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Abstract A heterochromatic tree is an edge-colored tree in which any two edges have different colors.

The heterochromatic tree partition number of an r-edge-colored graph G, denoted by tr(G), is the

minimum positive integer p such that whenever the edges of the graph G are colored with r colors,

the vertices of G can be covered by at most p vertex-disjoint heterochromatic trees. In this paper we

determine the heterochromatic tree partition number of r-edge-colored complete graphs. We also find

at most tr(Kn) disjoint heterochromatic trees to cover all the vertices in polynomial time for a given

r-edge-coloring of Kn.
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1 Introduction

A monochromatic tree is an edge-colored tree in which any two edges have the same color, while a hete-

rochromatic tree is an edge-colored tree in which any two edges have different colors. The monochromatic

tree partition number of an r-edge-colored graph G is defined to be the minimum positive integer p

such that whenever the edges of G are colored with r colors, the vertices of G can be covered by

at most p vertex-disjoint monochromatic trees. The monochromatic cycle partition number and the

monochromatic path partition number are defined analogously.

Erdős et al. [2] proved that the monochromatic cycle partition number of an r-edge-colored complete

graph Kn is at most cr2 ln r for some constant c. This implies a conjecture from Gyárfás [4] in a stronger

form. Recently, the bound was improved by Gyárfás et al. [5]. Almost solving one of the conjectures in

[2], Haxell et al. [7] proved that the monochromatic tree partition number of an r-edge-colored complete

graph Kn is at most r provided that n is large enough with respect to r. Haxell [6] proved that the

monochromatic cycle partition number of an r-edge-colored complete bipartite graph Kn,n is also

independent of n, which answered a question in [2]. Since the monochromatic path partition number

is less than the monochromatic cycle partition number, a natural corollary is that the monochromatic

path partition number of Kn or Kn,n is also independent of n.

From above, one can see that the monochromatic tree, path, and cycle partition number of r-

edge-colored graphs Kn and Kn,n are independent of n. This seems to be not true for other graphs

such as 2-edge-colored complete multipartite graph. Let n1, n2, · · · , nk (k ≥ 2) be integers such that

1 ≤ n1 ≤ n2 ≤ · · · ≤ nk and n = n1 + n2 + · · · + nk−1,m = nk. The authors [9] showed that

t
′

2(Kn1,n2,···,nk
) = ⌊m−2

2n ⌋+2, where t
′

r(Kn1,n2,···,nk
) denotes the monochromatic tree partition number

Supported by the National Natural Science Foundation of China, PCSIRT, and the “973” program.



of the r-edge-colored graph Kn1,n2,···,nk
. Given a 2-edge-colored complete multipartite graph, Jin et al.

[8] presented a polynomial algorithm to find the minimum number of vertex-disjoint monochromatic

trees to cover all the vertices. Other related partition problems can be found in [10, 11, 12].

Analogous to the monochromatic case, the heterochromatic tree partition number of an r-edge-

colored graph G, denoted by tr(G), is defined to be the minimum positive integer p such that whenever

the edges of the graph G are colored with r colors, the vertices of G can be covered by at most p vertex-

disjoint heterochromatic trees. Compared with the monochromatic case, there are few results on the

heterochromatic tree partition number. Chen et al. [1] derived the heterochromatic tree partition

number of an r-edge-colored complete bipartite graph.

In this paper we consider the heterochromatic tree partition number of an r-edge-colored complete

graph Kn. In order to prove our main result, we introduce the following definitions and notation.

Throughout this paper, we use r to denote the number of colors. An r-edge-coloring of a graph G

means that each color appears at least once in G. Let φ be an r-edge-coloring of a graph G. For an

edge e ∈ E(G), denote by φ(e) the color of e. Denote by tr(G,φ) the minimum positive integer p

such that under the r-edge-coloring φ, the vertices of G can be covered by at most p vertex-disjoint

heterochromatic trees. Clearly, tr(G) = maxφ tr(G,φ), where φ runs over all r-edge-colorings of the

graph G. Let F be a spanning forest of G, each component of which is a heterochromatic tree. If F

contains exactly tr(G,φ) components, then F is called an optimal heterochromatic tree partition of the

graph G with the edge-coloring φ. Note that a tree consisting of a single vertex is also regarded as a

heterochromatic tree.

