \equiv 1(\bmod l)$, and let

$$
\Gamma_{j, k}=\operatorname{Cay}\left(G, S_{j, k}\right), \text { where } S_{j, k}=\left\{a b^{j} c,\left(a b^{j} c\right)^{-1}, a^{-1} b^{j} c^{k},\left(a^{-1} b^{j} c^{k}\right)^{-1}\right\} .
$$

Note that $\left\langle S_{j, k}\right\rangle=\left\langle a b^{j} c, a^{-1} b^{j} c^{k}\right\rangle=\left\langle a b^{j}, a^{-1} b^{j}, c\right\rangle=\left\langle a^{2}, a b^{j}, c\right\rangle=\langle a, b, c\rangle=G$. Then $\Gamma_{j, k}$ is connected. By Lemma 2.2, there exists an involution $\tau \in \mathbf{C}_{\text {Aut }(G)}(\langle b\rangle)$ such that $a^{\tau}=a^{-1}, b^{\tau}=b$ and $c^{\tau}=c^{k}$. So $\Gamma_{j, k}$ is X-edge-regular, where $X=G:\langle\tau\rangle$.
2.2. Coset graphs. Let X be a group and H a core-free subgroup of X, that is, H does not contain non-trivial normal subgroups of X. Take $g \in X \backslash H$ and define the coset graph

$$
\Gamma=\operatorname{Cos}\left(X, H, H\left\{g, g^{-1}\right\} H\right)
$$

with vertex set $[X: H]:=\{H x \mid x \in X\}$ such that $H x$ and $H y$ are adjacent whenever $y x^{-1} \in H\left\{g, g^{-1}\right\} H$. Then Γ is well-defined, and X induces a subgroup of Aut Γ acting on $[X: H]$ by right multiplication, namely, $a: H x \mapsto H x a$ for $x, a \in X$. Label v, w to be the vertices of Γ corresponding to H and $H g$, respectively. Then
(a) $\Gamma(v)=\{H g h \mid h \in H\} \cup\left\{H g^{-1} h \mid h \in H\right\}$;
(b) Γ is X-edge-transitive and X is transitive on the vertices of Γ;
(c) Γ is connected if and only if $X=\langle g, H\rangle$;
(d) $H^{g} \cap H=X_{v w}$, the stabilizer of the arc (v, w), where H^{g} is the conjugate of H by g;
(e) Γ is X-arc-transitive if and only if $H g H=H g^{-1} H$, which yields that $H g H=$ $H o H$ for some (2-element) $o \in \mathbf{N}_{X}\left(X_{v w}\right) \backslash H$ with $o^{2} \in X_{v w}$, refer to [16]. (An element o in the group X is a 2 -element if its order is a power of 2.)
Moreover, for any X-edge-transitive graph Σ, if X is transitive on $V \Sigma$ then the map $u^{x} \mapsto H x, x \in X$ gives an isomorphism form Σ to $\operatorname{Cos}\left(X, H, H\left\{g, g^{-1}\right\} H\right)$, where $u \in V \Sigma, H=X_{u}$ and $g \in X \backslash H$ with $u^{g} \in \Gamma(u)$.

Here are a few of examples, that appear in our classification.
Example 2.7. (1) Let $X=\mathrm{S}_{5}, \operatorname{PGL}(2,11)$ or $\operatorname{PSL}(2,23)$. Then X has a maximal subgroup $H \cong \mathrm{~S}_{4}$. Let $K \leq H$ and $K \cong \mathrm{~S}_{3}$. Checking the subgroups of X in the Atlas [5], we conclude that $\mathbf{N}_{X}(K)=\langle o\rangle \times K \cong \mathrm{D}_{12}$, where $o \in X \backslash H$ is an involution. Set $\Gamma=\operatorname{Cos}(X, H, H o H)$. Since H is a maximal subgroup of $X,\langle o, H\rangle=X$. Then Γ is a connected X-arc-transitive graph of valency 4. Moreover, X has a subgroup G which is regular on the vertices, where $G=\mathbb{Z}_{5}, \mathbb{Z}_{11}: \mathbb{Z}_{5}$ or $\mathbb{Z}_{23}: \mathbb{Z}_{11}$, respectively. We denote by $\mathrm{P}_{11,5}$ and $\mathrm{P}_{23,11}$ the graphs associated with $\operatorname{PGL}(2,11)$ and $\operatorname{PSL}(2,23)$, respectively. By [16], $\operatorname{AutP}_{11,5}=\operatorname{PGL}(2,11)$ and $\operatorname{AutP}_{23,11}=\operatorname{PSL}(2,23)$.
(2) Let $X=\operatorname{PGL}(2,7)$. Then X has a maximal subgroup $H \cong \mathrm{D}_{16}$. Take a subgroup $K \leq H$ with $K \cong \mathbb{Z}_{2}^{2}$. Then $\mathrm{D}_{8} \cong \mathbf{N}_{H}(K) \leq \mathbf{N}_{X}(K) \cong \mathrm{S}_{4}$. Take an involution $o \in \mathbf{N}_{H}(K) \backslash K$ and an element $z \in \mathbf{N}_{X}(K)$ of order 3 such that $z^{o}=z^{-1}$. Then $\mathbf{N}_{X}(K)=K:\langle o, z\rangle$, and $H\left\{g, g^{-1}\right\} H=H o z H$ for any $g \in \mathbf{N}_{G}(K) \backslash H$. Set
$\mathrm{P}_{7,3}=\operatorname{Cos}(X, H, H o z H)$. By [16], AutP $\mathrm{P}_{7,3}=\operatorname{PGL}(2,7)$, and $\mathrm{P}_{7,3}$ is a connected tetravalent arc-transitive Cayley graph of $\mathbb{Z}_{7}: \mathbb{Z}_{3}$.

Example 2.8. Let $X=\operatorname{PGL}(2,7), T=\operatorname{PSL}(2,7)$ and $\mathrm{D}_{8} \cong H \leq T$. Let $o \in H$ be an involution which is not in the center of H. Then $\mathbf{N}_{H}(\langle o\rangle) \cong \mathbb{Z}_{2}^{2}, \mathbf{N}_{T}(\langle o\rangle) \cong \mathrm{D}_{8}$ and $\mathbf{N}_{X}(\langle o\rangle) \cong \mathrm{D}_{16}$. Write $\mathbf{N}_{X}(\langle o\rangle)=\mathbf{N}_{T}(\langle o\rangle):\langle z\rangle$ for an involution $z \in X \backslash T$. Let y be an element of order 4 in $\mathbf{N}_{T}(\langle o\rangle)$. Set $\Gamma=\operatorname{Cos}(X, H, H x H)$, where $x=z$ or $y z$.

Let M be a maximal subgroup of T such that $H \leq M \cong \mathrm{~S}_{4}$. If $M^{x t}=M$ for some $t \in T$, then $x t \in \mathbf{N}_{X}(M)=M$ by checking the subgroups of X, so $x \in M \leq T$, a contradiction. Thus M^{x} and M are not conjugate in T. By the information given in the Atlas [5], T contains exactly two conjugation classes of subgroups isomorphic to S_{4}. Enumerating the Sylow 2-subgroups of T, we conclude that two subgroups in the same conjugation class do not contain a common Sylow 2-subgroup. Thus $\left\langle H, H^{x}\right\rangle \not \equiv \mathrm{S}_{4}$, yielding $H=H^{x}$ or $\left\langle H, H^{x}\right\rangle=T$.
Since $\mathbf{N}_{H}(\langle o\rangle) \cong \mathbb{Z}_{2}^{2}$, we know that $\mathbf{N}_{H}(\langle o\rangle)$ is normal in $\left\langle H, \mathbf{N}_{T}(\langle o\rangle)\right\rangle$. Then $\left\langle H, \mathbf{N}_{T}(\langle o\rangle)\right\rangle \cong \mathrm{S}_{4}$ by checking the subgroups of T. If $H^{x}=H$, then x normalizes $\left\langle H, \mathbf{N}_{T}(\langle o\rangle)\right\rangle$, so $x \in\left\langle H, \mathbf{N}_{T}(\langle o\rangle)\right\rangle \leq T$, a contradiction. Thus $\left\langle H, H^{x}\right\rangle=T$, and so $\langle H, x\rangle=\left\langle H, H^{x}, x\right\rangle=X$. If $\left|H \cap H^{x}\right|=4$, then $H \cap H^{x} \unlhd\left\langle H, H^{x}\right\rangle=T$, a contradiction. Then $\left|H \cap H^{x}\right|=2$, and so $\left|H:\left(H \cap H^{x}\right)\right|=4$. Therefore, Γ is connected, X-arc-transitive and of valency 4 . It is easily shown that Γ is bipartite and T-edge-transitive, and that X has a regular subgroup isomorphic to $\mathbb{Z}_{7}: \mathbb{Z}_{6}$.
2.3. Normal covers. Let $\Gamma=(V, E)$ be a connected graph. Assume that $X \leq \operatorname{Aut} \Gamma$ is transitive on both V and E. Let $N \unlhd X$, and let V_{N} be the set of N-orbits on V. The normal quotient Γ_{N} (with respect to N and X) is defined as the graph with vertex set V_{N} such that $B_{1}, B_{2} \in V_{N}$ are adjacent if and only if some $u \in B_{1}$ and $v \in B_{2}$ are adjacent in Γ. It is easily shown that the valency of Γ_{N} is a divisor of the valency of Γ. The graph Γ is a normal cover or an N-cover of Γ_{N} (with respect to X and N) if Γ and Γ_{N} have the same valency. Let K be the kernel of X acting on V_{N}. Then X / K, viewed as a subgroup of Aut Γ_{N}, is transitive on both the vertices and the edges of Γ_{N}. If Γ is a normal cover of Γ_{N}, then it is easily shown that $N=K$ is semiregular on V, and Γ is X-arc-transitive if and only if Γ_{N} is (X / N)-arc-transitive.

Lemma 2.9. If Γ is of valency 4 and X / N is insoluble, then Γ is an N-cover of Γ_{N}.
Proof. Let $u \in V$ and let B the N-orbit containing u. Then, by [3], the stabilizer X_{u} is a $\{2,3\}$-group, that is, $\left|X_{u}\right|=2^{i} 3^{j}$. In particular, X_{u} is soluble. Let K be the kernel of X acting on V_{N}. Then $K_{u} \unlhd X_{u}$, so K_{u} is soluble. Since K is transitive on B, we have $K=N K_{u}$. So $K / N=N K_{u} / N \cong K_{u} /\left(N \cap K_{u}\right)$ is soluble. Then $X / K \cong(X / N) /(K / N)$ is insoluble as X / N is insoluble, so Aut Γ_{N} is insoluble, hence Γ_{N} is not a cycle. Note that Γ is connected and the valency of Γ_{N} is a divisor of the valency of Γ. This implies that Γ_{N} has valency 4, and the lemma follows.

We now construct the normal covers of several known graphs.
Example 2.10. Let $\Gamma=(V, E)$ be a connected arc-transitive Cayley graph. The standard double cover $\Gamma^{(2)}$ is the graph with vertex set $V \cup\left\{u^{\prime} \mid u \in V\right\}$ such that $\left\{u, v^{\prime}\right\} \in E \Gamma^{(2)}$ whenever $\{u, v\} \in E$. For each $x \in$ Aut Γ, define $\tilde{x}: u \mapsto u^{x}, u^{\prime} \mapsto$ $\left(u^{x}\right)^{\prime}$. Then Aut Γ can be viewed as a subgroup of Aut $\Gamma^{(2)}$ in the above way. Define
$\epsilon: u \mapsto u^{\prime}, u^{\prime} \mapsto u$. Then $\epsilon \in \operatorname{Aut} \Gamma^{(2)}$. Set $X=\langle\operatorname{Aut} \Gamma, \epsilon\rangle$. Then $X=\operatorname{Aut} \Gamma \times\langle\epsilon\rangle$, and $\Gamma^{(2)}$ is an X-arc-transitive Cayley graph. For example,
(1) $\mathrm{P}_{7,3}^{(2)}$ is a Cayley graph of $\left(\mathbb{Z}_{7}: \mathbb{Z}_{3}\right) \times \mathbb{Z}_{2}$ and of $\mathbb{Z}_{7}: \mathbb{Z}_{6} ;$
(2) $P_{11,5}^{(2)}$ is a Cayley graph of $\left(\mathbb{Z}_{11}: \mathbb{Z}_{5}\right) \times \mathbb{Z}_{2}$ and of $\mathbb{Z}_{11}: \mathbb{Z}_{10}$;
(3) $\mathrm{P}_{23,11}^{(2)}$ is a Cayley graph of $\left(\mathbb{Z}_{23}: \mathbb{Z}_{11}\right) \times \mathbb{Z}_{2}$.

Here we just explain (2) briefly. Note that $\operatorname{AutP}_{11,5}^{(2)} \geq \operatorname{AutP}_{11,5} \times\langle\epsilon\rangle$. Take a subgroup $R \cong \mathbb{Z}_{11}: \mathbb{Z}_{10}$ of AutP $_{11,5}=\mathrm{PGL}(2,11)$, and let L be the 2^{\prime}-Hall subgroup of R. Then $L \cong \mathbb{Z}_{11}: \mathbb{Z}_{5}$ and $R=L:\langle z\rangle$ for an involution $z \in R$. Then Aut $\Gamma^{(2)}$ contains two regular subgroups $L \times\langle\epsilon\rangle \cong\left(\mathbb{Z}_{11}: \mathbb{Z}_{5}\right) \times \mathbb{Z}_{2}$ and $L:\langle z \epsilon\rangle \cong \mathbb{Z}_{11}: \mathbb{Z}_{10}$.

Next we construct the \mathbb{Z}_{2}-covers of $\mathrm{P}_{23,11}$ which are not the standard double cover.
Example 2.11. Let $X=T \times K$ with $T=\operatorname{PSL}(2,23)$ and $K=\left\langle z_{2}\right\rangle \cong \mathbb{Z}_{2}$. Take $\mathrm{A}_{4} \cong H_{1} \leq T$ and an involution $z_{1} \in T$ with $\left\langle H_{1}, z_{1}\right\rangle \cong \mathrm{S}_{4}$. Set $z=z_{1} z_{2}$ and $H=H_{1}:\langle z\rangle$. Then $H \cong \mathrm{~S}_{4}$ and $H \cap T=H_{1}$. Let $x \in H_{1}$ be of order 3 with $x^{z_{1}}=x^{-1}$. Then $\mathbf{N}_{T}(\langle x\rangle) \cong \mathrm{D}_{24}$ and $\left\langle x, z_{1}\right\rangle \cong \mathrm{S}_{3} \cong\langle x, z\rangle \leq H$. Let o be the involution in the center of $\mathbf{N}_{T}(\langle x\rangle)$. Checking the maximal subgroups of $\operatorname{PSL}(2,23)$, we conclude that $\left\langle H_{1}, o\right\rangle=\left\langle H_{1}, o z_{1}\right\rangle=\operatorname{PSL}(2,23)$. Then $\langle H, o\rangle=\left\langle H_{1}, o, z_{1} z_{2}\right\rangle=X$ and $\left\langle H, o z_{2}\right\rangle=$ $\left\langle H_{1}, o z_{1}, z_{1} z_{2}\right\rangle=X$. Thus we get two connected graphs $\Gamma_{1}:=\operatorname{Cos}(X, H, H o H)$ and $\Gamma_{2}:=\operatorname{Cos}\left(X, H, H o z_{2} H\right)$. Note that $\mathrm{S}_{3} \cong\langle x, z\rangle \leq H \cap H^{o}$. Then Γ_{1} has valency $\left|H:\left(H \cap H^{o}\right)\right|$ dividing $|H:\langle x, z\rangle|=4$. Since Γ_{1} is connected, Γ_{1} is not a cycle as $X \leq \operatorname{Aut} \Gamma_{1}$ is insoluble. Thus Γ_{1} has valency 4 . Similarly, Γ_{2} has valency 4.

Let $\Gamma=\Gamma_{1}$ or Γ_{2}. Then, by Lemma 2.9, Γ is a normal cover of Γ_{K}. Then Γ_{K} is an X / K-arc-transitive graph of order 253 and valency 4 . Since $X / K \cong \operatorname{PSL}(2,23)$, we have $\Gamma_{K} \cong \mathrm{P}_{23,11}$ by [16]. Take a subgroup $\mathbb{Z}_{23}: \mathbb{Z}_{11} \cong L<T$. Then X contains a regular subgroup $L \times K \cong\left(\mathbb{Z}_{23}: \mathbb{Z}_{11}\right) \times \mathbb{Z}_{2}$.

Next we construct the $\mathbb{Z}_{3^{-}}$and \mathbb{Z}_{6}-covers of $\mathrm{P}_{11,5}$.
Example 2.12. Let $X=(T \times K):\langle z\rangle$ with $T=\operatorname{PSL}(2,11), K=\langle y\rangle \cong \mathbb{Z}_{3}, Y:=$ $T:\langle z\rangle=\operatorname{PGL}(2,11)$ and $y^{z}=y^{-1}$. Take $\mathrm{S}_{4} \cong H_{1} \leq Y$. Let P be the normal subgroup of order 4 in H_{1}. Then $P \cong \mathbb{Z}_{2}^{2}, \mathbf{N}_{Y}(P)=H_{1}$ and $H_{1}=P:\langle x, z\rangle$ for some $x \in T$ of order 3 with $x^{z}=x^{-1}$. Set $H=P:\langle x y, z\rangle$. Then $H \cong \mathrm{~S}_{4}$ and $\langle x y, z\rangle \cong \mathrm{S}_{3}$.

