Partitioning complete graphs by heterochromatic trees
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Abstract A heterochromatic tree is an edge-colored tree in which any two edges have different colors.
The heterochromatic tree partition number of an r-edge-colored graph G, denoted by ¢.(G), is the
minimum positive integer p such that whenever the edges of the graph G are colored with r colors,
the vertices of G can be covered by at most p vertex-disjoint heterochromatic trees. In this paper we
determine the heterochromatic tree partition number of r-edge-colored complete graphs. We also find
at most t,(K,) disjoint heterochromatic trees to cover all the vertices in polynomial time for a given
r-edge-coloring of K.
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1 Introduction

A monochromatic tree is an edge-colored tree in which any two edges have the same color, while a hete-
rochromatic tree is an edge-colored tree in which any two edges have different colors. The monochromatic
tree partition number of an r-edge-colored graph G is defined to be the minimum positive integer p
such that whenever the edges of G are colored with r colors, the vertices of G can be covered by
at most p vertex-disjoint monochromatic trees. The monochromatic cycle partition number and the
momnochromatic path partition number are defined analogously.

Erdds et al. [2] proved that the monochromatic cycle partition number of an r-edge-colored complete
graph K, is at most ¢r® In 7 for some constant ¢. This implies a conjecture from Gyarfas [4] in a stronger
form. Recently, the bound was improved by Gydrfas et al. [5]. Almost solving one of the conjectures in
[2], Haxell et al. [7] proved that the monochromatic tree partition number of an r-edge-colored complete
graph K, is at most r provided that n is large enough with respect to r. Haxell [6] proved that the
monochromatic cycle partition number of an r-edge-colored complete bipartite graph K, , is also
independent of n, which answered a question in [2]. Since the monochromatic path partition number
is less than the monochromatic cycle partition number, a natural corollary is that the monochromatic
path partition number of K, or K, . is also independent of n.

From above, one can see that the monochromatic tree, path, and cycle partition number of r-
edge-colored graphs K, and K, , are independent of n. This seems to be not true for other graphs
such as 2-edge-colored complete multipartite graph. Let ni,n2,---,n, (k > 2) be integers such that

1<mi <nyg <---<npandn=mn +n2+ -+ ng_1,m = ng. The authors [9] showed that
m—2

t (Knyng,my) = [ 572 ] +2, where t;.(Knl’n%...,nk) denotes the monochromatic tree partition number
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of the r-edge-colored graph Kn, n,,...,n,. Given a 2-edge-colored complete multipartite graph, Jin et al.
[8] presented a polynomial algorithm to find the minimum number of vertex-disjoint monochromatic
trees to cover all the vertices. Other related partition problems can be found in [10, 11, 12].

Analogous to the monochromatic case, the heterochromatic tree partition number of an r-edge-
colored graph G, denoted by t,(G), is defined to be the minimum positive integer p such that whenever
the edges of the graph G are colored with r colors, the vertices of G can be covered by at most p vertex-
disjoint heterochromatic trees. Compared with the monochromatic case, there are few results on the
heterochromatic tree partition number. Chen et al. [1] derived the heterochromatic tree partition
number of an r-edge-colored complete bipartite graph.

In this paper we consider the heterochromatic tree partition number of an r-edge-colored complete
graph K,. In order to prove our main result, we introduce the following definitions and notation.
Throughout this paper, we use r to denote the number of colors. An r-edge-coloring of a graph G
means that each color appears at least once in GG. Let ¢ be an r-edge-coloring of a graph G. For an
edge e € E(G), denote by ¢(e) the color of e. Denote by ¢.(G,$) the minimum positive integer p
such that under the r-edge-coloring ¢, the vertices of G can be covered by at most p vertex-disjoint
heterochromatic trees. Clearly, t,(G) = maxe t-(G, ¢), where ¢ runs over all r-edge-colorings of the
graph G. Let F' be a spanning forest of GG, each component of which is a heterochromatic tree. If F
contains exactly t,(G, ¢) components, then F is called an optimal heterochromatic tree partition of the
graph G with the edge-coloring ¢. Note that a tree consisting of a single vertex is also regarded as a
heterochromatic tree.

For any integer r > 2, there is a unique positive integer ¢, such that (;) +2<r< (tzl) + 1.
Clearly, the integer ¢ is determined completely by r, and here we denote it by f(r) = t. This integer
f(r) = t will play an important role in expressing the number ¢.(K,). If the color number r = 1, clearly
a maximum matching (plus a single vertex when n is odd) in K, is an optimal heterochromatic tree
partition, and then ¢.(K,) = (%-\ So, in the rest of this paper we only consider the case 2 < r < (g)

The following is the main result of this paper.
Theorem 1.1 Letn >3,2<r < (Z) and f(r) =t. Then t.(Kn) = [25%].

