Partitioning complete graphs by heterochromatic trees

Zemin Jin

Department of Mathematics, Zhejiang Normal University Jinhua 321004, P.R. China E-mail: zeminjin@zjnu.cn

Xueliang Li

Center for Combinatorics and LPMC, Nankai University Tianjin 300071, P.R. China E-mail: lxl@nankai.edu.cn

Abstract A heterochromatic tree is an edge-colored tree in which any two edges have different colors. The heterochromatic tree partition number of an r-edge-colored graph G, denoted by $t_r(G)$, is the minimum positive integer p such that whenever the edges of the graph G are colored with r colors, the vertices of G can be covered by at most p vertex-disjoint heterochromatic trees. In this paper we determine the heterochromatic tree partition number of r-edge-colored complete graphs. We also find at most $t_r(K_n)$ disjoint heterochromatic trees to cover all the vertices in polynomial time for a given r-edge-coloring of K_n .

Keywords edge-colored graph, heterochromatic tree, partition. MR(2000) Subject Classification 05C05, 05C15, 05C70, 05C75.

1 Introduction

A monochromatic tree is an edge-colored tree in which any two edges have the same color, while a heterochromatic tree is an edge-colored tree in which any two edges have different colors. The monochromatic tree partition number of an r-edge-colored graph G is defined to be the minimum positive integer psuch that whenever the edges of G are colored with r colors, the vertices of G can be covered by at most p vertex-disjoint monochromatic trees. The monochromatic cycle partition number and the monochromatic path partition number are defined analogously.

Erdős et al. [2] proved that the monochromatic cycle partition number of an *r*-edge-colored complete graph K_n is at most $cr^2 \ln r$ for some constant *c*. This implies a conjecture from Gyárfás [4] in a stronger form. Recently, the bound was improved by Gyárfás et al. [5]. Almost solving one of the conjectures in [2], Haxell et al. [7] proved that the monochromatic tree partition number of an *r*-edge-colored complete graph K_n is at most *r* provided that *n* is large enough with respect to *r*. Haxell [6] proved that the monochromatic cycle partition number of an *r*-edge-colored complete bipartite graph $K_{n,n}$ is also independent of *n*, which answered a question in [2]. Since the monochromatic path partition number is less than the monochromatic cycle partition number, a natural corollary is that the monochromatic path partition number of *n*.

From above, one can see that the monochromatic tree, path, and cycle partition number of redge-colored graphs K_n and $K_{n,n}$ are independent of n. This seems to be not true for other graphs
such as 2-edge-colored complete multipartite graph. Let n_1, n_2, \dots, n_k $(k \ge 2)$ be integers such that $1 \le n_1 \le n_2 \le \dots \le n_k$ and $n = n_1 + n_2 + \dots + n_{k-1}, m = n_k$. The authors [9] showed that $t'_2(K_{n_1,n_2,\dots,n_k}) = \lfloor \frac{m-2}{2^n} \rfloor + 2$, where $t'_r(K_{n_1,n_2,\dots,n_k})$ denotes the monochromatic tree partition number

Supported by the National Natural Science Foundation of China, PCSIRT, and the "973" program.

of the *r*-edge-colored graph K_{n_1,n_2,\dots,n_k} . Given a 2-edge-colored complete multipartite graph, Jin et al. [8] presented a polynomial algorithm to find the minimum number of vertex-disjoint monochromatic trees to cover all the vertices. Other related partition problems can be found in [10, 11, 12].

Analogous to the monochromatic case, the heterochromatic tree partition number of an r-edgecolored graph G, denoted by $t_r(G)$, is defined to be the minimum positive integer p such that whenever the edges of the graph G are colored with r colors, the vertices of G can be covered by at most p vertexdisjoint heterochromatic trees. Compared with the monochromatic case, there are few results on the heterochromatic tree partition number. Chen et al. [1] derived the heterochromatic tree partition number of an r-edge-colored complete bipartite graph.

