# Rainbow connection of graphs with diameter 2\*

Hengzhe Li, Xueliang Li, Sujuan Liu
Center for Combinatorics and LPMC-TJKLC
Nankai University, Tianjin 300071, China
lhz2010@mail.nankai.edu.cn; lxl@nankai.edu.cn; sjliu0529@126.com

#### Abstract

A path in an edge-colored graph, where adjacent edges may have the same color, is a rainbow path if no two edges of the path are colored the same. The rainbow connection number rc(G) of a graph G is the minimum integer k for which there exists a k-edge-coloring of G such that any two distinct vertices of G are connected by a rainbow path. It is known that for a graph G with diameter 2, deciding if rc(G) = 2 is NP-complete. In particular, computing rc(G) is NP-hard. So, it is interesting to know the upper bound of rc(G) for such a graph G. In this paper, we show that  $rc(G) \leq 5$  if G is a bridgeless graph with diameter 2, and that  $rc(G) \leq k+2$  if G is a connected graph with diameter 2 and has k bridges, where  $k \geq 1$ .

**Keywords**: Edge-coloring, Rainbow path, Rainbow connection number, Diameter **AMS subject classification 2010**: 05C15, 05C40

#### 1 Introduction

All graphs considered in this paper are undirected, finite and simple. We refer to book [1] for graph theoretical notation and terminology not described here. A path in an edge-colored graph, where adjacent edges may have the same color, is a rainbow path if no two edges of the path are colored the same. An edge-coloring of a graph G is a rainbow-connected edge-coloring if any two distinct vertices of G are connected by a rainbow path. Such an edge-coloring is called rainbow. The rainbow connection number rc(G) of G is the minimum integer k such that G has a rainbow-connected edge-coloring using k colors. It is easy to see that  $diam(G) \leq rc(G)$  for any connected graph G, where diam(G) is the diameter of G.

<sup>\*</sup>Supported by NSFC No. 11071130.

The rainbow connection number was introduced by Chartrand et al. in [5]. It has application in transferring information of high security in multicomputer networks. We refer the readers to [3, 6] for details. Bounds on the rainbow connection numbers of graphs have been studied in terms of other graph parameters, such as radius, dominating number, minimum degree, connectivity, etc. [2, 4, 5, 9, 8, 10]. Chakraborty et al.[3] investigated the hardness and algorithms for the rainbow connection number, and showed the following result.

**Theorem 1.** [3] Given a graph G with diameter 2, deciding if rc(G) = 2 is NP-complete. In particular, computing rc(G) is NP-hard.

It is well-known that almost all graphs have diameter 2. So, it is interesting to find a sharp upper bound on rc(G) when G has diameter 2. Clearly, the best lower bound on rc(G) for such a graph G is 2. In this paper, we give sharp upper bounds on the rainbow connection number of a graph with diameter 2: if G is a bridgeless graph with diameter 2, then  $rc(G) \leq 5$ ; if G is a connected graph with diameter 2 and has k bridges, where  $k \geq 1$ , then  $rc(G) \leq k + 2$ .

### 2 Main results

We begin with some notation and terminology. Let G be a graph. The eccentricity of a vertex u of G, written as  $\epsilon_G(u)$ , is  $\max\{d_G(u,v):v\in V(G)\}$ . The radius of G, written as  $\mathrm{rad}(G)$ , is  $\min\{\epsilon_G(u):u\in V(G)\}$ . A vertex u is a center of G if  $\epsilon_G(u)=\mathrm{rad}(G)$ . Let U be a set of vertices of G. The k-step open neighbourhood of U in G, denoted by  $N_G^k(U)$ , is  $\{v\in V(G):d_G(U,v)=k\}$  for each k, where  $0\leq k\leq \mathrm{diam}(G)$  and  $d_G(U,v)=\mathrm{min}\{d_G(u,v):u\in U\}$ . We write  $N_G(U)$  for  $N_G^1(U)$  and  $N_G(u)$  for  $N_G^1(\{u\})$ . For any two subsets X and Y of V(G), let  $E_G[X,Y]$  denote  $\{xy:x\in X,y\in Y,xy\in E(G)\}$ . Let c be a rainbow-connected edge-coloring of G. A path P is a  $\{k_1,\cdots,k_r\}$ -rainbow path if it is a rainbow path and  $c(e)\in\{k_1,\cdots,k_r\}$  for each e in E(P). In particular, an edge e is a k-color edge if it is colored by k.

