Invariant Principal Order Ideals under Foata's Transformation

Teresa X.S. Li^{*}

Melissa Y.F. Miao[†]

School of Mathematics and Statistics Southwest University Chongqing 400715, P.R. China Center for Combinatorics, LPMC-TJKLC Nankai University Tianjin 300071, P.R. China

pmgb@swu.edu.cn

miaoyinfeng@mail.nankai.edu.cn

Submitted: Sep 1, 2012; Accepted: Oct 9, 2012; Published: Oct 18, 2012 Mathematics Subject Classifications: 05A05, 05A15, 05A19

Abstract

Let Φ denote Foata's second fundamental transformation on permutations. For a permutation σ in the symmetric group S_n , let $\Lambda_{\sigma} = \{\pi \in S_n : \pi \leq_w \sigma\}$ be the principal order ideal generated by σ in the weak order \leq_w . Björner and Wachs have shown that Λ_{σ} is invariant under Φ if and only if σ is a 132-avoiding permutation. In this paper, we consider the invariance property of Φ on the principal order ideals $\Lambda_{\sigma} = \{\pi \in S_n : \pi \leq \sigma\}$ with respect to the Bruhat order \leq . We obtain a characterization of permutations σ such that Λ_{σ} are invariant under Φ . We also consider the invariant principal order ideals with respect to the Bruhat order under Han's bijection H. We find that Λ_{σ} is invariant under the bijection H if and only if it is invariant under the transformation Φ .

Keywords: Foata's second fundamental transformation; Han's bijection; Bruhat order; principal order ideal

1 Introduction

Let S_n denote the symmetric group on $[n] = \{1, 2, ..., n\}$. Foata's second fundamental transformation Φ on permutations in S_n maps the major index of a permutation π to the inversion number of $\Phi(\pi)$, see Foata [5]. Björner and Wachs [2] have shown that Foata's second fundamental transformation can also be used in the study of subsets U of S_n over which the inversion number and the major index are equidistributed. In particular, they

^{*}Supported by Southwest University of China (Grant No. SWU112040).

[†]Supported by the 973 Project, the PCSIRT Project of the Ministry of Education, and the National Science Foundation of China.

showed that if the subset U is an order ideal of permutations in S_n with respect to the weak order, then U is invariant under Φ if and only if the maximal elements of U are 132-avoiding permutations.

In this paper, we investigate principal order ideals $\Lambda_{\sigma} = \{\pi \in S_n : \pi \leq \sigma\}$ with respect to the Bruhat order \leq that are invariant under Foata's transformation. We obtain a characterization of permutations σ for which Λ_{σ} is invariant under Φ .

We also consider the principal order ideals Λ_{σ} that are invariant under Han's bijection [6] while restricted to permutations. Recall that Han's bijection, denoted H, is a Foatastyle bijection defined on words, which can be used to show that the Z-statistic introduced by Zeilberger and Bressoud [7] is Mahonian. We shall show that a principal order ideal Λ_{σ} with respect to the Bruhat order is invariant under H if and only if it is invariant under Φ .

Let us give a brief review of Foata's transformation Φ and Han's bijection H on permutations. To describe Φ , we need to define a factorization for permutations on a finite set of positive integers. Let A be a set of n positive integers, and let x be an integer not belonging to A. For any permutation $w = w_1 w_2 \cdots w_n$ on A, x induces a factorization

$$w = \gamma_1 \gamma_2 \cdots \gamma_j$$

where each subword γ_i $(1 \leq i \leq j)$ is determined uniquely as follows:

- (i) If $w_n < x$, then the last element of γ_i is smaller than x and all the remaining elements of γ_i are greater than x;
- (ii) If $w_n > x$, then the last element of γ_i is greater than x and all the remaining elements of γ_i are smaller than x.

For example, let w = 387125. Then the factorization induced by x = 4 is $w = 38 \cdot 7 \cdot 125$, while the factorization induced by x = 6 is $w = 3 \cdot 871 \cdot 2 \cdot 5$, where we use dots to separate the factors.

For a factorization $w = \gamma_1 \gamma_2 \cdots \gamma_j$ induced by x, let

$$\delta_x(w) = \gamma'_1 \gamma'_2 \cdots \gamma'_j,$$

where γ'_i $(1 \leq i \leq j)$ is obtained from γ_i by moving the last element to the beginning of γ_i . For example, for the permutation w = 387125, based on the above factorization, we have $\delta_4(w) = 837512$.