In this paper we consider the heterochromatic tree partition number of an r-edge-colored complete graph K_n . In order to prove our main result, we introduce the following definitions and notation. Throughout this paper, we use r to denote the number of colors. An r-edge-coloring of a graph G means that each color appears at least once in G. Let ϕ be an r-edge-coloring of a graph G. For an edge $e \in E(G)$, denote by $\phi(e)$ the color of e. Denote by $t_r(G, \phi)$ the minimum positive integer p such that under the r-edge-coloring ϕ , the vertices of G can be covered by at most p vertex-disjoint heterochromatic trees. Clearly, $t_r(G) = \max_{\phi} t_r(G, \phi)$, where ϕ runs over all r-edge-colorings of the graph G. Let F be a spanning forest of G, each component of which is a heterochromatic tree. If F contains exactly $t_r(G, \phi)$ components, then F is called an *optimal heterochromatic tree partition* of the graph G with the edge-coloring ϕ . Note that a tree consisting of a single vertex is also regarded as a heterochromatic tree.

For any integer $r \ge 2$, there is a unique positive integer t, such that $\binom{t}{2} + 2 \le r \le \binom{t+1}{2} + 1$. Clearly, the integer t is determined completely by r, and here we denote it by f(r) = t. This integer f(r) = t will play an important role in expressing the number $t_r(K_n)$. If the color number r = 1, clearly a maximum matching (plus a single vertex when n is odd) in K_n is an optimal heterochromatic tree partition, and then $t_r(K_n) = \lceil \frac{n}{2} \rceil$. So, in the rest of this paper we only consider the case $2 \le r \le \binom{n}{2}$. The following is the main result of this paper.

Theorem 1.1 Let $n \ge 3$, $2 \le r \le {n \choose 2}$ and f(r) = t. Then $t_r(K_n) = \lceil \frac{n-t}{2} \rceil$.

As we know, the monochromatic tree partition number of an edge-colored complete graph K_n is bounded by a function independent of n, and from the result mentioned above, the heterochromatic tree partition number does not have this property any more.

2 A canonical *r*-edge-coloring ϕ_r^*

In this section we present a canonical r-edge-coloring of the graph K_n . Let $S \subseteq V(K_n)$ and |S| = t. Take a vertex $u \in V(K_n) - S$. We define the canonical r-edge-coloring ϕ_r^* by

- 1. assigning distinct colors to the edges of $K_n[S]$;
- 2. for each color not used in $K_n[S]$, assign it to an edge uv between u and S;
- 3. finally, color all the remaining edges by the color not used if it exists, or else by the same color used before.

We have the following proposition.

Proposition 2.1 $t_r(K_n, \phi_r^*) = \lceil \frac{n-t}{2} \rceil$.

Proof. First, we present an heterochromatic tree partition with exact $\lceil \frac{n-t}{2} \rceil$ components, which implies that $t_r(K_n, \phi_r^*) \leq \lceil \frac{n-t}{2} \rceil$. Let $X = S \cup \{u\} \cup \{v\}$, where $v \in V(K_n) - S - u$. It is easy to see that $K_n[X]$ contains a heterochromatic spanning tree T, and the vertices not in X induce a monochromatic complete subgraph which can be covered by $\lceil \frac{n-t-2}{2} \rceil$ disjoint heterochromatic trees. So, the union of T and those $\lceil \frac{n-t-2}{2} \rceil$ disjoint heterochromatic trees consist of a heterochromatic tree partition of K_n . This implies that $t_r(K_n, \phi_r^*) \leq \lceil \frac{n-t}{2} \rceil$.

Next, we prove that $t_r(K_n, \phi_r^*) \ge \lceil \frac{n-t}{2} \rceil$. Suppose on the contrary that $t_r(K_n, \phi_r^*) < \lceil \frac{n-t}{2} \rceil$ for some *n* and *r*.

Let F be an optimal heterochromatic tree partition of K_n with r-edge-coloring ϕ_r^* . Denote by T_1, T_2, \dots, T_k the components of F each of which contains a vertex of S. We choose F such that the number of trees covering S is as small as possible. Note that each component of F not containing any vertex of S is an edge or a single vertex, and at most one of the components of F is a single vertex. Since F is an optimal heterochromatic tree partition, from the definition of ϕ_r^* , we have the following facts.

Fact 1. $u \in T_i$ for some $1 \le i \le k$.

