# Rainbow connection of graphs with diameter $2^{*}$ 

Hengzhe Li, Xueliang Li, Sujuan Liu<br>Center for Combinatorics and LPMC-TJKLC<br>Nankai University, Tianjin 300071, China<br>lhz2010@mail.nankai.edu.cn; lxl@nankai.edu.cn; sjliu0529@126.com


#### Abstract

A path in an edge-colored graph, where adjacent edges may have the same color, is a rainbow path if no two edges of the path are colored the same. The rainbow connection number $r c(G)$ of a graph $G$ is the minimum integer $k$ for which there exists a $k$-edge-coloring of $G$ such that any two distinct vertices of $G$ are connected by a rainbow path. It is known that for a graph $G$ with diameter 2 , deciding if $r c(G)=2$ is NP-complete. In particular, computing $r c(G)$ is NP-hard. So, it is interesting to know the upper bound of $r c(G)$ for such a graph $G$. In this paper, we show that $r c(G) \leq 5$ if $G$ is a bridgeless graph with diameter 2 , and that $r c(G) \leq k+2$ if $G$ is a connected graph with diameter 2 and has $k$ bridges, where $k \geq 1$.


Keywords: Edge-coloring, Rainbow path, Rainbow connection number, Diameter AMS subject classification 2010: 05C15, 05C40

## 1 Introduction

All graphs considered in this paper are undirected, finite and simple. We refer to book [1] for graph theoretical notation and terminology not described here. A path in an edgecolored graph, where adjacent edges may have the same color, is a rainbow path if no two edges of the path are colored the same. An edge-coloring of a graph $G$ is a rainbowconnected edge-coloring if any two distinct vertices of $G$ are connected by a rainbow path. Such an edge-coloring is called rainbow. The rainbow connection number $\operatorname{rc}(G)$ of $G$ is the minimum integer $k$ such that $G$ has a rainbow-connected edge-coloring using $k$ colors. It is easy to see that $\operatorname{diam}(G) \leq r c(G)$ for any connected graph $G$, where $\operatorname{diam}(G)$ is the diameter of $G$.

[^0]The rainbow connection number was introduced by Chartrand et al. in [5]. It has application in transferring information of high security in multicomputer networks. We refer the readers to $[3,6]$ for details. Bounds on the rainbow connection numbers of graphs have been studied in terms of other graph parameters, such as radius, dominating number, minimum degree, connectivity, etc. [2, 4, 5, 9, 8, 10]. Chakraborty et al.[3] investigated the hardness and algorithms for the rainbow connection number, and showed the following result.

Theorem 1. [3] Given a graph $G$ with diameter 2, deciding if $r c(G)=2$ is NP-complete. In particular, computing $r c(G)$ is $N P$-hard.

It is well-known that almost all graphs have diameter 2. So, it is interesting to find a sharp upper bound on $r c(G)$ when $G$ has diameter 2. Clearly, the best lower bound on $r c(G)$ for such a graph $G$ is 2 . In this paper, we give sharp upper bounds on the rainbow connection number of a graph with diameter 2 : if $G$ is a bridgeless graph with diameter 2, then $r c(G) \leq 5$; if $G$ is a connected graph with diameter 2 and has $k$ bridges, where $k \geq 1$, then $r c(G) \leq k+2$.

## 2 Main results

We begin with some notation and terminology. Let $G$ be a graph. The eccentricity of a vertex $u$ of $G$, written as $\epsilon_{G}(u)$, is $\max \left\{d_{G}(u, v): v \in V(G)\right\}$. The radius of $G$, written as $\operatorname{rad}(G)$, is $\min \left\{\epsilon_{G}(u): u \in V(G)\right\}$. A vertex $u$ is a center of $G$ if $\epsilon_{G}(u)=\operatorname{rad}(G)$. Let $U$ be a set of vertices of $G$. The $k$-step open neighbourhood of $U$ in $G$, denoted by $N_{G}^{k}(U)$, is $\left\{v \in V(G): d_{G}(U, v)=k\right\}$ for each $k$, where $0 \leq k \leq \operatorname{diam}(G)$ and $d_{G}(U, v)=$ $\min \left\{d_{G}(u, v): u \in U\right\}$. We write $N_{G}(U)$ for $N_{G}^{1}(U)$ and $N_{G}(u)$ for $N_{G}^{1}(\{u\})$. For any two subsets $X$ and $Y$ of $V(G)$, let $E_{G}[X, Y]$ denote $\{x y: x \in X, y \in Y, x y \in E(G)\}$. Let $c$ be a rainbow-connected edge-coloring of $G$. A path $P$ is a $\left\{k_{1}, \cdots, k_{r}\right\}$-rainbow path if it is a rainbow path and $c(e) \in\left\{k_{1}, \cdots, k_{r}\right\}$ for each $e$ in $E(P)$. In particular, an edge $e$ is a $k$-color edge if it is colored by $k$.