To define Φ , we still need the k-th $(1 \leq k \leq n)$ Foata bijection $\phi_k \colon S_n \longrightarrow S_n$. Let $\sigma = \sigma_1 \sigma_2 \cdots \sigma_n \in S_n$. For k = 1, define $\phi_k(\sigma) = \sigma$. For k > 1, define

$$\phi_k(\sigma) = \delta_{\sigma_k}(\sigma_1 \sigma_2 \cdots \sigma_{k-1}) \cdot \sigma_k \sigma_{k+1} \cdots \sigma_n.$$

The transformation Φ is defined to be the composition $\phi_n \circ \phi_{n-1} \circ \cdots \circ \phi_1$, that is, for $\sigma \in S_n$,

$$\Phi(\sigma) = \phi_n(\cdots \phi_2((\phi_1(\sigma)))\cdots).$$

We next describe Han's bijection H on permutations, and we need two maps C_x and C^x $(x \in [n])$ from the set of permutations on $[n] \setminus \{x\}$ to S_{n-1} . Assume that $w = w_1 w_2 \cdots w_{n-1}$ is a permutation on $[n] \setminus \{x\}$. Let $\tau_i = w_i - x \pmod{n}$, namely,

$$\tau_i = \begin{cases} w_i - x + n, & \text{if } w_i < x; \\ w_i - x, & \text{if } w_i > x, \end{cases}$$

and let

$$\nu_i = \begin{cases} w_i, & \text{if } w_i < x; \\ w_i - 1, & \text{if } w_i > x. \end{cases}$$

The maps C_x and C^x are defined by

$$C^{x}(w) = \tau_{1}\tau_{2}\cdots\tau_{n-1}$$
 and $C_{x}(w) = \nu_{1}\nu_{2}\cdots\nu_{n-1}$.

It is easy to check that both C^x and C_x are one-to-one correspondences between the set of permutations on $[n] \setminus \{x\}$ and S_{n-1} . Let $\sigma = \sigma_1 \sigma_2 \cdots \sigma_n \in S_n$. The bijection H can be defined recursively as follows

$$H(\sigma) = C_{\sigma_n}^{-1}(H(C^{\sigma_n}(\sigma')))\sigma_n$$

where we set H(1) = 1 and $\sigma' = \sigma_1 \sigma_2 \cdots \sigma_{n-1}$. Note that the bijection H can also be described in terms of permutation codes, see Chen, Fan and Li [3].

We now recall the Bruhat order on permutations. To describe this partial order, we need to clarify the definition of the multiplication of permutations. First, we regard a permutation $\pi \in S_n$ as a bijection on [n] by setting $\pi(i) = \pi_i$. The product $\pi\sigma$ of two permutations $\pi, \sigma \in S_n$ is defined as the composition of π and σ as functions, that is, $\pi\sigma(i) = \pi(\sigma(i))$ for $i \in [n]$. For $1 \leq i < j \leq n$, let (i, j) denote the transposition of S_n that interchanges the elements i and j. Thus, the multiplication on the right of a permutation π by a transposition (i, j) has the same effect as interchanging the elements π_i and π_j . Similarly, the multiplication on the left of a permutation π by a transposition (i, j) is equivalent to the exchange of the elements i and j. For example, for $\pi = 236514$, we have $\pi(2, 5) = 216534$ and $(2, 5)\pi = 536214$.

The Bruhat order of S_n is defined as follows. For two permutations $\pi, \sigma \in S_n$, we say that $\pi \leq \sigma$ if there exists a sequence of transpositions $(i_1, j_1), (i_2, j_2), \ldots, (i_k, j_k)$ such that

$$\sigma = \pi(i_1, j_1)(i_2, j_2) \cdots (i_k, j_k)$$

and

$$\operatorname{inv}(\pi(i_1, j_1) \cdots (i_{t-1}, j_{t-1})) < \operatorname{inv}(\pi(i_1, j_1) \cdots (i_t, j_t)), \text{ for } t = 1, 2, \dots, k$$

where $inv(\pi)$ is the inversion number of π , namely,

$$\operatorname{inv}(\pi) = |\{(\pi_i, \pi_j) \colon 1 \leq i < j \leq n \text{ and } \pi_i > \pi_j\}|.$$

THE ELECTRONIC JOURNAL OF COMBINATORICS 19(4) (2012), #P3

If replacing transpositions by adjacent transpositions in the above definition, then the Bruhat order reduces to the weak order \leq_w . Denote by Λ_{σ} and $\tilde{\Lambda}_{\sigma}$ the principal order ideals generated by σ in the Bruhat order and the weak order respectively.