For any integer r ≥ 2, there is a unique positive integer t, such that
(

t

2

)

+ 2 ≤ r ≤
(

t+1
2

)

+ 1.

Clearly, the integer t is determined completely by r, and here we denote it by f(r) = t. This integer

f(r) = t will play an important role in expressing the number tr(Kn). If the color number r = 1, clearly

a maximum matching (plus a single vertex when n is odd) in Kn is an optimal heterochromatic tree

partition, and then tr(Kn) = ⌈n

2
⌉. So, in the rest of this paper we only consider the case 2 ≤ r ≤

(

n

2

)

.

The following is the main result of this paper.

Theorem 1.1 Let n ≥ 3, 2 ≤ r ≤
(

n

2

)

and f(r) = t. Then tr(Kn) = ⌈n−t

2
⌉.

As we know, the monochromatic tree partition number of an edge-colored complete graph Kn is

bounded by a function independent of n, and from the result mentioned above, the heterochromatic

tree partition number does not have this property any more.

2 A canonical r-edge-coloring φ∗

r

In this section we present a canonical r-edge-coloring of the graph Kn. Let S ⊆ V (Kn) and |S| = t.

Take a vertex u ∈ V (Kn)− S. We define the canonical r-edge-coloring φ∗
r by

1. assigning distinct colors to the edges of Kn[S];

2. for each color not used in Kn[S], assign it to an edge uv between u and S;

3. finally, color all the remaining edges by the color not used if it exists, or else by the same color

used before.



We have the following proposition.

Proposition 2.1 tr(Kn, φ
∗
r) = ⌈n−t

2
⌉.

Proof. First, we present an heterochromatic tree partition with exact ⌈n−t

2
⌉ components, which implies

that tr(Kn, φ
∗
r) ≤ ⌈

n−t

2
⌉. Let X = S ∪ {u} ∪ {v}, where v ∈ V (Kn) − S − u. It is easy to see that

Kn[X] contains a heterochromatic spanning tree T , and the vertices not in X induce a monochromatic

complete subgraph which can be covered by ⌈n−t−2
2
⌉ disjoint heterochromatic trees. So, the union of

T and those ⌈n−t−2
2
⌉ disjoint heterochromatic trees consist of a heterochromatic tree partition of Kn.

This implies that tr(Kn, φ
∗
r) ≤ ⌈

n−t

2
⌉.

Next, we prove that tr(Kn, φ
∗
r) ≥ ⌈

n−t

2
⌉. Suppose on the contrary that tr(Kn, φ

∗
r) < ⌈

n−t

2
⌉ for

some n and r.

Let F be an optimal heterochromatic tree partition of Kn with r-edge-coloring φ∗
r . Denote by

T1, T2, · · · , Tk the components of F each of which contains a vertex of S. We choose F such that the

number of trees covering S is as small as possible. Note that each component of F not containing any

vertex of S is an edge or a single vertex, and at most one of the components of F is a single vertex.

Since F is an optimal heterochromatic tree partition, from the definition of φ∗
r, we have the following

facts.

Fact 1. u ∈ Ti for some 1 ≤ i ≤ k.

Fact 2. |Tj ∩ (V (Kn)− S − u)| = 1 for each Tj .

If k = 1, it is easy to see that F contains exactly ⌈n−t

2
⌉ trees. So, assume that k ≥ 2. Let S∩Ti = Si

and vi = Ti ∩ (V (Kn)− S − u). From the definition of φ∗
r, we have that there exists a heterochromatic

tree, denoted by T , covering all the vertices of T1 ∪ (T2− v2). So F
′

= (F −T1−T2)∪{T}∪ {v2} is an

optimal heterochromatic tree partition such that the number of trees covering S is k−1, a contradiction,

which completes the proof.

3 Proof of Theorem 1.1

Given a complete graph Kn, the heterochromatic tree partition number is closely related to the color

number. Before proving our main result, we have the following lemma which gives the relationship

between tr+1(Kn) and tr(Kn).