For $g \in \mathbf{N}_{X}(\langle x y, z\rangle)$, we have $(x y)^{g}=(x y)^{ \pm 1}$ and $z^{g}=z^{(x y)^{i}}$ for some i, yielding $g \in$ $\mathbf{N}_{X}(\langle x\rangle)=K: \mathbf{N}_{Y}(\langle x\rangle)$ and $g(x y)^{-i} \in \mathbf{C}_{X}(z)$. Thus $g(x y)^{-i} \in \mathbf{C}_{X}(z) \cap\left(K: \mathbf{N}_{Y}(\langle x\rangle)\right)$. Computation shows that $\mathbf{C}_{X}(z) \cap\left(K: \mathbf{N}_{Y}(\langle x\rangle)\right)=\langle z, o\rangle$, where o is the involution in the center of $\mathbf{N}_{Y}(\langle x\rangle) \cong \mathrm{D}_{24}$, and so $o \in T$. Thus $\mathbf{N}_{X}(\langle x y, z\rangle)=\langle z, o\rangle\langle x y\rangle=$ $\langle x y, z\rangle \times\langle o\rangle$, so $H g H=H o H$ for $g \in \mathbf{N}_{X}(\langle x y, z\rangle) \backslash H$. Let $\Gamma=\operatorname{Cos}(X, H, H o H)$.
Note that $o \in T, z \in Y$ and $P \leq T$. Suppose that $M:=\langle o, P, z\rangle \neq Y$. Then $M \neq\langle P, z\rangle$; otherwise, $o \in H \cong \mathrm{~S}_{4}$ and o centralizes $x y \in H$, which is impossible. Thus M contains two distinct Sylow 2-subgroups $\langle P, z\rangle$ and $\langle P, z\rangle^{\circ}$ of Y. Checking the subgroups of PGL $(2,11)$ in the Atlas [5], we know that $M \cong \mathrm{~S}_{4}$ or D_{24}, and M is maximal in Y. If $x \in M$, then $\mathrm{S}_{4} \cong H_{1}=\langle P, x, z\rangle \leq M$, so $H_{1}=M$, hence $o \in H_{1}$ and o centralizes the element $x \in H$, which is impossible. Then $Y=\langle M, x\rangle=$ $\langle o, P, z, x\rangle$, yielding $\langle o, P\rangle \unlhd Y$. Thus $\langle o, P\rangle=T$, so $M=\langle o, P, z\rangle \geq\langle o, P\rangle=T$, a
contradiction. Then $\langle o, P, z\rangle=Y$, so $\langle o, H\rangle=\langle o, P, z, x y\rangle=\langle Y, x y\rangle=\langle Y, y\rangle=X$. Therefore, $\Gamma=\operatorname{Cos}(X, H, H o H)$ is connected.

Noting that $H \cap H^{o} \geq\langle x y, z\rangle$, the index $\left|H:\left(H \cap H^{o}\right)\right|$ divides 4. Since $X \leq$ Aut Γ is insoluble, Γ is not a cycle. Thus Γ is X-arc-transitive and of valency 4. Take a subgroup $L \cong \mathbb{Z}_{11}: \mathbb{Z}_{5}$ of T. Then X contains a regular subgroup $L \times K \cong$ $\left(\mathbb{Z}_{11}: \mathbb{Z}_{5}\right) \times \mathbb{Z}_{3}$.

Example 2.13. For the graph Γ in Example 2.12, the standard double cover $\Gamma^{(2)}$ is a Cayley graph of $\left(\mathbb{Z}_{11}: \mathbb{Z}_{5}\right) \times \mathbb{Z}_{6}$ and of $\mathbb{Z}_{33}: \mathbb{Z}_{10}$. In fact, if ϵ is defined as in Example 2.10, then Aut $\Gamma^{(2)} \geq((K \times T):\langle z\rangle) \times\langle\epsilon\rangle$. Take $L \leq R \leq T:\langle z\rangle=Y$ with $z \in R, L \cong \mathbb{Z}_{11}: \mathbb{Z}_{5}$ and $R \cong \mathbb{Z}_{11}: \mathbb{Z}_{10}$. Then Aut $\Gamma^{(2)}$ has regular subgroups $(K \times L) \times\langle\epsilon\rangle$ and $(K \times L):\langle z \epsilon\rangle$ isomorphic to $\left(\mathbb{Z}_{11}: \mathbb{Z}_{5}\right) \times \mathbb{Z}_{6}$ and $\mathbb{Z}_{33}: \mathbb{Z}_{10}$, respectively.

The next example gives the S_{3}-covers of K_{5} and of $\mathrm{P}_{23,11}$.
Example 2.14. Let $X=Y \times K$ with $Y=\mathrm{S}_{5}$ or $\operatorname{PSL}(2,23)$ and $K=\left\langle y_{2}\right\rangle:\left\langle z_{2}\right\rangle \cong \mathrm{S}_{3}$. Take a subgroup $H_{1} \cong \mathrm{~S}_{4}$ of Y. Then H_{1} has a normal subgroup $P \cong \mathbb{Z}_{2}^{2}$. Write $H_{1}=P:\left(\left\langle y_{1}\right\rangle:\left\langle z_{1}\right\rangle\right)$ with $\left\langle y_{1}\right\rangle:\left\langle z_{1}\right\rangle \cong \mathrm{S}_{3}$. Set $y=y_{1} y_{2}, z=z_{1} z_{2}$ and $H=P:(\langle y\rangle:\langle z\rangle)$. Then $H \cong \mathrm{~S}_{4}$ and $\langle y, z\rangle \cong \mathrm{S}_{3}$.

It is easily shown that $\mathbf{N}_{X}(\langle y, z\rangle) \leq \mathbf{N}_{X}\left(\left\langle y_{1}\right\rangle\right)=\mathbf{N}_{Y}\left(\left\langle y_{1}\right\rangle\right) \times K$, where $\mathbf{N}_{Y}\left(\left\langle y_{1}\right\rangle\right) \cong$ D_{12} or D_{24} for $Y=\mathrm{S}_{5}$ or $\operatorname{PSL}(2,23)$, respectively. Note that $\langle y, z\rangle$ contains exactly three involutions, say z, z^{y} and $z^{y^{2}}$. Assume that $g \in \mathbf{N}_{X}\left(\left\langle y_{1}\right\rangle\right)$ normalizes $\langle y, z\rangle$. Then $z^{g}=z^{y^{i}}$ for some $0 \leq i \leq 2$, yielding that $y^{i} g^{-1}$ centralizes $z=z_{1} z_{2}$. Further computation shows that $y^{i} g^{-1} \in\langle o, z\rangle=\langle o\rangle \times\langle z\rangle$, where o is the involution in the center of $\mathbf{N}_{Y}\left(\left\langle y_{1}\right\rangle\right)$. It follows that $\mathbf{N}_{X}(\langle y, z\rangle)=\langle o\rangle \times(\langle y, z\rangle)$.

It is easily shown that $\langle o, H\rangle=X$. Then $\Gamma=\operatorname{Cos}(X, H, H o H)$ is connected, X -arc-transitive and of valency 4 . Moreover, X contains a regular subgroup isomorphic to $\mathbb{Z}_{5} \times \mathrm{S}_{3}$ or $\left(\mathbb{Z}_{23}: \mathbb{Z}_{11}\right) \times \mathrm{S}_{3}$, respectively.

For $Y=\mathrm{S}_{5}$, we may take $P=\langle(12)(34),(13)(24)\rangle, y_{1}=(123), z_{1}=(12)$ and $o=(45)$. Let $g=(12345)$ and $h=(13)(24)$. Then X has two regular subgroups $\langle g\rangle \times K \cong \mathbb{Z}_{5} \times \mathrm{S}_{3}$ and $\left\langle g y_{2}\right\rangle:\left\langle h z_{2}\right\rangle \cong \mathrm{D}_{30}$.

We finally give a normal cover of $\mathrm{P}_{7,3}^{(2)}$. An X-edge-transitive graph Γ is said to be X-half-transitive if X is transitive on the vertices but not on the arcs of Γ.

Example 2.15. (1) Let $Y=\operatorname{PGL}(2,7), T=\operatorname{PSL}(2,7)$ and $\mathrm{D}_{8} \cong H \leq T$. Then $\mathbf{N}_{Y}(H) \cong \mathrm{D}_{16}$. Let o be the involution in the center of H. It is easily shown that o lies in the center of $\mathbf{N}_{Y}(H)$. Take $M \leq T$ with $H \leq M \cong \mathrm{~S}_{4}$, and take an element $y \in M$ of order 3 with $y^{o}=y^{-1}$. Then $\langle y, H\rangle=M$ and $H \cap H^{y} \cong \mathbb{Z}_{2}^{2}$. Let $z \in \mathbf{N}_{Y}(H) \backslash T$ be an involution. Then $\langle M, z\rangle=Y$. Set $x=z y$. Then $x \notin T$ and $H \cap H^{x}=H \cap H^{y} \cong \mathbb{Z}_{2}^{2}$, so $\left|H:\left(H \cap H^{x}\right)\right|=2$. Note that $\langle H, x\rangle=\left\langle H,(z y)^{o}, z y\right\rangle=\left\langle H, z y^{-1}, z y\right\rangle=\langle H, y, z\rangle=$ $\langle M, z\rangle=Y$. Then $\Sigma:=\operatorname{Cos}\left(Y, H, H\left\{x, x^{-1}\right\} H\right)$ is connected, X-half-transitive and of valency 4. Further, Y has a regular subgroup isomorphic to $\mathbb{Z}_{7}: \mathbb{Z}_{6}$.
(2) Let Σ be as in (1). Let $X=Y \times\langle c\rangle$, where $\langle c\rangle=\mathbb{Z}_{l}$ with odd l coprime to 21. Define a graph

$$
\Gamma=\operatorname{Cos}\left(X, H, H\left\{c x,(c x)^{-1}\right\} H\right)
$$

Then Γ is a connected X-edge-transitive tetravalent Cayley graph of $\left(\mathbb{Z}_{7}: \mathbb{Z}_{6}\right) \times \mathbb{Z}_{l}$.

Lemma 2.16. Let Σ and Γ be as in Example 2.15. Then $\Sigma \cong \mathrm{P}_{7,3}^{(2)},(Y \times\langle c\rangle):\langle\theta\rangle \cong$ $\mathrm{PGL}(2,7) \times \mathrm{D}_{2 l}$ for an involution $\theta \in \mathrm{Aut} \Gamma$, and Γ is isomorphic to an arc-transitive Cayley graph of $\left(\mathbb{Z}_{7}: \mathbb{Z}_{3}\right) \times \mathrm{D}_{2 l}$.

Proof. Recall that $z \in \mathbf{N}_{Y}(H) \backslash T$ is an involution. Define $\tilde{z}: H g \mapsto H z g, g \in Y$. Then \tilde{z} centralizes Y. Since $y^{o}=y^{-1}$ and $o \in H$ lies in the center of $\mathbf{N}_{Y}(H)$, we have $z H\left\{x, x^{-1}\right\} H z=H^{z}\left\{y z,(y z)^{-1}\right\}^{z} H^{z}=H\left\{y z,(y z)^{-1}\right\}^{z o} H=H\left\{z y, y^{-1} z\right\}^{o} H=$ $H\left\{z y^{-1}, y z\right\} H=H\left\{x, x^{-1}\right\} H$. Then it is easily shown that \tilde{z} is an automorphism of Σ. Set $\tilde{Y}=T:\langle\tilde{z} z\rangle$. Then $\tilde{Y} \cong \operatorname{PGL}(2,7)$, and \tilde{Y} has exactly two orbits on $V \Sigma$, say $\{H t \mid t \in T\}$ and $\{H z t \mid t \in T\}$. Let u be the vertex corresponding to H. Then $\Sigma(u)=\left\{H g \mid g \in H\left\{y z, z y^{-1}\right\} H\right\}$, and $\tilde{Y}_{u}=H:\langle\tilde{z} z\rangle \cong \mathrm{D}_{16}$ is a Sylow 2-subgroup of \tilde{Y}. It is easily shown that \tilde{Y}_{u} is transitive on $\Sigma(u)$. Thus Σ is \tilde{Y}-edgetransitive. Note that \tilde{Y} is normal in $Y \times\langle\tilde{z}\rangle$. For an arbitrary vertex $v=H g$, we have $\tilde{Y}_{v}=(Y \times\langle\tilde{z}\rangle)_{v} \cap \tilde{Y}=(Y \times\langle\tilde{z}\rangle)_{u}^{g} \cap \tilde{Y}=\tilde{Y}_{u}^{g} \cong \mathrm{D}_{16}$, so \tilde{Y}_{v} and \tilde{Y}_{u} are conjugate in \tilde{Y}. Then, by [8, Lemma 3.4], Σ is the standard double cover of a \tilde{Y}-arc-transitive graph Σ_{1} of order 21 and valency 4 . By [16], $\Sigma_{1} \cong \mathrm{P}_{7,3}$, so $\Sigma \cong \mathrm{P}_{7,3}^{(2)}$.

Now we extend $\sigma:=\tilde{z} z$ to an automorphism of Γ. Let $\tau \in \operatorname{Aut}(\langle c\rangle)$ with $c^{\tau}=c^{-1}$. Consider the direct product $\tilde{X}:=Y \times\langle\tilde{z}\rangle \times(\langle c\rangle:\langle\tau\rangle)$. Then the element $\theta:=\tau \sigma$ is an involution which normalizes both Y and H. Thus θ induces an automorphism of $X=Y \times\langle c\rangle$ by conjugation. Moreover, $(H c x H)^{\theta}=H(c x)^{\theta} H=H(c x)^{-1} H$. Then it is easily shown that $H g \mapsto H g^{\theta}$ gives an automorphism of Γ, and $X:\langle\theta\rangle$ is transitive on the arcs of Γ. Moreover, $\theta z=\tau \tilde{z}$ centralizes Y. Let L be a subgroup of Y with $L \cong \mathbb{Z}_{7}: \mathbb{Z}_{3}$. Then $X:\langle\theta\rangle$ contains a regular subgroup $L \times(\langle c\rangle:\langle\theta z\rangle) \cong\left(\mathbb{Z}_{7}: \mathbb{Z}_{3}\right) \times \mathrm{D}_{2 l}$. Noting that Aut $\Gamma \geq\langle Y, c, \theta\rangle=\langle Y, c, \theta z\rangle \cong \mathrm{PGL}(2,7) \times \mathrm{D}_{2 l}$, the lemma follows.

3. Soluble automorphism groups

In this section we determine the graphs having soluble edge-transitive automorphism groups. We first list two basic facts about edge-transitive (Cayley) graphs.

Lemma 3.1. Let $\Gamma=(V, E)$ be a connected regular X-edge-transitive graph, and let $N \unlhd X$. Then, for any given vertex $u \in V$, all N_{u}-orbits on $\Gamma(u)$ have the same length. If further X is transitive on V, then the following statements hold:
(i) $\left|N_{u}: N_{u v}\right|$ is constant while $\{u, v\}$ runs over E; in particular, $\left|N_{u}: N_{u v}\right| \neq 1$ if N is not semiregular on V;
(ii) N has at most two orbits on V provided that N_{u} is transitive on $\Gamma(u)$.

Proof. Since Γ is X-edge-transitive, either X is transitive on V, or X is intransitive on V and X_{u} is transitive on $\Gamma(u)$ for each $u \in V$. If X_{u} is transitive on $\Gamma(u)$ then, since $N_{u} \unlhd X_{u}$, all N_{u}-orbits on $\Gamma(u)$ have the same length. Thus, to complete the proof, we assume that X is transitive on V in the following.

Let Δ be an N_{u}-orbit on $\Gamma(u)$. Then $|\Delta|=\left|N_{u}: N_{u v}\right|$ for $v \in \Delta$. Let $x \in X$ with $v=u^{x}$. Then $N_{v}=X_{u^{x}} \cap N=\left(N_{u}\right)^{x}$; in particular, $\left|N_{u}\right|=\left|N_{v}\right|$, and so $|\Delta|=\left|N_{v}: N_{u v}\right|$. Let $\left\{u^{\prime}, v^{\prime}\right\}$ be an arbitrary edge of Γ. Since X is transitive on E, there is $y \in X$ with $\left\{u^{\prime}, v^{\prime}\right\}^{y}=\{u, v\}$, so $\left(u^{\prime}, v^{\prime}\right)^{y}=(u, v)$ or (v, u). Thus $\left(N_{u^{\prime}}\right)^{y}=X_{u^{\prime} y} \cap N=N_{u^{\prime} y}=N_{u}$ or N_{v}, and $N_{u v}=N_{u^{\prime} y^{\prime} y}=X_{u^{\prime} y v^{\prime} y} \cap N=\left(N_{u^{\prime} v^{\prime}}\right)^{y}$. Then $\left|N_{u^{\prime}}: N_{u^{\prime} v^{\prime}}\right|=\left|\left(N_{u^{\prime}}\right)^{y}:\left(N_{u^{\prime} v^{\prime}}\right)^{y}\right|=\left|N_{u^{\prime y}}: N_{u^{\prime y} v^{\prime} y}\right|=|\Delta|$.

Assume that $\left|N_{u}: N_{u v}\right|=1$ for some edge $\{u, v\} \in E$. Then $N_{u^{\prime}}=N_{v^{\prime}}$ for any $\left\{u^{\prime}, v^{\prime}\right\} \in E$. It follows from the connectedness that $N_{u}=N_{w}$ for any $w \in V$. Thus $N_{u}=1$ as $N_{u} \leq \mathrm{Aut} \Gamma$, so N is semiregular. Then (i) follows.

Assume further that N_{u} is transitive on $\Gamma(u)$ but N is intransitive on V. Let B and B^{\prime} be two N-orbits such that $u \in B$ is adjacent to some $u^{\prime} \in B^{\prime}$. By (i), since B^{\prime} is $N_{u^{\prime}}$-invariant, the subgraph $\left[B, B^{\prime}\right]$ induced by $B \cup B^{\prime}$ is regular and has the same valency as Γ. Since Γ is connected, $\Gamma=\left[B, B^{\prime}\right]$, and so (ii) follows.

Lemma 3.2. Let $\Gamma=\operatorname{Cay}(G, S)$ be a connected Cayley graph and $G \leq X \leq \operatorname{Aut} \Gamma$. Let v be the vertex corresponding to the identity of G. Then Γ is X-half-transitive if and only if S consists of two X_{v}-orbits S_{1} and S_{2} with $S_{2}^{-1}=S_{1}$, in particular, S contains no involutions.