The following theorem gives a characterization of the covering relation in the Bruhat order.

Theorem 1 (Björner and Brenti [1], Lemma 2.1.4). Let $\pi, \sigma \in S_n$. Then π is covered by σ in the Bruhat order if and only if $\sigma = \pi(i, j)$ for some $1 \leq i < j \leq n$ such that $\pi_i < \pi_j$ and there does not exist k such that i < k < j and $\pi_i < \pi_k < \pi_j$.

The following theorem is due to Ehresmann [4], see also Björner and Brenti [1, Theorem 2.1.5], which gives a criterion for the comparison of two permutations in the Bruhat order. This characterization will be employed in the proof of Theorem 3. For a permutation $\pi \in S_n$ and two integers $1 \leq i, j \leq n$, let $\pi[i, j]$ be the number of elements in $\{\pi_1, \pi_2, \ldots, \pi_i\}$ that are greater than or equal to j, that is,

$$\pi[i,j] = |\{\pi_k \colon 1 \leqslant k \leqslant i \text{ and } \pi_k \geqslant j\}|.$$

Theorem 2 (Ehresmann [4]). Let $\pi, \sigma \in S_n$. Then $\pi \leq \sigma$ if and only if

$$\pi[i,j] \leqslant \sigma[i,j]$$

for any $1 \leq i, j \leq n$,

This paper is organized as follows. In Section 2, we present a characterization of permutations σ such that the principal order ideals Λ_{σ} are invariant under Φ . Section 3 is devoted to the proof of the fact that Λ_{σ} is invariant under Han's bijection H if and only if it is invariant under Foata's transformation Φ .

2 Invariant principal order ideals under Foata's map

The objective of this section is to give a characterization of invariant principal ideals Λ_{σ} under Foata's transformation Φ . To this end, we need a property on the maximal elements of the following subset $\Lambda_{\sigma}(k)$ of Λ_{σ} which is defined by

$$\Lambda_{\sigma}(k) = \{ \tau \colon \tau \in \Lambda_{\sigma} \text{ and } \tau_n = k \},\$$

where $1 \leq k \leq n$. It should be noted that by Theorem 2, $\Lambda_{\sigma}(k)$ is nonempty unless $k \geq \sigma_n$. We need to consider a special element in $\Lambda_{\sigma}(k)$, denoted $M(\sigma, k)$. Define $M(\sigma, k) = \sigma$ if $k = \sigma_n$. The definition of $M(\sigma, k)$ for $k > \sigma_n$ can be described as follows.

Let i_1 be the largest element in σ such that i_1 is to the right of k and $\sigma_n \leq i_1 < k$. If $i_1 = \sigma_n$, then define $M(\sigma, k) = (k, i_1)\sigma$. Otherwise, we continue to consider the permutation $(k, i_1)\sigma$. Let i_2 be the largest element in $(k, i_1)\sigma$ such that i_2 is to the right of k and $\sigma_n \leq i_2 < k$. If $i_2 = \sigma_n$, then define $M(\sigma, k) = (k, i_2)(k, i_1)\sigma$. Otherwise, we consider the permutation $(k, i_2)(k, i_1)\sigma$, and let i_3 be the largest element in $(k, i_2)(k, i_1)\sigma$

such that i_3 is to the right of k and $\sigma_n \leq i_3 < k$. Repeating this procedure, we end up with an element i_s $(1 \leq s \leq n)$ such that $i_s = \sigma_n$. Define

$$M(\sigma, k) = (k, i_s) \cdots (k, i_2)(k, i_1)\sigma$$

For example, for $\sigma = 875169423$, $M(\sigma, 7)$ is constructed as follows. It is clear that $i_1 = 6$. So, we have $(7, i_1)\sigma = 865179423$. Now we see that $i_2 = 4$, and hence $(7, i_2)(7, i_1)\sigma = 865149723$. Since $i_3 = 3 = \sigma_n$, we find $M(\sigma, 7) = 865149327$.

The following theorem will be employed in the proof of Theorem 5.