**Proposition 2.** If G is a bridgeless graph with diameter 2, then either G is 2-connected, or G has only one cut-vertex. Furthermore, the vertex is the center of G, and G has radius 1.

Proof. Let G be a bridgeless graph with diameter 2. Suppose that G is not 2-connected, that is, G has a cut-vertex, say v. Moreover, G has only one cut-vertex, since  $\operatorname{diam}(G) = 2$ . If some vertex other than v is not adjacent to v, then its distance from the vertices in the other components of G - v is at least 3, a contradiction. Therefore v is the center of G, and G has radius 1.

**Lemma 3.** Let G be a bridgeless graph with diameter 2. If G has a cut vertex, then  $rc(G) \leq 3$ .

Proof. Let u be a cut-vertex of G. By Proposition 2, the vertex u is the only cut-vertex of G and is also adjacent to all other vertices. Let F be a spanning forest of G-u, and let (X,Y) be one of the bipartition defined by F. Note that F has no isolated vertices, because G has no bridges. We provide a 3-edge-coloring c of G as follows: c(e) = 1, if  $e \in E[u,X]$ ; c(e) = 2, if  $e \in E[u,Y]$ ; c(e) = 3, if  $e \in E[X,Y]$ . By the construct, paths joining any vertex of X to any vertex of Y through u are rainbow. Rainbow paths  $\langle x, u, y, x' \rangle$  join any two vertices  $x, x' \in X$ , where y is a neighbor of x' in F, and similarly there are rainbow paths of length 3 joining any two vertices in Y.

Let  $X_1, X_2, \dots X_k$  be pairwise disjoint vertex subsets of G. Notation  $X_1 \sim X_2 \sim \dots \sim X_k$  means that there exists some desired rainbow path  $\langle x_1, x_2, \dots, x_k \rangle$ , where  $x_i \in X_i$  for each  $i \in \{1, \dots, k\}$ .

**Lemma 4.** If G is a 2-connected graph with diameter 2, then  $rc(G) \leq 5$ .

*Proof.* Pick a vertex v in V(G) arbitrarily. Let

 $B = \{ u \in N_G^2(v) : there \ exists \ a \ vertex \ w \ in \ N_G^2(v) \ such \ that \ uw \in E(G) \}.$ 

We consider the following two cases distinguishing either  $B \neq \emptyset$  or  $B = \emptyset$ .

Case 1.  $B \neq \emptyset$ .

In this case, the subgraph G[B] of G induced by B has no isolated vertices. Let F be a spanning forest F of G[B], and let  $(B_1, B_2)$  be one of the bipartition defined by F. Now we divide  $N_G(v)$  as follows. Set  $X = \emptyset$  and  $Y = \emptyset$ . For each u in  $N_G(v)$ , if  $u \in N_G(B_1)$ , then we put u into X. If  $u \in N_G(B_2)$ , then we put u into Y. If  $u \in N_G(B_1)$  and  $u \in N_G(B_2)$ , then we put u into X. By the argument above, we know that for each x in X (y in Y), there exists a vertex y in Y (x in X) such that x and y are connected by a path P with length 3 satisfying  $(V(P) - \{x, y\}) \subseteq B$ .

We have the following claim for each u in  $N_G(v) - (X \cup Y)$ .

Claim 1. For each u in  $N_G(v) - (X \cup Y)$ , either u has a neighbor w in X, or u has a neighbor w in Y.

Proof of Claim 1. Let u be a vertex in  $N_G(v) - (X \cup Y)$ . Note that  $B_1$  is nonempty. If  $z \in B_1$ , then u and z are nonadjacent since  $u \notin X \cup Y$ . Moreover,  $\operatorname{diam}(G) = 2$  implies that u and z have a common neighbor w. We see that  $w \notin N_G^2(v)$ , otherwise,  $w \in B$  and  $u \in X \cup Y$ , a contradiction. Similarly, we have that  $w \notin N_G(v) - (X \cup Y)$ . Thus w must be contained in  $X \cup Y$ .

By the claim above, for each u in  $N_G(v) - (X \cup Y)$ , either we can put u into X such that  $u \in N_G(Y)$ , or we can put u into Y such that  $u \in N_G(X)$ . Now X and Y form a partition of  $N_G(v)$ .

