The Sorting Index and Permutation Codes

William Y.C. Chen^a, George Z. Gong^b, Jeremy J.F. Guo^{b*}

^a Center for Applied Mathematics, Tianjin University, Tianjin 300072, P. R. China ^b Center for Combinatorics, LPMC-TJKLC, Nankai University, Tianjin 300071, P. R. China

Abstract

In the combinatorial study of the coefficients of a bivariate polynomial that generalizes both the length and the reflection length generating functions for finite Coxeter groups, Petersen introduced a new Mahonian statistic sor, called the sorting index. Petersen proved that the pairs of statistics (sor, cyc) and (inv, rl-min) have the same joint distribution over the symmetric group, and asked for a combinatorial proof of this fact. In answer to this question, we observe a connection between the sorting index and the B-code of a permutation defined by Foata and Han, and we show that the bijection of Foata and Han serves the purpose of mapping (inv, rl-min) to (sor, cyc). We also give a type B analogue of the bijection of Foata and Han, and derive the equidistribution of (inv_B, Lmap_B, Rmil_B) and (sor_B, Lmap_B, Cyc_B) over signed permutations. So we get a combinatorial interpretation of Petersen's equidistribution of $(inv_B, nmin_B)$ and (sor_B, l'_B) . Moreover, we show that the six pairs of set-valued statistics (Cyc_B, Rmil_B), (Cyc_B, Lmap_B), (Rmil_B, Lmap_B), (Lmap_B, Rmil_B), (Lmap_B, Cyc_B) and (Rmil_B, Cyc_B) are equidistributed over signed permutations. For Coxeter groups of type D, Petersen showed that the two statistics inv_D and sor_D are equidistributed. We introduce two statistics \min_{D} and \tilde{l}'_{D} for elements of D_n and we prove that the two pairs of statistics $(inv_D, nmin_D)$ and (sor_D, l'_D) are equidistributed.

Keywords: permutation statistic, Mahonian statistic, Coxeter group, set-valued statistic, bijection

AMS Subject Classifications: 05A05, 05A15, 20F55

1 Introduction

This paper is concerned with a combinatorial study of the Mahonian statistic sor, introduced by Petersen [10]. This statistic is also interpreted by Wilson [11, 12] as the total distance moved rightward in the random generation of a permutation based on the Fisher-Yates shuffle algorithm.

^{*}Corresponding author.

Email addresses: chenyc@tju.edu.cn (W.Y.C. Chen), sxgong@mail.nankai.edu.cn (G.Z. Gong), guojf@mail.nankai.edu.cn (J.J.F. Guo).

Let $[n] = \{1, 2, ..., n\}$. The set of permutations of [n] is denoted by S_n . Let us recall the definition of the sorting index of a permutation σ in S_n . Notice that σ has a unique decomposition into transpositions

$$\sigma = (i_1, j_1)(i_2, j_2) \cdots (i_k, j_k)$$

such that

$$j_1 < j_2 < \cdots < j_k$$

and

$$i_1 < j_1, i_2 < j_2, \dots, i_k < j_k$$

The sorting index is defined by

$$\operatorname{sor}(\sigma) = \sum_{r=1}^{k} (j_r - i_r).$$

Based on the cycle decomposition of a permutation, Foata and Han [6] introduced the B-code of a permutation. We observe that the sorting index of a permutation can be easily expressed in terms of its B-code. Given a permutation $\sigma \in S_n$ with B-code $b = (b_1, b_2, \ldots, b_n)$, it can be seen that the sorting index of σ is given by

$$\operatorname{sor}(\sigma) = \sum_{i=1}^{n} (i - b_i).$$

Petersen [10] has shown that the sorting index sor is a Mahonian statistic, that is, it has the same distribution as the number of inversions. He also introduced the sorting indices for Coxeter groups of type B and type D and showed that they are Mahonian as well.

Let us recall some notation and terminology. For $n \ge 1$, given a permutation $\sigma = \sigma_1 \sigma_2 \cdots \sigma_n \in S_n$, a pair (σ_i, σ_j) is called an inversion if i < j and $\sigma_i > \sigma_j$. Let $inv(\sigma)$ denote the number of inversions of σ . An element σ_i is said to be a right-to-left minimum of σ if $\sigma_i < \sigma_j$ for all j > i. The number of right-to-left minima of σ is denoted by $rl\text{-min}(\sigma)$. The number of elements of σ that are not right-to-left minima is denoted by $nmin(\sigma)$. Similarly, one can define a left-to-right maximum. The number of left-to-right maxima of σ is denoted by $lr\text{-max}(\sigma)$. The number of cycles of σ is denoted by $cyc(\sigma)$. The reflection length of σ , denoted $l'(\sigma)$, is the minimal number of transpositions needed to express σ .

By using two factorizations of the diagonal sum, i.e., $\sum_{\sigma \in S_n} \sigma$, in the group algebra $\mathbb{Z}[S_n]$, Petersen has shown that (sor, cyc) and (inv, rl-min) have the same joint distribution by deriving the following generating function formulas:

$$\sum_{\sigma \in S_n} q^{\operatorname{sor}(\sigma)} t^{\operatorname{cyc}(\sigma)} = \sum_{\sigma \in S_n} q^{\operatorname{inv}(\sigma)} t^{\operatorname{rl-min}(\sigma)} = t(t+q) \cdots (t+q+q^2+\cdots+q^{n-1}).$$

He raised the question of finding a bijection that maps a permutation with inversion number k to a permutation with sorting index k. We find that a bijection constructed by Foata and Han [6] on S_n serves the purpose of mapping (inv, rl-min) to (sor, cyc).

The bijection of Foata and Han is devised to derive the equidistribution of the six pairs of set-valued statistics (Cyc, Rmil), (Cyc, Lmap), (Rmil, Lmap), (Lmap, Rmil), (Lmap, Cyc) and (Rmil, Cyc) over S_n . It should be mentioned that the equidistribution of the three pairs of set-valued statistics (Lmap, Cyc), (Cyc, Lmap), (Lmap, Rmil) reduces to the equidistribution of the three pairs of integer-valued statistics (lr-max, cyc), (cyc, lr-max) and (lr-max, lr-min) established by Cori [4] by employing labeled Dyck paths and the algorithm of Ossona de Mendez and Rosenstiehl [5] on hypermaps.

