Partitioning complete graphs by heterochromatic trees

Zemin Jin
Department of Mathematics, Zhejiang Normal University Jinhua 321004, P.R. China
E-mail: zeminjin@zjnu.cn
Xueliang Li
Center for Combinatorics and LPMC, Nankai University Tianjin 300071, P.R. China
E-mail: lxl@nankai.edu.cn

Abstract

A heterochromatic tree is an edge-colored tree in which any two edges have different colors. The heterochromatic tree partition number of an r-edge-colored graph G, denoted by $t_{r}(G)$, is the minimum positive integer p such that whenever the edges of the graph G are colored with r colors, the vertices of G can be covered by at most p vertex-disjoint heterochromatic trees. In this paper we determine the heterochromatic tree partition number of r-edge-colored complete graphs. We also find at most $t_{r}\left(K_{n}\right)$ disjoint heterochromatic trees to cover all the vertices in polynomial time for a given r-edge-coloring of K_{n}.

Keywords edge-colored graph, heterochromatic tree, partition.
MR(2000) Subject Classification 05C05, 05C15, 05C70, 05C75.

1 Introduction

A monochromatic tree is an edge-colored tree in which any two edges have the same color, while a heterochromatic tree is an edge-colored tree in which any two edges have different colors. The monochromatic tree partition number of an r-edge-colored graph G is defined to be the minimum positive integer p such that whenever the edges of G are colored with r colors, the vertices of G can be covered by at most p vertex-disjoint monochromatic trees. The monochromatic cycle partition number and the monochromatic path partition number are defined analogously.

Erdős et al. [2] proved that the monochromatic cycle partition number of an r-edge-colored complete graph K_{n} is at most $c r^{2} \ln r$ for some constant c. This implies a conjecture from Gyárfás [4] in a stronger form. Recently, the bound was improved by Gyárfás et al. [5]. Almost solving one of the conjectures in [2], Haxell et al. [7] proved that the monochromatic tree partition number of an r-edge-colored complete graph K_{n} is at most r provided that n is large enough with respect to r. Haxell [6] proved that the monochromatic cycle partition number of an r-edge-colored complete bipartite graph $K_{n, n}$ is also independent of n, which answered a question in [2]. Since the monochromatic path partition number is less than the monochromatic cycle partition number, a natural corollary is that the monochromatic path partition number of K_{n} or $K_{n, n}$ is also independent of n.

From above, one can see that the monochromatic tree, path, and cycle partition number of r -edge-colored graphs K_{n} and $K_{n, n}$ are independent of n. This seems to be not true for other graphs such as 2-edge-colored complete multipartite graph. Let $n_{1}, n_{2}, \cdots, n_{k}(k \geq 2)$ be integers such that $1 \leq n_{1} \leq n_{2} \leq \cdots \leq n_{k}$ and $n=n_{1}+n_{2}+\cdots+n_{k-1}, m=n_{k}$. The authors [9] showed that $t_{2}^{\prime}\left(K_{n_{1}, n_{2}}, \cdots, n_{k}\right)=\left\lfloor\frac{m-2}{2^{n}}\right\rfloor+2$, where $t_{r}^{\prime}\left(K_{n_{1}, n_{2}, \cdots, n_{k}}\right)$ denotes the monochromatic tree partition number

Supported by the National Natural Science Foundation of China, PCSIRT, and the " 973 " program.
of the r-edge-colored graph $K_{n_{1}, n_{2}, \cdots, n_{k}}$. Given a 2-edge-colored complete multipartite graph, Jin et al. [8] presented a polynomial algorithm to find the minimum number of vertex-disjoint monochromatic trees to cover all the vertices. Other related partition problems can be found in [10, 11, 12].