For 
$$N_G^2(v) - B$$
, let 
$$A = \{ u \in N_G^2(v) : u \in N_G(X) \cap N_G(Y) \};$$
$$D_1 = \{ u \in N_G^2(v) : u \in N_G(X) - N_G(Y) \};$$
$$D_2 = \{ u \in N_G^2(v) : u \in N_G(Y) - N_G(X) \}.$$

We see that at least one of  $D_1$  and  $D_2$  is empty. Otherwise, there exist  $u \in D_1$  and  $v \in D_2$  such that  $d_G(u, v) \geq 3$ , a contradiction. Without loss of generality, suppose  $D_2 = \emptyset$ .

First, we provide a 5-edge-coloring  $c: E(G) - E_G[D_1, X] \to \{1, 2, \dots, 5\}$  defined by

$$c(e) = \begin{cases} 1, & if \ e \in E_G[v, X]; \\ 2, & if \ e \in E_G[v, Y]; \\ 3, & if \ e \in E_G[X, Y] \cup E_G[Y, A] \cup E_G[B_1, B_2]; \\ 4, & if \ e \in E_G[X, A] \cup E_G[X, B_1]; \\ 5, & if \ e \in E_G[Y, B_2], \ or \ otherwise. \end{cases}$$

Next, we color the edges in  $E_G[X, D_1]$  as follows. For each u in  $D_1$ , color one edge incident with u by 5 (solid lines) and the other edges incident with u by 4 (dotted lines). See Figure 1.



Figure 1. Figure 2.

We have the following claim for the coloring above.

- Claim 2. (i) For each x in X, there exists a vertex y in Y such that x and y are connected by a  $\{3,4,5\}$ -rainbow path in G-v.
- (ii) For each y in Y, there exists a vertex x in X such that x and y are connected by a  $\{3,4,5\}$ -rainbow path in G-v.
- (iii) For any two vertices u and u' in  $D_1$ , there exists a rainbow path connecting u and u'.
- (iv) For each u in  $D_1$  and each u' in X, there exists a rainbow path connecting u and u'. Proof of Claim 2. First, we show that (i) and (ii) hold. We only prove part (i), since part (ii) can be proved by a similar argument. By the procedure of constructing X and Y, we know that for any  $x \in X$ , either there exists a vertex  $y \in Y$  such that  $xy \in E(G)$ , or there exists a vertex  $y \in Y$  such that x and y are connected by a path P with length 3 satisfying

 $(V(P) - \{x, y\}) \subseteq B$ . Clearly, this path is a  $\{3, 4, 5\}$ -rainbow path.

Next, we show that (iii) holds. The vertices u and y have a common neighbor w in X since  $\operatorname{diam}(G) = 2$ . Furthermore, without loss of generality, suppose that uw is a 5-color edge. Therefore  $\langle u, w, y, v, w', u' \rangle$  is a rainbow path connecting u and u', where u' is adjacent to w' by a 4-color edge u'w'.

Finally, we show that (iv) holds. Pick a vertex y in Y. The vertices u and y have a common adjacency vertex w in X since diam(G) = 2. Therefore  $\langle u, w, y, v, u' \rangle$  is a rainbow path connecting u and u'. The proof of Claim 2 is complete.

It is easy to see that the edge-coloring above is rainbow in this case by Figure 1 and Table 1.

|       |   | ı                 | 1                 | 1                 | 1                 |                          |                          |
|-------|---|-------------------|-------------------|-------------------|-------------------|--------------------------|--------------------------|
|       | v | X                 | Y                 | A                 | $B_1$             | $B_2$                    | $D_1$                    |
| v     |   | $v \sim X$        | $v \sim Y$        | $v \sim X \sim A$ | $v \sim X \sim$   | $v \sim X \sim B_1 \sim$ | $v \sim X \sim D_1$      |
|       |   |                   |                   |                   | $B_1$             | $B_2$                    |                          |
| X     |   | Claim 2 and       | $X \sim v \sim Y$ | $X \sim v \sim$   | $X \sim v \sim$   | $X \sim v \sim Y \sim$   | Claim 2                  |
|       |   | $Y \sim v \sim X$ |                   | $Y \sim A$        | $Y \sim B_2 \sim$ | $B_2$                    |                          |
|       |   |                   |                   |                   | $B_1$             |                          |                          |
| Y     |   |                   | Claim 2 and       | $Y \sim v \sim$   | $Y \sim v \sim$   | $Y \sim v \sim X \sim$   | $Y \sim v \sim X \sim$   |
|       |   |                   | $X \sim v \sim Y$ | $X \sim A$        | $X \sim B_1$      | $B_1 \sim B_2$           | $D_1$                    |
| A     |   |                   |                   | $A \sim X \sim$   | $A \sim Y \sim$   | $A \sim X \sim v \sim$   | $A \sim Y \sim v \sim$   |
|       |   |                   |                   | $v \sim Y \sim A$ | $v \sim X \sim$   | $Y \sim B_2$             | $X \sim D_1$             |
|       |   |                   |                   |                   | $B_1$             |                          |                          |
| $B_1$ |   |                   |                   |                   | $B_1 \sim X \sim$ | $B_1 \sim X \sim v \sim$ | $B_1 \sim B_2 \sim$      |
|       |   |                   |                   |                   | $v \sim Y \sim$   | $Y \sim B_2$             | $Y \sim v \sim X \sim$   |
|       |   |                   |                   |                   | $B_2 \sim B_1$    |                          | $D_1$                    |
| $B_2$ |   |                   |                   |                   |                   | $B_2 \sim B_1 \sim$      | $B_2 \sim Y \sim v \sim$ |
|       |   |                   |                   |                   |                   | $X \sim v \sim Y \sim$   | $X \sim D_1$             |
|       |   |                   |                   |                   |                   | $B_2$                    |                          |
| $D_1$ |   |                   |                   |                   |                   |                          | Claim 2                  |