Proposition 2. If $G$ is a bridgeless graph with diameter 2, then either $G$ is 2-connected, or $G$ has only one cut-vertex. Furthermore, the vertex is the center of $G$, and $G$ has radius 1.

Proof. Let $G$ be a bridgeless graph with diameter 2. Suppose that $G$ is not 2 -connected, that is, $G$ has a cut-vertex, say $v$. Moreover, $G$ has only one cut-vertex, since $\operatorname{diam}(G)=2$. If some vertex other than $v$ is not adjacent to $v$, then its distance from the vertices in the other components of $G-v$ is at least 3 , a contradiction. Therefore $v$ is the center of $G$, and $G$ has radius 1 .

Lemma 3. Let $G$ be a bridgeless graph with diameter 2. If $G$ has a cut vertex, then $r c(G) \leq 3$.

Proof. Let $u$ be a cut-vertex of $G$. By Proposition 2, the vertex $u$ is the only cut-vertex of $G$ and is also adjacent to all other vertices. Let $F$ be a spanning forest of $G-u$, and let $(X, Y)$ be one of the bipartition defined by $F$. Note that $F$ has no isolated vertices, because $G$ has no bridges. We provide a 3-edge-coloring $c$ of $G$ as follows: $c(e)=1$, if $e \in$ $E[u, X] ; c(e)=2$, if $e \in E[u, Y] ; c(e)=3$, if $e \in E[X, Y]$. By the construct, paths joining any vertex of $X$ to any vertex of $Y$ through $u$ are rainbow. Rainbow paths $\left\langle x, u, y, x^{\prime}\right\rangle$ join any two vertices $x, x^{\prime} \in X$, where $y$ is a neighbor of $x^{\prime}$ in $F$, and similarly there are rainbow paths of length 3 joining any two vertices in $Y$.

Let $X_{1}, X_{2}, \cdots X_{k}$ be pairwise disjoint vertex subsets of $G$. Notation $X_{1} \sim X_{2} \sim \cdots \sim$ $X_{k}$ means that there exists some desired rainbow path $\left\langle x_{1}, x_{2}, \cdots, x_{k}\right\rangle$, where $x_{i} \in X_{i}$ for each $i \in\{1, \ldots, k\}$.

Lemma 4. If $G$ is a 2 -connected graph with diameter 2 , then $r c(G) \leq 5$.
Proof. Pick a vertex $v$ in $V(G)$ arbitrarily. Let
$B=\left\{u \in N_{G}^{2}(v)\right.$ : there exists a vertex $w$ in $N_{G}^{2}(v)$ such that $\left.u w \in E(G)\right\}$.
We consider the following two cases distinguishing either $B \neq \emptyset$ or $B=\emptyset$.
Case 1. $B \neq \emptyset$.
In this case, the subgraph $G[B]$ of $G$ induced by $B$ has no isolated vertices. Let $F$ be a spanning forest $F$ of $G[B]$, and let $\left(B_{1}, B_{2}\right)$ be one of the bipartition defined by $F$. Now we divide $N_{G}(v)$ as follows. Set $X=\emptyset$ and $Y=\emptyset$. For each $u$ in $N_{G}(v)$, if $u \in N_{G}\left(B_{1}\right)$, then we put $u$ into $X$. If $u \in N_{G}\left(B_{2}\right)$, then we put $u$ into $Y$. If $u \in N_{G}\left(B_{1}\right)$ and $u \in N_{G}\left(B_{2}\right)$, then we put $u$ into $X$. By the argument above, we know that for each $x$ in $X(y$ in $Y)$, there exists a vertex $y$ in $Y(x$ in $X)$ such that $x$ and $y$ are connected by a path $P$ with length 3 satisfying $(V(P)-\{x, y\}) \subseteq B$.