Analogous to the monochromatic case, the heterochromatic tree partition number of an r-edgecolored graph G, denoted by $t_{r}(G)$, is defined to be the minimum positive integer p such that whenever the edges of the graph G are colored with r colors, the vertices of G can be covered by at most p vertexdisjoint heterochromatic trees. Compared with the monochromatic case, there are few results on the heterochromatic tree partition number. Chen et al. [1] derived the heterochromatic tree partition number of an r-edge-colored complete bipartite graph.

In this paper we consider the heterochromatic tree partition number of an r-edge-colored complete graph K_{n}. In order to prove our main result, we introduce the following definitions and notation. Throughout this paper, we use r to denote the number of colors. An r-edge-coloring of a graph G means that each color appears at least once in G. Let ϕ be an r-edge-coloring of a graph G. For an edge $e \in E(G)$, denote by $\phi(e)$ the color of e. Denote by $t_{r}(G, \phi)$ the minimum positive integer p such that under the r-edge-coloring ϕ, the vertices of G can be covered by at most p vertex-disjoint heterochromatic trees. Clearly, $t_{r}(G)=\max _{\phi} t_{r}(G, \phi)$, where ϕ runs over all r-edge-colorings of the graph G. Let F be a spanning forest of G, each component of which is a heterochromatic tree. If F contains exactly $t_{r}(G, \phi)$ components, then F is called an optimal heterochromatic tree partition of the graph G with the edge-coloring ϕ. Note that a tree consisting of a single vertex is also regarded as a heterochromatic tree.

For any integer $r \geq 2$, there is a unique positive integer t, such that $\binom{t}{2}+2 \leq r \leq\binom{ t+1}{2}+1$. Clearly, the integer t is determined completely by r, and here we denote it by $f(r)=t$. This integer $f(r)=t$ will play an important role in expressing the number $t_{r}\left(K_{n}\right)$. If the color number $r=1$, clearly a maximum matching (plus a single vertex when n is odd) in K_{n} is an optimal heterochromatic tree partition, and then $t_{r}\left(K_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$. So, in the rest of this paper we only consider the case $2 \leq r \leq\binom{ n}{2}$. The following is the main result of this paper.

Theorem 1.1 Let $n \geq 3,2 \leq r \leq\binom{ n}{2}$ and $f(r)=t$. Then $t_{r}\left(K_{n}\right)=\left\lceil\frac{n-t}{2}\right\rceil$.
As we know, the monochromatic tree partition number of an edge-colored complete graph K_{n} is bounded by a function independent of n, and from the result mentioned above, the heterochromatic tree partition number does not have this property any more.

2 A canonical r-edge-coloring ϕ_{r}^{*}

In this section we present a canonical r-edge-coloring of the graph K_{n}. Let $S \subseteq V\left(K_{n}\right)$ and $|S|=t$.
Take a vertex $u \in V\left(K_{n}\right)-S$. We define the canonical r-edge-coloring ϕ_{r}^{*} by

1. assigning distinct colors to the edges of $K_{n}[S]$;
2. for each color not used in $K_{n}[S]$, assign it to an edge $u v$ between u and S;
3. finally, color all the remaining edges by the color not used if it exists, or else by the same color used before.

We have the following proposition.

Proposition $2.1 t_{r}\left(K_{n}, \phi_{r}^{*}\right)=\left\lceil\frac{n-t}{2}\right\rceil$.

Proof. First, we present an heterochromatic tree partition with exact $\left\lceil\frac{n-t}{2}\right\rceil$ components, which implies that $t_{r}\left(K_{n}, \phi_{r}^{*}\right) \leq\left\lceil\frac{n-t}{2}\right\rceil$. Let $X=S \cup\{u\} \cup\{v\}$, where $v \in V\left(K_{n}\right)-S-u$. It is easy to see that $K_{n}[X]$ contains a heterochromatic spanning tree T, and the vertices not in X induce a monochromatic complete subgraph which can be covered by $\left\lceil\frac{n-t-2}{2}\right\rceil$ disjoint heterochromatic trees. So, the union of T and those $\left\lceil\frac{n-t-2}{2}\right\rceil$ disjoint heterochromatic trees consist of a heterochromatic tree partition of K_{n}. This implies that $t_{r}\left(K_{n}, \phi_{r}^{*}\right) \leq\left\lceil\frac{n-t}{2}\right\rceil$.