Fact 2. $|T_j \cap (V(K_n) - S - u)| = 1$ for each T_j .

If k = 1, it is easy to see that F contains exactly $\lceil \frac{n-t}{2} \rceil$ trees. So, assume that $k \ge 2$. Let $S \cap T_i = S_i$ and $v_i = T_i \cap (V(K_n) - S - u)$. From the definition of ϕ_r^* , we have that there exists a heterochromatic tree, denoted by T, covering all the vertices of $T_1 \cup (T_2 - v_2)$. So $F' = (F - T_1 - T_2) \cup \{T\} \cup \{v_2\}$ is an optimal heterochromatic tree partition such that the number of trees covering S is k-1, a contradiction, which completes the proof.

3 Proof of Theorem 1.1

Given a complete graph K_n , the heterochromatic tree partition number is closely related to the color number. Before proving our main result, we have the following lemma which gives the relationship between $t_{r+1}(K_n)$ and $t_r(K_n)$.

Lemma 3.1 $t_{r+1}(K_n) \le t_r(K_n)$.

Proof. Given any (r + 1)-edge-coloring φ of K_n . Denote by E_i the set of edges colored by the color *i*. Recoloring the edges of E_{r+1} by the color *r*, we obtain a *r*-edge-coloring ψ of K_n . Clearly, $t_{r+1}(K_n, \varphi) \leq t_r(K_n, \psi)$. So, $t_{r+1}(K_n) \leq t_r(K_n)$.

The following lemma gives the relationship between the edge-connectivity and size of a graph. Its proof is omitted.

Lemma 3.2 Let G be a simple graph of order n. If G contains a cut-edge, then $|E(G)| \leq {\binom{n-1}{2}} + 1$.

Proof of Theorem 1.1:

We prove the theorem by induction on r and n. First, we consider the case r = 2. Let ϕ be a 2edge-coloring of K_n . Note that for any 2-edge-coloring of K_n , $n \ge 3$, there is always a heterochromatic tree of order three. Then, we can easily find $1 + \lceil \frac{n-3}{2} \rceil = \lceil \frac{n-1}{2} \rceil$ vertex-disjoint heterochromatic trees which cover all the vertices. So we have $t_r(K_n, \phi) \le \lceil \frac{n-1}{2} \rceil$. Then, from Proposition 2.1 the result holds for r = 2. Obviously, the result holds for n = 3, 4.

Assume that the result holds for the color number less than r or the order of a complete graph less than n. Now we consider the r-edge-colored complete graph K_n , $r \ge 3$. Let f(r) = t. If $\binom{t}{2} + 3 \le r \le \binom{t+1}{2} + 1$, then f(r-1) = t. By the induction hypothesis, $t_{r-1}(K_n) = \lceil \frac{n-t}{2} \rceil$. From Lemma 3.1, $t_r(K_n) \le t_{r-1}(K_n) = \lceil \frac{n-t}{2} \rceil$. And, from Proposition 2.1, $t_r(K_n) \ge t_r(K_n, \phi_r^*) = \lceil \frac{n-t}{2} \rceil$. Then, we have $t_r(K_n) = \lceil \frac{n-t}{2} \rceil$, as desired.

So, we only need to consider the case $r = {t \choose 2} + 2$. Let ϕ be an *r*-edge-coloring of K_n . Let *G* be a heterochromatic subgraph of K_n , such that $\delta(G) \ge 1$ and, for each color *i*, there is a unique edge colored by the color *i* in *G*. Denote by G_1, G_2, \dots, G_k the components of *G*, where the order of G_i is $n_i, 1 \le i \le k$, and $n_1 \ge n_2 \ge \dots \ge n_k \ge 2$. Choose *G* such that n_1 is as large as possible. Since the color number $r \ge 3$, we have $n_1 \ge 3$.