Proof. Note that $\{1, s\}^{\widehat{s^{-1}}}=\left\{1, s^{-1}\right\}$ for $s \in S$. Then the sufficiency follows.
Assume that Γ is X-half-transitive. Then X_{v} has exactly two orbits S_{1} and S_{2} on S, and $\left|S_{1}\right|=\left|S_{2}\right|$. Thus there is some $x \in X$ such that $\left\{1, s_{1}\right\}^{x}=\left\{1, s_{2}\right\}$, where $s_{1} \in S_{1}$ and $s_{2} \in S_{2}$. Since $X=G X_{v}=X_{v} G$, write $x=x_{1} \hat{g}$ for $x_{1} \in X_{v}$ and $1 \neq g \in G$. Then $\left\{g, s_{1}^{\prime} g\right\}=\left\{1, s_{1}\right\}^{x}=\left\{1, s_{2}\right\}$ for some $s_{1}^{\prime} \in S_{1}$ with $x_{1}: s_{1} \mapsto s_{1}^{\prime}$. Thus $g=s_{2}$ and $s_{1}^{\prime} g=1$; in particular, $s_{2}^{-1}=s_{1}^{\prime} \in S_{1}$. Then $S_{2}^{-1} \subseteq S_{1}$, and so $S_{2}^{-1}=S_{1}$. Since $S_{1} \cap S_{2}=\emptyset$, there are no involutions in S.

Let G be a group of square-free order, and $\Gamma=(V, E)$ be a connected tetravalent X-edge-transitive Cayley graph of G, where $G \leq X \leq$ Aut Γ and X is soluble.

Lemma 3.3. Either $\Gamma \cong \mathbf{C}_{m[2]}$, or X has a normal regular subgroup R.
Proof. For an arbitrary prime divisor p of $|X|$, let $\mathbf{O}_{p}(X)$ be the largest normal p-subgroup of X. Set $M=\mathbf{O}_{p}(X)$. Since Γ is of square-free order, either $M=1$ or the orbits of M are of size p. Suppose that M is not semiregular on V. Then $1 \neq M_{u} \unlhd X_{u}$ for $u \in V$. Since Γ has valency 4, the stabilizer X_{u} is a $\{2,3\}$-group. By Lemma 3.1, we know that $p=2$, and so the orbits of M are of size 2 . Since M is not semiregular, we have that $\Gamma \cong \mathbf{C}_{m[2]}$, where $m=\frac{|V|}{2}$.

Assume now that $\mathbf{O}_{p}(X)$ is semiregular on V for all primes p. (Since $X \neq 1$ is soluble, there exists a prime p such that $\mathbf{O}_{p}(X)$ is nontrivial.) Then $\mathbf{O}_{p}(X)$ has order 1 or p, so $\mathbf{O}_{p}(X)$ is cyclic. Let F be the Fitting subgroup of X, that is, $F=\left\langle\mathbf{O}_{p}(X)\right| p$ divides $\left.|G|\right\rangle$. Then F is cyclic and acts semiregularly on V; in particular, $|F|$ is a divisor of $|G|$. Since $|G|$ is square-free, there exists a subgroup $L \leq G$ of order $|G| /|F|$. Set $R=F: L$. Then $|R|=|G|=|V|$. Let B be an F-orbit on V. Then G_{B} is regular on B, and so $|F|=|B|=\left|G_{B}\right|$. Thus $|G|=\left|G_{B}\right||L|$, yielding $G=G_{B} L$. It follows that L acts transitively on the set of all F-orbits. Then R is transitive on V, and so R is a regular subgroup of X.

Since X is soluble, $\mathbf{C}_{X}(F) \leq F$, yielding $\mathbf{C}_{X}(F)=F$. Thus $X / F=\mathbf{N}_{X}(F) / \mathbf{C}_{X}(F)$ is isomorphic to a subgroup of $\operatorname{Aut}(F)$. Since F is cyclic, $\operatorname{Aut}(F)$ is abelian, so X / F is abelian. Then $R / F \unlhd X / F$, and so $R \unlhd X$.

This lemma allows us to assume that X contains a normal regular subgroup R. Set $\Gamma=\operatorname{Cay}(R, S)$ for some $S \subset R$. Choose v to be the vertex corresponding to the
identity of R. Then we have a subgroup of $\operatorname{Aut}(R)$:

$$
\operatorname{Aut}(R, S)=\left\{\sigma \in \operatorname{Aut}(R) \mid x^{\sigma} \in S \text { for all } x \in S\right\}
$$

which is contained in the stabilizer of v in Aut Γ. Moreover, by [9, Lemma 2.1], the normalizer $\mathbf{N}_{\mathrm{Aut} \Gamma}(R)=R: \operatorname{Aut}(R, S)$. Since $X \leq \mathbf{N}_{\mathrm{Aut} \Gamma}(R)$, we have $X_{v} \leq \operatorname{Aut}(R, S)$.

The next lemma determines $\operatorname{Aut}(R, S)$.
Lemma 3.4. The subgroup $\operatorname{Aut}(R, S)$ is isomorphic to $\mathbb{Z}_{2}, \mathbb{Z}_{4}$ or \mathbb{Z}_{2}^{2}.
Proof. Since Γ is connected, $\langle S\rangle=R$, so $\operatorname{Aut}(R, S)$ acts faithfully on S. Since $|S|=4$, we have $\operatorname{Aut}(R, S) \leq \mathrm{S}_{4}$.

Write $R=(A: B) \times C$, where A, B and $C=\mathbf{Z}(R)$ are cyclic. Then $|A|$ is odd. By Lemma 2.2, $\bar{A} \unlhd \operatorname{Aut}(R)$ and $\operatorname{Aut}(R) / \bar{A} \cong \operatorname{Aut}(C) \times \operatorname{Aut}(A)$ is abelian. Then the commutator subgroup of $\operatorname{Aut}(R)$ has order dividing $|\bar{A}|=|A|$. Thus the commutator subgroup of every subgroup of $\operatorname{Aut}(R)$ is of odd order. Then $\operatorname{Aut}(R, S)$ has no subgroups isomorphic to $\mathrm{D}_{8}, \mathrm{~A}_{4}$ or S_{4}, so $\operatorname{Aut}(G, S) \cong \mathbb{Z}_{2}, \mathbb{Z}_{4}$ or \mathbb{Z}_{2}^{2}.

The following lemma allows us to choose $R=G$.
Lemma 3.5. Assume that X contains a normal regular subgroup. Then $G \unlhd X$.
Proof. Let R be a normal regular subgroup of X. Then $R G$ is a subgroup of $X=$ $R: X_{v}$, so $|R G|=|R||G| /|R \cap G|$ is a divisor of $|X|=2|R|$ or $4|R|$. Then either $R=G$ or $R \cap G$ is the 2^{\prime}-Hall subgroup of R (and of G). Assume the latter case occurs. Then $R \cap G$ is characteristic in R, and so $R \cap G \unlhd X$. Let P be a Sylow 2-subgroup of X with $X_{v} \leq P$. Then $P=\left(R X_{v}\right) \cap P=(R \cap P) X_{v}$. Since $R \unlhd X$ and $|R|$ is square-free, $R \cap P \unlhd P$ and $|R \cap P|=2$. It follows that $P=(R \cap P) X_{v}=(R \cap P) \times X_{v}$ is abelain. Thus $X /(R \cap G)=\left(R X_{v}\right) /(R \cap G)=(R \cap G) P /(R \cap G) \cong P$ is abelian, so $G /(R \cap G) \unlhd X /(R \cap G)$, and hence $G \unlhd X$.

Thus we assume that $G \unlhd X$ in the following. Write $\Gamma=\operatorname{Cay}(G, S)$ and $G=$ $(\langle a\rangle:\langle b\rangle) \times\langle c\rangle \cong\left(\mathbb{Z}_{m}: \mathbb{Z}_{n}\right) \times \mathbb{Z}_{l}$ with center $\mathbf{Z}(G)=\langle c\rangle \cong \mathbb{Z}_{l}$.

Lemma 3.6. There exists $\rho \in \operatorname{Aut}(G)$ such that $a b^{j} c \in S^{\rho}$ and $X_{v}^{\rho} \leq \mathbf{C}_{\mathrm{Aut}(G)}(\langle b\rangle)$, where $(j, n)=1$ and v is the vertex corresponding to the identity of G.
Proof. Let $A=\langle a\rangle, B=\langle b\rangle$ and $C=\langle c\rangle$. By Lemma 2.2, since $|\bar{A}|=|A|=m$ is odd, $\mathbf{C}_{\text {Aut }(G)}(B)=\operatorname{Aut}(C) \times \operatorname{Aut}(A)$ contains a Sylow 2-subgroup of $\operatorname{Aut}(G)$. Recall that $X_{v} \leq \operatorname{Aut}(G, S) \cong \mathbb{Z}_{2}, \mathbb{Z}_{4}$ or \mathbb{Z}_{2}^{2}. Then there is some $\alpha \in \operatorname{Aut}(G)$ such that $X_{v}^{\alpha} \leq \mathbf{C}_{\mathrm{Aut}(G)}(B)$. Note that α induces an isomorphism from Cay (G, S) to Cay $\left(G, S^{\alpha}\right)$ such that $v^{\alpha}=v$, and that X^{α} is transitive on the edges of $\operatorname{Cay}\left(G, S^{\alpha}\right)$. Clearly, X^{α} contains G as a normal regular subgroup. Take $x=a^{i} b^{j} c^{k} \in S^{\alpha}$. Since Cay $\left(G, S^{\alpha}\right)$ is connected and X^{α} is transitive on the edges of $\operatorname{Cay}\left(G, S^{\alpha}\right)$, we have $\left\langle x^{\sigma}\right| \sigma \in$ $\left.X_{v}^{\alpha}\right\rangle=G$. Then $G=\left\langle a^{i} b^{j} c^{k}, a^{i i^{\prime}} b^{j} c^{k k^{\prime}}\right\rangle$ or $\left\langle a^{i} b^{j} c^{k}, a^{i i^{\prime}} b^{j} c^{k k^{\prime}}, a^{i i^{\prime \prime}} b^{j} c^{k k^{\prime \prime}}, a^{i i^{\prime \prime \prime}} b^{j} c^{k k^{\prime \prime \prime}}\right\rangle$, where $i^{\prime}, i^{\prime \prime}, i^{\prime \prime \prime}, k^{\prime}, k^{\prime \prime}$ and $k^{\prime \prime \prime}$ are integers. It follows that $\left\langle c^{k}\right\rangle=\langle c\rangle,\left\langle a^{i}\right\rangle=\langle a\rangle$ and $\left\langle b^{j}\right\rangle=\langle b\rangle$, which implies that $(k, l)=1,(i, m)=1$ and $(j, n)=1$, respectively. Take $\beta \in \mathbf{C}_{\mathrm{Aut}(G)}(B)$ with $\left(c^{k}\right)^{\beta}=c$ and $\left(a^{i}\right)^{\beta}=a$. Set $\rho=\alpha \beta$. Then $c a b^{j} \in S^{\rho}$ and $X_{v}^{\rho} \leq \mathbf{C}_{\text {Aut }(G)}(B)$, as desired.

Now we determine the graphs when X is soluble and G is normal in X.

Lemma 3.7. Assume that G is normal in X. Then one of the following holds.
(1) $\operatorname{Aut}(G, S) \cong \mathbb{Z}_{2}^{2}$ or \mathbb{Z}_{4}, and either G is cyclic or $G \cong \mathbb{Z}_{l} \times \mathrm{D}_{2 m}$; Γ is constructed as in Construction 2.3 and 2.4.
(2) $\operatorname{Aut}(G, S) \cong \mathbb{Z}_{2}$ and $G \cong \mathbb{Z}_{l} \times\left(\mathbb{Z}_{m}: \mathbb{Z}_{n}\right)$, where $n \geq 3$ and the center $\mathbf{Z}(G) \cong \mathbb{Z}_{l}$; Γ is constructed as in Construction 2.6.

Proof. Since G is normal in X, we have $X \leq \mathbf{N}_{\mathrm{Aut} \Gamma}(G)=G$:Aut (G, S) and $X_{v} \leq$ $\operatorname{Aut}(G, S)$. Note that $G: \operatorname{Aut}(G, S)$ is transitive on the edges of Γ as Γ is X-edgetransitive. To complete the proof of Lemma 3.7, we may assume that $X_{v}=\operatorname{Aut}(G, S)$ and $X=G: \operatorname{Aut}(G, S)$. By Lemma 3.6, up to isomorphism of graphs, we may assume that $a b^{j} c \in S$ and $X_{v}=\operatorname{Aut}(G, S) \leq \mathbf{C}_{\text {Aut }(G)}(\langle b\rangle)$, where $1 \leq j \leq n-1$ with $(j, n)=1$.

Assume first that $G=\langle c\rangle=\mathbb{Z}_{l}$. Then $a=b=1$ and $c \in S$. Since $\sigma: \quad c^{i} \mapsto c^{-i}$ is an automorphism of G, we have $\sigma \in \operatorname{Aut}(G, S)$. By Lemma 3.2, Γ is X-arc-transitive, so $\operatorname{Aut}(G, S) \cong \mathbb{Z}_{4}$ or \mathbb{Z}_{2}^{2}. Thus the four elements of S are conjugate under $\operatorname{Aut}(G, S)$, and Γ is given as in Construction 2.3.

Assume that $n=2$ and $l=1$. Then $G=\langle a\rangle:\langle b\rangle \cong \mathrm{D}_{2 m}$, and S contains the involution $a b$. By Lemma 3.2, Γ is X-arc-transitive, hence Aut (G, S) is transitive on S, and so $\operatorname{Aut}(G, S) \cong \mathbb{Z}_{4}$ or \mathbb{Z}_{2}^{2}. Suppose first that $\operatorname{Aut}(G, S)=\langle\rho\rangle \cong \mathbb{Z}_{4}$. Then $a^{\rho}=a^{i}$ and $b^{\rho}=b$ for $i^{4} \equiv 1(\bmod m)$, and $S=\left\{a b, a^{i} b, a^{i^{2}} b, a^{i^{3}} b\right\}$. Since Γ is connected, $G=\langle S\rangle=\left\langle a^{i-1}, a^{i^{2}-1}, a^{i^{3}-1}, a b\right\rangle=\left\langle a^{i-1}\right\rangle:\langle a b\rangle$. Thus $\left\langle a^{i-1}\right\rangle=\langle a\rangle$, so $(i-1, m)=1$, yielding $i^{3}+i^{2}+i+1 \equiv 0(\bmod m)$. Thus Γ is given as in Construction 2.4 (i). Now let $\operatorname{Aut}(G, S)=\langle\sigma\rangle \times\langle\tau\rangle \cong \mathbb{Z}_{2}^{2}$. Set $a^{\sigma}=a^{i_{1}}$ and $a^{\tau}=a^{i_{2}}$, where $i_{1}^{2} \equiv i_{2}^{2} \equiv 1(\bmod m)$. Then $S=\left\{a b, a^{i_{1}} b, a^{i_{2}} b, a^{i_{1} i_{2}} b\right\}$. Since $G=\langle S\rangle=$ $\left\langle a^{i_{1}-1}, a^{i_{2}-1}, a^{i_{1} i_{2}-1}, a b\right\rangle=\left\langle a^{i_{1}-1}, a^{i_{2}-1}\right\rangle:\langle a b\rangle$, we have $\langle a\rangle=\left\langle a^{i_{1}-1}, a^{i_{2}-1}\right\rangle$, yielding $\left(i_{1}-1, i_{2}-1, m\right)=1$. Then Γ is given as in Construction 2.4 (ii).

Assume that $n=2$ and $l>1$. Then $a b c \in S, l$ is odd and $a b c$ has order $2 l$. By Lemma 3.2, since Γ is X-edge-transitive, there is $\rho \in X_{v}=\operatorname{Aut}(G, S)$ such that $(a b c)^{\rho} \neq(a b c)^{-1}$. Noting that ρ has order 2 or 4 , we set $a^{\rho}=a^{i}$ and $c^{\rho}=c^{k}$, where $i^{4} \equiv 1(\bmod m)$ and $k^{4} \equiv 1(\bmod l)$. Then $S^{-1}=S=\left\{a b c, a^{i} b c^{k}, a b c^{-1}, a^{i} b c^{-k}\right\}$. Since Γ is connected, $G=\langle S\rangle=\left\langle a b c, a^{i} b c^{k}\right\rangle=\left\langle a^{i-1}, a b, c\right\rangle=\left(\left\langle a^{i-1}\right\rangle:\langle a b\rangle\right) \times\langle c\rangle$. It follows that $\left\langle a^{i-1}\right\rangle=\langle a\rangle$, so $(i-1, m)=1$. Suppose that ρ has order 4 , then $S=\left\{a b c, a^{i} b c^{k}, a^{i^{2}} b c^{k^{2}}, a^{i^{3}} b c^{k^{3}}\right\}$, so $a b c^{-1}=(a b c)^{-1}=a^{i^{2}} b c^{k^{2}}$ or $a^{i^{3}} b c^{k^{3}}$, yielding $i^{2} \equiv 1(\bmod m)$ and $k^{2} \equiv-1(\bmod l)$. Moreover, $i \equiv-1(\bmod m)$ as $(i-1, m)=1$. Thus Γ is given as in Construction 2.4 (iii). Now let $\sigma:=\rho$ be of order 2. Then $i^{2} \equiv 1(\bmod m)$ and $k^{2} \equiv 1(\bmod l)$. Thus $i \equiv-1(\bmod m)$, and Γ is given as in Construction 2.4 (iv). Take $\tau \in \operatorname{Aut}(G)$ such that $a^{\tau}=a, b^{\tau}=b$ and $c^{\tau}=c^{-1}$. Then $\sigma \neq \tau \in \operatorname{Aut}(G, S), \sigma \tau=\tau \sigma$ and $\tau^{2}=1$, so $\operatorname{Aut}(G, S)=\langle\sigma, \tau\rangle \cong \mathbb{Z}_{2}^{2}$.
Finally, let $n \geq 3$. Recall that $a b^{j} c \in S$. Since Γ is X-edge-transitive, by Lemma 3.2, there is $\tau \in X_{v}=\operatorname{Aut}(G, S)$ such that $\left(a b^{j} c\right)^{\tau} \neq\left(a b^{j} c\right)^{-1}$. Set $a^{\tau}=a^{i}$ and $c^{\tau}=c^{k}$. Then $S=\left\{a b^{j} c, a^{i} b^{j} c^{k}, b^{-j} a^{-1} c^{-1}, b^{-j} a^{-i} c^{-k}\right\}$. It is easily shown that $\left\{a b^{j} c, a^{i} b^{j} c^{k}\right\}^{\sigma} \neq\left\{b^{-j} a^{-1} c^{-1}, b^{-j} a^{-i} c^{-k}\right\}$ for any $\sigma \in \mathbf{C}_{\text {Aut }(G)}(\langle b\rangle)$. Thus $\operatorname{Aut}(G, S)$ is not transitive on S, and so $\operatorname{Aut}(G, S)=\langle\tau\rangle \cong \mathbb{Z}_{2}$. Then $i^{2} \equiv 1(\bmod m)$ and $k^{2} \equiv 1(\bmod l)$. Since Γ is connected, $G=\langle S\rangle=\left\langle a b^{j} c, a^{i} b^{j} c^{k}\right\rangle=\left\langle a^{i-1}, a b^{j}, c\right\rangle=$ $\left(\left\langle a^{i-1}\right\rangle:\left\langle a b^{j}\right\rangle\right) \times\langle c\rangle$. Thus $\left\langle a^{i-1}\right\rangle=\langle a\rangle$, so $(i-1, m)=1$, hence $i \equiv-1(\bmod m)$ as $i^{2} \equiv 1(\bmod m)$. Then Γ is given as in Construction 2.6.