As for Coxeter groups of type B, the sorting index can be analogously defined and it is Mahonian, see Petersen [10]. Let sor_B , inv_B , $nmin_B$ and l'_B denote the statistics on signed permutations analogous to sor, inv, nmin and l' for permutations. Petersen obtained the following formulas for the joint distributions of (inv_B , $nmin_B$) and (sor_B , l'_B):

$$\sum_{\sigma \in B_n} q^{\operatorname{sor}_{B}(\sigma)} t^{l'_{B}(\sigma)} = \sum_{\sigma \in B_n} q^{\operatorname{inv}_{B}(\sigma)} t^{\operatorname{nmin}_{B}(\sigma)} = \prod_{i=1}^n (1+t[2i]_q - t).$$

We shall present a bijection on B_n which implies the equidistribution of (inv_B, Lmap_B, Rmil_B) and (sor_B, Lmap_B, Cyc_B), where Lmap_B, Rmil_B and Cyc_B are set-valued statistics. In particular, this bijection transforms (inv_B, nmin_B) to (sor_B, l'_B). We introduce the A-code and the B-code of a signed permutation, which are analogous to the A-code and the Bcode of a permutation. We show that the triple of statistics (inv_B, Lmap_B, Rmil_B) of a signed permutation can be computed from its A-code, whereas the triple of statistics (sor_B, Lmap_B, Cyc_B) can be computed from its B-code. To be more specific, let σ be a signed permutation in B_n with A-code c. Let σ' be a signed permutation in B_n with Bcode c. Then the triple of statistics (inv_B, Lmap_B, Rmil_B) of σ coincides with the triple of statistics (sor_B, Lmap_B, Cyc_B) of σ' . We also show that the six pairs of set-valued statistics (Cyc_B, Rmil_B), (Cyc_B, Lmap_B), (Rmil_B, Lmap_B), (Lmap_B, Rmil_B), (Lmap_B, Cyc_B) and (Rmil_B, Cyc_B) are equidistributed over B_n . As a consequence, we see that the four pairs of statistics (sor_B, l'_B), (inv_B, nmin_B), (inv_B, nmax_B) and (sor_B, nmax_B) are equidistributed over B_n .

For Coxeter groups of type D, let sor_D and inv_D denote the statistics analogous to sor and inv. Let D_n denote the subgroup of B_n consisting of signed permutations with an even number of minus signs. In this case, Petersen has shown that sor_D and inv_D have the same generating function, that is,

$$\sum_{\sigma \in D_n} q^{\operatorname{sor}_{\mathcal{D}}(\sigma)} = \sum_{\sigma \in D_n} q^{\operatorname{inv}_{\mathcal{D}}(\sigma)} = [n]_q \prod_{r=1}^{n-1} [2r]_q.$$

We introduce two statistics \min_{D} and \tilde{l}'_{D} analogous to min and l', and we construct a bijection in order to show that the pairs of statistics $(inv_{D}, nmin_{D})$ and $(sor_{D}, \tilde{l}'_{D})$ are equidistributed over D_n . Moreover, we prove that the bivariate generating functions for $(inv_D, nmin_D)$ and (sor_D, \tilde{l}'_D) are both equal to

$$D_n(q,t) = \prod_{r=1}^{n-1} (1 + q^r t + qt \cdot [2r]_q) .$$

2 The bijection of Foata and Han

In this section, we give a brief description of Foata and Han's bijection [6] on permutations. Then we show that this bijection transforms (inv, rl-min) to (sor, cyc).

The group of permutations of [n] is also known as a Coxeter group of type A. The length of a permutation $\sigma \in S_n$, denoted by $l(\sigma)$, is defined to be the minimal number of adjacent transpositions needed to express σ . It is not difficult to see that $inv(\sigma) = l(\sigma)$.

We adopt the notation of Foata and Han [6]. They have investigated several setvalued statistics defined as follows. Given a permutation $\sigma \in S_n$, it can be decomposed as a product of disjoint cycles whose minimum elements are c_1, c_2, \ldots, c_r . Define Cyc σ to be the set

Cyc
$$\sigma = \{c_1, c_2, \dots, c_r\}.$$

Let $\omega = x_1 x_2 \cdots x_n$ be a word in which the letters are positive integers. The left to right maximum place set of ω , denoted by Lmap ω , is the set of places *i* such that $x_j < x_i$ for all j < i, while the right to left minimum letter set of ω , denoted by Rmil ω , is the set of letters x_i such that $x_j > x_i$ for all j > i. For a permutation σ of [n], recall that lr-max(σ) is the number of left-to-right maxima of σ , rl-min(σ) is the number of right-to-left minima of σ , and cyc(σ) is the number of cycles of σ . It is easy to see that the cardinalities of Lmap σ , Rmil σ and Cyc σ are given by lr-max(σ), rl-min(σ) and cyc(σ), respectively.

The Lehmer code [9] of a permutation $\sigma = \sigma_1 \sigma_2 \cdots \sigma_n$ of [n] is defined to be a sequence Leh $\sigma = (a_1, a_2, \ldots, a_n)$, where

$$a_i = |\{j \colon 1 \le j \le i, \sigma_j \le \sigma_i\}|.$$

Let SE_n denote the set of integer sequences (a_1, a_2, \ldots, a_n) such that $1 \leq a_i \leq i$ for all i. It can be seen that Leh: $S_n \longrightarrow SE_n$ is a bijection. Foata and Han [6] defined the A-code of a permutation σ to be a sequence

A-code
$$\sigma$$
 = Leh $\mathbf{i}\sigma$

where $\mathbf{i}: \sigma \mapsto \sigma^{-1}$ denotes the inverse operation on S_n with respect to product of permutations. For example, let $\sigma = 31524$. Then $\mathbf{i}\sigma = 24153$. Here a permutation $\sigma = \sigma_1 \sigma_2 \cdots \sigma_n \in S_n$ standards for a one-to-one function on [n] which maps i to σ_i for $1 \leq i \leq n$. We multiply permutations from right to left, that is, for $\pi, \sigma \in S_n$, we have $\pi\sigma(i) = \pi(\sigma(i))$ for $1 \leq i \leq n$.