Table 1. Rainbow paths in G

Case 2.  $B = \emptyset$ .

In this case, clearly,  $N_G(u) \subseteq N_G(v)$  for each u in  $N_G^2(v)$ . To show a rainbow coloring of G, we need to construct a new graph H. The vertex set of H is  $N_G(v)$ , and the edge set is  $\{xy: x, y \in N_G(v), x \text{ and } y \text{ are connected by a path } P \text{ of length at most 2 in } G - v, \text{ and } V(P) \cap N_G(v) = \{x, y\} \}$ .

Claim 3. The graph H is connected.

*Proof of Claim* 3. Let x and y be any two distinct vertices of H. Since G is 2-connected, the vertices x and y are connected by a path in G - v. Let  $\langle v_0, v_1, \ldots, v_k \rangle$  is a shortest path joining x and y in G - v, where  $x = v_0$  and  $v_k = y$ .

If k = 1, then by the definition of H, the vertices x and y are adjacent in H. Otherwise,  $k \geq 2$ . Since  $\operatorname{diam}(G) = 2$ , the vertex  $v_i$  is adjacent to v, or  $v_i$  and v have a common neighbor  $u_i$  if  $d_G(v, v_i) = 2$ . For each integer i with  $0 \leq i \leq k - 1$ , if  $d_G(v, v_i) = 1$  and  $d_G(v, v_{i+1}) = 1$ , then  $v_i$  and  $v_{i+1}$  are contained in V(H), and they are adjacent in H. If

 $d_G(v, v_i) = 1$  and  $d_G(v, v_{i+1}) = 2$ , then  $v_i$  and  $u_{i+1}$  are contained in V(H), and they are adjacent in H. If  $d_G(v, v_i) = 2$  and  $d_G(v, v_{i+1}) = 1$ , then  $u_i$  and  $v_{i+1}$  are contained in V(H), and they are adjacent in H. If  $d_G(v, v_i) = 2$  and  $d_G(v, v_{i+1}) = 2$ , then  $u_i$  and  $u_{i+1}$  should be contained in B, which contradicts the fact that  $B = \emptyset$ . Therefore there exists a path connecting x and y in H. The proof of Claim 3 is complete.

Let T be a spanning tree of H, and let (X, Y) be the bipartition defined by T. Now divide  $N_G^2(v)$  as follows. For  $N_G^2(v)$ ,

let 
$$A = \{ u \in N_G^2(v) :\in N_G(X) \cap N_G(Y) \};$$

For  $N_G^2(v) - A$ ,

let 
$$D_1 = \{ u \in N_G^2(v) : u \in N_G(X) - N_G(Y) \},$$
  
 $D_2 = \{ u \in N_G^2(v) : u \in N_G(Y) - N_G(X) \}.$ 

We see that at least one of  $D_1$  and  $D_2$  is empty. Otherwise, there exist  $u \in D_1$  and  $v \in D_2$  such that  $d_G(u,v) \geq 3$ , a contradiction. Without loss of generality, suppose  $D_2 = \emptyset$ . Therefore A and  $D_1$  form a partition of  $N_G^2(v)$ . See Figure 2.