Theorem 3. Suppose that σ is a permutation in S_n and k is an integer such that $\sigma_n \leq k \leq n$. Then, $M(\sigma, k)$ is the unique maximal element of $\Lambda_{\sigma}(k)$, that is, $M(\sigma, k) \geq \tau$ for any $\tau \in \Lambda_{\sigma}(k)$.

Proof. It is clear that the theorem holds when $k = \sigma_n$. Now we consider the case $k > \sigma_n$. Assume that

$$M(\sigma,k) = (k,i_s)\cdots(k,i_2)(k,i_1)\sigma.$$

Let $\tau \in \Lambda_{\sigma}(k)$, and denote $\sigma^{(1)} = (k, i_1)\sigma$. To prove $\tau \leq M(\sigma, k)$, we first show that

$$\tau \leqslant \sigma^{(1)}.\tag{1}$$

Let m and t be the indices such that $\sigma_m = k$ and $\sigma_t = i_1$. By the choice of i_1 , we see that $1 \leq m < t \leq n$. It is easy to verify the following relation

$$\sigma^{(1)}[i,j] = \begin{cases} \sigma[i,j] - 1, & \text{if } m \leq i < t \text{ and } i_1 < j \leq k; \\ \sigma[i,j], & \text{otherwise.} \end{cases}$$
(2)

Since $\tau[i, j] \leq \sigma[i, j]$ for $1 \leq i, j \leq n$, we see that (1) can be deduced from the following relation

$$\tau[i, j] < \sigma[i, j], \quad \text{for } m \leq i < t \text{ and } i_1 < j \leq k.$$
 (3)

We now proceed to prove (3). We shall present detailed argument for the case i = mand $j = i_1 + 1$ and the remaining cases can be dealt with in the same vein. Suppose to the contrary that $\tau[m, i_1 + 1] = \sigma[m, i_1 + 1]$. By the choice of i_1 , we see that the elements $i_1 + 1, i_1 + 2, \ldots, k - 1$ in σ are all to the left of σ_m . Thus, we get

$$\sigma[m, i_1 + 2] = \sigma[m, i_1 + 1] - 1.$$

It follows that

$$\tau[m, i_1 + 2] \ge \tau[m, i_1 + 1] - 1 = \sigma[m, i_1 + 1] - 1 = \sigma[m, i_1 + 2].$$
(4)

On the other hand, since $\tau \leq \sigma$, we see that $\tau[m, i_1 + 2] \leq \sigma[m, i_1 + 2]$. Hence,

$$\tau[m, i_1 + 2] = \sigma[m, i_1 + 2].$$

In a similar fashion, we find that

$$\tau[m, i_1 + 3] = \sigma[m, i_1 + 3], \quad \tau[m, i_1 + 4] = \sigma[m, i_1 + 4], \quad \dots \quad , \tau[m, k] = \sigma[m, k].$$

From the relation $\tau[m,k] = \sigma[m,k]$, we assert that the number k belongs to the set $\{\tau_1, \tau_2, \ldots, \tau_m\}$. This can be seen as follows. Suppose to the contrary that $k \notin \{\tau_1, \tau_2, \ldots, \tau_m\}$. Then, we have $\tau[m, k+1] = \tau[m, k]$. But, since $\sigma_m = k$, we get $\sigma[m, k+1] = \sigma[m, k] - 1$. Thus we obtain that $\tau[m, k+1] > \sigma[m, k+1]$, a contradiction.

Obviously, the above assertion that $k \in \{\tau_1, \tau_2, \ldots, \tau_m\}$ is contrary to the assumption that $\tau_n = k$. Thus, relation (3) holds for i = m and $j = i_1 + 1$. This completes the proof of the relation in (1).

Using the same argument, we can deduce that

$$\tau \leqslant (k, i_2) \sigma^{(1)}.$$

Repeating this procedure, we finally get

$$\tau \leqslant (k, i_s) \cdots (k, i_2) \sigma^{(1)} = M(\sigma, k).$$

This completes the proof.