Next, we prove that $t_{r}\left(K_{n}, \phi_{r}^{*}\right) \geq\left\lceil\frac{n-t}{2}\right\rceil$. Suppose on the contrary that $t_{r}\left(K_{n}, \phi_{r}^{*}\right)<\left\lceil\frac{n-t}{2}\right\rceil$ for some n and r.

Let F be an optimal heterochromatic tree partition of K_{n} with r-edge-coloring ϕ_{r}^{*}. Denote by $T_{1}, T_{2}, \cdots, T_{k}$ the components of F each of which contains a vertex of S. We choose F such that the number of trees covering S is as small as possible. Note that each component of F not containing any vertex of S is an edge or a single vertex, and at most one of the components of F is a single vertex. Since F is an optimal heterochromatic tree partition, from the definition of ϕ_{r}^{*}, we have the following facts.
Fact 1. $u \in T_{i}$ for some $1 \leq i \leq k$.
Fact 2. $\left|T_{j} \cap\left(V\left(K_{n}\right)-S-u\right)\right|=1$ for each T_{j}.
If $k=1$, it is easy to see that F contains exactly $\left\lceil\frac{n-t}{2}\right\rceil$ trees. So, assume that $k \geq 2$. Let $S \cap T_{i}=S_{i}$ and $v_{i}=T_{i} \cap\left(V\left(K_{n}\right)-S-u\right)$. From the definition of ϕ_{r}^{*}, we have that there exists a heterochromatic tree, denoted by T, covering all the vertices of $T_{1} \cup\left(T_{2}-v_{2}\right)$. So $F^{\prime}=\left(F-T_{1}-T_{2}\right) \cup\{T\} \cup\left\{v_{2}\right\}$ is an optimal heterochromatic tree partition such that the number of trees covering S is $k-1$, a contradiction, which completes the proof.

3 Proof of Theorem 1.1

Given a complete graph K_{n}, the heterochromatic tree partition number is closely related to the color number. Before proving our main result, we have the following lemma which gives the relationship between $t_{r+1}\left(K_{n}\right)$ and $t_{r}\left(K_{n}\right)$.

Lemma $3.1 t_{r+1}\left(K_{n}\right) \leq t_{r}\left(K_{n}\right)$.

Proof. Given any ($r+1$)-edge-coloring φ of K_{n}. Denote by E_{i} the set of edges colored by the color i. Recoloring the edges of E_{r+1} by the color r, we obtain a r-edge-coloring ψ of K_{n}. Clearly, $t_{r+1}\left(K_{n}, \varphi\right) \leq$ $t_{r}\left(K_{n}, \psi\right)$. So, $t_{r+1}\left(K_{n}\right) \leq t_{r}\left(K_{n}\right)$.

The following lemma gives the relationship between the edge-connectivity and size of a graph. Its proof is omitted.

Lemma 3.2 Let G be a simple graph of order n. If G contains a cut-edge, then $|E(G)| \leq\binom{ n-1}{2}+1$.

Proof of Theorem 1.1:

We prove the theorem by induction on r and n. First, we consider the case $r=2$. Let ϕ be a $2-$ edge-coloring of K_{n}. Note that for any 2-edge-coloring of $K_{n}, n \geq 3$, there is always a heterochromatic tree of order three. Then, we can easily find $1+\left\lceil\frac{n-3}{2}\right\rceil=\left\lceil\frac{n-1}{2}\right\rceil$ vertex-disjoint heterochromatic trees which cover all the vertices. So we have $t_{r}\left(K_{n}, \phi\right) \leq\left\lceil\frac{n-1}{2}\right\rceil$. Then, from Proposition 2.1 the result holds for $r=2$. Obviously, the result holds for $n=3,4$.