For an integer sequence $a = (a_1, a_2, \ldots, a_n) \in SE_n$, define Max a to be the set $\{i: a_i = i\}$. Given a permutation $\sigma \in S_n$, Foata and Han [6] have shown that the A-code leads to a bijection from S_n to SE_n and the two set-valued statistics Rmil and Lmap of σ are determined by its A-code. Precisely,

$$\operatorname{Rmil} \sigma = \operatorname{Max} (\operatorname{A-code} \sigma), \tag{2.1}$$

$$Lmap \ \sigma = Rmil \ (A-code \ \sigma). \tag{2.2}$$

Following the notation in [6], we rewrite (2.1) and (2.2) as

(Rmil, Lmap)
$$\sigma = (Max, Rmil)$$
 A-code σ . (2.3)

Given a permutation $\sigma = \sigma_1 \sigma_2 \cdots \sigma_n \in S_n$, the B-code can be defined as follows. For $1 \leq i \leq n$, let k_i be the smallest integer $k \geq 1$ such that $(\sigma^{-k})(i) \leq i$, where σ is considered as a function on [n]. Then $b_i = (\sigma^{-k_i})(i)$. In fact, the B-code of a permutation can be easily determined by the cycle decomposition. To compute b_i , we assume that iappears in a cycle C. If i is the smallest element of C, then we set $b_i = i$. Otherwise, we choose b_i to be the element j of C such that j < i and j is the closest to i. Notice that C is viewed as a directed cycle and the distance from j to i is meant to be the number of steps to reach i from j along the cycle. For example, let $\sigma = 24513$. Using the cycle decomposition $\sigma = (1 \ 2 \ 4)(3 \ 5)$, we get the B-code (1, 1, 3, 2, 3).

Foata and Han have shown that the B-code is a bijection from S_n to SE_n and the pair of set-valued statistics (Cyc, Lmap) of σ can be determined by the B-code of σ , that is,

(Cyc, Lmap)
$$\sigma = (Max, Rmil)$$
 B-code σ . (2.4)

Combining the A-code and the B-code, Foata and Han [6] established a bijection ϕ on S_n as given by

 $\phi = (B\text{-code})^{-1} \circ A\text{-code}.$

The bijection ϕ implies the following equidistribution.

Theorem 2.1 (Foata and Han [6]) The six pairs of set-valued statistics (Cyc, Rmil), (Cyc, Lmap), (Rmil, Lmap), (Lmap, Rmil), (Lmap, Cyc), (Rmil, Cyc) are equidistributed over S_n :

We now turn to the sorting index. Petersen has shown that the pairs of statistics (sor, cyc) and (inv, rl-min) have the same joint distribution over permutations and asked for a combinatorial interpretation of this fact. We shall show that the map ϕ transforms the pair of statistics (inv, rl-min) of a permutation σ to the pair of statistics (sor, cyc) of the permutation $\phi(\sigma)$. The following lemma indicates that the pair of statistics (inv, rl-min) of σ can be computed from the A-code of σ .

Lemma 2.2 Let σ be a permutation in S_n with A-code $a = (a_1, a_2, \ldots, a_n)$. Then we have

$$\operatorname{inv}(\sigma) = \sum_{i=1}^{n} (i - a_i) \tag{2.5}$$

and

$$rl-min(\sigma) = |Max a|.$$
(2.6)

Proof. By the definition of the A-code, we find

$$\operatorname{inv}(\sigma) = \binom{n}{2} - \sum_{i=1}^{n} (a_i - 1),$$

which can be rewritten as

$$\sum_{i=1}^{n} (i - a_i).$$

From (2.3) it follows that $\operatorname{rl-min}(\sigma) = |\operatorname{Rmil} \sigma| = |\operatorname{Max} a|$. This completes the proof.

The following lemma shows that the pair of statistics (sor, cyc) of σ can be recovered from the B-code.

Lemma 2.3 Let σ be a permutation in S_n with B-code $b = (b_1, b_2, \ldots, b_n)$. Then we have

$$\operatorname{sor}(\sigma) = \sum_{i=1}^{n} (i - b_i) \tag{2.7}$$

and

$$\operatorname{cyc}(\sigma) = |\operatorname{Max} b|.$$
 (2.8)

Proof. Let us examine the algorithm of Foata and Han for recovering a permutation σ from its B-code $b = (b_1, b_2, \ldots, b_n) \in SE_n$. Start with the identity permutation $\sigma^{(0)} = 12\cdots n$. For $1 \leq i \leq n$, the permutation $\sigma^{(i)}$ is obtained by exchanging *i* and the letter at the b_i -th place in $\sigma^{(i-1)}$. Notice that it may happen that $i = b_i$. Then the resulting permutation $\sigma^{(n)}$ is precisely the permutation with B-code *b*, that is, $\sigma = \sigma^{(n)}$. So we may write $\sigma^{(i)} = \sigma^{(i-1)}(b_i, i)$, where (b_i, i) is called a transposition even when $b_i = i$. Thus we obtain a decomposition of σ into transpositions

$$\sigma = (b_1, 1)(b_2, 2) \cdots (b_n, n)$$

By the definition of the sorting index, we see that

$$\operatorname{sor}(\sigma) = \sum_{i=1}^{n} (i - b_i).$$

It follows from (2.4) that $\operatorname{cyc}(\sigma) = |\operatorname{Cyc} \sigma| = |\operatorname{Max} b|$. This completes the proof.

Combining Lemma 2.2 and Lemma 2.3, we conclude that the bijection $\phi = (B\text{-code})^{-1} \circ A\text{-code transforms (inv, rl-min) to (sor, cyc), that is, for any <math>\sigma \in S_n$,

(inv, rl-min)
$$\sigma = (\text{sor}, \text{cyc}) \phi(\sigma)$$
.

By Theorem 2.1, the bijection ϕ preserves the set-valued statistic Lmap. Since

$$\operatorname{lr-max}(\sigma) = |\operatorname{Lmap} \sigma|,$$

 ϕ preserves the statistic lr-max. Observing that

$$\operatorname{rl-min}(\sigma) = \operatorname{lr-max}(\mathbf{i}\sigma),$$

we arrive at the following equidistribution.

Theorem 2.4 The four pairs of statistics (sor, cyc), (inv, rl-min), (inv, lr-max) and (sor, lr-max) are equidistributed over S_n :

3 A bijection on signed permutations

In this section, we construct a bijection which serves as a combinatorial interpretation of the equidistribution of the pairs of statistics ($inv_B, nmin_B$) and (sor_B, l'_B) over signed permutations. In fact, this bijection implies the equidistribution of ($inv_B, Lmap_B, Rmil_B$) and ($sor_B, Lmap_B, Cyc_B$) over B_n . Moreover, we show that the six pairs of set-valued statistics ($Cyc_B, Rmil_B$), ($Cyc_B, Lmap_B$), ($Rmil_B, Lmap_B$), ($Lmap_B, Rmil_B$), ($Lmap_B, Cyc_B$) and ($Rmil_B, Cyc_B$) are equidistributed over B_n .