Lemma 3.1 tr+1(Kn) ≤ tr(Kn).

Proof. Given any (r + 1)-edge-coloring ϕ of Kn. Denote by Ei the set of edges colored by the color i.

Recoloring the edges of Er+1 by the color r, we obtain a r-edge-coloring ψ ofKn. Clearly, tr+1(Kn, ϕ) ≤

tr(Kn, ψ). So, tr+1(Kn) ≤ tr(Kn).

The following lemma gives the relationship between the edge-connectivity and size of a graph. Its

proof is omitted.

Lemma 3.2 Let G be a simple graph of order n. If G contains a cut-edge, then |E(G)| ≤
(

n−1
2

)

+ 1.

Proof of Theorem 1.1:



We prove the theorem by induction on r and n. First, we consider the case r = 2. Let φ be a 2-

edge-coloring of Kn. Note that for any 2-edge-coloring of Kn, n ≥ 3, there is always a heterochromatic

tree of order three. Then, we can easily find 1 + ⌈n−3
2
⌉ = ⌈n−1

2
⌉ vertex-disjoint heterochromatic trees

which cover all the vertices. So we have tr(Kn, φ) ≤ ⌈n−1
2
⌉. Then, from Proposition 2.1 the result

holds for r = 2. Obviously, the result holds for n = 3, 4.

Assume that the result holds for the color number less than r or the order of a complete graph

less than n. Now we consider the r-edge-colored complete graph Kn, r ≥ 3. Let f(r) = t. If
(

t

2

)

+ 3 ≤ r ≤
(

t+1
2

)

+ 1, then f(r − 1) = t. By the induction hypothesis, tr−1(Kn) = ⌈n−t

2
⌉. From

Lemma 3.1, tr(Kn) ≤ tr−1(Kn) = ⌈n−t

2
⌉. And, from Proposition 2.1, tr(Kn) ≥ tr(Kn, φ

∗
r) = ⌈n−t

2
⌉.

Then, we have tr(Kn) = ⌈n−t

2
⌉, as desired.

So, we only need to consider the case r =
(

t

2

)

+ 2. Let φ be an r-edge-coloring of Kn. Let G be

a heterochromatic subgraph of Kn, such that δ(G) ≥ 1 and, for each color i, there is a unique edge

colored by the color i in G. Denote by G1, G2, · · · , Gk the components of G, where the order of Gi is

ni, 1 ≤ i ≤ k, and n1 ≥ n2 ≥ · · · ≥ nk ≥ 2. Choose G such that n1 is as large as possible. Since the

color number r ≥ 3, we have n1 ≥ 3.

Suppose k = 1. By r =
(

t

2

)

+ 2, we have n1 ≥ t+ 1. If n1 ≥ t+ 2, then tr(Kn, φ) ≤ 1 + ⌈n−n1

2
⌉ ≤

⌈n−t

2
⌉. So, assume n1 = t+1. By Lemma 3.2, G does not contain any cut-edge. Let g ∈ [V (G1), V (G1)],

i.e., one end-vertex of g belongs to V (G1) and the other one belongs to V (G1). From the choice of G,

there is an edge h ∈ E(G1) with φ(h) = φ(g). Since G does not contain any cut-edge, by deleting the

edge h and adding the edge g, we can find a heterochromatic graph with r edges, the largest component

of which has an order at least n1 + 1, a contradiction to the choice of the graph G.

So, assume k ≥ 2. If n1 ≥ t+ 2, then tr(Kn, φ) ≤ 1 + ⌈n−n1

2
⌉ ≤ ⌈n−t

2
⌉, as desired. Thus, assume

n1 ≤ t+ 1. We have the following claim.

Claim: G1 contains a cut-edge, and then |E(G1)| ≤
(

n1−1
2

)

+ 1.

If G1 does not contain any cut-edge, then it is easy to find a heterochromatic graph with r edges,

the largest component of which has order at least n1 +1, a contradiction. From Lemma 3.2, |E(G1)| ≤
(

n1−1
2

)

+ 1 follows clearly.