Assume that the result holds for the color number less than r or the order of a complete graph less than n. Now we consider the r-edge-colored complete graph $K_{n}, r \geq 3$. Let $f(r)=t$. If $\binom{t}{2}+3 \leq r \leq\binom{ t+1}{2}+1$, then $f(r-1)=t$. By the induction hypothesis, $t_{r-1}\left(K_{n}\right)=\left\lceil\frac{n-t}{2}\right\rceil$. From Lemma 3.1, $t_{r}\left(K_{n}\right) \leq t_{r-1}\left(K_{n}\right)=\left\lceil\frac{n-t}{2}\right\rceil$. And, from Proposition 2.1, $t_{r}\left(K_{n}\right) \geq t_{r}\left(K_{n}, \phi_{r}^{*}\right)=\left\lceil\frac{n-t}{2}\right\rceil$. Then, we have $t_{r}\left(K_{n}\right)=\left\lceil\frac{n-t}{2}\right\rceil$, as desired.

So, we only need to consider the case $r=\binom{t}{2}+2$. Let ϕ be an r-edge-coloring of K_{n}. Let G be a heterochromatic subgraph of K_{n}, such that $\delta(G) \geq 1$ and, for each color i, there is a unique edge colored by the color i in G. Denote by $G_{1}, G_{2}, \cdots, G_{k}$ the components of G, where the order of G_{i} is $n_{i}, 1 \leq i \leq k$, and $n_{1} \geq n_{2} \geq \cdots \geq n_{k} \geq 2$. Choose G such that n_{1} is as large as possible. Since the color number $r \geq 3$, we have $n_{1} \geq 3$.

Suppose $k=1$. By $r=\binom{t}{2}+2$, we have $n_{1} \geq t+1$. If $n_{1} \geq t+2$, then $t_{r}\left(K_{n}, \phi\right) \leq 1+\left\lceil\frac{n-n_{1}}{2}\right\rceil \leq$ $\left\lceil\frac{n-t}{2}\right\rceil$. So, assume $n_{1}=t+1$. By Lemma 3.2, G does not contain any cut-edge. Let $g \in\left[V\left(G_{1}\right), \overline{V\left(G_{1}\right)}\right]$, i.e., one end-vertex of g belongs to $V\left(G_{1}\right)$ and the other one belongs to $\overline{V\left(G_{1}\right)}$. From the choice of G, there is an edge $h \in E\left(G_{1}\right)$ with $\phi(h)=\phi(g)$. Since G does not contain any cut-edge, by deleting the edge h and adding the edge g, we can find a heterochromatic graph with r edges, the largest component of which has an order at least $n_{1}+1$, a contradiction to the choice of the graph G.

So, assume $k \geq 2$. If $n_{1} \geq t+2$, then $t_{r}\left(K_{n}, \phi\right) \leq 1+\left\lceil\frac{n-n_{1}}{2}\right\rceil \leq\left\lceil\frac{n-t}{2}\right\rceil$, as desired. Thus, assume $n_{1} \leq t+1$. We have the following claim.
Claim: $\quad G_{1}$ contains a cut-edge, and then $\left|E\left(G_{1}\right)\right| \leq\binom{ n_{1}-1}{2}+1$.
If G_{1} does not contain any cut-edge, then it is easy to find a heterochromatic graph with r edges, the largest component of which has order at least $n_{1}+1$, a contradiction. From Lemma 3.2, $\left|E\left(G_{1}\right)\right| \leq$ $\binom{n_{1}-1}{2}+1$ follows clearly.