Let us recall some definitions. The hyperoctahedral group B_n is the group of bijections σ on $\{1, 2, \ldots, n, \overline{1}, \overline{2}, \ldots, \overline{n}\}$ such that $\sigma(\overline{i}) = \overline{\sigma(i)}$ for $i = 1, 2, \ldots, n$, where \overline{i} denotes -i. Clearly, one can represent an element $\sigma \in B_n$ by a signed permutation $a_1a_2 \cdots a_n$ of [n], that is, a permutation of [n] with some elements associated with a minus sign. The group B_n has the following Coxeter generators

$$S^B = \{(\bar{1}, 1), (1, 2), (2, 3), \dots, (n - 1, n)\}.$$

The set of reflections of B_n is

$$T^B = \{(i,j) : 1 \le i < j \le n\} \cup \{(\bar{i},j) : 1 \le i \le j \le n\},\$$

where the transposition (i, j) means to exchange i and j and exchange \overline{i} with \overline{j} provided that $i \neq \overline{j}$, and (\overline{i}, i) means to exchange i and \overline{i} . For $\sigma \in B_n$, let $N(\sigma)$ denote the number of negative elements in the signed permutation notation.

Petersen [10] defined the sorting index for a singed permutation. Let σ be a signed permutation in B_n . He gave a type B analogue of the straight selection sort algorithm of Knuth [8], and proved that σ has a unique factorization into a product of signed transpositions in T^B :

$$\sigma = (i_1, j_1)(i_2, j_2) \cdots (i_m, j_m), \tag{3.1}$$

where $0 < j_1 < j_2 < \cdots < j_m \leq n$. Then the sorting index of σ is defined by

$$\operatorname{sor}_{\mathrm{B}}(\sigma) = \sum_{r=1}^{m} (j_r - i_r - \chi(i_r < 0)).$$

For example, let $\sigma = 5 \bar{4} \bar{3} 1 \bar{2}$. Then we have

$$\sigma = (\bar{1}, 2)(\bar{3}, 3)(\bar{2}, 4)(1, 5)$$

and $\operatorname{sor}_{B}(\sigma) = 2 - (-1) - 1 + 3 - (-3) - 1 + 4 - (-2) - 1 + 5 - 1 = 16.$

For a signed permutation $\sigma \in B_n$, the length of σ , denoted $l_B(\sigma)$, is defined to be the minimal number of transpositions in S^B needed to express σ , see Björner and Brenti [1]. The reflection length of σ , denoted $l'_B(\sigma)$, is the minimal number of transpositions in T^B needed to express σ . The type B inversion number of σ , denoted $\operatorname{inv}_B(\sigma)$, also denoted finv by Foata and Han [7], is defined as

$$\operatorname{inv}_{\mathcal{B}}(\sigma) = |\{(i,j) : 1 \le i < j \le n, \sigma_i > \sigma_j\}| + |\{(i,j) : 1 \le i \le j \le n, \overline{\sigma_i} > \sigma_j\}|.$$

Like the case of type A, we have $inv_B(\sigma) = l_B(\sigma)$, see Björner and Brenti [1, Section 8.1].

Recall that for a permutation $\pi \in S_n$, we have $l'(\pi) = n - \operatorname{cyc}(\pi)$. Similarly, the reflection length of a signed permutation can be determined from its cycle decomposition. A signed permutation σ can be expressed as a product of disjoint signed cycles, see, Brenti [2], Chen and Stanley [3]. For example, let $\sigma = \overline{6} \overline{7} 4 \overline{3} 5 1 \overline{2}$. Then σ can be written as $\sigma = (1 \ \overline{6})(5)(\overline{7} \ \overline{2})(4 \ \overline{3})$. A signed cycle is said to be balanced if it contains an even number of minus signs, see [3]. Let $\operatorname{cyc}_{\mathrm{B}}(\sigma)$ denote the number of balanced cycles of σ . It is not difficult to see that $l'_{\mathrm{B}}(\sigma) = n - \operatorname{cyc}_{\mathrm{B}}(\sigma)$.

We introduce some set-valued statistics for signed permutations which are analogous to those for permutations. For a signed permutation σ , let C_1, C_2, \ldots, C_r be the balanced

signed cycles of σ . Let c_i be the smallest absolute value of elements of C_i . Define Cyc_B to be the set $\{c_1, c_2, \ldots, c_r\}$.

Let $\omega = \omega_1 \omega_2 \cdots \omega_n$ be a word of length n, where ω_i is an integer. The left to right maximum place set of ω , denoted Lmap_B ω , and the right to left minimum letter set of ω , denoted Rmil_B ω , are defined as follows,

$$\operatorname{Lmap}_{B} \omega = \{i \colon \omega_{i} > |\omega_{j}| \text{ for any } j < i\},$$
$$\operatorname{Rmil}_{B} \omega = \{\omega_{i} \colon 0 < \omega_{i} < |\omega_{j}| \text{ for any } j > i\}.$$

When σ is a signed permutation, the cardinality of $\text{Lmap}_{\text{B}} \sigma$ is denoted by $\text{lr-max}_{\text{B}}(\sigma)$ and the cardinality of $\text{Rmil}_{\text{B}} \sigma$ is denoted by $\text{rl-min}_{\text{B}}(\sigma)$. Let

$$\operatorname{nmin}_{\mathrm{B}}(\sigma) = |\{i : \sigma_i > |\sigma_j| \text{ for some } j > i\}| + N(\sigma)$$

and

$$\operatorname{nmax}_{\mathrm{B}}(\sigma) = |\{i : 0 < \sigma_i < |\sigma_j| \text{ for some } j < i\}| + N(\sigma).$$

Evidently, $\min_{B}(\sigma) = n - \text{rl-min}_{B}(\sigma)$ and $\max_{B}(\sigma) = n - \text{lr-max}_{B}(\sigma)$.

The following theorem is due to Petersen [10].

Theorem 3.1 The pairs of statistics (inv_B, nmin_B) and (sor_B, l'_B) are equidistributed over B_n .