As we know, the monochromatic tree partition number of an edge-colored complete graph K, is
bounded by a function independent of n, and from the result mentioned above, the heterochromatic

tree partition number does not have this property any more.

2 A canonical r-edge-coloring ¢
In this section we present a canonical r-edge-coloring of the graph K,. Let S C V(K,) and |S| = t.
Take a vertex u € V(K,) — S. We define the canonical r-edge-coloring ¢;. by

1. assigning distinct colors to the edges of K,[S];

2. for each color not used in K,[S], assign it to an edge uv between u and S;

3. finally, color all the remaining edges by the color not used if it exists, or else by the same color

used before.



We have the following proposition.

Proposition 2.1 t.(Kn,¢;) = ]—”qu

n—t

Proof. First, we present an heterochromatic tree partition with exact [25t] components, which implies
that t,(Kn,¢5) < [251]. Let X = SU{u} U {v}, where v € V(K,) — S —u. It is easy to see that
K, [X] contains a heterochromatic spanning tree T', and the vertices not in X induce a monochromatic

complete subgraph which can be covered by ["*TH] disjoint heterochromatic trees. So, the union of

T and those (”7572] disjoint heterochromatic trees consist of a heterochromatic tree partition of K.
This implies that ¢,(Kn, ¢;) < [251].

Next, we prove that t.(Kn,$;) > [251]. Suppose on the contrary that t,.(Kn,¢;) < [27] for
some n and r.

Let F' be an optimal heterochromatic tree partition of K, with r-edge-coloring ¢;. Denote by
11,15, -+, Ty the components of F' each of which contains a vertex of S. We choose F' such that the
number of trees covering S is as small as possible. Note that each component of F' not containing any
vertex of S is an edge or a single vertex, and at most one of the components of F' is a single vertex.
Since F' is an optimal heterochromatic tree partition, from the definition of ¢;, we have the following
facts.

Fact 1. v € T; for some 1 <i<k.
Fact 2. |T; N (V(Ky,) — S —u)| =1 for each Tj.
If K = 1, it is easy to see that F' contains exactly [”gt] trees. So, assume that k > 2. Let SNT; = S;

and v; = T; N (V(Ky,) — S —u). From the definition of ¢, we have that there exists a heterochromatic
tree, denoted by T, covering all the vertices of T1 U (T — v2). So F = (F—Ty —To)U{T}U{vz} is an

optimal heterochromatic tree partition such that the number of trees covering S is k—1, a contradiction,

which completes the proof. |

3 Proof of Theorem 1.1

Given a complete graph K, , the heterochromatic tree partition number is closely related to the color
number. Before proving our main result, we have the following lemma which gives the relationship

between tr41(Ky) and t-(Ky).
Lemma 3.1 t,41(Kn) < t.(Kn).

Proof. Given any (r + 1)-edge-coloring ¢ of K,. Denote by E; the set of edges colored by the color i.
Recoloring the edges of Er11 by the color r, we obtain a r-edge-coloring 1 of K. Clearly, tr4+1(Kn, @) <
tr(Kn, ¥). So, tr1(Kp) < tr(Ky). i

The following lemma gives the relationship between the edge-connectivity and size of a graph. Its

proof is omitted.
Lemma 3.2 Let G be a simple graph of order n. If G contains a cut-edge, then |E(G)| < (";1) + 1.

Proof of Theorem 1.1:



We prove the theorem by induction on r and n. First, we consider the case r = 2. Let ¢ be a 2-
edge-coloring of K,,. Note that for any 2-edge-coloring of K,,, n > 3, there is always a heterochromatic
tree of order three. Then, we can easily find 1 + [252] = [251] vertex-disjoint heterochromatic trees
which cover all the vertices. So we have t,(Kn,¢) < [251]. Then, from Proposition 2.1 the result
holds for » = 2. Obviously, the result holds for n = 3, 4.

Assume that the result holds for the color number less than r or the order of a complete graph
less than n. Now we consider the r-edge-colored complete graph K,, r > 3. Let f(r) = ¢t. If
(;) +3<r< (t;rl) + 1, then f(r —1) = t. By the induction hypothesis, t,—1(Kn) = [25t]. From
Lemma 3.1, t,(Kpn) < tr—1(Kn) = [25]. And, from Proposition 2.1, t-(Kpn) > t,(Kn, ¢7) = [252].