Now we consider the graph $K_{n}-V\left(G_{1}\right)$, a complete graph of order $n-n_{1}$. When restricting the r-edge-coloring ϕ on the graph $K_{n}-V\left(G_{1}\right)$, we have that $K_{n}-V\left(G_{1}\right)$ is edge-colored by r_{0} colors, where $r_{0} \geq r-\left(\binom{n_{1}-1}{2}+1\right)$. If $r_{0} \geq 2$, let $f\left(r_{0}\right)=t_{0}$. It follows that either $r_{0}=1$, or $t_{0} \geq t-n_{1}+1$. We distinguish the following cases.

Case 1. $r_{0}=1$.
Then $K_{n}-V\left(G_{1}\right)$ is monochromatic, and then it follows that $k=2$ and $n_{2}=2$. Let $G_{2}=u v$. From the choice of G, we have $\left|E\left(G_{1}\right)\right|=r-1=\binom{t}{2}+1$. By $n_{1} \leq t+1$, we have $n_{1}=t+1$. From Claim 1, let e be a cut-edge in G_{1}. Since $\left|E\left(G_{1}\right)\right|=\binom{t}{2}+1$ and $n_{1}=t+1$, we have $G_{1}-e \cong K_{t} \cup K_{1}$. Let $w \in V\left(G_{1}\right)$. From the choice of G, we have $\phi(u w) \neq \phi(u v)$, and there is a cut-edge in G_{1} colored by the same color $\phi(u w)$.

If $n_{1} \geq 4$, from $G_{1}-e \cong K_{t} \cup K_{1}$, we have that e is the unique cut-edge in G_{1}. By $G_{1}-e \cong K_{t} \cup K_{1}$, we can take a vertex w which is not single in $G_{1}-e$. Then $\phi(u w)=\phi(e)$. By deleting the edge e and adding the edge $u w$, we can find a heterochromatic graph with r edges, the largest component of which
has an order at least $n_{1}+1$, a contradiction to the choice of G.
So, assume $n_{1}=3$. Then $r=3$ and $G_{1} \cong P_{3}$. Let $G_{1}=x y z$. Then either $\phi(y u)=\phi(x y)$ or $\phi(y u)=\phi(y z)$. Without loss of generality, assume $\phi(y u)=\phi(x y)$. Then $\phi(y u) \neq \phi(y z)$. Again, the graph zyuv is heterochromatic and of size r, a contradiction to the choice of G.

Case 2. $t_{0} \geq t-n_{1}+1$.
Since $r_{0} \geq 2$, we have $t_{0} \geq 1$. If $t_{0} \geq t-n_{1}+2$, then by the induction hypothesis, the graph $K_{n}-$ $V\left(G_{1}\right)$ can be covered by at most $\left\lceil\frac{n-n_{1}-t_{0}}{2}\right\rceil$ vertex-disjoint heterochromatic trees. Thus, $t_{r}\left(K_{n}, \phi\right) \leq$ $1+\left\lceil\frac{n-n_{1}-t_{0}}{2}\right\rceil \leq\left\lceil\frac{n-t}{2}\right\rceil$, as desired.

Suppose $t_{0}=t-n_{1}+1$. Then we have $r=\binom{t}{2}+2 \leq\left|E\left(G_{1}\right)\right|+r_{0} \leq\binom{ n_{1}-1}{2}+1+\binom{t_{0}+1}{2}+1=\binom{n_{1}-1}{2}+$ $1+\binom{t-n_{1}+1+1}{2}+1$. This implies that $\binom{t}{2} \leq\binom{ n_{1}-1}{2}+\binom{t-\left(n_{1}-1\right)+1}{2}$, i.e., $\left(n_{1}-1\right)\left(t-\left(n_{1}-1\right)\right) \leq t-\left(n_{1}-1\right)$. By $n_{1} \geq 3$ and $n_{1} \leq t+1$, we have $n_{1}=t+1$, and then $t_{0}=0$, a contradiction to the fact $t_{0} \geq 1$. The proof is now complete.