Petersen presented two different factorizations of the diagonal sum $\sum_{\sigma \in B_n} \sigma$ and showed that

$$\sum_{\sigma \in B_n} q^{\operatorname{sor}_{B}(\sigma)} t^{l'_{B}(\sigma)} = \sum_{\sigma \in B_n} q^{\operatorname{inv}_{B}(\sigma)} t^{\operatorname{nmin}_{B}(\sigma)} = \prod_{i=1}^n (1 + t[2i]_q - t).$$

We shall construct a bijection $\psi: B_n \longrightarrow B_n$ which transforms (inv_B, Lmap_B, Rmil_B) to (sor_B, Lmap_B, Cyc_B). This bijection can be described in terms of two codes, the A-code and the B-code of a signed permutation. For a signed permutation $\sigma = \sigma_1 \sigma_2 \cdots \sigma_n \in B_n$, let **i**: $\sigma \mapsto \sigma^{-1}$ denote the inverse operation on B_n with respect to product of signed permutations. We define the Lehmer code of σ to be an integer sequence Leh $\sigma = (a_1, a_2, \ldots, a_n)$, where for each i,

$$a_i = \operatorname{sign} \sigma_i \cdot |\{j \colon 1 \le j \le i, |\sigma_j| \le |\sigma_i|\}|.$$

Then the A-code of a signed permutation σ is defined to be an integer sequence

A-code
$$\sigma$$
 = Leh $\mathbf{i}\sigma$.

Let SE_n^B be the set of integer sequences (a_1, a_2, \ldots, a_n) such that $a_i \in [-i, i] \setminus \{0\}$. For an integer sequence $a = (a_1, a_2, \ldots, a_n) \in SE_n^B$, Max *a* stands for the set $\{i : a_i = i\}$.

The following proposition says that the two set-valued statistics Rmil_{B} and Lmap_{B} for a signed permutation σ can be recovered from the Lehmer code of σ . The proof is straightforward, and hence it is omitted.

Proposition 3.2 The Lehmer code Leh: $B_n \longrightarrow SE_n^B$ is a bijection. For each $\sigma \in B_n$, we have

$$\operatorname{Rmil}_{\mathrm{B}} \operatorname{Leh} \sigma = \operatorname{Rmil}_{\mathrm{B}} \sigma \tag{3.2}$$

and

Max Leh
$$\sigma = \text{Lmap}_{\text{B}} \sigma.$$
 (3.3)

For example, let $\sigma = 5 \bar{7} 1 \bar{4} 9 \bar{2} \bar{6} 3 8$. Then we have

Leh
$$\sigma = (1, -2, 1, -2, 5, -2, -5, 3, 8)$$

and

Rmil_B Leh
$$\sigma$$
 = Rmil_B σ = {1, 3, 8},
Max Leh σ = Lmap_B σ = {1, 5}.

The above proposition implies that the A-code is a bijection from B_n to SE_n^B . It is easy to see that $Rmil_B i\sigma = Lmap_B \sigma$ and $Rmil_B \sigma = Lmap_B i\sigma$. So we are led to the following theorem which asserts that the two set-valued statistics $Rmil_B$ and $Lmap_B$ for a signed permutation σ can be determined by the A-code of σ .

Theorem 3.3 For any $\sigma \in B_n$, we have

$$(\operatorname{Rmil}_{B}, \operatorname{Lmap}_{B}) \sigma = (\operatorname{Max}, \operatorname{Rmil}_{B}) \operatorname{A-code} \sigma.$$
(3.4)

Next we define the B-code for a signed permutation. Let $\sigma = \sigma_1 \sigma_2 \cdots \sigma_n \in B_n$. For $1 \leq i \leq n$, let k_i be the smallest integer $k \geq 1$ such that $|\sigma^{-k}(i)| \leq i$. We define the B-code of σ to be the integer sequence (b_1, b_2, \ldots, b_n) with $b_i = (\sigma^{-k_i})(i)$. For example, the B-code of the signed permutation $\sigma = 3 \overline{1} \overline{6} \overline{5} 42$ is (1, -1, 1, -4, -4, -3).

The B-code of a signed permutation can be also defined recursively as follows. First, the B-codes of the two signed permutations of B_1 are defined as B-code 1 = (1) and B-code $\overline{1} = (-1)$. For $n \ge 2$, we write a signed permutation $\sigma \in B_n$ as a product of disjoint signed cycles. There are two cases.

Case 1. Assume that n has a positive sign in σ or $\sigma_n = \bar{n}$. Let $\sigma' \in B_{n-1}$ be the signed permutation obtained from σ by deleting n (or \bar{n}) in its cycle decomposition. In the case that n (or \bar{n}) is in a cycle of length 1, we just delete this cycle. Let $b' = (b_1, b_2, \ldots, b_{n-1})$ be the B-code of σ' . Then we define the B-code of σ to be $b = (b_1, b_2, \ldots, b_{n-1}, \sigma^{-1}(n))$.

Case 2. Assume that *n* has a minus sign in σ and $\sigma_n \neq \bar{n}$. Changing the sign of σ_n and deleting \bar{n} in the cycle decomposition of σ , we obtain a signed permutation in B_{n-1} , denoted σ' . Let $b' = (b_1, b_2, \ldots, b_{n-1})$ be the B-code of σ' . Then we define the B-code of σ to be $b = (b_1, b_2, \ldots, b_{n-1}, \sigma^{-1}(n))$.

The following theorem shows that the set-valued statistics Lmap_{B} and Cyc_{B} of a signed permutation can be computed from the B-code.

Theorem 3.4 The B-code is a bijection from B_n to SE_n^B . Furthermore, for any $\sigma \in B_n$, we have

$$(Cyc_B, Lmap_B) \sigma = (Max, Rmil_B) B-code \sigma.$$
(3.5)

Proof. From the recursive definition, it is readily seen that the B-code is a bijection from B_n to SE_n^B . We shall use induction on n to prove (3.5). Clearly, the statement holds for n = 1. Assume that (3.5) holds for n - 1, where $n \ge 2$. Let $\sigma = \sigma_1 \sigma_2 \cdots \sigma_n$ be a signed permutation of B_n with B-code b. Assume that σ' is the signed permutation of B_{n-1} given in the recursive definition of the B-code. Let $b' = (b_1, b_2, \ldots, b_{n-1})$ be the B-code of σ' .

Now we claim that $Cyc_B \sigma = Max b$. There are two cases according to the sign of n in σ .