4. Insoluble Automorphism Groups

In this section, we study the case where the automorphism groups are insoluble.
An s-arc of $\Gamma=(V, E)$ is a sequence of $s+1$ vertices $v_{0}, v_{1}, \ldots, v_{s}$ such that v_{i} is adjacent to v_{i+1} and $v_{i} \neq v_{i+2}$. For a subgroup $X \leq \operatorname{Aut} \Gamma$, the graph Γ is said to be (X, s)-arc-transitive if X acts transitively on V and on the set of all s-arcs of Γ, and (X, s)-transitive if further X is intransitive on the set of all $(s+1)$-arcs of Γ.

The vertex stabilizer for s-arc-transitive graphs of valency 4 is known, refer to [34].

Lemma 4.1. Let $\Gamma=(V, E)$ be a connected (X, s)-transitive graph of valency 4. Then, for $u \in V$, the stabilizer X_{u} and s are listed in the following table,

s	2	3	4	7
X_{u}	$\mathrm{~A}_{4}, \mathrm{~S}_{4}$	$\mathbb{Z}_{3} \times \mathrm{A}_{4},\left(\mathbb{Z}_{3} \times \mathrm{A}_{4}\right) \cdot \mathbb{Z}_{2}, \mathrm{~S}_{3} \times \mathrm{S}_{4}$	$\mathbb{Z}_{3}^{2}: \mathrm{GL}(2,3)$	$\left[3^{5}\right]: \mathrm{GL}(2,3)$

where $\left[3^{5}\right]$ is a 3 -group of order 3^{5}.
For a finite group X, the socle of X, denoted by $\operatorname{soc}(X)$, is the subgroup generated by all minimal normal subgroups of X. The group X is said to be almost simple if its socle $\operatorname{soc}(X)$ is a non-abelian simple group.

In the rest of this section, assume that $\Gamma=(V, E)$ is a connected tetravalent graph of square-free order such that a subgroup $X \leq$ Aut Γ is transitive on both V and E.
Lemma 4.2. If Γ has order $|V|=21$ then $X \neq \operatorname{PSL}(2,7)$.
Proof. Suppose that $X=\operatorname{PSL}(2,7)$ and Γ is a connected X-edge-transitive graphs of valency 4 and order 21. Then X is transitive on V and, for $u \in V$, the stabilizer $X_{u} \cong \mathrm{D}_{8}$ is a Sylow 2-subgroup of X. Let $v \in \Gamma(u)$. Then $\left|X_{u}: X_{u v}\right|=2$ or 4. Set $v=u^{x}$ for some $x \in X$. Since Γ is connected, $\left\langle X_{u}, x\right\rangle=X$; in particular, $x \notin X_{u}$.

Let $\left|X_{u}: X_{u v}\right|=4$. Then X_{u} is transitive on $\Gamma(u)$, so Γ is X-arc-transitive. We may choose x such that $(u, v)^{x}=(v, u)$, yielding $x \in \mathbf{N}_{X}\left(X_{u v}\right) \cong \mathrm{D}_{8}$. In particular, $\mathbf{N}_{X}\left(X_{u v}\right) \neq X_{u}$. Then $\left|\mathbf{N}_{X_{u}}\left(X_{u v}\right)\right|=4$. Thus $\mathbf{N}_{X_{u}}\left(X_{u v}\right)$ is normal in both $\mathbf{N}_{X}\left(X_{u v}\right)$ and X_{u}, so $\mathbf{N}_{X_{u}}\left(X_{u v}\right) \unlhd\left\langle X_{u}, \mathbf{N}_{X}\left(X_{u v}\right)\right\rangle$. Checking the subgroups of PSL(2,7), we get $\left\langle X_{u}, \mathbf{N}_{X}\left(X_{u v}\right)\right\rangle \cong \mathrm{S}_{4}$, which contradicts $\left\langle X_{u}, x\right\rangle=X$.

Let $\left|X_{u}: X_{u v}\right|=2$. Then $\left|X_{u v}\right|=4$, so $X_{u v} \unlhd M:=\left\langle X_{u}, X_{v}\right\rangle$, and hence $M \cong \mathrm{~S}_{4}$. Noting that X_{u} and X_{v} are two Sylow 2-subgroups of M, there is some $y \in M$ such that $X_{u}^{y}=X_{v}=X_{u}^{x}$. Thus $x y^{-1} \in \mathbf{N}_{X}\left(X_{u}\right)=X_{u}$, so $\left\langle X_{u}, x\right\rangle \leq\left\langle X_{u}, x y^{-1}, y\right\rangle \leq M$, again a contradiction. Then the lemma follows.

Lemma 4.3. Assume that X is almost simple and contains a regular subgroup G. Then, for $u \in V$, the triple $\left(X, G, X_{u}\right)$ is one of the triples listed in Table 3.
Proof. By the assumption, $X=G X_{u}$, so $|X|=|G|\left|X_{u}\right|$ for $u \in V$. Since Γ is of valency 4 and $|G|$ is square-free, either
(i) X_{u} is a 2-group, and hence r^{2} does not divide $|X|$ for any odd prime r; or
(ii) X_{u} is given in Lemma 4.1, and hence none of $2^{6}, 3^{8}$ and r^{2} is a divisor of $|X|$, where r is a prime with $r \geq 5$.
In particular, $|X|$ is not divisible by $2^{6} \cdot 3^{2}$. Next we consider the socle T of X. Since T is normal in X, the T-orbits on V have the same length $\left|T: T_{u}\right|$. Thus $\left|T: T_{u}\right|$ is square-free, and T has a $\{2,3\}$-subgroup of square-free index.

X	G	X_{u}
$\mathrm{~A}_{5}$	\mathbb{Z}_{5}	$\mathrm{~A}_{4}$
$\mathrm{~S}_{5}$	\mathbb{Z}_{5}	$\mathrm{~S}_{4}$
$\operatorname{PGL}(2,7)$	D_{14}	$\mathrm{~S}_{4}$
	$\mathbb{Z}_{7}: \mathbb{Z}_{3}$	D_{16}
	$\mathbb{Z}_{7}: \mathbb{Z}_{6}$	D_{8}
$\operatorname{PSL}(2,11)$	$\mathbb{Z}_{11}: \mathbb{Z}_{5}$	$\mathrm{~A}_{4}$
$\operatorname{PGL}(2,11)$	$\mathbb{Z}_{11}: \mathbb{Z}_{5}$	$\mathrm{~S}_{4}$
$\operatorname{PGL}(2,11)$	$\mathbb{Z}_{11}: \mathbb{Z}_{10}$	$\mathrm{~A}_{4}$
$\operatorname{PSL}(2,23)$	$\mathbb{Z}_{23}: \mathbb{Z}_{11}$	$\mathrm{~S}_{4}$
$\operatorname{PSL}(3,3): \mathbb{Z}_{2}$	D_{26}	$\mathbb{Z}_{3}^{2}: \operatorname{GL}(2,3)$

Table 3
Suppose that T is a sporadic simple group. Since $|T|$ is not divisible by $2^{6} \cdot 3^{2}$, we have $X=T=\mathrm{M}_{11}$ or J_{1}, and further, by the Atlas [5], J_{1} does not have a proper subgroup of index a $\{2,3\}$-number. Thus $X=\mathrm{M}_{11}$, and then $3 \cdot 2^{3}$ divides $\left|X_{u}\right|$ and $\left|X_{u}\right|$ divides $2^{4} \cdot 3^{2}$. By Lemma 4.1, $X_{u} \cong \mathrm{~S}_{4},\left(3 \times \mathrm{A}_{4}\right) .2$ or $\mathrm{S}_{4} \times \mathrm{S}_{3}$. Checking the subgroups of M_{11} in the Atlas [5], we get $X_{u} \cong \mathrm{~S}_{4}$, so $|V|=\left|X: X_{u}\right|=330$. Then $|G|=330$ as G is regular on V; however, M_{11} has no such a subgroup, a contradiction.

Let $T=\mathrm{A}_{n}$. Since 5^{2} does not divide $|X|$, we have $n \leq 9$. The groups A_{8} and A_{9} are excluded as their orders are divisible by $2^{6} \cdot 3^{2}$. For A_{7}, neither A_{7} nor S_{7} has a subgroup of index dividing $\left|X_{v}\right|$ other than A_{7}. Suppose that $T=\mathrm{A}_{6}$. Then $X \leq \operatorname{Aut}(T) \cong \mathrm{A}_{6} . \mathbb{Z}_{2}^{2}$, so $\left|X_{u}\right|$ is divisible by 3 but not by 3^{3}. Examming the maximal subgroups of X in the Atlas [5], it follows that $X_{u} \cong \mathrm{~A}_{4}$ or S_{4}; however, X does not have a subgroup of order divisible by 15 , a contradiction. Thus $T=\mathrm{A}_{5}$, and $G \cong \mathbb{Z}_{5}$.

Assume now that T is a simple group of Lie type defined over $\operatorname{GF}(q)$, where $q=p^{f}$ is a power of a prime p. Then we can get T by checking the orders of finite simple groups of Lie type (see [12, Table 5.1.A and Table 5.1.B], for example). Since r^{2} does not divide $|T|$ for any prime $r \geq 5$, either $T=\operatorname{PSL}(2, p)$, or $p \in\{2,3\}$.

Case 1. Let $T=\operatorname{PSL}(2, p)$ for a prime $p \geq 5$. In this case, $X=T$ or $\operatorname{PGL}(2, p)$, a Sylow 2-subgroup of X is dihedral, and a Sylow 3 -subgroup of X is cyclic. Thus, by Lemma 4.1, either X_{u} is a 2-group, or $X_{u} \cong \mathrm{~A}_{4}$ or S_{4}.

Note that $T G$ is a subgroup of X as $T \unlhd X$. Then $|T G: G|$ is a divisor of $|X: G|=\left|X_{u}\right|$. If $X \neq T G$ then $G \leq T$, so $|G|=\left|T: T_{u}\right|=\left|X: X_{u}\right|$, yielding $\left|X_{u}: T_{u}\right|=2$. Since $|T G|=|T||G| /|T \cap G|$, we have $|T G: G|=|T:(T \cap G)|$, so $|T:(T \cap G)|=\left|X_{u}\right|$ or $\left|T_{u}\right|$ depending on whether or not $X=T G$, respectively.

Assume that $X_{u} \cong \mathrm{~A}_{4}$ or S_{4}. Then $T_{u} \cong \mathrm{~A}_{4}$ or S_{4}. Consider the action of T on $[T:(T \cap G)]$ induced by right multiplication. Then T has a (faithful) transitive representation of degree 12 or 24 . It follows from [12, Table 5.2 A] that $p \leq 23$. Checking the subgroups of $\operatorname{PSL}(2, p)$ and $\operatorname{PGL}(2, p)$ in the Atlas [5], we conclude that $p=5,7,11$ or 23 , and the triple $\left(X, G, X_{u}\right)$ is described as in Table 4.3.

Now let X_{u} be a 2-group. Then $|T:(T \cap G)|$ is a power of 2. By $[10],|T:(T \cap G)|=$ $p+1=2^{e}$ for $e \geq 3$. It follows that $\left|T_{u}\right|=2^{e-1}$ or 2^{e}. Thus $T_{u} \cong \mathrm{D}_{2^{e}}$ or $\mathrm{D}_{2^{e-1}}$.

Suppose that 32 divides $\left|T_{u}\right|$. Let $v \in \Gamma(u)$. By Lemma 3.1, $T_{u v}$ has index 2 or 4 in both T_{u} and T_{v}, then $T_{u v}$ contains a subgroup $C \cong \mathbb{Z}_{4}$. It is easily shown that C is normal in both T_{u} and T_{v}, and so $C \unlhd\left\langle T_{u}, T_{v}\right\rangle$. Thus $T \neq\left\langle T_{u}, T_{v}\right\rangle:=Q$ as T is
simple. Checking the subgroups of T (see [11, 8.27], for example), we conclude that $T_{u} \cong T_{v} \cong \mathrm{D}_{2^{e-1}}$, and $Q \cong \mathrm{D}_{2^{e}}=\mathrm{D}_{p+1}$ which is maximal in T. Let $w \in \Gamma(v)$. Then a similar argument implies that $Q_{1}:=\left\langle T_{v}, T_{w}\right\rangle \cong \mathrm{D}_{p+1}$. Note that T_{v} is normal in both Q and Q_{1}. Thus $T_{v} \unlhd\left\langle Q, Q_{1}\right\rangle$, yielding $Q=Q_{1}$. By the connectedness of Γ, we conclude that $Q=\left\langle T_{v} \mid v \in V\right\rangle$. Thus, for any $x \in X$, we have $T_{v}^{x}=\left(X_{v} \cap T\right)^{x}=$ $X_{v^{x}} \cap T=T_{v^{x}} \leq Q$. Then $Q \unlhd T$, a contradiction. Therefore, $\left|T_{u}\right|$ divides 16, and so $2^{e}=8,16$ or 32 . Then $p=2^{e}-1=7$ or 31 , and $T=\operatorname{PSL}(2,7)$ or $\operatorname{PSL}(2,31)$, respectively.

Suppose that $T=\operatorname{PSL}(2,31)$. Then $T_{u} \cong \mathrm{D}_{16}$ as $\left|T: T_{u}\right|$ is square-free and $\left|T_{u}\right|$ is not divisible by 32 . Checking the subgroups of T, we know that T has no subgroups of order $\left|T: T_{u}\right|=930$. Thus $X=\operatorname{PGL}(2,31)$ and $X_{u} \cong \mathrm{D}_{32}$. Note that each Sylow 2-subgroup of X is a maximal subgroup. Then a similar argument as above implies that X has a normal Sylow 2-subgroup, which is impossible.

Therefore, $T=\operatorname{PSL}(2,7)$, so $X=T$ or $\operatorname{PGL}(2,7)$. By Lemma 4.2, checking the subgroups of X implies that $X=\operatorname{PGL}(2,7)$ and $G \cong \mathbb{Z}_{7}: \mathbb{Z}_{3}$ or $\mathbb{Z}_{7}: \mathbb{Z}_{6}$.

Case 2. Let $p \in\{2,3\}$. Assume that X_{u} is a 2 -group. Then T has a subgroup of square-free order with index a power of 2 . By $[10], T=\operatorname{PSL}(t, s)$ and $\frac{t^{s}-1}{s-1}$ is a power of 2 , where t is a prime and s is a power of some odd prime. Recall that, in this case, $|X|$ is not divisible by r^{2} for any odd prime. It follows that $t=2$ and s is a prime, so $T=\operatorname{PSL}(2, s)$. By Case $1, X=\operatorname{PGL}(2,7) \cong \operatorname{PSL}(3,2): \mathbb{Z}_{2}$ and $G \cong \mathbb{Z}_{7}: \mathbb{Z}_{3}$ or $\mathbb{Z}_{7}: \mathbb{Z}_{6}$.

We next assume that X_{u} is not a 2-group. Then, by Lemma 4.1, $\left|X_{u}\right|$ is not divisible by 2^{5} and 3^{7}. Thus $|X|=|G|\left|X_{u}\right|$ is not divisible by p^{8}. We check the orders of simple groups. Taking into account the isomorphisms among simple groups (see [12, Proposition 2.9.1]), we know that T is one of $\operatorname{PSL}(2, q), \operatorname{PSL}(3,2), \operatorname{PSL}(3,3)$, $\operatorname{PSL}(3,9), \operatorname{PSL}(4,2), \operatorname{PSL}(4,3), \operatorname{PSU}(3,3), \operatorname{PSU}(3,9), \operatorname{PSp}(4,3), \mathrm{Sz}(8)$ and $\mathrm{G}_{2}(3)$. However, $\operatorname{PSL}(3,9), \operatorname{PSL}(4,2), \operatorname{PSL}(4,3)$ and the last four groups are excluded as they have orders divisible by 2^{6} or 5^{2}. Recalling that T has a $\{2,3\}$-subgroup of square-free index, $\operatorname{PSU}(3,3)$ is excluded by checking its subgroups in the Atlas [5]. For $T=\operatorname{PSL}(3,2)$ or $\operatorname{PSL}(3,3)$, checking the subgroups of X, the triple $\left(X, G, X_{u}\right)$ is known as in Table 4.3.

To complete the proof, we let $T=\operatorname{PSL}\left(2, p^{f}\right)$ with $f \geq 2$ and $p=2$ or 3 . Then a Sylow p-subgroup of T has order p^{f}. Suppose that $f \geq 4$. Then p^{3} is a divisor of $\left|T_{u}\right|$. Checking the subgroups of T (see [11, 8.27], for example), we know that $T_{u} \cong \mathbb{Z}_{p}^{f}: \mathbb{Z}_{t}$ or $\mathbb{Z}_{p}^{f-1}: \mathbb{Z}_{t}$, where t divides $p^{f}-1$; however, none of the groups in Lemma 4.1 has such a subgroup of index no more than 2 , a contradiction. Thus $f \leq 3$. Further, by the Atlas [5], neither $\operatorname{PSL}(2,8)$ nor $\operatorname{PSL}(2,27)$ has subgroups of square-free index. Noting that $\operatorname{PSL}(2,9) \cong \mathrm{A}_{6}$, we have $T=\operatorname{PSL}(2,4) \cong \mathrm{A}_{5}$. Then the Lemma follows.