4 Algorithmic aspect

From the result in previous section, we know that given an r-edge-coloring ϕ of $K_{n}, t_{r}\left(K_{n}, \phi\right) \leq\left\lceil\frac{n-t}{2}\right\rceil$. A natural question is how to find an optimal heterochromatic tree partition of K_{n}. For general graphs, the decision version of this problem is defined formally as follows:

Heterochromatic Tree Partition Problem

Instance: An r-edge-coloring ϕ of a graph G, and a positive integer k.
Question: Are there k or less vertex-disjoint heterochromatic trees which cover all the vertices of G ?
For general graphs, the authors [10] showed that the problem above is $N P$-complete. Here, we present some positive results for the complete graphs. We show that given an r-edge-coloring ϕ of K_{n}, we can find at most $\left\lceil\frac{n-t}{2}\right\rceil$ vertex-disjoint heterochromatic trees to cover all the vertices in polynomial time. Our main technique comes from the proof in Section 3. A heterochromatic connected subgraph H is called maximal if the following hold:

1. For any $u, v \in V(H)$ with $u v \notin E(H)$, there is an edge $e \in E(H)$ such that $\phi(e)=\phi(u v)$.
2. For any $u \in V(H)$ and $v \notin V(H)$, there is a cut-edge $e \in E(H)$ such that $\phi(e)=\phi(u v)$.

The following proposition is obvious and the detailed proof is omitted.

Proposition 4.1 If H is a maximal heterochromatic connected subgraph of an edge-colored complete graph K_{n} and $V(H) \subset V\left(K_{n}\right)$, then $|E(H)| \leq(\underset{2}{|V(H)|-1})+1$.

Let ϕ be an r-edge-coloring of K_{n} and H be a maximal heterochromatic connected subgraph with $V(H) \subset V\left(K_{n}\right)$. From the definition, one can easily see that the graph $K_{n}-V(H)$ is edge-colored by $r_{0} \geq r-|E(H)|$ colors. Let $f(r)=t$ and $f\left(r_{0}\right)=t_{0}$ if $r_{0} \geq 2$. Also, if $r_{0} \geq 2$, then $t_{0} \geq t-|V(H)|+1$.

If $|V(H)| \geq t+2$, Then we can find at most $\left\lceil\frac{n-t}{2}\right\rceil$ vertex-disjoint heterochromatic trees to cover all the vertices.

If $r_{0}=1$, as showed in proof of Theorem 1.1, we have that $|V(H)| \geq t+2$. Then we can find at most $\left\lceil\frac{n-t}{2}\right\rceil$ vertex-disjoint heterochromatic trees to cover all the vertices.

If $r_{0} \geq 2$, as showed in proof of Theorem 1.1, we have that $|V(H)| \geq t+2$ or $t_{0} \geq t-|V(H)|+2$. If $t_{0} \geq t-|V(H)|+2$, by Theorem 1.1, $K_{n}-V(H)$ can be covered by at most $\left\lceil\frac{n-t-2}{2}\right\rceil$ vertex-disjoint heterochromatic trees.

So, from the analysis above, in order to find at most $\left\lceil\frac{n-t}{2}\right\rceil$ vertex-disjoint heterochromatic trees to cover all the vertices, we only need to find maximal heterochromatic connected subgraphs one by one. Given an r-edge-coloring of K_{n}, the following procedure produces a maximal heterochromatic connected subgraph.

Procedure

0. Initial state: Let H be an edge of K_{n}.
1. For any $u, v \in V(H)$, $u v \notin E(H)$, if there is no any edge $e \in E(H)$ such that $\phi(e)=\phi(u v)$, then $H \leftarrow H+u v$.
2. For each $u \in V(H), v \notin V(H)$, if there is no any edge $e \in E(H)$ such that $\phi(e)=\phi(u v)$, then $H \leftarrow H+u v$ and Goto 1.
3. For each $u \in V(H), v \notin V(H)$, if there is a non-cutedge $e \in E(H)$ such that $\phi(e)=\phi(u v)$, then $H \leftarrow H+u v-e$ and Goto 1.
4. Stop!