Before stating our main theorem, we need a result of Björner and Wachs [2] on the weak order. Let \leq_w denote the weak order on permutations. For a given permutation $\sigma \in S_n$, they constructed a permutation $\gamma(\sigma) \in S_n$ such that $\gamma(\sigma) \leq_w \sigma$, $\operatorname{inv}(\sigma) \leq \operatorname{maj}(\gamma(\sigma))$, and the last element of $\gamma(\sigma)$ is equal to σ_n . Moreover, they showed that $\operatorname{inv}(\sigma) = \operatorname{maj}(\gamma(\sigma))$ if and only if σ is 132-avoiding. Recall that a permutation σ is 132-avoiding if there do not exist numbers $1 \leq a < b < c \leq n$ such that $\sigma_a < \sigma_c < \sigma_b$. We shall not give the precise definition of $\gamma(\sigma)$, since we only require the properties of $\gamma(\sigma)$ as mentioned above.

The following lemma will be used in the proof of Theorem 5.

Lemma 4. Suppose that $\sigma \in S_n$ is a permutation such that Λ_{σ} is invariant under Foata's map Φ . Then σ is a 132-avoiding permutation.

Proof. Since Λ_{σ} is invariant under Φ , it is easy to see that $\Phi(\gamma(\sigma)) \leq \sigma$. Thus we have

$$\operatorname{inv}(\Phi(\gamma(\sigma))) \leqslant \operatorname{inv}(\sigma).$$
(5)

Recall that $\operatorname{inv}(\Phi(\gamma(\sigma))) = \operatorname{maj}(\gamma(\sigma))$. Hence, by (5), we deduce that $\operatorname{maj}(\gamma(\sigma)) \leq \operatorname{inv}(\sigma)$. On the other hand, as we have mentioned above, $\gamma(\sigma)$ possesses the property that $\operatorname{maj}(\gamma(\sigma)) \geq \operatorname{inv}(\sigma)$. So we get $\operatorname{maj}(\gamma(\sigma)) = \operatorname{inv}(\sigma)$. In other words, σ is 132-avoiding. This completes the proof.

We are now ready to state the main result in this paper.

Theorem 5. Suppose that σ is a permutation in S_n . Then the following assertions hold:

(1) If $\sigma_n = n$, then Λ_{σ} is invariant under Φ if and only if $\Lambda_{\sigma'}$ is invariant under Φ , where

$$\sigma' = \sigma_1 \sigma_2 \cdots \sigma_{n-1}.$$

THE ELECTRONIC JOURNAL OF COMBINATORICS 19(4) (2012), #P3

(2) If $\sigma_n = k < n$, then Λ_{σ} is invariant under Φ if and only if

$$\sigma = n (n-1) \cdots (k+1) (k-1) \cdots 21 k, \tag{6}$$

where $\sigma = n (n-1) \cdots 21$ for k = 1.

Proof. We first prove (1). Assume that Λ_{σ} is invariant under Foata's map Φ . To prove that $\Lambda_{\sigma'}$ is invariant under Φ , let π' be a permutation in S_{n-1} such that $\pi' \leq \sigma'$. It is easy to see that $\pi' n \leq \sigma' n = \sigma$. Thus, $\Phi(\pi' n) \leq \sigma$. Since $\Phi(\pi' n) = \Phi(\pi')n$, we have

$$\Phi(\pi')n \leqslant \sigma.$$

By the fact that $\sigma_n = n$, we find $\Phi(\pi') \leq \sigma'$. Hence $\Lambda_{\sigma'}$ is invariant under Φ . Conversely, it can be easily checked that if $\Lambda_{\sigma'}$ is invariant under Φ , then Λ_{σ} is invariant under Φ .

Next, we proceed to prove (2). In this case, $\sigma_n = k < n$. Assume that σ is a permutation in (6). It follows from Theorem 2 that

$$\Lambda_{\sigma} = \{ \pi \in S_n \colon \pi_n \geqslant k \}.$$
⁽⁷⁾

Let π be a permutation in Λ_{σ} . Since the last element of $\Phi(\pi)$ is equal to π_n , from (7) we see that $\Phi(\pi)$ belongs to Λ_{σ} . So we deduce that $\Phi(\Lambda_{\sigma}) \subseteq \Lambda_{\sigma}$. Since Φ is a bijection, we have $\Phi(\Lambda_{\sigma}) = \Lambda_{\sigma}$, that is, Λ_{σ} is invariant under Φ .

It remains to prove the reverse direction of (2), that is, if Λ_{σ} is invariant under Φ , then σ is a permutation of form (6). We have the following two cases. Case 1: $\sigma_n = k = n - 1$. We use induction on n. Assume that the assertion in (2) is true for permutations in S_{n-1} . Let σ be a permutation in S_n such that Λ_{σ} is invariant under Φ .