We have the following claim for each $u$ in $N_{G}(v)-(X \cup Y)$.
Claim 1. For each $u$ in $N_{G}(v)-(X \cup Y)$, either $u$ has a neighbor $w$ in $X$, or $u$ has a neighbor $w$ in $Y$.
Proof of Claim 1. Let $u$ be a vertex in $N_{G}(v)-(X \cup Y)$. Note that $B_{1}$ is nonempty. If $z \in B_{1}$, then $u$ and $z$ are nonadjacent since $u \notin X \cup Y$. Moreover, $\operatorname{diam}(G)=2$ implies that $u$ and $z$ have a common neighbor $w$. We see that $w \notin N_{G}^{2}(v)$, otherwise, $w \in B$ and $u \in X \cup Y$, a contradiction. Similarly, we have that $w \notin N_{G}(v)-(X \cup Y)$. Thus $w$ must be contained in $X \cup Y$.

By the claim above, for each $u$ in $N_{G}(v)-(X \cup Y)$, either we can put $u$ into $X$ such that $u \in N_{G}(Y)$, or we can put $u$ into $Y$ such that $u \in N_{G}(X)$. Now $X$ and $Y$ form a partition of $N_{G}(v)$.

For $N_{G}^{2}(v)-B$, let

$$
\begin{aligned}
A & =\left\{u \in N_{G}^{2}(v): u \in N_{G}(X) \cap N_{G}(Y)\right\} ; \\
D_{1} & =\left\{u \in N_{G}^{2}(v): u \in N_{G}(X)-N_{G}(Y)\right\} ; \\
D_{2} & =\left\{u \in N_{G}^{2}(v): u \in N_{G}(Y)-N_{G}(X)\right\} .
\end{aligned}
$$

We see that at least one of $D_{1}$ and $D_{2}$ is empty. Otherwise, there exist $u \in D_{1}$ and $v \in D_{2}$ such that $d_{G}(u, v) \geq 3$, a contradiction. Without loss of generality, suppose $D_{2}=\emptyset$.

First, we provide a 5 -edge-coloring $c: E(G)-E_{G}\left[D_{1}, X\right] \rightarrow\{1,2, \ldots, 5\}$ defined by

$$
c(e)= \begin{cases}1, & \text { if } e \in E_{G}[v, X] ; \\ 2, & \text { if } e \in E_{G}[v, Y] ; \\ 3, & \text { if } e \in E_{G}[X, Y] \cup E_{G}[Y, A] \cup E_{G}\left[B_{1}, B_{2}\right] ; \\ 4, & \text { if } e \in E_{G}[X, A] \cup E_{G}\left[X, B_{1}\right] ; \\ 5, & \text { if } e \in E_{G}\left[Y, B_{2}\right], \text { or otherwise. }\end{cases}
$$

Next, we color the edges in $E_{G}\left[X, D_{1}\right]$ as follows. For each $u$ in $D_{1}$, color one edge incident with $u$ by 5 (solid lines) and the other edges incident with $u$ by 4 (dotted lines). See Figure 1.


Figure 1.


Figure 2.

We have the following claim for the coloring above.
Claim 2. (i) For each $x$ in $X$, there exists a vertex $y$ in $Y$ such that $x$ and $y$ are connected by a $\{3,4,5\}$-rainbow path in $G-v$.
(ii) For each $y$ in $Y$, there exists $a$ vertex $x$ in $X$ such that $x$ and $y$ are connected by $a$ $\{3,4,5\}$-rainbow path in $G-v$.
(iii) For any two vertices $u$ and $u^{\prime}$ in $D_{1}$, there exists a rainbow path connecting $u$ and $u^{\prime}$.
(iv) For each $u$ in $D_{1}$ and each $u^{\prime}$ in $X$, there exists a rainbow path connecting $u$ and $u^{\prime}$.