First, we consider the case when n has a positive sign in σ . If $\sigma_n \neq n$, let $t = \sigma^{-1}(n)$. Since σ' is obtained from σ by deleting n in its cycle form, the B-code of σ is $b = (b_1, b_2, \ldots, b_{n-1}, t)$. Since 0 < t < n, we have $\operatorname{Cyc}_B \sigma = \operatorname{Cyc}_B \sigma'$ and $\operatorname{Max} b' = \operatorname{Max} b$. By the induction hypothesis, we have $\operatorname{Cyc}_B \sigma' = \operatorname{Max} b'$. Hence $\operatorname{Cyc}_B \sigma = \operatorname{Max} b$. If $\sigma_n = n$, it can be easily checked that

$$\operatorname{Cyc}_{\mathrm{B}} \sigma = \operatorname{Cyc}_{\mathrm{B}} \sigma' \cup \{n\} = \operatorname{Max} b' \cup \{n\} = \operatorname{Max} b.$$

Then we consider the case when n has a minus sign in σ . If $\sigma_n = \bar{n}$, it is easy to see that

$$\operatorname{Cyc}_{\mathrm{B}} \sigma = \operatorname{Cyc}_{\mathrm{B}} \sigma' = \operatorname{Max} b' = \operatorname{Max} b.$$

If $\sigma_n \neq \bar{n}$, we let $t = \sigma^{-1}(n)$. Since *n* has a minus sign in σ , we have t < 0. Since $b' = (b_1, b_2, \ldots, b_{n-1})$ is the B-code of σ' , we find that the B-code of σ is $b = (b_1, b_2, \ldots, b_{n-1}, t)$. Since -n < t < 0, we see that Cyc_B $\sigma =$ Cyc_B σ' and Max b' = Max *b*. By the induction hypothesis, we get Cyc_B $\sigma' =$ Max *b'*. Thus we obtain Cyc_B $\sigma =$ Max *b*.

We now turn to the proof of the relation $\text{Lmap}_{\text{B}} \sigma = \text{Rmil}_{\text{B}} b$. There are four cases.

Case 1: $\sigma_n = n - 1$. By the recursive definition of the B-code, we express σ and σ' in the one-line notation as follows. For convenience, we display the identity permutation on the top,

$$1 \cdots |\sigma^{-1}(n)| \cdots n-1 n$$

$$\sigma = \sigma_1 \cdots \epsilon_n \cdots \sigma_{n-1} n-1$$

$$\sigma' = \sigma_1 \cdots \epsilon(n-1) \cdots \sigma_{n-1}.$$

Here $\epsilon = 1$ if *n* has a positive sign in σ and $\epsilon = -1$ if *n* has a minus sign in σ . It can be easily checked that $\operatorname{Lmap}_{B} \sigma = \operatorname{Lmap}_{B} \sigma'$. Since $b' = (b_{1}, b_{2}, \ldots, b_{n-1})$ is the B-code of σ' , we have $b_{n-1} = \sigma^{-1}(n)$ and the B-code of σ is $b = (b_{1}, b_{2}, \ldots, b_{n-1}, \sigma^{-1}(n))$. It follows that $\operatorname{Rmil}_{B} b = \operatorname{Rmil}_{B} b'$. By the induction hypothesis, we get $\operatorname{Lmap}_{B} \sigma' = \operatorname{Rmil}_{B} b'$. Hence we deduce that $\operatorname{Lmap}_{B} \sigma = \operatorname{Rmil}_{B} b$. Case 2: $\sigma_n = \overline{n-1}$. If *n* has a minus sign in σ , let *t* be the positive integer such that $\sigma_t = \overline{n}$. As in Case 1, we express σ and σ' as follows

$$1 \cdots t \cdots n-1 n$$

$$\sigma = \sigma_1 \cdots \bar{n} \cdots \sigma_{n-1} \overline{n-1}$$

$$\sigma' = \sigma_1 \cdots n-1 \cdots \sigma_{n-1}.$$

Clearly, $\operatorname{Lmap}_{\mathrm{B}} \sigma = \operatorname{Lmap}_{\mathrm{B}} \sigma' \setminus \{t\}$. Since $b' = (b_1, b_2, \ldots, b_{n-1})$ is the B-code of σ' , we have $b_{n-1} = {\sigma'}^{-1}(n-1) = t$. From the recursive construction of the B-code, it follows that the B-code of σ is $b = (b_1, b_2, \ldots, b_{n-1}, -t)$. This implies that $\operatorname{Rmil}_{\mathrm{B}} b = \operatorname{Rmil}_{\mathrm{B}} b' \setminus \{t\}$. By the induction hypothesis, we obtain $\operatorname{Lmap}_{\mathrm{B}} \sigma' = \operatorname{Rmil}_{\mathrm{B}} b'$. Therefore $\operatorname{Lmap}_{\mathrm{B}} \sigma = \operatorname{Rmil}_{\mathrm{B}} b$. If n has a positive sign in σ , let t be the positive integer such that $\sigma_t = n$. Then σ and σ' can be expressed as follows

$$1 \cdots t \cdots n-1 n$$

$$\sigma = \sigma_1 \cdots n \cdots \sigma_{n-1} \overline{n-1}$$

$$\sigma' = \sigma_1 \cdots \overline{n-1} \cdots \sigma_{n-1}.$$

In this case, we have Lmap_B $\sigma = \text{Lmap}_{B} \sigma' \cup \{t\}$. Since $b' = (b_1, b_2, \dots, b_{n-1})$ is the B-code of σ' , then $b_{n-1} = -t$ and the B-code of σ is $b = (b_1, b_2, \dots, b_{n-1}, t)$. It follows that $\text{Rmil}_{B} b = \text{Rmil}_{B} b' \cup \{t\}$. By the induction hypothesis, we deduce that $\text{Lmap}_{B} \sigma' = \text{Rmil}_{B} b'$. So we arrive at $\text{Lmap}_{B} \sigma = \text{Rmil}_{B} b$.

Case 3: $\sigma_n \neq n-1$, $\sigma_n \neq \overline{n-1}$ and $|\sigma^{-1}(n-1)| < |\sigma^{-1}(n)|$. If *n* has a positive sign in σ , let $\sigma_t = n$. By the same argument as in Case 2, we find Lmap_B $\sigma = \text{Lmap}_{B} \sigma' \cup \{t\}$ and Rmil_B $b = \text{Rmil}_{B} b' \cup \{t\}$. By the induction hypothesis, we deduce that Lmap_B $\sigma' = \text{Rmil}_{B} b'$. Hence Lmap_B $\sigma = \text{Rmil}_{B} b$. If *n* has a minus sign in σ , it can be verified that Lmap_B $\sigma = \text{Lmap}_{B} \sigma'$ and Rmil_B $b = \text{Rmil}_{B} b'$. Therefore, we obtain Lmap_B $\sigma = \text{Rmil}_{B} b$.