By Lemma 4, we see that σ is 132-avoiding. It is readily checked that $\sigma_1 = n$. Let $\tau = (n-1, n)\sigma$. Evidently,

$$\tau = M(\sigma, n)$$
 and $\Lambda_{\tau} = \{\pi \colon \pi \leqslant \sigma, \pi_n = n\},\$

which implies that Λ_{τ} is invariant under Φ . Since $\tau_n = n$, by Part (1) of the theorem, we obtain that $\Lambda_{\tau'}$ is invariant under Φ , where $\tau' = \tau_1 \tau_2 \cdots \tau_{n-1}$. Therefore, by the induction hypothesis, we deduce that

$$\tau_{1}\tau_{2}\cdots\tau_{n-1} = \begin{cases} (n-1)(n-2)\cdots(i+1)(i-1)\cdots21i, & \text{if } \tau_{n-1}=i>1;\\ (n-1)(n-2)\cdots21, & \text{if } \tau_{n-1}=1. \end{cases}$$

Now, we claim that $\tau_{n-1} = 1$. Suppose to the contrary that $\tau_{n-1} = i > 1$. Then we have

$$\tau = (n-1)(n-2)\cdots(i+1)(i-1)\cdots 21\,i\,n,$$

and so

$$\sigma = n (n-2) \cdots (i+1) (i-1) \cdots 21 i (n-1).$$

The electronic journal of combinatorics 19(4) (2012), #P3

Consider the permutation

$$\pi = (n-2) \cdots (i+1) i (i-1) \cdots 2 1 n (n-1).$$

Clearly,

$$\pi \leq (n-2) \cdots (i+1) n (i-1) \cdots 21 i (n-1)$$

$$\leq n (n-2) \cdots (i+1) (i-1) \cdots 21 i (n-1)$$

$$= \sigma.$$

However,

$$\Phi(\pi) = n (n-2) \cdots (i+1) i (i-1) \cdots 2 1 (n-1) \not\leq \sigma,$$

which contradicts the assumption that Λ_{σ} is invariant under Φ . This completes the proof of the above claim that $\tau_{n-1} = 1$.

We now arrive at the conclusion that $\tau = (n-1)(n-2)\cdots 21n$. Hence

$$\sigma = (n - 1, n)\tau = n (n - 2) \cdots 21 (n - 1),$$

as required.

Case 2: $\sigma_n = k < n - 1$. The proof is by induction on σ_n . Assume that the assertion is true for $\sigma_n > k$. We now consider the case $\sigma_n = k$.

To apply the induction hypothesis, we need to consider the principal order ideal generated by

$$w = M(\sigma, k+1) = (k, k+1)\sigma.$$

We first show that the principal order ideal Λ_w has the following form

$$\Lambda_w = \{ \pi \in \Lambda_\sigma \colon \pi_n \geqslant k+1 \}.$$
(8)

It is clear that $\Lambda_w \subseteq \{\pi \in \Lambda_\sigma : \pi_n \ge k+1\}$. It remains to show that

$$\{\pi \in \Lambda_{\sigma} \colon \pi_n \geqslant k+1\} \subseteq \Lambda_w.$$
(9)

To prove (9), we need the permutation $\gamma(w)$. Keep in mind that the last element of $\gamma(w)$ is equal to w_n . This implies that $\gamma(w) \in \Lambda_{\sigma}(k+1)$. It follows that $\Phi(\gamma(w)) \in \Lambda_{\sigma}(k+1)$. By Theorem 3, we see that $\Phi(\gamma(w)) \leq M(\sigma, k+1) = w$. Using the arguments in the proof of Lemma 4, we deduce that w is 132-avoiding. Hence we conclude $\sigma^{-1}(i) < \sigma^{-1}(k+1)$ for i > k+1.

In view of the construction of $M(\sigma, i)$, for any i > k+1, there exist integers $i_1 > i_2 > \cdots > i_{s-2} > k+1$ such that

$$M(\sigma, i) = (i, k)(i, k+1)(i, i_{s-2}) \cdots (i, i_1)\sigma$$

$$\leq (i, k+1)M(\sigma, i)$$

$$= (k, k+1)(i, i_{s-2}) \cdots (i, i_1)\sigma$$

$$\leq (k, k+1)\sigma.$$

Thus, for $i \ge k+1$ and $\pi \in \Lambda_{\sigma}(i)$, we have

$$\pi \leqslant M(\sigma, i) \leqslant (k, k+1)\sigma = w,$$

which implies the relation (9). Hence the proof of (8) is complete.