Then, we have t.(Kn,) = [2:], as desired.

So, we only need to consider the case r = (g) + 2. Let ¢ be an r-edge-coloring of K,,. Let G be
a heterochromatic subgraph of K, such that §(G) > 1 and, for each color i, there is a unique edge
colored by the color ¢ in G. Denote by G1,Ga, - -, Gk the components of GG, where the order of G; is
ni, 1 <i<k,and n1 >ng > --- > ni > 2. Choose G such that n, is as large as possible. Since the

color number r > 3, we have n; > 3.

Suppose k = 1. By r = (1) + 2, we have n1 > ¢t + 1. If n1 > ¢+ 2, then t,(Kn, ¢) < 1+ [252] <

[23%]. So, assume n; = t+1. By Lemma 3.2, G does not contain any cut-edge. Let g € [V (G1),V(G1)],

i.e., one end-vertex of g belongs to V(G1) and the other one belongs to V(G1). From the choice of G,
there is an edge h € E(G1) with ¢(h) = ¢(g). Since G does not contain any cut-edge, by deleting the
edge h and adding the edge g, we can find a heterochromatic graph with r edges, the largest component
of which has an order at least n1 + 1, a contradiction to the choice of the graph G.

So, assume k > 2. If n1 >t 4 2, then ¢, (Kn,¢) <14 [255] < [271], as desired. Thus, assume
n1 < t+ 1. We have the following claim.

Claim: G contains a cut-edge, and then |E(G1)| < (”1271) +1

If G1 does not contain any cut-edge, then it is easy to find a heterochromatic graph with r edges,
the largest component of which has order at least n1 + 1, a contradiction. From Lemma 3.2, |E(G1)| <
(”1271) + 1 follows clearly.

Now we consider the graph K, — V(G1), a complete graph of order n — n;. When restricting the
r-edge-coloring ¢ on the graph K, — V(G1), we have that K, — V(G1) is edge-colored by rg colors,
where 7o > r — (("1271) +1). Iif ro > 2, let f(ro) = to. It follows that either ro =1, or to >t — n1 + 1.
We distinguish the following cases.

Case 1. 7o = 1.

Then K, — V(G1) is monochromatic, and then it follows that £ = 2 and n2 = 2. Let G2 = wv.
From the choice of G, we have |E(G1)|=r—1= (;) +1. By n1 <t+1, we have ny =t+ 1. From
Claim 1, let e be a cut-edge in G1. Since |E(G1)| = (;) +1and n1 =t+1, we have G1 —e = K; UK.
Let w € V(G1). From the choice of G, we have ¢(uw) # ¢(uv), and there is a cut-edge in G1 colored
by the same color ¢(uw).

If ny > 4, from G1 —e = K, UK, we have that e is the unique cut-edge in G1. By G1 —e & K, UK},
we can take a vertex w which is not single in G1 — e. Then ¢(uw) = ¢(e). By deleting the edge e and

adding the edge uw, we can find a heterochromatic graph with r edges, the largest component of which



has an order at least n1 + 1, a contradiction to the choice of G.

So, assume nqy = 3. Then r = 3 and G1 = Ps. Let G1 = zyz. Then either ¢(yu) = ¢(xy) or
¢(yu) = é(yz). Without loss of generality, assume ¢(yu) = ¢(xy). Then ¢(yu) # ¢(yz). Again, the
graph zyuw is heterochromatic and of size r, a contradiction to the choice of G.

Case 2. to >t—n1 + 1.

Since 9 > 2, we have to > 1. If to > t — n1 + 2, then by the induction hypothesis, the graph K,, —
V(G1) can be covered by at most [2=1=0] vertex-disjoint heterochromatic trees. Thus, t,(Kpn, ) <
14 [2=1=20] < [22L7] ) as desired.

Suppose to = t—n1+1. Then we have r = (;)—1—2 < |E(G1)|+ro < ("1271)—1—1—1—(’502“)—&—1 = ("1271)—&—
1+(t7”12+1+1)+1. This implies that (;) < ("1271)—&—(t*(’“;l)ﬂ)7 ie, (ni—1)(t—(n1—1)) <t—(n1—1).
By n1 > 3 and n1 <t+1, we have n1 =t+ 1, and then ¢y = 0, a contradiction to the fact to > 1. The

proof is now complete. |

4 Algorithmic aspect

From the result in previous section, we know that given an r-edge-coloring ¢ of Ky, tr(Kn,¢) < ]—"T*ﬂ

A natural question is how to find an optimal heterochromatic tree partition of K,. For general graphs,

the decision version of this problem is defined formally as follows:

Heterochromatic Tree Partition Problem

Instance: An r-edge-coloring ¢ of a graph GG, and a positive integer k.