Case 4: $\sigma_n \neq n-1$, $\sigma_n \neq \overline{n-1}$ and $|\sigma^{-1}(n-1)| > |\sigma^{-1}(n)|$. If n has a positive sign in σ , let $\sigma_t = n$. We write σ and σ' as follows

$$1 \cdots t \cdots |\sigma^{-1}(n-1)| \cdots n-1 n$$

$$\sigma = \sigma_1 \cdots n \cdots \epsilon(n-1) \cdots \sigma_{n-1} \sigma_n$$

$$\sigma' = \sigma_1 \cdots \sigma_n \cdots \epsilon(n-1) \cdots \sigma_{n-1},$$

where $\epsilon = 1$ if n - 1 appears as an element in σ and $\epsilon = -1$ if $\overline{n-1}$ appears as an element in σ . It can be seen that

Lmap_B
$$\sigma = (Lmap_B \sigma' \cap [1, t-1]) \cup \{t\}.$$

Since $b' = (b_1, b_2, \ldots, b_{n-1})$ is the B-code of σ' , we have $b_{n-1} = \sigma^{-1}(n-1)$ and the B-code of σ is $b = (b_1, b_2, \ldots, b_{n-1}, t)$. Hence we get

$$\operatorname{Rmil}_{\mathbf{B}} b = (\operatorname{Rmil}_{\mathbf{B}} b' \cap [1, t-1]) \cup \{t\}.$$

By the induction hypothesis, we obtain $\text{Lmap}_{B} \sigma' = \text{Rmil}_{B} b'$. Thus we get $\text{Lmap}_{B} \sigma = \text{Rmil}_{B} b$. If *n* has a minus sign in σ , it can be checked that

Lmap_B
$$\sigma$$
 = Lmap_B $\sigma' \cap [1, -\sigma^{-1}(n) - 1]$

and

Rmil_B
$$b = \text{Rmil}_{B} b' \cap [1, -\sigma^{-1}(n) - 1].$$

By the induction hypothesis, we conclude that $\text{Lmap}_{B} \sigma = \text{Rmil}_{B} b$. This completes the proof.

In fact, it can be shown that the pair of statistics $(inv_B, nmin_B)$ of a signed permutation σ can be recovered from its A-code and the pair of statistics (sor_B, l'_B) can be recovered from its B-code.

We now describe how to recover a signed permutation σ from its A-code $a = (a_1, a_2, \ldots, a_n) \in SE_n^B$. It is essentially the same as the procedure to recover a permutation from the Lehmer code.

We start with the empty word $\sigma^{(0)}$. It will take *n* steps to construct a signed permutation σ with A-code *a*. At the first step, if $a_1 = 1$, then set $\sigma^{(1)} = 1$. If $a_1 = -1$, then set $\sigma^{(1)} = \overline{1}$. For $1 < i \leq n$, assume that at step *i*, we have constructed a signed permutation $\sigma^{(i-1)} \in B_{i-1}$. If $|a_i| = 1$, the signed permutation $\sigma^{(i)}$ is obtained from $\sigma^{(i-1)}$ by inserting the element *i* with the sign of a_i before the first element of $\sigma^{(i-1)}$. If $|a_i| > 1$, then the signed permutation $\sigma^{(i)}$ is obtained from $\sigma^{(i-1)}$. If $|a_i| > 1$, then the signed permutation $\sigma^{(i)}$ is obtained from $\sigma^{(i-1)}$ by inserting the element *i* with the sign of a_i after the $(|a_i| - 1)$ -th element in $\sigma^{(i-1)}$. Eventually, the signed permutation $\sigma^{(n)}$ is a signed permutation σ with A-code *a*. For example, let a = (1, 1, -3, -2, 3). Then we have

$$\sigma^{(0)} = \emptyset,$$

$$a_1 = 1, \quad \sigma^{(1)} = 1,$$

$$a_2 = 1, \quad \sigma^{(2)} = 2 1,$$

$$a_3 = -3, \quad \sigma^{(3)} = 2 1 \overline{3},$$

$$a_4 = -2, \quad \sigma^{(4)} = 2 \overline{4} 1 \overline{3},$$

$$a_5 = 3, \quad \sigma^{(5)} = 2 \overline{4} 5 1 \overline{3}.$$

So $2\overline{4}51\overline{3}$ is the signed permutation with A-code (1, 1, -3, -2, 3).

The relationship between a signed permutation σ and its B-code $b = (b_1, b_2, \ldots, b_n)$ can be described as follows. Let σ' be the signed permutation obtained from σ as in the recursive construction of the B-code. So the B-code of σ' is $b' = (b_1, b_2, \ldots, b_{n-1})$. If n has a positive sign in σ or $\sigma_n = \bar{n}$, then σ' is obtained from σ by deleting n in its cycle decomposition. Let (i, i) denote the identity permutation for $1 \leq i \leq n$. Since $b_n = \sigma^{-1}(n)$, we have $\sigma = \sigma'(b_n, n)$. Note that σ' is considered as a signed permutation of B_n which maps n to n. If n has a minus sign in σ and $\sigma_n \neq \bar{n}$, then σ' is obtained from σ by changing the sign of σ_n and deleting \bar{n} in its cycle decomposition. Since $b_n = \sigma^{-1}(n)$, we find that $\sigma = \sigma'(b_n, n)$. Again, σ' is considered as a signed permutation of B_n which maps n to n. Hence we obtain that $\sigma = (b_1, 1)(b_2, 2) \cdots (b_n, n)$.

The following lemma gives expressions of $inv_B(\sigma)$ and $nmin_B(\sigma)$ in terms of the A-code of σ .