From (8), we see that Λ_w is invariant under Φ . By the induction hypothesis, we get

$$w = n(n-1)\cdots(k+2)k(k-1)\cdots 21(k+1),$$

which yields that

$$\sigma = n (n-1) \cdots (k+2) (k+1) (k-1) \cdots 21 k.$$

This completes the proof.

Theorem 5 has the following consequence.

Corollary 6. There are $\binom{n}{2} + 1$ permutations σ in S_n such that the principal order ideals Λ_{σ} are invariant under Foata's transformation Φ .

Proof. Let a_n denote the number of principal order ideals in S_n that are invariant under Φ . By Theorem 5, it is easy to derive the following recurrence relation

$$a_n = a_{n-1} + n - 1.$$

Since $a_1 = 1$, the formula for a_n is easily verified. This completes the proof.

For example, for n = 3, there are four permutations σ for which Λ_{σ} is invariant under Φ : 123, 213, 312, 321. The following two figures are the Hasse diagrams of (S_3, \leq) and (S_3, \leq_w) . The permutations σ such that Λ_{σ} is Φ -invariant are written in boldface in Figure 1, and the permutations σ such that $\widetilde{\Lambda}_{\sigma}$ is Φ -invariant are written in boldface as well in Figure 2.

The electronic journal of combinatorics 19(4) (2012), #P3

3 Invariant principal ideals under Han's map

In this section, we show that in the Bruhat order, Han's bijection H has the same invariant principal order ideals as Foata's transformation Φ .

Theorem 7. Let σ be a permutation in S_n . Then Λ_{σ} is invariant under H if and only if it is invariant under Φ .

Proof. We first show that if Λ_{σ} is invariant under Φ then it is invariant under H. We have the following two cases.

Case 1: $\sigma_n = n$. We use induction on n. Assume that the assertion is true for S_{n-1} . By Theorem 5, we see that $\Lambda_{\sigma'}$ is invariant under Φ , where $\sigma' = \sigma_1 \sigma_2 \cdots \sigma_{n-1}$. Thus, by the induction hypothesis, we obtain that $\Lambda_{\sigma'}$ is invariant under H. Notice that

$$\Lambda_{\sigma} = \{ \tau \, n \colon \tau \in \Lambda_{\sigma'} \}.$$

Since $H(\pi n) = H(\pi) n$ for any permutation $\pi \in S_{n-1}$, we deduce that Λ_{σ} is invariant under H.

Case 2: $\sigma_n = k < n$. Again, by Theorem 5, we see that

$$\sigma = n \left(n - 1 \right) \cdots \left(k + 1 \right) \left(k - 1 \right) \cdots 2 \, 1 \, k,$$

which implies that $\Lambda_{\sigma} = \{\pi \in S_n : \pi_n \ge k\}$. Since the map H preserves the last element of a permutation in S_n , we see that Λ_{σ} is invariant under H.

Conversely, assume that Λ_{σ} is invariant under H. We wish to show that Λ_{σ} is invariant under Φ . We also have the following two cases.

Case 1: $\sigma_n = n$. We proceed to use induction on n. Assume that the assertion is true for S_{n-1} . It is easy to see that

$$\Lambda_{\sigma} = \{\tau \, n : \tau \in \Lambda_{\sigma'}\},\$$

where $\sigma' = \sigma_1 \sigma_2 \cdots \sigma_{n-1}$. So we have

$$H(\Lambda_{\sigma}) = \{H(\tau n) : \tau \in \Lambda_{\sigma'}\} = \{H(\tau) n : \tau \in \Lambda_{\sigma'}\}.$$

By the assumption that Λ_{σ} is invariant under H, we see that $\Lambda_{\sigma'}$ is invariant under H. Thus, by the induction hypothesis, we find that $\Lambda_{\sigma'}$ is invariant under Φ . Therefore,

$$\Phi(\Lambda_{\sigma}) = \{ \Phi(\tau n) : \tau \in \Lambda_{\sigma'} \}$$
$$= \{ \Phi(\tau) n : \tau \in \Lambda_{\sigma'} \}$$
$$= \{ \tau n : \tau \in \Lambda_{\sigma'} \}$$
$$= \Lambda_{\sigma}.$$