Question: Are there k or less vertex-disjoint heterochromatic trees which cover all the vertices of G ?
For general graphs, the authors [10] showed that the problem above is N P-complete. Here, we

present some positive results for the complete graphs. We show that given an r-edge-coloring ¢ of K,

we can find at most ]—”Tfﬂ vertex-disjoint heterochromatic trees to cover all the vertices in polynomial

time. Our main technique comes from the proof in Section 3. A heterochromatic connected subgraph

H is called maximal if the following hold:
1. For any u,v € V(H) with uv ¢ E(H), there is an edge e € E(H) such that ¢(e) = ¢(uv).
2. For any u € V(H) and v ¢ V(H), there is a cut-edge e € E(H) such that ¢(e) = ¢(uv).

The following proposition is obvious and the detailed proof is omitted.

Proposition 4.1 If H is a mazimal heterochromatic connected subgraph of an edge-colored complete

graph Ky and V(H) C V(Ky), then |E(H)| < (‘V(H;)‘*l) + 1.

Let ¢ be an r-edge-coloring of K, and H be a maximal heterochromatic connected subgraph with
V(H) C V(K5). From the definition, one can easily see that the graph K,, — V(H) is edge-colored by
ro > r—|E(H)| colors. Let f(r) =t and f(ro) = to if 7o > 2. Also, if 7o > 2, then to >t — |V (H)|+ 1.

If |V(H)| >t + 2, Then we can find at most [Z25] vertex-disjoint heterochromatic trees to cover
all the vertices.

If rg = 1, as showed in proof of Theorem 1.1, we have that |V (H)| > ¢+ 2. Then we can find at

n—t

most [%5+] vertex-disjoint heterochromatic trees to cover all the vertices.



If ro > 2, as showed in proof of Theorem 1.1, we have that |V (H)| > t+2or to >t — |V(H)| + 2.
If to > t — |V(H)|+2, by Theorem 1.1, K,, — V(H) can be covered by at most [2=L=27 vertex-disjoint

heterochromatic trees.

n

So, from the analysis above, in order to find at most [“5 ] vertex-disjoint heterochromatic trees
to cover all the vertices, we only need to find maximal heterochromatic connected subgraphs one by
one. Given an r-edge-coloring of K, the following procedure produces a maximal heterochromatic
connected subgraph.
Procedure

0. Initial state: Let H be an edge of K.

1. For any u,v € V(H), uv ¢ E(H), if there is no any edge e € E(H) such that ¢(e) = ¢(uv),
then H «— H + wv.

2. For each u € V(H),v ¢ V(H), if there is no any edge e € E(H) such that ¢(e) = ¢(uv), then
H «— H + uv and Goto 1.

3. For each w € V(H),v ¢ V(H), if there is a non-cutedge e € E(H) such that ¢(e) = ¢(uv), then
H «— H + uv — e and Goto 1.

4. Stop!

Theorem 4.2 The procedure above can find a maximal heterochromatic connected subgraph in polyno-

mial time.

Proof. Let the current graph H have k vertices. Then Step 1 can be checked in at most (g) times.
And Steps 2 and 3 can be checked in at most k(n — k) times and k(n — k) + k times, respectively. So
the procedure can find a maximal heterochromatic connected subgraph in O(n?). |

Repeating the procedure at most O(n) times, we can find at most ]—”Tfﬂ vertex-disjoint heterochro-

matic trees to cover all the vertices, and then we have the following result.

Theorem 4.3 For any r-edge-colored complete graph K, and k > [%], the heterochromatic tree

partition problem can be solved in polynomial time.

5 Further discussion

There are several possible directions for further investigation. In our construction of the canonical
r-edge-coloring ¢, in Section 2, one of the color classes contains lots of edges while each of the other
color classes contains only one edge. One could therefore consider the problem for r-edge-colorings such
that each color classes contains a bounded number of edges. In our construction of ¢;, some vertices
have large color degree (i.e., the number of colors used on the incident edges) while the others have
color degree only one. This is also a possible direction for generalization. In Section 4, we show that
the heterochromatic tree partition problem can be solved in polynomial time for any r-edge-colored

complete graph K, and k > [25t]. However, we do not know the complexity for the case k < [Z251].
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