Now we consider the graph Kn − V (G1), a complete graph of order n− n1. When restricting the

r-edge-coloring φ on the graph Kn − V (G1), we have that Kn − V (G1) is edge-colored by r0 colors,

where r0 ≥ r − (
(

n1−1
2

)

+ 1). If r0 ≥ 2, let f(r0) = t0. It follows that either r0 = 1, or t0 ≥ t− n1 + 1.

We distinguish the following cases.

Case 1. r0 = 1.

Then Kn − V (G1) is monochromatic, and then it follows that k = 2 and n2 = 2. Let G2 = uv.

From the choice of G, we have |E(G1)| = r − 1 =
(

t

2

)

+ 1. By n1 ≤ t + 1, we have n1 = t + 1. From

Claim 1, let e be a cut-edge in G1. Since |E(G1)| =
(

t

2

)

+ 1 and n1 = t+ 1, we have G1− e ∼= Kt ∪K1.

Let w ∈ V (G1). From the choice of G, we have φ(uw) 6= φ(uv), and there is a cut-edge in G1 colored

by the same color φ(uw).

If n1 ≥ 4, from G1−e ∼= Kt∪K1, we have that e is the unique cut-edge in G1. By G1−e ∼= Kt∪K1,

we can take a vertex w which is not single in G1 − e. Then φ(uw) = φ(e). By deleting the edge e and

adding the edge uw, we can find a heterochromatic graph with r edges, the largest component of which



has an order at least n1 + 1, a contradiction to the choice of G.

So, assume n1 = 3. Then r = 3 and G1
∼= P3. Let G1 = xyz. Then either φ(yu) = φ(xy) or

φ(yu) = φ(yz). Without loss of generality, assume φ(yu) = φ(xy). Then φ(yu) 6= φ(yz). Again, the

graph zyuv is heterochromatic and of size r, a contradiction to the choice of G.

Case 2. t0 ≥ t− n1 + 1.

Since r0 ≥ 2, we have t0 ≥ 1. If t0 ≥ t− n1 + 2, then by the induction hypothesis, the graph Kn −

V (G1) can be covered by at most ⌈n−n1−t0
2

⌉ vertex-disjoint heterochromatic trees. Thus, tr(Kn, φ) ≤

1 + ⌈n−n1−t0
2

⌉ ≤ ⌈n−t

2
⌉, as desired.

Suppose t0 = t−n1+1. Then we have r =
(

t

2

)

+2 ≤ |E(G1)|+r0 ≤
(

n1−1
2

)

+1+
(

t0+1
2

)

+1 =
(

n1−1
2

)

+

1+
(

t−n1+1+1
2

)

+1. This implies that
(

t

2

)

≤
(

n1−1
2

)

+
(

t−(n1−1)+1
2

)

, i.e., (n1−1)(t−(n1−1)) ≤ t−(n1−1).

By n1 ≥ 3 and n1 ≤ t+ 1, we have n1 = t+ 1, and then t0 = 0, a contradiction to the fact t0 ≥ 1. The

proof is now complete.

4 Algorithmic aspect

From the result in previous section, we know that given an r-edge-coloring φ of Kn, tr(Kn, φ) ≤ ⌈n−t

2
⌉.

A natural question is how to find an optimal heterochromatic tree partition of Kn. For general graphs,

the decision version of this problem is defined formally as follows:

Heterochromatic Tree Partition Problem

Instance: An r-edge-coloring φ of a graph G, and a positive integer k.

Question: Are there k or less vertex-disjoint heterochromatic trees which cover all the vertices of G ?

For general graphs, the authors [10] showed that the problem above is NP -complete. Here, we

present some positive results for the complete graphs. We show that given an r-edge-coloring φ of Kn,

we can find at most ⌈n−t

2
⌉ vertex-disjoint heterochromatic trees to cover all the vertices in polynomial

time. Our main technique comes from the proof in Section 3. A heterochromatic connected subgraph

H is called maximal if the following hold:

1. For any u, v ∈ V (H) with uv /∈ E(H), there is an edge e ∈ E(H) such that φ(e) = φ(uv).

2. For any u ∈ V (H) and v /∈ V (H), there is a cut-edge e ∈ E(H) such that φ(e) = φ(uv).

The following proposition is obvious and the detailed proof is omitted.