So we arrive at the assertion that Λ_{σ} is invariant under Φ . Case 2: $\sigma_n = k < n$. We claim that

$$\sigma = n (n-1) \cdots (k+1) (k-1) \cdots 1 k.$$
(10)

The electronic journal of combinatorics 19(4) (2012), #P3

To prove (10), we use induction on k. We first verify that (10) is valid for k = n - 1. In this case, by an argument similar to the proof of Lemma 4, we may deduce that σ is 132-avoiding. This implies that $\sigma_1 = n$. Assume that $\sigma_{n-1} = i$. It is easy to check that

$$H(\sigma)_{n-1} = i+1, \quad H^2(\sigma)_{n-1} = i+2, \quad \dots, \quad H^{n-i-1}(\sigma)_{n-1} = n, \quad H^{n-i}(\sigma)_{n-1} = 1.$$

Since Λ_{σ} is invariant under H, we see that $H^{n-i}(\sigma) \leq \sigma$, which implies i = 1. Thus we have

$$\sigma = n \, \sigma_2 \cdots \sigma_{n-2} \, 1 \, (n-1).$$

To show that σ is a permutation of form (10), we notice that the last element of the permutation $\tau = (n, n - 1)\sigma$ is n. Clearly, $\Lambda_{\tau} = \{\pi : \pi \in \Lambda_{\sigma}, \pi_n = n\}$. So we deduce that Λ_{τ} is invariant under H. Let $\tau' = \tau_1 \cdots \tau_{n-1}$. Since $\tau_n = n$, by the assertion in Case 1, we see that $\Lambda_{\tau'}$ is invariant under H. Therefore, by the induction hypothesis, we conclude that $\Lambda_{\tau'}$ is invariant under Φ . In view of Theorem 5, we have

$$\tau' = (n-1)(n-2)\cdots 21,$$

and hence

$$\tau = \tau' n = (n-1) (n-2) \cdots 2 \ln n,$$

which yields that $\sigma = n (n-2) \cdots 21 (n-1)$. This completes the proof of (10) in the case k = n - 1.

We next consider the case $\pi_n = k < n - 1$. Let

$$\tau = (k, k+1)\sigma$$

It is clear that $\tau = M(\sigma, k+1)$. By an argument analogous to the proof of relation (8), we deduce that

$$\Lambda_{\tau} = \{ \pi \colon \pi \leqslant \sigma, \pi_n \geqslant k+1 \},\$$

from which it is easily seen that Λ_{τ} is invariant under *H*. Since $\tau_n > k$, by the induction hypothesis, we get

$$\tau = n (n-1) \cdots (k+2) k (k-1) \cdots 21 (k+1).$$

It follows that

$$\sigma = (k, k+1)\tau = n(n-1)\cdots(k+2)(k+1)(k-1)\cdots 21k.$$

Thus the proof of (10) is complete.

By Theorem 5, we see that Λ_{σ} is invariant under Φ . This completes the proof. \Box

Acknowledgements

We wish to thank Professor Guo-Niu Han for helpful suggestions.

The electronic journal of combinatorics 19(4) (2012), #P3

References

- A. Björner and F. Brenti, Combinatorics of Coxeter Groups, Graduate Texts in Mathematics, Vol. 231, Springer-Verlag, New York, 2005.
- [2] A. Björner and M.L. Wachs, Permutation statistics and linear extensions of posets, J. Combin. Theory Ser. A, 58: 85–114, 1991.
- [3] W.Y.C. Chen, N.J.Y. Fan and T.X.S. Li, Han's bijection via permutation codes, *European J. Combin.*, 32: 217–225, 2011.
- [4] C. Ehresmann, Sur la topologie de certains espaces homogénes, Ann. Math., 35: 396-443, 1934.
- [5] D. Foata, On the Netto inversion number of a sequence, *Proc. Amer. Math. Soc.*, 19: 236–240, 1968.
- [6] G.-N. Han, Une courte démonstration d'un résultat sur la Z-statistique, C. R. Acad. Sci. Paris, Série I, 314: 969–971, 1992.
- [7] D. Zeilberger and D.M. Bressoud, A proof of Andrews q-Dyson conjecture, Discrete Math., 54: 201–224, 1985.