Proof of Claim 2. First, we show that (i) and (ii) hold. We only prove part (i), since part (ii) can be proved by a similar argument. By the procedure of constructing $X$ and $Y$, we know that for any $x \in X$, either there exists a vertex $y \in Y$ such that $x y \in E(G)$, or there exists a vertex $y \in Y$ such that $x$ and $y$ are connected by a path $P$ with length 3 satisfying
$(V(P)-\{x, y\}) \subseteq B$. Clearly, this path is a $\{3,4,5\}$-rainbow path.
Next, we show that (iii) holds. The vertices $u$ and $y$ have a common neighbor $w$ in $X$ since $\operatorname{diam}(G)=2$. Furthermore, without loss of generality, suppose that $u w$ is a 5 color edge. Therefore $\left\langle u, w, y, v, w^{\prime}, u^{\prime}\right\rangle$ is a rainbow path connecting $u$ and $u^{\prime}$, where $u^{\prime}$ is adjacent to $w^{\prime}$ by a 4 -color edge $u^{\prime} w^{\prime}$.

Finally, we show that (iv) holds. Pick a vertex $y$ in $Y$. The vertices $u$ and $y$ have a common adjacency vertex $w$ in $X$ since $\operatorname{diam}(G)=2$. Therefore $\left\langle u, w, y, v, u^{\prime}\right\rangle$ is a rainbow path connecting $u$ and $u^{\prime}$. The proof of Claim 2 is complete.

It is easy to see that the edge-coloring above is rainbow in this case by Figure 1 and Table 1.

|  | $v$ | $X$ | $Y$ | $A$ | $B_{1}$ | $B_{2}$ | $D_{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $v$ | $\cdots$ | $v \sim X$ | $v \sim Y$ | $v \sim X \sim A$ | $\begin{aligned} & v \sim X \sim \\ & B_{1} \end{aligned}$ | $\begin{aligned} & v \sim X \sim B_{1} \sim \\ & B_{2} \end{aligned}$ | $v \sim X \sim D_{1}$ |
| $X$ | $\cdots$ | $\begin{aligned} & \text { Claim } 2 \text { and } \\ & Y \sim v \sim X \end{aligned}$ | $X \sim v \sim Y$ | $\begin{aligned} & X \sim v \sim \\ & Y \sim A \end{aligned}$ | $\begin{aligned} & X \sim v \sim \\ & Y \sim B_{2} \sim \\ & B_{1} \end{aligned}$ | $\begin{aligned} & X \sim v \sim Y \sim \\ & B_{2} \end{aligned}$ | Claim 2 |
| $Y$ | $\cdots$ | $\cdots$ | $\begin{aligned} & \text { Claim } 2 \text { and } \\ & X \sim v \sim Y \end{aligned}$ | $\begin{aligned} & Y \sim v \sim \\ & X \sim A \end{aligned}$ | $\begin{aligned} & Y \sim v \sim \\ & X \sim B_{1} \end{aligned}$ | $\begin{aligned} & Y \sim v \sim X \sim \\ & B_{1} \sim B_{2} \end{aligned}$ | $\begin{aligned} & Y \sim v \sim X \sim \\ & D_{1} \end{aligned}$ |
| $A$ | $\cdots$ | $\cdots$ | $\cdots$ | $\begin{aligned} & A \sim X \sim \\ & v \sim Y \sim A \end{aligned}$ | $\begin{aligned} & A \sim Y \sim \\ & v \sim X \sim \\ & B_{1} \end{aligned}$ | $\begin{aligned} & A \sim X \sim v \sim \\ & Y \sim B_{2} \end{aligned}$ | $\begin{aligned} & A \sim Y \sim v \sim \\ & X \sim D_{1} \end{aligned}$ |
| $B_{1}$ | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ | $\begin{aligned} & B_{1} \sim X \sim \\ & v \sim Y \sim \\ & B_{2} \sim B_{1} \end{aligned}$ | $\begin{aligned} & B_{1} \sim X \sim v \sim \\ & Y \sim B_{2} \end{aligned}$ | $\begin{aligned} & B_{1} \sim B_{2} \sim \\ & Y \sim v \sim X \sim \\ & D_{1} \end{aligned}$ |
| $B_{2}$ | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ | $\begin{aligned} & B_{2} \sim B_{1} \sim \\ & X \sim v \sim Y \sim \\ & B_{2} \end{aligned}$ | $\begin{aligned} & B_{2} \sim Y \sim v \sim \\ & X \sim D_{1} \end{aligned}$ |
| $D_{1}$ | $\cdots$ | $\cdots$ | $\ldots$ | . $\cdot$ | $\ldots$ | $\ldots$ | Claim 2 |