Suppose k = 1. By $r = {t \choose 2} + 2$, we have $n_1 \ge t + 1$. If $n_1 \ge t + 2$, then $t_r(K_n, \phi) \le 1 + \lceil \frac{n-n_1}{2} \rceil \le \lceil \frac{n-t}{2} \rceil$. So, assume $n_1 = t+1$. By Lemma 3.2, G does not contain any cut-edge. Let $g \in [V(G_1), \overline{V(G_1)}]$, i.e., one end-vertex of g belongs to $V(G_1)$ and the other one belongs to $\overline{V(G_1)}$. From the choice of G, there is an edge $h \in E(G_1)$ with $\phi(h) = \phi(g)$. Since G does not contain any cut-edge, by deleting the edge h and adding the edge g, we can find a heterochromatic graph with r edges, the largest component of which has an order at least $n_1 + 1$, a contradiction to the choice of the graph G.

So, assume $k \ge 2$. If $n_1 \ge t+2$, then $t_r(K_n, \phi) \le 1 + \lceil \frac{n-n_1}{2} \rceil \le \lceil \frac{n-t}{2} \rceil$, as desired. Thus, assume $n_1 \le t+1$. We have the following claim.

Claim: G_1 contains a cut-edge, and then $|E(G_1)| \leq \binom{n_1-1}{2} + 1$.

If G_1 does not contain any cut-edge, then it is easy to find a heterochromatic graph with r edges, the largest component of which has order at least $n_1 + 1$, a contradiction. From Lemma 3.2, $|E(G_1)| \leq {\binom{n_1-1}{2}} + 1$ follows clearly.

Now we consider the graph $K_n - V(G_1)$, a complete graph of order $n - n_1$. When restricting the r-edge-coloring ϕ on the graph $K_n - V(G_1)$, we have that $K_n - V(G_1)$ is edge-colored by r_0 colors, where $r_0 \ge r - (\binom{n_1-1}{2} + 1)$. If $r_0 \ge 2$, let $f(r_0) = t_0$. It follows that either $r_0 = 1$, or $t_0 \ge t - n_1 + 1$. We distinguish the following cases.

Case 1. $r_0 = 1$.

Then $K_n - V(G_1)$ is monochromatic, and then it follows that k = 2 and $n_2 = 2$. Let $G_2 = uv$. From the choice of G, we have $|E(G_1)| = r - 1 = {t \choose 2} + 1$. By $n_1 \le t + 1$, we have $n_1 = t + 1$. From Claim 1, let e be a cut-edge in G_1 . Since $|E(G_1)| = {t \choose 2} + 1$ and $n_1 = t + 1$, we have $G_1 - e \cong K_t \cup K_1$. Let $w \in V(G_1)$. From the choice of G, we have $\phi(uw) \neq \phi(uv)$, and there is a cut-edge in G_1 colored by the same color $\phi(uw)$.

If $n_1 \ge 4$, from $G_1 - e \cong K_t \cup K_1$, we have that e is the unique cut-edge in G_1 . By $G_1 - e \cong K_t \cup K_1$, we can take a vertex w which is not single in $G_1 - e$. Then $\phi(uw) = \phi(e)$. By deleting the edge e and adding the edge uw, we can find a heterochromatic graph with r edges, the largest component of which has an order at least $n_1 + 1$, a contradiction to the choice of G.

So, assume $n_1 = 3$. Then r = 3 and $G_1 \cong P_3$. Let $G_1 = xyz$. Then either $\phi(yu) = \phi(xy)$ or $\phi(yu) = \phi(yz)$. Without loss of generality, assume $\phi(yu) = \phi(xy)$. Then $\phi(yu) \neq \phi(yz)$. Again, the graph zyuv is heterochromatic and of size r, a contradiction to the choice of G.

Case 2. $t_0 \ge t - n_1 + 1$.

Since $r_0 \ge 2$, we have $t_0 \ge 1$. If $t_0 \ge t - n_1 + 2$, then by the induction hypothesis, the graph $K_n - V(G_1)$ can be covered by at most $\lceil \frac{n-n_1-t_0}{2} \rceil$ vertex-disjoint heterochromatic trees. Thus, $t_r(K_n, \phi) \le 1 + \lceil \frac{n-n_1-t_0}{2} \rceil \le \lceil \frac{n-t}{2} \rceil$, as desired.