We now determine the structure of insoluble groups X. Let K be the largest soluble normal subgroup of X. Consider the normal quotient Γ_{K}. By Lemma 2.9, since X / K is insoluble, Γ is a normal cover of Γ_{K}. Thus K is the kernel of X acting on $V \Gamma_{K}$, and K is semiregular on V; in particular, $|K|$ is square-free.

Lemma 4.4. Assume that X is insoluble. Let K be the largest soluble normal subgroup of X. Then $X=K: Y$, where Y is almost simple such that the socle $\operatorname{soc}(Y)$ is normal in X, the greatest common divisor $(|Y|,|K|)$ is a divisor of 6 , and $X_{u} \cong Y_{B}$ for a K-orbit B and $u \in V$. If further X has a regular subgroup G, then we may
choose the group Y such that X contains a regular subgroup $K:(G \cap Y)$; in this case, $Y, G \cap Y$ and Y_{B} are known respectively as in the three columns of Table 3.

Proof. We first show that X is a split extension of K and some $Y \leq X$ by induction on the order of K. This is trivial if $K=1$. Let $K \neq 1, p$ be the largest prime divisor of $|K|$, and P be the Sylow p-subgroup of K. Then P has order p and is normal in X and, by Lemma 2.9, Γ is a normal cover of Γ_{P} as X / P is insoluble. Let $u \in V$ and Δ be the P-orbit containing u. Since $|V|$ is square-free, $|\Delta|=p$ is coprime to $\left|X: X_{\Delta}\right|$. Then $X_{\Delta}=P: X_{u}$ contains a Sylow p-subgroup of X. It follows from Gaschtz' Theorem (see $[2,10.4]$) that the extension $X=P .(X / P)$ splits over P, that is, $X=P: X_{1}$ for $X_{1} \leq X$ with $X_{1} \cap P=1$. Since Γ is a normal cover of Γ_{P}, the kernel of X acting on $V \Gamma_{P}$ equals to P. Thus X_{1} is faithful and transitive on both $V \Gamma_{P}$ and $E \Gamma_{P}$. Further, $K=K \cap P X_{1}=P\left(K \cap X_{1}\right)$ and $K \cap X_{1} \unlhd X_{1}$. Since $\left|V \Gamma_{P}\right|<|V|$, we may assume by induction that $X_{1}=\left(K \cap X_{1}\right): Y$. Then $X=P\left(\left(K \cap X_{1}\right) Y\right)=K Y$, and $K \cap Y \leq K \cap X_{1}$ yielding $K \cap Y \leq K \cap X_{1} \cap Y=1$. Thus $X=K: Y$.

Since Γ is a normal cover of Γ_{K}, we know that Y is faithful and transitive on both $V \Gamma_{K}$ and $E \Gamma_{K}$. Let N be a minimal normal subgroup of Y. Then $K N$ is normal in X, so $K N$ is insoluble by the choice of K. Thus N is insoluble, so N is a direct product of isomorphic non-abelain simple groups. Recalling that $|X|$ is not divided by r^{2} for a prime $r \geq 5$, it follows that N is simple. Since Γ_{K} has square-free order, N is not semiregular on $V \Gamma_{K}$. Thus either N is transitive on $V \Gamma_{K}$, or Γ_{K} is not a normal cover of its quotient graph with respect to N. By Lemma 2.9, Y / N is soluble. It follows that N is the unique minimal normal subgroup of Y. Then Y is almost simple. Since $K \unlhd X$, we have $X / \mathbf{C}_{X}(K)=\mathbf{N}_{X}(K) / \mathbf{C}_{X}(K) \lesssim \operatorname{Aut}(K)$. Noting that $\operatorname{Aut}(K)$ is soluble as $|K|$ is square-free, $N=\operatorname{soc}(Y)<\mathbf{C}_{X}(K)$, yielding $N \unlhd X$.

Let B be the K-orbit containing $u \in V$. Then $K: X_{u}=X_{B}=X_{B} \cap(K: Y)=K: Y_{B}$, so $X_{u} \cong Y_{B}$ is a $\{2,3\}$-group. Noting that $|Y|=\left|V \Gamma_{K}\right|\left|Y_{B}\right|$, since $|V|$ is square-free, we have $\left(|K|,\left|V \Gamma_{K}\right|\right)=1$. Thus $(|Y|,|K|)=\left(\left|Y_{B}\right|,|K|\right)$ is a divisor of 6 .

Finally, assume that G is a regular subgroup of X. Let $L \leq G$ with $|G|=|K||L|$. Then $R:=K: L$ is a regular subgroup of X, and $R=R \cap X=R \cap(K: Y)=K:(R \cap Y)$. Note L and $R \cap Y$ are Hall subgroups of R. Then L and $R \cap Y$ are conjugate in R, that is, $L=(R \cap Y)^{h}$ for some $h \in R$. Thus, replacing Y by Y^{h}, we may assume that $L=R \cap Y$, and so $L=G \cap Y$. It is easily shown that L is regular on the set of all K-orbits on V. Then, identifying Y with a subgroup of Aut Γ_{K}, the quotient graph Γ_{K} is a Y-edge-transitive Cayley graph of L. Further, since Y is almost simple, the triple $\left(Y, L, Y_{B}\right)$ is known by Lemma 4.3.

5. Graphs with insoluble automorphism groups

Let G be a group of square-free order, and $\Gamma=(V, E)$ be a connected X-edgetransitive tetravalent Cayley graph of G, where $G \leq X \leq$ Aut Γ and X is insoluble. Set $X=K: Y$ as in Lemma 4.4. Then X has a regular subgroup $K: L$ for $L=G \cap Y$.
5.1. 2-arc-transitive graphs. Assume that Γ is $(X, 2)$-arc-transitive. Then, for $u \in V$, the stabilizer X_{u} is 2-transitive on $\Gamma(u)$. Since $T:=\operatorname{soc}(Y) \unlhd X$, by Lemma 3.1 (i), T_{u} acts nontrivially on $\Gamma(u)$, and so T_{u} acts transitively on $\Gamma(u)$. Then, by Lemma 3.1 (ii), T has at most two orbits on V. It follows that Γ is T-edge-transitive.

Since K is semiregular, $|K|$ is a divisor of $|V|$. Then each odd prime divisor of $|K|$ is also a divisor of $|T|$. Recalling that $(|Y|,|K|)$ divides 6 , we have $|K|=1,2,3$ or 6 .

Lemma 5.1. Let B be a K-orbit on V and $u \in B$. Then $T_{u} \unlhd T_{B}$, and
(1) $|K|=1$ or $3, T_{B} / T_{u} \cong K$; or
(2) $|K|=2$ or $6, T_{B} / T_{u} \cong K$, and T is transitive on V; or
(3) $|K|=2$ or $6,\left|T_{B} / T_{u}\right|=\frac{|K|}{2}$ and T has two orbits on V.

Proof. Let $N=K \times T$. Assume that $|K|=1$ or 3 . Then either T is transitive on V or both N and T have two orbits on V. Thus the K-orbit B lies in one of T-orbits, so T_{B} is transitive on B. Denote by T_{B}^{B} the permutation group induced by T_{B} on B. Noting that $K T_{B}=K \times T_{B}$ and K is regular on B, it follows from [6, Theorem 4.3A] that $T_{B}^{B} \cong K^{B} \cong K$ and T_{B}^{B} is regular on B, and so $T_{u} \unlhd T_{B}$, hence $K \cong T_{B}^{B} \cong T_{B} / T_{u}$.

Assume that $|K|=2$ or 6 . Then N is transitive on V. If T is transitive on V, then T_{B} is transitive on B, so $K \cong T_{B}^{B} \cong T_{B} / T_{u}$. Suppose that T has two orbits on V. Then T_{B} has exactly two orbits on B with length $\frac{|K|}{2}$. Let B_{1} be the $T_{B^{-}}$ orbit containing u. Considering the action of $K_{B_{1}} \times T_{B}$ on B_{1}, we get $T_{u} \unlhd T_{B}$ and $K_{B_{1}} \cong T_{B}^{B_{1}} \cong T_{B} / T_{u}$. Then the lemma follows.

Lemma 5.2. If $T=\operatorname{PSL}(3,3)$, then Γ is the point-line incidence graph of the projective plane $\mathrm{PG}(2,3)$, which is a 4-transitive Cayley graph of D_{26}.
Proof. Let $T=\operatorname{PSL}(3,3)$. Then $L \cong \mathrm{D}_{26},|K|=1$ or 3 , and $Y_{B}=T_{B} \cong \mathbb{Z}_{3}^{2}: \operatorname{GL}(2,3)$. It is easily shown that T_{B} has no normal subgroups of index 3. By Lemma 5.1, $K=1$. Then $X=Y=\operatorname{PSL}(3,3): \mathbb{Z}_{2}$. By [14], the lemma follows.

Noting that $\operatorname{PSL}(2,7) \cong \operatorname{PSL}(3,2)$ and S_{4} has no normal subgroups of index 3 , a similar argument as above implies the following lemma.

Lemma 5.3. If $T=\operatorname{PSL}(2,7)$, then Γ is the point-line non-incidence graph of the projective plane $\mathrm{PG}(2,2)$, which is a Cayley graph of D_{14}.

Lemma 5.4. If $T=\mathrm{A}_{5}$, then Γ is isomorphic to one of $\mathrm{K}_{5}, \mathrm{~K}_{5,5}-5 \mathrm{~K}_{2}$ and the S_{3}-cover of K_{5} given in Example 2.14.

Proof. Let $T=\mathrm{A}_{5}$. If K is cyclic, then Γ is a circulant and, by [18], Γ is one of K_{5} and $\mathrm{K}_{5,5}-5 \mathrm{~K}_{2}$. Thus we assume that $K=\mathrm{S}_{3}$. Since $X / \mathbf{C}_{X}(K)=\mathbf{N}_{X}(K) / \mathbf{C}_{X}(K) \lesssim$ $\operatorname{Aut}(K)=\operatorname{Inn}(K) \cong \mathrm{S}_{3}$, we have $Y \leq \mathbf{C}_{X}(K)$, so $X=K \times Y$. Then, for a K-orbit B and $u \in B$, we have $X_{u} \cong Y_{B} \cong \mathrm{~A}_{4}$ or $\mathrm{S}_{4}, X_{B}=K \times Y_{B}$, so $|V|=|K|\left|Y: Y_{B}\right|=30$. Recalling that T_{u} is transitive on $\Gamma(u)$, it follows that $\left|T_{u}\right|$ is divided by 4 , so T is not transitive on V. Then T has two orbits on V, so $\left|T_{u}\right|=4$, hence $T_{u} \cong \mathbb{Z}_{2}^{2}$ as $T_{u} \unlhd X_{u}$. Noting that T_{u} is regular on $\Gamma(u)$, we have $X_{u}=T_{u}: X_{u v}$, where $v \in \Gamma(u)$

Let $Y=\mathrm{S}_{5}$. Then $T_{B} \cong \mathrm{~A}_{4}, X_{u} \cong Y_{B} \cong \mathrm{~S}_{4}$, and $X_{u v} \cong \mathrm{~S}_{3}$. Write $X_{u v}=\langle g\rangle:\langle h\rangle$, where g is of order 3 and h is an involution with $g^{h}=g^{-1}$. Clearly, $g, h \notin K$. Since $\left|T_{u}\right|=4$, we have $\left|Y_{u}\right|=4$ or 8 as $|Y: T|=2$. Consider the action of Y_{B} on B. Since K is regular on B, it follows from [6 , Theorem 4.3A] that Y_{B}^{B} is semiregular on B. So $Y_{u} \unlhd Y_{B} \cong \mathrm{~S}_{4}$. It follows that $Y_{u}=T_{u} \cong \mathbb{Z}_{2}^{2}$. Thus g, $h \notin Y$, so $g=y_{1} y_{2}$ and $h=z_{1} z_{2}$, where $y_{1} \in Y, y_{2} \in K, z_{1} \in Y$ and $z_{2} \in K$. It is easily shown that $\left\langle y_{1}, z_{1}\right\rangle \cong \mathrm{S}_{3}$ and $\left\langle T_{u}, y_{1}, z_{1}\right\rangle \cong \mathrm{S}_{4}$. Thus Γ is the S_{3}-cover of K_{5} given in Example 2.14.

Now let $Y=T=\mathrm{A}_{5}$. Then $X_{u} \cong Y_{B}=T_{B} \cong \mathrm{~A}_{4}$ and $X_{u v} \cong \mathbb{Z}_{3}$. It is easily shown that $X_{u v}=\left\langle y_{1} y_{2}\right\rangle$, where $y_{1} \in Y$ and $y_{2} \in K$ are of order 3. Further, $\mathbf{N}_{X}\left(\left\langle y_{1} y_{2}\right\rangle\right)=$ $\left\langle y_{1}, y_{2}\right\rangle:\left\langle z_{1} z_{2}\right\rangle=\left\langle y_{1} y_{2}\right\rangle:\left\langle y_{2}, z_{1} z_{2}\right\rangle$, where $z_{1} \in Y$ is an involution such that $\left\langle y_{1}\right\rangle:\left\langle z_{1}\right\rangle \cong$ S_{3}. Write $\Gamma \cong \operatorname{Cos}\left(X, X_{u}, X_{u} x X_{u}\right)$ for a 2-element $x \in \mathbf{N}_{X}\left(\left\langle y_{1} y_{2}\right\rangle\right)$ with $\left\langle x, X_{u}\right\rangle=$ X. Then $X_{u} x X_{u}=X_{u} y_{2}^{i} z_{1} z_{2} X_{u}$. Noting that $X_{u}^{y_{2}}=X_{u}$ and $\left(X_{u} y_{2}^{i} z_{1} z_{2} X_{u}\right)^{y_{2}}=$ $X_{u} y_{2}^{i+1} z_{1} z_{2} X_{u}$, it follows that $\Gamma \cong \operatorname{Cos}\left(X, X_{u}, X_{u} z_{1} z_{2} X_{u}\right)$, that is, Γ is unique up to isomorphism. Note that the graph in the above paragraph is ($K T, 2$)-arc-transitive. Thus Γ is isomorphic to the S_{3}-cover of K_{5} given in Example 2.14.

Lemma 5.5. If $T=\operatorname{PSL}(2,23)$, then Γ is isomorphic to one of the following graphs: $\mathrm{P}_{23,11}, \mathrm{P}_{23,11}^{(2)}$, the graphs in Examples 2.11 and 2.14.
Proof. Assume that $T=\operatorname{PSL}(2,23)$. Then $X=K \times T$ and $X_{u} \cong T_{B} \cong \mathrm{~S}_{4}$, where $u \in V$ and B is the K-orbit containing u. Noting that S_{4} has no quotients isomorphic to \mathbb{Z}_{3} and \mathbb{Z}_{6}, it follows from Lemma 5.1 that K is one of $1, \mathbb{Z}_{2}$ and S_{3}.

If $K=1$, then $X=T$ and X_{u} is a maximal subgroup, so Aut $\Gamma=X$ and $\Gamma \cong \mathrm{P}_{23,11}$ by [16]. If $K=\mathrm{S}_{3}$, then $T_{u}=\mathbb{Z}_{2}^{2}$ and a routine argument similar as in Lemma 5.4 implies that Γ is the S_{3}-cover of $\mathrm{P}_{23,11}$ given in Example 2.14.

Let $K=\mathbb{Z}_{2}$. Then $T_{u} \cong \mathrm{~A}_{4}$ or S_{4} by Lemma 5.1.
Assume first that $T_{u} \cong \mathrm{~S}_{4}$. Then $X_{u}=T_{u} \leq T$, and T has two orbits on V, say U and U^{z}, where $\langle z\rangle=K$. Note that $X_{u^{z}}=\left(X_{u}\right)^{z}=X_{u}$. It follows that all vertex stabilizers are conjugate in T. Recalling that Γ is T-edge-transitive, it follows from [8, Lemma 3.4] that Γ is the standard double cover of a T-arc-transitive graph Σ of valency 4 and order 253 . By [16], $\Sigma \cong \mathrm{P}_{23,11}$, and so $\Gamma \cong \mathrm{P}_{23,11}^{(2)}$.

Assume now that $T_{u} \cong \mathrm{~A}_{4}$. Then $X_{u} \cong \mathrm{~S}_{4}$ and $X_{u v} \cong \mathrm{~S}_{3}$. Set $X_{u}=T_{u}:\left\langle z_{1} z_{2}\right\rangle$ and $X_{u v}=\langle x\rangle:\left\langle z_{1} z_{2}\right\rangle$, where $z_{1} \in T$ and $z_{2} \in K$ are involutions, and $x \in T_{u}$ has order 3. Let $z=z_{1} z_{2}$. For $g \in \mathbf{N}_{X}\left(X_{u v}\right)$, it is easily shown that g normalizes $\langle x\rangle$. It follows that $\mathbf{N}_{X}\left(X_{u v}\right) \leq \mathbf{N}_{T}(\langle x\rangle) \times K$. By the Atlas [5], $\mathbf{N}_{T}(\langle x\rangle) \cong \mathrm{D}_{24}$ and $\mathbf{N}_{T}\left(\left\langle x, z_{1}\right\rangle\right) \cong$ D_{12}. We may write $\mathbf{N}_{T}\left(\left\langle x, z_{1}\right\rangle\right)=\langle x\rangle:\left\langle z_{1}\right\rangle \times\langle o\rangle$, where o is the involution in the center of $\mathbf{N}_{T}(\langle x\rangle)$. Note that all involutions of $\langle x, z\rangle$ are conjugate under $\langle x\rangle$. Then an element $h \in \mathbf{N}_{T}(\langle x\rangle)$ normalizes $\langle x, z\rangle$ if and only if $z^{h}=z^{x^{i}}$ for some $0 \leq i \leq 2$, yielding $x^{i} h^{-1} \in \mathbf{C}_{T}(z)$, so $x^{i} h^{-1} \in \mathbf{C}_{T}\left(z_{1}\right)$, and hence $x^{i} h^{-1} \in \mathbf{C}_{T}\left(z_{1}\right) \cap \mathbf{N}_{T}\left(\left\langle x, z_{1}\right\rangle\right)$. It follows that $h \in \mathbf{N}_{X}(\langle x, z\rangle) \cap \mathbf{N}_{T}(\langle x\rangle)$ if and only if $x^{i} h^{-1} \in\left\langle z_{1}, o\right\rangle$, yielding $h \in \mathbf{N}_{T}\left(\left\langle x, z_{1}\right\rangle\right)$. Therefore, $\mathbf{N}_{X}\left(X_{u v}\right)=\mathbf{N}_{T}\left(\left\langle x, z_{1}\right\rangle\right) \times K=\langle x\rangle:\left\langle z_{1}\right\rangle \times\langle o\rangle \times\left\langle z_{2}\right\rangle=$ $\langle x, z\rangle \times\langle o\rangle \times\left\langle z_{2}\right\rangle$. Then, for $g \in \mathbf{N}_{X}(\langle x, z\rangle) \backslash X_{u}$, we have $X_{u} g X_{u}=H o H, H o z_{2} H$ or $H z_{2} H$. Note that $\left\langle H, z_{2}\right\rangle=\left\langle H_{1}, z_{1}, z_{2}\right\rangle \cong \mathrm{S}_{4} \times \mathbb{Z}_{2}$. Thus, writing Γ as a coset graph, Γ is one of the graphs in Example 2.11.