Table 1. Rainbow paths in $G$

Case 2. $B=\emptyset$.
In this case, clearly, $N_{G}(u) \subseteq N_{G}(v)$ for each $u$ in $N_{G}^{2}(v)$. To show a rainbow coloring of $G$, we need to construct a new graph $H$. The vertex set of $H$ is $N_{G}(v)$, and the edge set is $\left\{x y: x, y \in N_{G}(v), x\right.$ and $y$ are connected by a path $P$ of length at most 2 in $G-$ $v$, and $\left.V(P) \cap N_{G}(v)=\{x, y\}\right\}$.

Claim 3. The graph $H$ is connected.
Proof of Claim 3. Let $x$ and $y$ be any two distinct vertices of $H$. Since $G$ is 2 -connected, the vertices $x$ and $y$ are connected by a path in $G-v$. Let $\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle$ is a shortest path joining $x$ and $y$ in $G-v$, where $x=v_{0}$ and $v_{k}=y$.

If $k=1$, then by the definition of $H$, the vertices $x$ and $y$ are adjacent in $H$. Otherwise, $k \geq 2$. Since $\operatorname{diam}(G)=2$, the vertex $v_{i}$ is adjacent to $v$, or $v_{i}$ and $v$ have a common neighbor $u_{i}$ if $d_{G}\left(v, v_{i}\right)=2$. For each integer $i$ with $0 \leq i \leq k-1$, if $d_{G}\left(v, v_{i}\right)=1$ and $d_{G}\left(v, v_{i+1}\right)=1$, then $v_{i}$ and $v_{i+1}$ are contained in $V(H)$, and they are adjacent in $H$. If
$d_{G}\left(v, v_{i}\right)=1$ and $d_{G}\left(v, v_{i+1}\right)=2$, then $v_{i}$ and $u_{i+1}$ are contained in $V(H)$, and they are adjacent in $H$. If $d_{G}\left(v, v_{i}\right)=2$ and $d_{G}\left(v, v_{i+1}\right)=1$, then $u_{i}$ and $v_{i+1}$ are contained in $V(H)$, and they are adjacent in $H$. If $d_{G}\left(v, v_{i}\right)=2$ and $d_{G}\left(v, v_{i+1}\right)=2$, then $u_{i}$ and $u_{i+1}$ should be contained in $B$, which contradicts the fact that $B=\emptyset$. Therefore there exists a path connecting $x$ and $y$ in $H$. The proof of Claim 3 is complete.

Let $T$ be a spanning tree of $H$, and let $(X, Y)$ be the bipartition defined by $T$. Now divide $N_{G}^{2}(v)$ as follows. For $N_{G}^{2}(v)$,

$$
\text { let } A=\left\{u \in N_{G}^{2}(v): \in N_{G}(X) \cap N_{G}(Y)\right\} ;
$$

For $N_{G}^{2}(v)-A$,

$$
\text { let } \begin{aligned}
D_{1} & =\left\{u \in N_{G}^{2}(v): u \in N_{G}(X)-N_{G}(Y)\right\}, \\
D_{2} & =\left\{u \in N_{G}^{2}(v): u \in N_{G}(Y)-N_{G}(X)\right\} .
\end{aligned}
$$

We see that at least one of $D_{1}$ and $D_{2}$ is empty. Otherwise, there exist $u \in D_{1}$ and $v \in D_{2}$ such that $d_{G}(u, v) \geq 3$, a contradiction. Without loss of generality, suppose $D_{2}=\emptyset$. Therefore $A$ and $D_{1}$ form a partition of $N_{G}^{2}(v)$. See Figure 2.