Suppose $t_0 = t - n_1 + 1$. Then we have $r = \binom{t}{2} + 2 \le |E(G_1)| + r_0 \le \binom{n_1 - 1}{2} + 1 + \binom{t_0 + 1}{2} + 1 = \binom{n_1 - 1}{2} + 1 + \binom{t - n_1 + 1 + 1}{2} + 1$. This implies that $\binom{t}{2} \le \binom{n_1 - 1}{2} + \binom{t - (n_1 - 1) + 1}{2}$, i.e., $(n_1 - 1)(t - (n_1 - 1)) \le t - (n_1 - 1)$. By $n_1 \ge 3$ and $n_1 \le t + 1$, we have $n_1 = t + 1$, and then $t_0 = 0$, a contradiction to the fact $t_0 \ge 1$. The proof is now complete.

4 Algorithmic aspect

From the result in previous section, we know that given an r-edge-coloring ϕ of K_n , $t_r(K_n, \phi) \leq \lceil \frac{n-t}{2} \rceil$. A natural question is how to find an optimal heterochromatic tree partition of K_n . For general graphs, the decision version of this problem is defined formally as follows:

Heterochromatic Tree Partition Problem

Instance: An *r*-edge-coloring ϕ of a graph *G*, and a positive integer *k*.

Question: Are there k or less vertex-disjoint heterochromatic trees which cover all the vertices of G?

For general graphs, the authors [10] showed that the problem above is *NP*-complete. Here, we present some positive results for the complete graphs. We show that given an *r*-edge-coloring ϕ of K_n , we can find at most $\lceil \frac{n-t}{2} \rceil$ vertex-disjoint heterochromatic trees to cover all the vertices in polynomial time. Our main technique comes from the proof in Section 3. A heterochromatic connected subgraph H is called maximal if the following hold:

- 1. For any $u, v \in V(H)$ with $uv \notin E(H)$, there is an edge $e \in E(H)$ such that $\phi(e) = \phi(uv)$.
- 2. For any $u \in V(H)$ and $v \notin V(H)$, there is a cut-edge $e \in E(H)$ such that $\phi(e) = \phi(uv)$.

The following proposition is obvious and the detailed proof is omitted.

Proposition 4.1 If H is a maximal heterochromatic connected subgraph of an edge-colored complete graph K_n and $V(H) \subset V(K_n)$, then $|E(H)| \leq {\binom{|V(H)|-1}{2}} + 1$.

Let ϕ be an *r*-edge-coloring of K_n and H be a maximal heterochromatic connected subgraph with $V(H) \subset V(K_n)$. From the definition, one can easily see that the graph $K_n - V(H)$ is edge-colored by $r_0 \ge r - |E(H)|$ colors. Let f(r) = t and $f(r_0) = t_0$ if $r_0 \ge 2$. Also, if $r_0 \ge 2$, then $t_0 \ge t - |V(H)| + 1$.

If $|V(H)| \ge t + 2$, Then we can find at most $\lceil \frac{n-t}{2} \rceil$ vertex-disjoint heterochromatic trees to cover all the vertices.

If $r_0 = 1$, as showed in proof of Theorem 1.1, we have that $|V(H)| \ge t + 2$. Then we can find at most $\lceil \frac{n-t}{2} \rceil$ vertex-disjoint heterochromatic trees to cover all the vertices.

If $r_0 \ge 2$, as showed in proof of Theorem 1.1, we have that $|V(H)| \ge t + 2$ or $t_0 \ge t - |V(H)| + 2$. If $t_0 \ge t - |V(H)| + 2$, by Theorem 1.1, $K_n - V(H)$ can be covered by at most $\lceil \frac{n-t-2}{2} \rceil$ vertex-disjoint heterochromatic trees.

So, from the analysis above, in order to find at most $\lceil \frac{n-t}{2} \rceil$ vertex-disjoint heterochromatic trees to cover all the vertices, we only need to find maximal heterochromatic connected subgraphs one by one. Given an *r*-edge-coloring of K_n , the following procedure produces a maximal heterochromatic connected subgraph.

Procedure

0. Initial state: Let H be an edge of K_n .

1. For any $u, v \in V(H)$, $uv \notin E(H)$, if there is no any edge $e \in E(H)$ such that $\phi(e) = \phi(uv)$, then $H \leftarrow H + uv$.