We next determine the 2-arc-transitive graphs associated with $\operatorname{PSL}(2,11)$.
Lemma 5.6. Let $\Gamma=(V, E)$ be a connected tetravalent (PSL(2,11), 2)-arc-transitive graph of order 55 . Then $\Gamma \cong \mathrm{P}_{11,5}$.
Proof. Let $X=\operatorname{PSL}(2,11)$. Then $X_{u} \cong \mathrm{~A}_{4}$ and $X_{u v} \cong \mathbb{Z}_{3}$ for $u \in V$ and $v \in \Gamma(u)$. Write Γ as a coset graph $\operatorname{Cos}\left(X, X_{u}, X_{u} x X_{u}\right)$, where $x \in \mathbf{N}_{X}\left(X_{u v}\right)$ with $\left\langle x, X_{u}\right\rangle=X$ and $x^{2} \in X_{u v}$. By the Atlas [5], $\mathbf{N}_{X}\left(X_{u v}\right) \cong \mathrm{D}_{12}=\mathbb{Z}_{3}: \mathbb{Z}_{2}^{2}$. Then $X_{u} x X_{u}=X_{u} y X_{u}$ for some involution $y \in \mathbf{N}_{X}\left(X_{u v}\right)$. Checking the subgroups of $\operatorname{PSL}(2,11)$, we know that $X_{u}=\mathbf{N}_{X}(P)$ for a Sylow 2-subgroup P of X. It follows that the subgroups isomorphic
to A_{4} are all conjugate in X. Then there are two non-conjugate maximal subgroups M_{1} and M_{2} of X such that $X_{u} \leq M_{i} \cong \mathrm{~A}_{5}, i=1,2$. Note that $\mathbf{N}_{M_{i}}\left(X_{u v}\right) \cong$ S_{3}. Then $\mathbf{N}_{X}\left(X_{u v}\right)=\mathbf{N}_{M_{i}}\left(X_{u v}\right) \times\langle o\rangle$, where o is the involution in the center of $\mathbf{N}_{X}\left(X_{u v}\right)$. It is easily shown that $\left\langle X_{u}, \mathbf{N}_{M_{i}}\left(X_{u v}\right)\right\rangle=M_{i}, i=1,2$. Thus $\mathbf{N}_{M_{1}}\left(X_{u v}\right) \cap$ $\mathbf{N}_{M_{2}}\left(X_{u v}\right)$ contains no involutions; otherwise, $\mathbf{N}_{M_{1}}\left(X_{u v}\right)=\mathbf{N}_{M_{2}}\left(X_{u v}\right)$, so $M_{1}=M_{2}$, a contradiction. Then $\mathbf{N}_{M_{1}}\left(X_{u v}\right) \cup \mathbf{N}_{M_{2}}\left(X_{u v}\right)$ contains exactly 6 of the 7 involutions in $\mathbf{N}_{X}\left(X_{u v}\right)$, and so we have $X_{u} x X_{u}=X_{u} y X_{u}=X_{u} o X_{u}$. Thus $\Gamma=\operatorname{Cos}\left(X, X_{u}, X_{u} o X_{u}\right)$ is unique. Since $\mathrm{P}_{11,5}$ is $(\mathrm{PSL}(2,11), 2)$-arc-transitive, $\Gamma \cong \mathrm{P}_{11,5}$.

Lemma 5.7. If $T=\operatorname{PSL}(2,11)$ and $K \neq 1$, then K is isomorphic to $\mathbb{Z}_{2}, \mathbb{Z}_{3}$ or \mathbb{Z}_{6}.
Proof. Assume $T=\operatorname{soc}(Y)=\operatorname{PSL}(2,11)$ and $K \neq 1$. Then $|K|=2,3$ or 6 .
Suppose that $K \cong \mathrm{~S}_{3}$. Recall that $X=K: Y$ has a regular subgroup $K:(G \cap Y)$. Then $|G \cap Y|$ is odd. By Lemmas 4.4 and $4.3, T_{B} \cong \mathrm{~A}_{4}$ and $G \cap Y \cong \mathbb{Z}_{11}: \mathbb{Z}_{5}$. Thus, by Lemma 5.1, $T_{u} \cong \mathbb{Z}_{2}^{2}$ and $T=\operatorname{PSL}(2,11)$ has two orbits on V. It is easily shown that Γ is $(K T, 2)$-arc-transitive. Without loss of generality, we assume $X=K \times T$. Then $X_{u v}=\langle x y\rangle \cong \mathbb{Z}_{3}$ and $X_{u}=T_{u}: X_{u v}$ for $v \in \Gamma(u)$, where $x \in T$ and $y \in K$ are of order 3 such that $T_{u}:\langle x\rangle \cong \mathrm{A}_{4}$. Computation shows that $\mathbf{N}_{X}\left(X_{u v}\right)=$ $\langle o\rangle \times(\langle x\rangle \times\langle y\rangle):\left\langle z_{1} z_{2}\right\rangle$, where o is the involution in the center of $\mathbf{N}_{T}(\langle x\rangle), z_{1} \in T$ and $z_{2} \in K$ are involutions with $x^{z_{1}}=x^{-1}$ and $y^{z_{2}}=y^{-1}$. For an arbitrary element $g=o^{i} x^{s} y^{t}\left(z_{1} z_{2}\right)^{j} \in \mathbf{N}_{X}(\langle x y\rangle)$, set $W=\left\langle g, X_{u}\right\rangle$. Then $W \leq\left\langle T_{u}, x, o^{i} z_{1}^{j}\right\rangle \times\left\langle y, z_{2}^{j}\right\rangle$. If $j \equiv 0(\bmod 2)$, then $W \neq X$. Assume that $j \equiv 1(\bmod 2)$. Then $W \leq\left\langle T_{u}, x, o^{i} z_{1}\right\rangle \times K$. Checking the subgroups of $T=\operatorname{PSL}(2,11)$, we conclude that $\mathbf{N}_{T}\left(T_{u}\right)=T_{u}:\langle x\rangle$. Let M_{1} and M_{2} be two non-conjugate maximal subgroups of T with $M_{i} \cong \mathrm{~A}_{5}$ and $T_{u} \leq M_{i}, i=1,2$. Then $\mathbf{N}_{M_{i}}\left(T_{u}\right) \cong \mathrm{A}_{4}$ for $i=1,2$. Thus $M_{1} \cap M_{2}=T_{u}:\langle x\rangle$. Noting that $\mathbf{N}_{M_{1}}(\langle x\rangle) \cong \mathrm{S}_{3} \cong \mathbf{N}_{M_{2}}(\langle x\rangle)$, a similar argument as in the proof of Lemma 5.6 implies that $\mathbf{N}_{M_{1}}(\langle x\rangle) \cup \mathbf{N}_{M_{2}}(\langle x\rangle)$ contains 6 of the 7 involutions in $\mathbf{N}_{T}(\langle x\rangle)=\langle o\rangle \times\left\langle x, z_{1}\right\rangle$. Since A_{5} has no elements of order 6 , we have $o \notin M_{i}$ for $i=1,2$. Thus $o^{i} z_{1} \in \mathbf{N}_{M_{1}}(\langle x\rangle) \cup \mathbf{N}_{M_{2}}(\langle x\rangle)$. Then $\left\langle T_{u}, x, o^{i} z_{1}\right\rangle \cong \mathrm{A}_{5}$, and so $W \neq X$. Thus there is no $g \in \mathbf{N}_{X}\left(X_{u v}\right)$ with $\left\langle g, X_{u}\right\rangle=X$, a contradiction.

Therefore, $K \not \not \mathrm{~S}_{3}$, so K is isomorphic to one of $\mathbb{Z}_{2}, \mathbb{Z}_{3}$ and \mathbb{Z}_{6}.
Lemma 5.8. Assume that $T=\operatorname{PSL}(2,11)$. Then Γ is isomorphic to one of $\mathrm{P}_{11,5}$, $\mathrm{P}_{11,5}^{(2)}$, the graph in Example 2.12 and its standard double cover.
Proof. Let K be the largest soluble normal subroup of X. Then, by Lemma 5.7, either $K=1$, or K is isomorphic to one of $\mathbb{Z}_{2}, \mathbb{Z}_{3}$ and \mathbb{Z}_{6}.

Case 1. Let $K=1$. By Lemma 4.3, $G \cong \mathbb{Z}_{11}: \mathbb{Z}_{5}$ or $\mathbb{Z}_{11}: \mathbb{Z}_{10}$. If $|G|=55$, then $T_{u} \cong \mathrm{~A}_{4}$ and Γ is $(T, 2)$-arc-transitive, so $\Gamma \cong \mathrm{P}_{11,5}$ by Lemma 5.6. Thus we assume next that $X=\operatorname{PGL}(2,11), G \cong \mathbb{Z}_{11}: \mathbb{Z}_{10}$ and $X_{u} \cong \mathrm{~A}_{4}$. Then $G \cap T \cong \mathbb{Z}_{11}: \mathbb{Z}_{5}$, $X_{u}=T_{u} \cong \mathrm{~A}_{4}$ and $X_{u v} \cong \mathbb{Z}_{3}$ for $v \in \Gamma(u)$. Let M be a maximal subgroup of X with $X_{u} \leq M \cong \mathrm{~S}_{4}$. Then $M=X \cap M=G X_{u} \cap M=(G \cap M) X_{u}=X_{u}:(G \cap M)$. Let $G \cap M=\langle z\rangle$. Then z is an involution. Replacing v by v^{h} for $h \in X_{u}$ if necessary, we assume that z normalizes $X_{u v}$. Then $X_{u v}:\langle z\rangle \cong \mathrm{S}_{3}$. By the Atlas [5], we conclude that $\mathbf{N}_{X}\left(X_{u v}\right)=\left(X_{u v} \times\langle y\rangle\right):\langle z\rangle \cong \mathrm{D}_{24}$, where $y \in X$ has order 4 .

Write $\Gamma=\operatorname{Cos}\left(X, X_{u}, X_{u} x X_{u}\right)$ for $x \in \mathbf{N}_{X}\left(X_{u v}\right)$ with $\left\langle x, X_{u}\right\rangle=X$ and $x^{2} \in X_{u v}$. It implies that $x=h y^{i} z$ for $i \in\{1,2,3\}$ and $h \in X_{u v}$, so $X=\left\langle x, X_{u}\right\rangle=\left\langle y^{i} z, X_{u}\right\rangle$. In particular, $y^{i} z \notin T$ as $X_{u} \leq T$. It is easy to know that $y^{2} \in T, y \notin T, z \notin T$,
$\langle y, z\rangle \cong \mathrm{D}_{8}$ and $T \cap\langle y, z\rangle \cong \mathbb{Z}_{2}^{2}$. It follows that $y z, y^{3} z \in T$. Thus $i=2$, and so $X_{u} x X_{u}=X_{u} y^{2} z X_{u}$. Hence $\Gamma=\operatorname{Cos}\left(X, X_{u}, X_{u} y^{2} z X_{u}\right)$.

Identify $V \Gamma$ with $U \cup U^{\prime}$, where $U=\left\{X_{u} g \mid g \in G \cap T\right\}$ and $U^{\prime}=\left\{X_{u} z g \mid g \in G \cap T\right\}$ are in fact the bipartition subsets of Γ. Then $X_{u} g$ and $X_{u} z g_{1}$ are adjacent whenever $z g_{1} g^{-1} \in X_{u} y^{2} z X_{u}=z X_{u} y^{2} X_{u}$, i.e., $g_{1} g^{-1} \in X_{u} y^{2} X_{u}$. Noting that $T_{u}=X_{u}$, it follows that Γ is the standard double cover of $\Sigma:=\operatorname{Cos}\left(T, T_{u}, T_{u} y^{2} T_{u}\right)$. Clearly, Σ is $(T, 2)$-arc-transitive and of order 55. By Lemma $5.6, \Sigma \cong \mathrm{P}_{11,5}$, so $\Gamma \cong \mathrm{P}_{11,5}^{(2)}$.

Case 2. Let $K \cong \mathbb{Z}_{2}$. Then $X=Y \times K$. By Lemmas 4.4 and 4.3, $\left(Y, Y_{B}\right)=$ $\left(\mathrm{PSL}(2,11), \mathrm{A}_{4}\right)$ or $\left(\mathrm{PGL}(2,11), \mathrm{S}_{4}\right)$. Then $T_{B} \cong \mathrm{~A}_{4}$. By Lemma 5.1, $T_{u} \cong \mathrm{~A}_{4}$ and T has two orbits on V. Moreover, Γ is ($K \times T, 2$)-arc-transitive. Recalling that Γ is T-edge-transitive, by [8, Lemma 3.4], Γ is the standard double cover of a T -edge-transitive graph Σ of order 55 . It is easily shown that Σ is ($\operatorname{PSL}(2,11), 2)$-arctransitive. By Lemma $5.6, \Sigma \cong \mathrm{P}_{11,5}$, and so $\Gamma \cong \mathrm{P}_{11,5}^{(2)}$.

Case 3. Let $K=\mathbb{Z}_{3}$. By Lemma 5.1, $T_{B} \cong \mathrm{~A}_{4}$ and $T_{u} \cong \mathbb{Z}_{2}^{2}$, where $u \in V$ and B is the K-orbit containing u. Since T_{u} is normal in X_{u} and transitive on $\Gamma(u)$, we have $X_{u}=T_{u}: X_{u v}$ for $v \in \Gamma(u)$. Write $\Gamma \cong \operatorname{Cos}\left(X, X_{u}, X_{u} g X_{u}\right)$ for a 2-element $g \in \mathbf{N}_{X}\left(X_{u v}\right)$ with $\left\langle g, X_{u}\right\rangle=X$ and $g^{2} \in X_{u v}$.

Assume first that T is transitive on V. Then $|V|=\left|T: T_{u}\right|$ is odd, and $\left(Y, X_{u}\right)=$ (PSL $\left.(2,11), \mathrm{A}_{4}\right)$ or $\left(\mathrm{PGL}(2,11), \mathrm{S}_{4}\right)$ by Lemmas 4.4 and 4.3.
Suppose that $\left(Y, X_{u}\right)=\left(\operatorname{PSL}(2,11), \mathrm{A}_{4}\right)$. Then $X_{u v} \cong \mathbb{Z}_{3}$. Write $X_{u v}=\langle x y\rangle$, where $x \in T$ and $y \in K$ are of order 3. Then $\mathbf{N}_{X}\left(X_{u v}\right)=\langle o\rangle \times\langle x\rangle \times\langle y\rangle$, and so $\Gamma \cong \operatorname{Cos}\left(X, X_{u}, X_{u} o X_{u}\right)$ is unique up to isomorphism. Noting that the graph in Example 2.12 is ($K \times T, 2$)-arc-transitive, Γ is isomorphic to the graph in Example 2.12.

Suppose that $\left(Y, X_{u}\right)=\left(\mathrm{PGL}(2,11), \mathrm{S}_{4}\right)$. Then $X_{u v} \cong \mathrm{~S}_{3}$ and, since T is transitive, $K: Y=X=(K \times T) X_{u}=(K \times T) X_{u v}$. Since $|X:(K \times T)|=2$, we conclude that the Sylow 3-subgroup of $X_{u v}$ is contained in $K \times T$. Then we may set $X_{u v}=\langle x y\rangle:\langle z\rangle$, where $x \in T, y \in K$ and z is an involution. Then $X=(K \times T):\langle z\rangle$. If $y=1$ then $x \in T \cap X_{u}=T_{u} \cong \mathbb{Z}_{2}^{2}$, a contradiction. If $x=1$ then $X_{u}=T_{u}: X_{u v}=\left\langle T_{u}, y, z\right\rangle=$ $\left(T_{u} \times\langle y\rangle\right)\langle z\rangle \not \approx \mathrm{S}_{4}$, again a contradiction. Thus both x and y have order 3. Since $X_{u v} \cong \mathrm{~S}_{3}$, we have $(x y)^{z}=(x y)^{-1}$, so $x^{z}=x^{-1}$ and $y^{z}=y^{-1}$. Then a routine argument implies that Γ is isomorphic to the graph in Example 2.12.