First, we provide a 4-edge-coloring  $c: E(G) - E_G[D_1, X] \to \{1, 2, \dots, 4\}$  defined by

$$c(e) = \begin{cases} 1, & if \ e \in E_G[v, X]; \\ 2, & if \ e \in E_G[v, Y]; \\ 3, & if \ e \in E_G[X, Y] \cup E_G[Y, A]; \\ 4, & if \ e \in E_G[X, A], \ or \ otherwise. \end{cases}$$

Next, we color the edges in  $E_G[X, D_1]$  as follows. For each u in  $D_1$ , color one edge incident with u by 5 (solid lines), the other edges incident with u by 4 (dotted lines). See Figure 2.

It is easy to check that the edge-coloring above is rainbow in this case by Figure 2 and Table 2.

|       | v     | X                 | Y                 | A                 | $D_1$                    |
|-------|-------|-------------------|-------------------|-------------------|--------------------------|
| v     | • • • | $v \sim X$        | $v \sim Y$        | $v \sim X \sim A$ | $v \sim X \sim D_1$      |
| X     |       | Claim 2 and       | $X \sim v \sim Y$ | $X \sim v \sim$   | Claim 2                  |
|       |       | $Y \sim v \sim X$ |                   | $Y \sim A$        |                          |
| Y     |       |                   | Claim 2 and       | $Y \sim v \sim$   | $Y \sim v \sim X \sim$   |
|       |       |                   | $X \sim v \sim Y$ | $X \sim A$        | $D_1$                    |
| A     | • • • |                   |                   | $A \sim X \sim$   | $A \sim Y \sim v \sim$   |
|       |       |                   |                   | $v \sim Y \sim A$ | $X \sim D_1$             |
| $D_1$ |       |                   |                   |                   | $D_1 \sim A \sim Y \sim$ |
|       |       |                   |                   |                   | $v \sim X \sim D_1$      |

Table 2. Rainbow paths in G

By this both possibilities have been exhausted and the proof is thus complete.

Combining Proposition 2 with Lemmas 3 and 4, we have the following theorem.

**Theorem 5.** If G is a bridgeless graph with diameter 2, then  $rc(G) \leq 5$ .

**Remark 1.** Recently, Dong and Li [7] gave a class of graphs with diameter 2 that achieve equality of this bound.

For graphs containing bridges, the following proposition holds.

**Proposition 6.** If G is a connected graph with diameter 2 and has k bridges, where  $k \ge 1$ , then  $rc(G) \le k + 2$ .

*Proof.* Since  $\operatorname{diam}(G) = 2$ , all bridges have a common endpoint u. Moreover, the vertex u is adjacent to all other vertices. For all bridges, we color them with different colors. The remaining edges can be colored similar to Lemma 1 with two new colors and one old color. It is easy to check that the coloring above is a rainbow-coloring of G with k+2 colors.  $\square$ 

**Tight examples:** The upper bound in Proposition 6 is tight. The graph  $(kK_1 \cup rK_2) \vee v$  has a rainbow connection number achieving this upper bound, where  $k \geq 1, r \geq 2$ .

## References

- [1] J.A. Bondy, U.S.R. Murty, Graph Theory, GTM 244, Springer, 2008.
- [2] M. Basavaraju, L.S. Chandran, D. Rajendraprasad, A. Ramaswamy, Rainbow connection number and radius, arXiv:1011.0620 [math.CO] 2010.
- [3] S. Chakraborty, E. Fischer, A. Matsliah, R. Yuster, Hardness and algorithms for rainbow connectivity, J. Combin. Optim. 21(2011), 330–347.
- [4] L.S. Chandran, A. Das, D. Rajendraprasad, N.M. Varma, Rainbow connection number and connected dominating sets, arXiv:1010.2296v1 [math.CO].
- [5] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, Rainbow connection in graphs, Math. Bohem. 133(2008), 85-98.
- [6] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, Rainbow connectivity of a graph, Networks 54(2009), 75-81.
- [7] J. Dong, X. Li, Note on the rainbow connection numbers of graphs with diameter 2, arXiv:1106.1258v2 [math.CO] 2011.
- [8] X. Li, Y. Sun, Rainbow Connections of Graphs, SpringerBriefs in Math., Springer, New York, 2012.
- [9] M. Krivelevich, R. Yuster, The rainbow connection of a graph is (at most) reciprocal to its minimum degree, J. Graph Theory 63(2010), 185-91.

[10] I. Schiermeyer, Rainbow connection in graphs with minimum degree three, In Fiala, J., Kratochvl, J., and Miller, M., editors, Combinatorial Algorithms, Lecture Notes in Computer Science Vol.5874 (2009), 432-437. Springer Berlin / Heidelberg.