2. For each $u \in V(H), v \notin V(H)$, if there is no any edge $e \in E(H)$ such that $\phi(e) = \phi(uv)$, then $H \leftarrow H + uv$ and Goto 1.

3. For each $u \in V(H), v \notin V(H)$, if there is a non-cutedge $e \in E(H)$ such that $\phi(e) = \phi(uv)$, then $H \leftarrow H + uv - e$ and Goto 1.

4. Stop!

Theorem 4.2 The procedure above can find a maximal heterochromatic connected subgraph in polynomial time.

Proof. Let the current graph H have k vertices. Then Step 1 can be checked in at most $\binom{k}{2}$ times. And Steps 2 and 3 can be checked in at most k(n-k) times and k(n-k) + k times, respectively. So the procedure can find a maximal heterochromatic connected subgraph in $O(n^3)$.

Repeating the procedure at most O(n) times, we can find at most $\lceil \frac{n-t}{2} \rceil$ vertex-disjoint heterochromatic trees to cover all the vertices, and then we have the following result.

Theorem 4.3 For any r-edge-colored complete graph K_n and $k \ge \lceil \frac{n-t}{2} \rceil$, the heterochromatic tree partition problem can be solved in polynomial time.

5 Further discussion

There are several possible directions for further investigation. In our construction of the canonical r-edge-coloring ϕ_r^* in Section 2, one of the color classes contains lots of edges while each of the other color classes contains only one edge. One could therefore consider the problem for r-edge-colorings such that each color classes contains a bounded number of edges. In our construction of ϕ_r^* , some vertices have large color degree (i.e., the number of colors used on the incident edges) while the others have color degree only one. This is also a possible direction for generalization. In Section 4, we show that the heterochromatic tree partition problem can be solved in polynomial time for any r-edge-colored complete graph K_n and $k \ge \lfloor \frac{n-t}{2} \rfloor$. However, we do not know the complexity for the case $k < \lfloor \frac{n-t}{2} \rfloor$.

References

- Chen, H., Jin, Z., Li, X. and Tu, J. Heterochromatic tree partition numbers for complete bipartite graphs. *Discrete Math.* 308:3871-3878 (2008)
- [2] Erdős, P., Gyárfás, A. and Pyber, L. Vertex coverings by monochromatic cycles and trees. J. Combin. Theory Ser.B. 51:90-95 (1991)
- [3] Gyárfás, A. Vertex coverings by monochromatic paths and cycles. J. Graph Theory 7:131-135 (1983)
- [4] Gyárfás, A. Covering complete graphs by monochromatic paths, in Irregularities of Partitions, Algorithms and Combinatorics, Vol.8, Springer-Verlag, 1989
- [5] Gyárfás, A., Ruszinkó, M., Sárközy, G. N. and Szemerédi, E. An improved bound for the monochromatic cycle partition number. J. Combin. Theory Ser.B. 96:855-873 (2006)
- [6] Haxell, P. E. Partitioning complete bipartite graphs by monochromatic cycles. J. Combin. Theory Ser.B. 69:210-218 (1997)
- [7] Haxell, P. E., Kohayakawa, Y. Partitioning by monochromatic trees. J. Combin. Theory Ser.B. 68:218-222 (1996)
- [8] Jin, Z., Kano, M., Li, X. and Wei, B. Partitioning 2-edge-colored complete multipartite graphs into monochromatic cycles, paths and trees. J. Combin. Optim. 11:445-454 (2006)
- Kaneko, A., Kano, M. and Suzuki, K. Partitioning complete multipartite graphs by monochromatic trees. J. Graph Theory 48:133-141 (2005)
- [10] Li, X., Zhang, X. On the minimum monochromatic or multicolored subgraph partition problems. *Theoret. Comput. Sci.* 385:1-10, (2007)
- [11] Luczak, T., Rödl, V. and Szemerédi, E. Partitioning 2-edge-colored complete graphs into 2 monochromatic cycles. *Combin. Probab. Comput.* 7:423-436 (1998)
- [12] Rado, R. Monochromatic paths in graphs. Ann. Discrete Math. 3:191-194 (1978)