Assume now that T has two orbits on V. Then $\left(X, X_{u}\right)=\left(K: \operatorname{PGL}(2,11), \mathrm{A}_{4}\right)$. It follows that $X_{u v}=\langle x y\rangle$, where $x \in T$ and $y \in K$ are of order 3 such that $T_{u}:\langle x\rangle \cong \mathrm{A}_{4}$.
Let $z \in \mathrm{PGL}(2,11) \backslash T$ be an involution with $x^{z}=x^{-1}$ and $T_{u}:\langle x, z\rangle \cong \mathrm{S}_{4}$. Let o be the involution in the center of $\mathbf{N}_{T}(\langle x\rangle) \cong \mathrm{D}_{12}$. If $y z=z y, \mathbf{N}_{X}(\langle x y\rangle)=\langle o\rangle \times\langle x, y\rangle$, and $\left\langle g, X_{v}\right\rangle \leq K \times T$, a contradiction. Thus $y^{z}=y^{-1}$, and $\mathbf{N}_{X}(\langle x y\rangle)=\langle o\rangle \times\langle x, y\rangle:\langle z\rangle=$ $\langle x y\rangle:\langle x, z\rangle \times\langle o\rangle$. Then we may take $g=z o, x z o$ or $x^{2} z o$. Noting that $X_{u}^{x}=X_{u}$ and $\left(X_{u} x^{i} z o X_{u}\right)^{x}=X_{u} x^{i-2} z o X_{u}$, it follows that $\Gamma \cong \operatorname{Cos}\left(X, X_{u}, X_{u} z o X_{u}\right)$.

Write $V \Gamma=\left\{X_{u} g \mid g \in K T\right\} \cup\left\{X_{u} z g \mid g \in K T\right\}$. Then $X_{u} z g_{2}$ and $X_{u} g_{1}$ are adjacent in Γ if and only if $z g_{2} g_{1}^{-1} \in X_{u} z o X_{u}=z X_{u} o X_{u}$, that is, $g_{2} g^{-1} \in X_{u} o X_{u}$. Noting that $X_{u}=T_{u}: X_{u v} \leq K \times T$, it follows that Γ is the standard double cover of $\Sigma:=\operatorname{Cos}\left(K T, X_{u}, X_{u} o X_{u}\right)$. By the argument in the third paragraph of this case, Σ is isomorphic to the graph in Example 2.12.

Case 4. $K=\mathbb{Z}_{6}$. Then $\left(X, X_{u}\right)=\left(K \times \operatorname{PSL}(2,11), \mathrm{A}_{4}\right)$ or $\left(K: \operatorname{PGL}(2,11), \mathrm{S}_{4}\right)$. In this case, $T=\operatorname{PSL}(2,11)$ has two orbits on V, and Γ is $(K T, 2)$-arc-transitive. It is easily shown that $\mathrm{A}_{4} \cong(K T)_{u} \leq Q \times T$, where $Q \cong \mathbb{Z}_{3}$ is the Sylow 3 -subgroup of K.

By [8, Lemma 3.4], Γ is the standard double cover of a $(Q T, 2)$-arc-transitive graph Σ. By the argument in the third paragraph of Case $3, \Sigma$ is isomorphic to the graph in Example 2.12. This completes the proof.
5.2. Graphs associated with $\operatorname{PSL}(2,7)$. Now we consider graphs associated with the simple group $\operatorname{PSL}(2,7)$. If Γ is $(X, 2)$-arc-transitive, then Γ is known. Thus we assume that $X=K: Y, Y=\operatorname{PGL}(2,7)$ and $X_{u} \cong Y_{B} \cong \mathrm{D}_{16}$ or D_{8}, where B is the K-orbit containing $u \in V$. In particular, $|V|=21|K|$ or $42|K|$, and $(|K|,|Y|) \leq 2$.
Lemma 5.9. If $X=\operatorname{PGL}(2,7)$, then either $\Gamma \cong \mathrm{P}_{7,3}$, or Γ is bipartite and is isomorphic one of $\mathrm{P}_{7,3}^{(2)}$ and the graphs in Example 2.8.
Proof. Assume that $X=\operatorname{PGL}(2,7)$. If $X_{u}=\mathrm{D}_{16}$, then X_{u} is maximal in X, so $\Gamma \cong \mathrm{P}_{7,3}$ by [16]. Thus we assume further that $X_{u} \cong \mathrm{D}_{8}$ in the following.
Suppose that $X_{u} \not \leq T=\operatorname{PSL}(2,7)$. Then $\left|T_{u}\right|=4$. Note that X has a factorization $X=G X_{u}$ with $G \cap X_{u}=1$, where $G \cong \mathbb{Z}_{7}: \mathbb{Z}_{6}$. Let P be a Sylow 2-subgroup of X with $X_{u}<P$. Then $P \cong \mathrm{D}_{16}$, and P contains exactly two subgroups isomorphic to D_{8} : one is X_{u} and the other one, say Q, is a Sylow 2 -subgroup of T. It is easily shown that $X_{u} \cap Q \cong \mathbb{Z}_{4}$. Then $X_{u}=\langle h\rangle:\left\langle z_{1}\right\rangle$, where $h \in T$ is of order 4 and $z_{1} \in X \backslash T$ is an involution. Noting that $P=X \cap P=(G \cap P) X_{u}$, we find that $G \cap P=\left\langle z_{2}\right\rangle$ and $P=X_{u}:\left\langle z_{2}\right\rangle$ for an involution z_{2}. Since T has no subgroups isomorphic to $\mathbb{Z}_{7}: \mathbb{Z}_{6}$, we have $z_{2} \in X \backslash T$. Clearly, $z_{2} \notin X_{u}$. Thus P contains another subgroup $\left\langle h, z_{2}\right\rangle$ which is isomorphic to D_{8} and not contained in T, a contradiction. Therefore, $X_{u}=T_{u}$. In particular, T has two orbits on V, and so Γ is a bipartite graph.
Suppose that Γ is X-half-transitive. Write $\Gamma \cong \operatorname{Cos}\left(X, T_{u}, T_{u}\left\{x, x^{-1}\right\} T_{u}\right)$, where $x \in X$ with $\left\langle T_{u}, x\right\rangle=X$. Then $\left|T_{u}:\left(T_{u} \cap T_{u}^{x}\right)\right|=2$, so $T_{u} \cap T_{u}^{x}$ is normal in both T^{u} and T_{u}^{x}, hence $T_{u} \cap T_{u}^{x} \unlhd M:=\left\langle T_{u}, T_{u}^{x}\right\rangle$. Checking the subgroups of T, since $T_{u} \neq T_{u}^{x}$, we have $M \cong \mathrm{~S}_{4}$. Then there is an element $y \in M$ of order 3 such that $T_{u}^{x}=T_{u}^{y}$, so $x y^{-1} \in \mathbf{N}_{X}\left(T_{u}\right) \cong \mathrm{D}_{16}$. Write $\mathbf{N}_{X}\left(T_{u}\right)=T_{u}:\langle z\rangle$ for an involution $z \notin T$. Then $x y^{-1}=h z^{i}$ for $h \in T_{u}$ and $i=0$ or 1 , so $x=h z^{i} y$. Since $\left\langle T_{u}, x\right\rangle=X=\operatorname{PGL}(2,7)$, we have $i=1$. Thus $T_{u}\left\{x, x^{-1}\right\} T_{u}=T_{u}\left\{z y,(z y)^{-1}\right\} T_{u}$, so Γ is isomorphic to the graph in Example $2.15(1)$. Then $\Gamma \cong \mathrm{P}_{7,3}^{(2)}$ by Lemma 2.16.

Suppose that Γ is X-arc-transitive. Then $\left|T_{u}: T_{u v}\right|=4$, so $T_{u v} \cong \mathbb{Z}_{2}$. By the information given in the Atlas [5], we have $\mathbf{N}_{X}\left(T_{u v}\right) \cong \mathrm{D}_{16}$ and $\mathbf{N}_{T}\left(T_{u v}\right) \cong \mathrm{D}_{8}$. Write $\mathbf{N}_{X}\left(T_{u v}\right)=\mathbf{N}_{T}\left(T_{u v}\right):\langle z\rangle$ for an involution $z \notin T$. Set $T_{u v}=\langle o\rangle$. If o lies in the center of T_{u}, then $\mathbf{N}_{T}\left(T_{u v}\right)=T_{u}$, so $\left|T_{u v}\right|=\left|T_{u} \cap T_{v}\right| \geq 4$ by noting that $\left|\mathbf{N}_{T_{v}}\left(T_{u v}\right)\right| \geq 4$, a contradiction. Thus $\mathbf{N}_{T_{u}}\left(T_{u v}\right) \cong \mathbb{Z}_{2}^{2}$. Let y be an element of order 4 in $\mathbf{N}_{T}\left(T_{u v}\right)$. Then $y^{2}=o, \mathbf{N}_{T}\left(T_{u v}\right)=\mathbf{N}_{T_{u}}\left(T_{u v}\right)\langle y\rangle$, and so $\mathbf{N}_{X}\left(T_{u v}\right)=\left(\mathbf{N}_{T_{u}}\left(T_{u v}\right)\langle y\rangle\right):\langle z\rangle$. Thus $T_{u} \mathbf{N}_{X}\left(T_{u v}\right) T_{u}=T_{u} \cup\left(T_{u} y T_{u}\right) \cup\left(T_{u} z T_{u}\right) \cup\left(T_{u} y z T_{u}\right)$. Since Γ is connected, we conclude that Γ is isomorphic to one of the graphs in Example 2.8.

Lemma 5.10. If $K \cong \mathbb{Z}_{2}$ then $\Gamma \cong \mathrm{P}_{7,3}^{(2)}$ and $X \cong \operatorname{PGL}(2,7) \times \mathbb{Z}_{2}$.
Proof. Assume that $K=\mathbb{Z}_{2}$. Then $X=Y \times K, \Gamma_{K} \cong \mathrm{P}_{7,3}$ and $|V|=21|K|=42$. Suppose that T is transitive on V. Then $\left|T_{u}\right|=4$, so $T_{u} \cong \mathbb{Z}_{4}$ as T_{u} is normal in $X_{u} \cong \mathrm{D}_{16}$. Since T is not regular, either $T_{u v} \cong \mathbb{Z}_{2}$ or T_{u} is transitive on $\Gamma(u)$, where $v \in \Gamma(u)$. The latter case yields that Γ is $T \times K$-arc-transitive, so Γ_{K} is a T-arc-transitive graph of order 21, which contradicts Lemma 4.2. By Lemma 3.1, the
former case implies that $T_{v w} \cong \mathbb{Z}_{2}$ for $w \in \Gamma(v)$, so $T_{u v}=T_{v w}$ as $T_{v} \cong \mathbb{Z}_{4}$ has a unique subgroup of order 2. By the connectedness of Γ we conclude that $T_{u v}$ fixes every vertex of Γ, a contradiction. Therefore, T is intransitive on V. Noting that T_{u} is a 2 -group, $T_{u} \cong \mathrm{D}_{8}$ and T has exactly two orbits. Then Γ is bipartite with two parts being T-orbits on V. Let \tilde{Y} be the maximal subgroup of X preserving the bipartition of Γ. Then $\operatorname{PGL}(2,7) \cong \tilde{Y}=Y$ or $T:\left\langle z_{1} z_{2}\right\rangle$, where $z_{1} \in Y$ $z_{2} \in K$ are involutions. It is easily shown that $X=\tilde{Y} \times K$. Note that \tilde{Y}, viewed as a subgroup of Aut Γ_{K}, is transitive on the arcs of $\Gamma_{K} \cong \mathrm{P}_{7,3}$. It follows that Γ is X-arc-transitive, so \tilde{Y}_{u} is transitive on $\Gamma(u)$, hence Γ is \tilde{Y}-edge-transitive. By [8, Lemma 3.4], Γ is isomorphic to the standard double cover of a \tilde{Y}-arc-transitive graph Σ of order 21 . Then, by Lemma 5.9, $\Sigma \cong \mathrm{P}_{7,3}$, and this lemma follows.

Lemma 5.11. If $|K|>3$ is odd then $Y_{B} \cong X_{u} \cong \mathrm{D}_{8}$ for a K-orbit B containing u.
Proof. Assume that $|K|>3$ is odd. Set $Y=T:\langle z\rangle$, where $T=\operatorname{PSL}(2,7)$ and $z \in Y \backslash T$ is an involution. Then $X=(T \times K):\langle z\rangle$. Since Γ is X-edge-transitive, we may write $\Gamma=\operatorname{Cos}\left(X, X_{u}, X_{u}\left\{x, x^{-1}\right\} X_{u}\right)$, where $x \in X \backslash X_{u}$ with $\left\langle x, X_{u}\right\rangle=X$. Write $x=y z^{i} c$ for $c \in K, y \in T$ and $i=0$ or 1 .

Suppose that $X_{u} \cong \mathrm{D}_{16}$. Then X_{u} is a Sylow 2-subgroup of X. Since $|K|$ is odd, we may assume that $z \in X_{u} \leq Y$. Then $Y_{B}=X_{u}=T_{u}:\langle z\rangle$. Since $Y_{B} \cong \mathrm{D}_{16}$, the quotient $\Gamma_{K} \cong \mathrm{P}_{7,3}$ is Y-arc-transitive, and so Γ is X-arc-transitive. Thus we may choose x such that $x^{2} \in X_{u}$. So $x^{2}=y z^{i} c y z^{i} c=y c^{z^{i}} y^{z^{i}} c=y y^{z^{i}} c^{z^{i}} c \in X_{u}$. Since $y y^{z^{i}} \in T$ and $c^{z^{i}} c \in K$ has odd order, $c^{z^{i}} c=1$. Since $X=\left\langle x, X_{u}\right\rangle=\left\langle y z^{i} c, X_{u}\right\rangle \leq\left\langle y z^{i}, c, X_{u}\right\rangle \leq$ $K:\left\langle y z^{i}, X_{u}\right\rangle$, we have $c \neq 1$ and $Y=\left\langle y z^{i}, X_{u}\right\rangle$. It implies that $i=1, x=y z c, y y^{z} \in T_{u}$ and $c c^{z}=1$, so $c^{z}=c^{-1}$. Recalling $Y=\left\langle y z, X_{u}\right\rangle$, we have $T:\langle z\rangle=Y=\left\langle y z, T_{u}:\langle z\rangle\right\rangle=$ $\left\langle y, T_{u}, z\right\rangle=\left\langle y, y^{z}, T_{u}, z\right\rangle=\left\langle y, y^{z}, T_{u}\right\rangle:\langle z\rangle=\left\langle y, T_{u}\right\rangle:\langle z\rangle$. Then $T=\left\langle y, T_{u}\right\rangle$, and so $\Sigma:=\operatorname{Cos}\left(T, T_{u}, T_{u}\left\{y, y^{-1}\right\} T_{u}\right)$ is a connected T-edge-transitive graph of order 21. Since Γ is X-arc-transitive, $\left|X_{u}:\left(X_{u} \cap X_{u}^{x}\right)\right|=4$, so $\left|X_{u} \cap X_{u}^{x}\right|=4$. Noting that $X_{u} \cap X_{u}^{x} \leq Y$ and $T_{u}, T_{u}^{y} \leq T$, we have $4=\left|X_{u} \cap X_{u}^{x}\right|=\left|X_{u} \cap X_{u}^{y z c}\right|=\left|X_{u} \cap X_{u}^{y c^{-1} z}\right|=$ $\left|X_{u} \cap X_{u}^{c^{-1} y}\right|=\left|\left(T_{u}:\langle z\rangle\right) \cap\left(T_{u}^{y}:\left\langle c^{2} z^{y}\right\rangle\right)\right|=\left|T_{u} \cap T_{u}^{y}\right|$. Thus $\left|T_{u}:\left(T_{u} \cap T_{u}^{y}\right)\right|=2$, and Σ has valency 4 , which contradicts Lemma 4.2. Then the lemma follows.

Lemma 5.12. Assume that $|K|>3$. Then Γ is isomorphic to the graph in Example $2.15, X \cong \operatorname{PGL}(2,7) \times \mathbb{Z}_{l}$ or $\operatorname{PGL}(2,7) \times \mathrm{D}_{2 l}$, where l is odd and square-free.

Proof. Assume first $|K|=l$ is odd. Then $Y_{B} \cong X_{u} \cong \mathrm{D}_{8},|V|=42 l$ and Y contains a Sylow 2-subgroup of X. Thus, without loss of generality, we assume that $X_{u}<Y$, and so $X_{u}=Y_{B}$. Let $z \in Y \backslash T$ be an involution such that $\left\langle X_{u}, z\right\rangle \cong \mathrm{D}_{16}$. Then $Y=T:\langle z\rangle$ and $X=(T \times K):\langle z\rangle=\langle z\rangle(T \times K)$. Write $\Gamma=\operatorname{Cos}\left(X, X_{u}, X_{u}\left\{x, x^{-1}\right\} X_{u}\right)$, where $x \in X \backslash X_{u}$ with $\left\langle x, X_{u}\right\rangle=X$. Write $x=z^{i} g c$ for $c \in K, g \in T$ and $i=0$ or 1 .

Since T centralizes K, we have $\left\langle c, c^{z}\right\rangle=\left\langle c^{y} \mid y \in Y\right\rangle$; in particular, Y normalizes $\left\langle c, c^{z}\right\rangle$. Noting that Γ is connected, $K: Y=X=\left\langle z^{i} g c, X_{u}\right\rangle \leq\left\langle z^{i} g, c, X_{u}\right\rangle \leq$ $\left\langle c, c^{z}, z^{i} g, X_{u}\right\rangle=\left\langle c, c^{z}\right\rangle:\left\langle z^{i} g, X_{u}\right\rangle$. It follows that $K=\left\langle c, c^{z}\right\rangle$ and $Y=\left\langle z^{i} g, X_{u}\right\rangle$.

Note that the quotient Γ_{K} is Y-edge-transitive and of order 42. By Lemma 5.9, Γ_{K} is bipartite, so Γ is also bipartite. It is easily shown that $T \times K$ is the maximal subgroup preserving the bipartition of Γ. Thus $X_{u} \leq T \times K$, and so $X_{u}=T_{u}$ as $|K|=l$ is odd. Since $Y=\left\langle z^{i} g, X_{u}\right\rangle$ and $g \in T$, we have $i=1$, so $Y=\left\langle z g, T_{u}\right\rangle$.

Suppose that Γ_{K} is Y-arc-transitive. Then Γ is X-arc-transitive, so we may choose x with $x^{2} \in T_{u}$. Since $x^{2}=z g c z g c=g^{z} c^{z} g c=g^{z} g c^{z} c$, we have $c^{z} c=1$, so $c^{z}=c^{-1}$, hence $z c$ has order 2 . Then $X=\left\langle z g c, T_{u}\right\rangle \leq\left\langle g, T_{u}, c z\right\rangle \leq\langle T, c z\rangle \cong \operatorname{PGL}(2,7)$, a contradiction. Therefore, by Lemma 5.9, $\Gamma_{K} \cong \mathrm{P}_{7,3}^{(2)}$ is Y-half-transitive.