First, we provide a 4-edge-coloring $c: E(G)-E_{G}\left[D_{1}, X\right] \rightarrow\{1,2, \ldots, 4\}$ defined by

$$
c(e)= \begin{cases}1, & \text { if } e \in E_{G}[v, X] \\ 2, & \text { if } e \in E_{G}[v, Y] \\ 3, & \text { if } e \in E_{G}[X, Y] \cup E_{G}[Y, A] \\ 4, & \text { if } e \in E_{G}[X, A], \text { or otherwise }\end{cases}
$$

Next, we color the edges in $E_{G}\left[X, D_{1}\right]$ as follows. For each $u$ in $D_{1}$, color one edge incident with $u$ by 5 (solid lines), the other edges incident with $u$ by 4 (dotted lines). See Figure 2.

It is easy to check that the edge-coloring above is rainbow in this case by Figure 2 and Table 2.

|  | $v$ | $X$ | $Y$ | $A$ | $D_{1}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $v$ | $\cdots$ | $v \sim X$ | $v \sim Y$ | $v \sim X \sim A$ | $v \sim X \sim D_{1}$ |
| $X$ | $\cdots$ | Claim 2 and <br> $Y \sim v \sim X$ | $X \sim v \sim Y$ | $X \sim v \sim$ <br> $Y \sim A$ | Claim 2 |
| $Y$ | $\cdots$ | $\cdots$ | Claim 2 and <br> $X \sim v \sim Y$ | $Y \sim v \sim$ <br> $X \sim A$ | $Y \sim v \sim X \sim$ |
| $D_{1}$ |  |  |  |  |  |

Table 2. Rainbow paths in $G$
By this both possibilities have been exhausted and the proof is thus complete.
Combining Proposition 2 with Lemmas 3 and 4, we have the following theorem.

Theorem 5. If $G$ is a bridgeless graph with diameter 2 , then $\operatorname{rc}(G) \leq 5$.
Remark 1. Recently, Dong and Li [7] gave a class of graphs with diameter 2 that achieve equality of this bound.

For graphs containing bridges, the following proposition holds.
Proposition 6. If $G$ is a connected graph with diameter 2 and has $k$ bridges, where $k \geq 1$, then $r c(G) \leq k+2$.

Proof. Since $\operatorname{diam}(G)=2$, all bridges have a common endpoint $u$. Moreover, the vertex $u$ is adjacent to all other vertices. For all bridges, we color them with different colors. The remaining edges can be colored similar to Lemma 1 with two new colors and one old color. It is easy to check that the coloring above is a rainbow-coloring of $G$ with $k+2$ colors.

Tight examples: The upper bound in Proposition 6 is tight. The graph $\left(k K_{1} \cup r K_{2}\right) \vee v$ has a rainbow connection number achieving this upper bound, where $k \geq 1, r \geq 2$.

## References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory, GTM 244, Springer, 2008.
[2] M. Basavaraju, L.S. Chandran, D. Rajendraprasad, A. Ramaswamy, Rainbow connection number and radius, arXiv:1011.0620 [math.CO] 2010.
[3] S. Chakraborty, E. Fischer, A. Matsliah, R. Yuster, Hardness and algorithms for rainbow connectivity, J. Combin. Optim. 21(2011), 330-347.
[4] L.S. Chandran, A. Das, D. Rajendraprasad, N.M. Varma, Rainbow connection number and connected dominating sets, arXiv:1010.2296v1 [math.CO].
[5] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, Rainbow connection in graphs, Math. Bohem. 133(2008), 85-98.
[6] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, Rainbow connectivity of a graph, Networks 54(2009), 75-81.
[7] J. Dong, X. Li, Note on the rainbow connection numbers of graphs with diameter 2, arXiv:1106.1258v2 [math.CO] 2011.
[8] X. Li, Y. Sun, Rainbow Connections of Graphs, SpringerBriefs in Math., Springer, New York, 2012.
[9] M. Krivelevich, R. Yuster, The rainbow connection of a graph is (at most) reciprocal to its minimum degree, J. Graph Theory 63(2010), 185-91.
[10] I. Schiermeyer, Rainbow connection in graphs with minimum degree three, In Fiala, J., Kratochvl, J., and Miller, M., editors, Combinatorial Algorithms, Lecture Notes in Computer Science Vol. 5874 (2009), 432-437. Springer Berlin / Heidelberg.


[^0]:    *Supported by NSFC No. 11071130.