Proposition 4.1 If H is a maximal heterochromatic connected subgraph of an edge-colored complete

graph Kn and V (H) ⊂ V (Kn), then |E(H)| ≤
(

|V (H)|−1
2

)

+ 1.

Let φ be an r-edge-coloring of Kn and H be a maximal heterochromatic connected subgraph with

V (H) ⊂ V (Kn). From the definition, one can easily see that the graph Kn − V (H) is edge-colored by

r0 ≥ r− |E(H)| colors. Let f(r) = t and f(r0) = t0 if r0 ≥ 2. Also, if r0 ≥ 2, then t0 ≥ t− |V (H)|+ 1.

If |V (H)| ≥ t + 2, Then we can find at most ⌈n−t

2
⌉ vertex-disjoint heterochromatic trees to cover

all the vertices.

If r0 = 1, as showed in proof of Theorem 1.1, we have that |V (H)| ≥ t + 2. Then we can find at

most ⌈n−t

2
⌉ vertex-disjoint heterochromatic trees to cover all the vertices.



If r0 ≥ 2, as showed in proof of Theorem 1.1, we have that |V (H)| ≥ t+ 2 or t0 ≥ t− |V (H)|+ 2.

If t0 ≥ t− |V (H)|+ 2, by Theorem 1.1, Kn −V (H) can be covered by at most ⌈n−t−2
2
⌉ vertex-disjoint

heterochromatic trees.

So, from the analysis above, in order to find at most ⌈n−t

2
⌉ vertex-disjoint heterochromatic trees

to cover all the vertices, we only need to find maximal heterochromatic connected subgraphs one by

one. Given an r-edge-coloring of Kn, the following procedure produces a maximal heterochromatic

connected subgraph.

Procedure

0. Initial state: Let H be an edge of Kn.

1. For any u, v ∈ V (H), uv /∈ E(H), if there is no any edge e ∈ E(H) such that φ(e) = φ(uv),

then H ← H + uv.

2. For each u ∈ V (H), v /∈ V (H), if there is no any edge e ∈ E(H) such that φ(e) = φ(uv), then

H ← H + uv and Goto 1.

3. For each u ∈ V (H), v /∈ V (H), if there is a non-cutedge e ∈ E(H) such that φ(e) = φ(uv), then

H ← H + uv − e and Goto 1.

4. Stop!

Theorem 4.2 The procedure above can find a maximal heterochromatic connected subgraph in polyno-

mial time.

Proof. Let the current graph H have k vertices. Then Step 1 can be checked in at most
(

k

2

)

times.

And Steps 2 and 3 can be checked in at most k(n− k) times and k(n− k) + k times, respectively. So

the procedure can find a maximal heterochromatic connected subgraph in O(n3).

Repeating the procedure at most O(n) times, we can find at most ⌈n−t

2
⌉ vertex-disjoint heterochro-

matic trees to cover all the vertices, and then we have the following result.

Theorem 4.3 For any r-edge-colored complete graph Kn and k ≥ ⌈n−t

2
⌉, the heterochromatic tree

partition problem can be solved in polynomial time.

5 Further discussion

There are several possible directions for further investigation. In our construction of the canonical

r-edge-coloring φ∗
r in Section 2, one of the color classes contains lots of edges while each of the other

color classes contains only one edge. One could therefore consider the problem for r-edge-colorings such

that each color classes contains a bounded number of edges. In our construction of φ∗
r , some vertices

have large color degree (i.e., the number of colors used on the incident edges) while the others have

color degree only one. This is also a possible direction for generalization. In Section 4, we show that

the heterochromatic tree partition problem can be solved in polynomial time for any r-edge-colored

complete graph Kn and k ≥ ⌈n−t

2
⌉. However, we do not know the complexity for the case k < ⌈n−t

2
⌉.
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