Theorem 4.2 The procedure above can find a maximal heterochromatic connected subgraph in polynomial time.

Proof. Let the current graph H have k vertices. Then Step 1 can be checked in at most $\binom{k}{2}$ times. And Steps 2 and 3 can be checked in at most $k(n-k)$ times and $k(n-k)+k$ times, respectively. So the procedure can find a maximal heterochromatic connected subgraph in $O\left(n^{3}\right)$.

Repeating the procedure at most $O(n)$ times, we can find at most $\left\lceil\frac{n-t}{2}\right\rceil$ vertex-disjoint heterochromatic trees to cover all the vertices, and then we have the following result.

Theorem 4.3 For any r-edge-colored complete graph K_{n} and $k \geq\left\lceil\frac{n-t}{2}\right\rceil$, the heterochromatic tree partition problem can be solved in polynomial time.

5 Further discussion

There are several possible directions for further investigation. In our construction of the canonical r-edge-coloring ϕ_{r}^{*} in Section 2, one of the color classes contains lots of edges while each of the other color classes contains only one edge. One could therefore consider the problem for r-edge-colorings such that each color classes contains a bounded number of edges. In our construction of ϕ_{r}^{*}, some vertices have large color degree (i.e., the number of colors used on the incident edges) while the others have color degree only one. This is also a possible direction for generalization. In Section 4, we show that the heterochromatic tree partition problem can be solved in polynomial time for any r-edge-colored complete graph K_{n} and $k \geq\left\lceil\frac{n-t}{2}\right\rceil$. However, we do not know the complexity for the case $k<\left\lceil\frac{n-t}{2}\right\rceil$.

References

[1] Chen, H., Jin, Z., Li, X. and Tu, J. Heterochromatic tree partition numbers for complete bipartite graphs. Discrete Math. 308:3871-3878 (2008)
[2] Erdős, P., Gyárfás, A. and Pyber, L. Vertex coverings by monochromatic cycles and trees. J. Combin. Theory Ser.B. 51:90-95 (1991)
[3] Gyárfás, A. Vertex coverings by monochromatic paths and cycles. J. Graph Theory 7:131-135 (1983)
[4] Gyárfás, A. Covering complete graphs by monochromatic paths, in Irregularities of Partitions, Algorithms and Combinatorics, Vol.8, Springer-Verlag, 1989
[5] Gyárfás, A., Ruszinkó, M. , Sárközy, G. N. and Szemerédi, E. An improved bound for the monochromatic cycle partition number. J. Combin. Theory Ser.B. 96:855-873 (2006)
[6] Haxell, P. E. Partitioning complete bipartite graphs by monochromatic cycles. J. Combin. Theory Ser.B. 69:210-218 (1997)
[7] Haxell, P. E., Kohayakawa, Y. Partitioning by monochromatic trees. J. Combin. Theory Ser.B. 68:218-222 (1996)
[8] Jin, Z., Kano, M., Li, X. and Wei, B. Partitioning 2-edge-colored complete multipartite graphs into monochromatic cycles, paths and trees. J. Combin. Optim. 11:445-454 (2006)
[9] Kaneko, A., Kano, M. and Suzuki, K. Partitioning complete multipartite graphs by monochromatic trees. J. Graph Theory 48:133-141 (2005)
[10] Li, X., Zhang, X. On the minimum monochromatic or multicolored subgraph partition problems. Theoret. Comput. Sci. 385:1-10, (2007)
[11] Luczak, T., Rödl, V. and Szemerédi, E. Partitioning 2-edge-colored complete graphs into 2 monochromatic cycles. Combin. Probab. Comput. 7:423-436 (1998)
[12] Rado, R. Monochromatic paths in graphs. Ann. Discrete Math. 3:191-194 (1978)