Note that $T:(\langle c, z\rangle)=(T \times K):\langle z\rangle=X=\left\langle z g c, T_{u}\right\rangle \leq\left\langle g, T_{u}, z c\right\rangle \leq T\langle z c\rangle \leq X$. Thus $\langle c, z\rangle \cong X / T \cong(T\langle z c\rangle) / T$ is cyclic. Then $c^{z}=c$ and $K=\langle c\rangle$. Thus $X=Y \times K$. Since Γ_{K} is Y-half-transitive, Γ is X-half-transitive, so $2=\left|X_{u}:\left(X_{u} \cap X_{u}^{x}\right)\right|=\mid T_{u}$: $\left(T_{u} \cap T_{u}^{z g}\right) \mid$. Recalling that $\left\langle T_{u}, z\right\rangle=\left\langle X_{u}, z\right\rangle \cong \mathrm{D}_{16}$, we know that z normalizes T_{u}, so $\left|T_{u} \cap T^{g}\right|=\left|T_{u} \cap T_{u}^{z g}\right|=4$. It follows that $T_{u} \cap T_{u}^{g}$ is normal in $M:=\left\langle T_{u}, T_{u}^{g}\right\rangle$, so $M \cong \mathrm{~S}_{4}$ by checking the subgroups of T. Then $T_{u}^{g}=T_{u}^{y}$ for an element $y \in M$ of order 3. Thus $g y^{-1} \in \mathbf{N}_{T}\left(T_{u}\right)=T_{u}$, so $g=h y$ for $h \in T_{u}$. Then $T_{u}\left\{x, x^{-1}\right\} T_{u}=$ $T_{u}\left\{z h y c,(z h y c)^{-1}\right\} T_{u}=T_{u}\left\{h^{z} z y c,\left(h^{z} z y c\right)^{-1}\right\} T_{u}=T_{u}\left\{z y c,(z y c)^{-1}\right\} T_{u}$. Noting that $\mathrm{S}_{4} \cong M=\left\langle T_{u}, y\right\rangle$, it follows that Γ is the graph in Example 2.15.

Now let $|K|=2 l$. Then $\Gamma_{K} \cong \mathrm{P}_{7,3}$ and $X_{u} \cong Y_{B} \cong \mathrm{D}_{16}$. In this case, Γ is X-arctransitive as Γ_{K} is Y-arc-transitive. Since K is of square-free order, K has a unique 2^{\prime}-Hall subgroup $K_{2^{\prime}}$, which is characteristic in K. It implies that $K_{2^{\prime}} \unlhd X$, and $X / K_{2^{\prime}} \cong \mathrm{PGL}(2,7) \times \mathbb{Z}_{2}$. Then the quotient graph $\Gamma_{K_{2^{\prime}}}$ is $X / K_{2^{\prime}}$ arc-transitive. By Lemma 5.10, $\Gamma_{K_{2^{\prime}}} \cong \mathrm{P}_{7,3}^{(2)}$. It is easily shown that $X / K_{2^{\prime}}$ contains a subgroup $Z / K_{2^{\prime}} \cong$ $\mathrm{PGL}(2,7)$ acting transitively on the edges of $\Gamma_{K_{2^{\prime}}}$. Then Γ is Z-edge-transitive. By the argument for the odd $|K|$ case, we conclude that $K_{2^{\prime}} \cong \mathbb{Z}_{l}, Z=\tilde{Y} \times K_{2^{\prime}}$ with $\tilde{Y} \cong \operatorname{PGL}(2,7)$, and Γ is isomorphic to the graph in Example 2.15.

Recalling that $|V|=42 l$ is square-free, we conclude that \tilde{Y} is a Hall subgroup of Z, so \tilde{Y} is characteristic in Z. Thus \tilde{Y} is normal in X as Z has index 2 in X. Let z be an involution in K. Then $\langle\tilde{Y}, z\rangle=\tilde{Y} \times\langle z\rangle$. Thus $X=Z:\langle z\rangle=\tilde{Y} \times K$.

Suppose that K is not a dihedral group. Then $K=N \times M$, where $N \neq 1$ is cyclic and of odd order. By Lemma 2.9, Γ is normal cover of $\Sigma:=\Gamma_{M}$. Identify $\bar{X}:=\tilde{Y} \times N$ with a subgroup of Aut Σ. Then Σ is \bar{X}-edge-transitive as Γ is X-edge-transitive. Since $|N|$ is odd, for $\alpha \in V \Sigma, \bar{X}_{\alpha} \cong \mathrm{D}_{8}$ by Lemma 5.11; in particular, $|V \Sigma|=42|N|$. Thus $|V|=42|N||M|=42|K|=84 l$, a contradiction. Then $K \cong \mathrm{D}_{2 l}$ is dihedral.

6. Proofs of Theorem 1.1 and Corollary 1.2

Let G be a finite group of square-free order, and let Γ be a connected edge-transitive Cayley graph of G of valency 4. If Aut Γ is soluble then, by Lemmas 3.3 and 3.7, one of Theorem 1.1 (1-3) occurs. Thus we assume next that $X:=\mathrm{Aut} \Gamma$ is insoluble. Then Γ and X are known and listed in either Table 1 by Lemmas 4.3, 4.4, 5.2, 5.3, 5.5, 5.8 and 5.9, or Table 2 by Lemmas 5.4, 5.9, 5.10 and 5.12.

Proof of Theorem 1.1. It suffices to determine G up to isomorphism. If X is almost simple, then all possible G are known by checking the subgroups of X in the Atlas [5]. Thus we assume that X is not almost simple. By Lemma 4.4 and checking the automorphism group X listed in Tables 1 and 2, we know that $X=K: Y$ has a regular subgroup $R:=L \times K$, where $L \leq T \cap G, T=\operatorname{soc}(Y)$ and K is the largest soluble normal subgroup of X. Thus $G \leq \mathbf{N}_{X}(G) \leq \mathbf{N}_{X}(L)=K: \mathbf{N}_{Y}(L)=\mathbf{N}_{X}(R)$,
and further Y, K, L and $\mathbf{N}_{Y}(L)$ are known as in the following table:

Y	K	L	$\mathbf{N}_{Y}(L)$
$\operatorname{PSL}(2,23)$	$\mathbb{Z}_{2}, \mathrm{~S}_{3}$	$\mathbb{Z}_{23}: \mathbb{Z}_{11}$	L
$\operatorname{PGL}(2,11)$	$\mathbb{Z}_{2}, \mathbb{Z}_{3}, \mathbb{Z}_{6}$	$\mathbb{Z}_{11}: \mathbb{Z}_{5}$	$\mathbb{Z}_{11}: \mathbb{Z}_{10}$
$\mathrm{~S}_{5}$	$\mathbb{Z}_{2}, \mathrm{~S}_{3}$	\mathbb{Z}_{5}	$\mathbb{Z}_{5}: \mathbb{Z}_{4}$
$\operatorname{PGL}(2,7)$	$\mathbb{Z}_{2}, \mathrm{D}_{2 l}$	$\mathbb{Z}_{7}: \mathbb{Z}_{3}$	$\mathbb{Z}_{7}: \mathbb{Z}_{6}$

Let $K_{2^{\prime}}$ be the 2^{\prime}-Hall subgroup of K. Then $L \times K_{2^{\prime}}$ is the unique 2^{\prime}-Hall subgroup of R. It follows that $L \times K_{2^{\prime}} \unlhd \mathbf{N}_{X}(R)$. Let Q be a Sylow 2-subgroup of K. Then $\mathbf{N}_{X}(R)$ has a Sylow 2-subgroup $Q: P$, where P is a Sylow 2-subgroup of $\mathbf{N}_{Y}(L)$. Noting that $|Q| \leq 2$, we have $Q P=Q \times P$, and so $Q P$ is abelain. Considering the subgroup $\left(L \times K_{2^{\prime}}\right) G$, we conclude that $L \times K_{2^{\prime}} \leq G$ and $G \unlhd \mathbf{N}_{X}(R)$. In particular, $G=\left(L \times K_{2^{\prime}}\right):\langle z\rangle$ for an involution $z \in Q \times P$. Checking all possible involutions z, we conclude that G is listed in Tables 1 and 2 up to isomorphism.

Proof of Corollary 1.2. It is easy to check that $\mathbf{N}_{X}(G)=G: \mathbb{Z}_{3}$ or G while Γ is a graph listed in Lines 1 to 7 of Table 1, so Γ is not normal-edge-transitive. For Lines 1 to 3 of Table 2, we have $\mathbf{N}_{X}(G) \cong G: \mathbb{Z}_{4}$, so Γ is normal-edge-transitive. We next deal with the rest of the graphs in Tables 1 and 2.

Suppose that X is not almost simple. Then, by the argument in Proof of Theorem 1.1, $X=K: Y$ has a regular subgroup $R=L \times K$, where $L \leq T \cap G, T=\operatorname{soc}(Y)$ and K is the largest soluble normal subgroup of X. Recalling that $\mathbf{N}_{X}(G) \leq \mathbf{N}_{X}(L)=$ $K: \mathbf{N}_{Y}(L)=\mathbf{N}_{X}(R)$ and $G \unlhd \mathbf{N}_{X}(R)$, we have $\mathbf{N}_{X}(G)=\mathbf{N}_{X}(R)=K: \mathbf{N}_{Y}(L)$. Then Γ is normal-edge-transitive with respect to G whenever Γ is a normal-edge-transitive Cayley graph of R. Noting that K is a normal Hall subgroup of R, it follows that $\mathbf{N}_{X}(R) / K=\mathbf{N}_{X / K}(R / K) \cong \mathbf{N}_{Y}(L)$. Note that the quotient graph Γ_{K} has automorphism group isomorphic to Y. Thus, it suffices to determine whether or not Γ_{K} is a normal-edge-transitive Cayley graph of L.

Therefore, the above argument allows us to assume that X is almost simple, that is, Γ is described as either Line 8 of Table 1 or Line 4 of Table 2.

Suppose that Γ is described as Line 8 of Table 1. Then $X=\operatorname{PGL}(2,11)$ and, for $u \in V \Gamma$, the stabilizer $X_{u} \cong \mathrm{~S}_{4}$ and $X=G X_{u}$. Hence $\mathbb{Z}_{11}: \mathbb{Z}_{10} \cong \mathbf{N}_{X}(G)=$ $G:\left(\mathbf{N}_{X}(G) \cap X_{u}\right)$. Thus $\mathbf{N}_{X}(G) \cap X_{u}=\langle o\rangle \cong \mathbb{Z}_{2}$. It is easily shown that $o \notin T=$ $\operatorname{soc}(X)$. Noting that $T_{u} \cong \mathrm{~A}_{4}$, it follows that o induces an odd permutation on $\Gamma(u)$; in particular, o fixes at least one vertex in $\Gamma(u)$. Thus Γ is not normal-edge-transitive.

Finally, let Γ be described as Line 4 of Table 2. Then $X=\operatorname{PGL}(2,7), \mathbb{Z}_{7}: \mathbb{Z}_{3} \cong G<$ $T=\operatorname{PSL}(2,7)$ and $\mathbf{N}_{X}(G) \cong \mathbb{Z}_{7}: \mathbb{Z}_{6}$. Write $\Gamma=\operatorname{Cay}(G, S)$ with $S=\left\{x, x^{-1}, y, y^{-1}\right\}$. Then $\operatorname{Aut}(G, S) \cong \mathbb{Z}_{2}$. Let u be the vertex corresponding to the identity of G. Then $X_{u} \cong \mathrm{D}_{16}$ and $T_{u} \cong \mathrm{D}_{8}$. By Lemma 4.2, Γ is not T-edge-transitive, it follows from Lemma 3.2 that T_{u} has two orbits $\left\{x, x^{-1}\right\}$ and $\left\{y, y^{-1}\right\}$ on S. Noting that $\mathbf{N}_{X}(G) \not \leq T$, we have $X_{u}=T_{u}: \operatorname{Aut}(G, S)$. Then, since Γ is arc-transitive, there is $\sigma \in \operatorname{Aut}(R, S)$ such that $x^{\sigma}=y$ or y^{-1}. Thus Γ is normal-edge-transitive.

Acknowledgments: The authors are very grateful to the referees for their constructive comments.

References

[1] B. Alspach and M. Y. Xu, $\frac{1}{2}$-transitive graphs of order $3 p$, J. Algebraic Combin. 3 (1994) 347-355.
[2] M. Aschbacher, Finite group theory, Cambridge University Press, Cambridge, 1993.
[3] M. D. Conder, C. H. Li and C. E. Praeger, On the Weiss conjucture for finite locally primitive graphs, Pro. Edinburgh Math. Soc. 43 (2000) 129-138.
[4] M. D. Conder and D. Marušič, A tetravalent half-arc-transitive graph with non-abelian vertex stabilizer, J. Combin. Theory Ser. B 88 (2003) 67-76.
[5] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups, Oxford University Press, Oxford, 1985.
[6] J. D. Dixon and B. Mortimer, Permutation Groups, Springer-Verlag, New York, 1996.
[7] Y. Q. Feng, J. H. Kwak, M. Y. Xu and J. X. Zhou, Tetravalent half-arc-transitive graphs of order p^{4}, European J. Combin. 29(2008) 555-567.
[8] M. Giudici, C. H. Li and C. E. Praeger, Analysing finite locally s-arc transitive graphs, Trans. Amer. Math. Soc. 365 (2004) 291-317.
[9] C. D. Godsil, On the full automorphism group of a graph, Combinatorica 1 (1981) 243-256.
[10] R. Guralnick, Subgroups of prime power index in a simple group, J. Algebra, 81 (1983) 304-311.
[11] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin, 1967.
[12] P. Kleidman and M. Liebeck, The Subgroup Structure of the Finite Classical Groups, Cambridge University Press, Cambridge, 1990.
[13] C. H. Li, Finite edge-transitive Cayley graphs and rotary Cayley maps, Trans. Amer. Math. Soc. 358 (2006), 4605-4635.
[14] C. H. Li, The finite vertex-primitive and vertex-biprimitive s-transitive graphs for $s \geq 4$, Trans. Amer. Math. Soc. 353 (2001) 3511-3529.
[15] C. H. Li, Finite s-arc transitive Cayley graphs and flag-transitive projective planes, Pro. Amer. Math. Soc. 133 (2004) 31-41
[16] C. H. Li, Z. P. Lu and D. Marušič, On primitive permutation groups with small suborbits and their orbital graphs, J. Algebra 279 (2004) 749-770.
[17] C. H. Li, Z. P. Lu and H. Zhang, Tetravalent edge-transitive Cayley graphs with odd number vertices, J. Combin. Theory Ser. B 96 (2006) 164-181.
[18] C. H. Li, D. Marušič and J. Morris, Classifying arc-transitive circulants of square-free order, J. Algebraic Combin. 14 (2001) 145-151.
[19] Y. T. Li and Y. Q. Feng, Pentavalent one-regular graphs of square-free order, Algebra Colloq. 17 (2010) 515-524.
[20] Z. P. Lu, Primitive half-transitive graphs constructed from the symmetric groups of prime degrees, J. Combin. Theory Ser. B 97 (2007) 818-826.
[21] D. Marušič, Recent developments in half-transitive graphs, Discrete Math. 182 (1998) 219-231.
[22] D. Marušič, Quartic half-arc-transitive graphs with large vertex stabilizers, Discrete Math. 299 (2005) 180-193.
[23] D. Marušič and P. Šparl, On quartic half-arc-transitive metacirculants, J. Algebraic Combin. 28 (2008) 365-395.
[24] P. Potočnik, A list of 4-valent 2-arc-transitive graphs and finite faithful amalgams of index (4, 2), European J. Combin. 30 (2009) 1323-1336.
[25] C. E. Praeger, Finite normal edge-transitive Cayley graphs, Bull. Austral. Math. Soc. 60 (1999) 207-220.
[26] C. E. Praeger, R. J. Wang and M. Y. Xu, Symmetric graphs of order a product of two distinct primes, J. Combin. Theory Ser. B 58 (1993) 299-318.
[27] C. E. Praeger and M. Y. Xu, Vertex-primitive graphs of order a product of two distinct primes, J. Combin. Theory Ser. B 59 (1993) 245-266.
[28] P. Šparl, On the classification of quartic half-arc-transitive metacirculants, Discrete Math. 309 (2009) 2271-2283.
[29] P. Šparl, A classification of tightly attached half-arc-transitive graphs of valency 4, J. Combin. Theory Ser. B 98 (2008) 1076-1108.
[30] W. T. Tutte, Connectivity in Graphs, University of Toronto Press, Toronto, 1966.
[31] R. J. Wang, Half-transitive graphs of order a product of two distinct primes, Comm. Algebra 22 (1994) 915-927.
[32] R. J. Wang and M. Y. Xu, A classification of symmetric graphs of order $3 p$, J. Combin. Theory Ser. B 58 (1993) 197-216.
[33] X. Y. Wang and Y. Q. Feng, Hexavalent half-arc-transitive graphs of order 4p, European J. Combin. 30 (2009) 1263-1270.
[34] R. M. Weiss, s-transitive graphs, Algebraic Methods in Graph Theory, vol. 2 (1981) 827-847.
[35] M. Y. Xu, Automorphism groups and isomorphisms of Cayley graphs, Discrete Math. 182 (1998) 309-319.
C. H. Li, School of Mathematics and Statistics, Yunnan University, Kunming, Yunnan 650091, P. R. China

School of Mathematics and Statistics, The University of Western Australia, Crawley, WA 6009, Australia

E-mail address: cai.heng.li@uwa.edu.au
Z. Liu, School of Mathematics and Statistics, Yunnan University, Kunming, Yunnan 650091, P. R. China

E-mail address: liu5168698@yahoo.com.cn
Z. P. Lu, Center for Combinatorics, LPMC-TJKLC, Nankai University, Tianjin 300071, P. R. China

E-mail address: lu@nankai.edu.cn