Lemma 3.5 For a signed permutation $\sigma \in B_n$ with A-code $a = (a_1, a_2, \ldots, a_n)$, we have

$$inv_{\rm B}(\sigma) = \sum_{i=1}^{n} (i - a_i - \chi(a_i < 0))$$
(3.6)

and

$$\operatorname{nmin}_{\mathrm{B}}(\sigma) = n - |\operatorname{Max} a|. \tag{3.7}$$

Proof. Consider the procedure to recover a signed permutation from the A-code a. It is easily seen that after the *i*-th step, the type B inversion number increases by $i - a_i$ when $a_i > 0$ and by $i - a_i - 1$ when $a_i < 0$. Hence we have

$$\operatorname{inv}_{\mathrm{B}}(\sigma^{(i)}) - \operatorname{inv}_{\mathrm{B}}(\sigma^{(i-1)}) = i - a_i - \chi(a_i < 0).$$

Since $inv_B(\sigma^{(0)}) = 0$, we find

$$\operatorname{inv}_{\mathrm{B}}(\sigma) = \sum_{i=1}^{n} (i - a_i - \chi(a_i < 0)).$$

In view of (3.4), it is easy to see that

$$\operatorname{nmin}_{\mathrm{B}}(\sigma) = n - \operatorname{rl-min}_{\mathrm{B}}(\sigma) = n - |\operatorname{Rmil}_{\mathrm{B}} \sigma| = n - |\operatorname{Max} a|.$$

This completes the proof.

The following lemma shows that $\operatorname{sor}_{\mathrm{B}}(\sigma)$ and $l'_{\mathrm{B}}(\sigma)$ can be expressed in terms of the B-code of σ .

Lemma 3.6 For a signed permutation $\sigma \in B_n$ with B-code $b = (b_1, b_2, \ldots, b_n)$, we have

$$\operatorname{sor}_{\mathrm{B}}(\sigma) = \sum_{i=1}^{n} (i - b_i - \chi(b_i < 0))$$
(3.8)

and

$$l'_{\rm B}(\sigma) = n - |\text{Max } b|. \tag{3.9}$$

Proof. Since $b = (b_1, b_2, \ldots, b_n)$ is the B-code of σ , it is known that

$$\sigma = (b_1, 1)(b_2, 2) \cdots (b_n, n).$$

By the definition of the sorting index of σ , we see that

$$\operatorname{sor}_{\mathrm{B}}(\sigma) = \sum_{i=1}^{n} (i - b_i - \chi(b_i < 0)).$$

From (3.5) it follows that

$$U'_{\rm B}(\sigma) = n - \operatorname{cyc}_{\rm B}(\sigma) = n - |\operatorname{Cyc}_{\rm B} \sigma| = n - |\operatorname{Max} b|.$$

This completes the proof.

Combining Theorem 3.3, Theorem 3.4, Lemma 3.5 and Lemma 3.6, we obtain the equidistribution of $(inv_B, Lmap_B, Rmil_B)$ and $(sor_B, Lmap_B, Cyc_B)$ over B_n .

Theorem 3.7 The map $\psi \colon B_n \longrightarrow B_n$ defined by $\psi = (B\text{-code})^{-1} \circ A\text{-code}$ is a bijection. For any $\sigma \in B_n$, we have

$$(inv_B, Lmap_B, Rmil_B) \sigma = (sor_B, Lmap_B, Cyc_B) \psi(\sigma).$$
 (3.10)

In particular,

$$(inv_B, nmin_B) \ \sigma = (sor_B, l'_B) \ \psi(\sigma). \tag{3.11}$$

Notice that $\text{Cyc}_B \sigma = \text{Cyc}_B \mathbf{i}\sigma$ and $\text{Lmap}_B \sigma = \text{Rmil}_B \mathbf{i}\sigma$. Thus Theorem 3.7 implies the following equidistribution which can be viewed as a type *B* analogue of the equidistribution given in Theorem 2.1.

Theorem 3.8 The six pairs of set-valued statistics ($Cyc_B, Rmil_B$), ($Cyc_B, Lmap_B$), ($Rmil_B, Lmap_B$), ($Lmap_B, Rmil_B$), ($Lmap_B, Cyc_B$) and ($Rmil_B, Cyc_B$) are equidistributed over B_n :

The above theorem for set-valued statistics reduces to the following equidistribution of pairs of statistics of signed permutations. It is clear that $\min_B(\sigma) = \max_B(i\sigma)$. Since the bijection ψ preserves Lmap_B , it is easy to see that ψ also preserves the statistic nmax_B . Hence we are led to the following equidistribution.

Corollary 3.9 The four pairs of statistics (sor_B, l'_B), (inv_B, nmin_B), (inv_B, nmax_B) and (sor_B, nmax_B) are equidistributed over B_n :

4 A bijection on D_n

In this section, we define two statistics \min_{D} and \tilde{l}'_{D} for elements of a Coxeter group of type D and we construct a bijection to derive the equidistribution of the pairs of statistics (inv_{D}, mmi_{D}) and $(sor_{D}, \tilde{l}'_{D})$. This yields a refinement of Petersen's equidistribution of inv_{D} and sor_{D} .

The type D Coxeter group D_n is the subgroup of B_n consisting of signed permutations with an even number of minus signs in the signed permutation notation. As a set of generators for D_n , we take

$$S^D = \{(\bar{1}, 2), (1, 2), (2, 3), \dots, (n - 1, n)\}.$$

For simplicity, let $s_i = (i, i + 1)$ for $1 \le i < n$ and $s_{\bar{1}} = (\bar{1}, 2)$. The set of reflections of D_n is

$$R^D = \{(i, j) : 1 \le |i| < j \le n\}.$$

For $\sigma = \sigma_1 \sigma_2 \cdots \sigma_n \in D_n$, the type *D* inversion number of σ is given by

$$inv_{D}(\sigma) = |\{(i,j) : 1 \le i < j \le n, \sigma_{i} > \sigma_{j}\}| + |\{(i,j) : 1 \le i < j \le n, \overline{\sigma_{i}} > \sigma_{j}\}|.$$

The length of σ , denoted $l_D(\sigma)$, is the minimal number of transpositions in S^D needed to express σ . It is known that $l_D(\sigma) = inv_D(\sigma)$, see Björner and Brenti [1, Section 8.2]. The generating function of l_D is

$$\sum_{\sigma \in D_n} q^{\mathbf{l}_{\mathrm{D}}(\sigma)} = [n]_q \prod_{r=1}^{n-1} [2r]_q,$$
(4.1)

see also [1].

Recall that the set of reflections of B_n is

$$T^B = \{(i,j) : 1 \le i < j \le n\} \cup \{(\bar{i},j) : 1 \le i \le j \le n\}.$$

For $\sigma \in D_n$, it has a unique factorization into a product of signed transpositions in T^B :

$$\sigma = (i_1, j_1)(i_2, j_2) \cdots (i_k, j_k), \tag{4.2}$$

where $0 < j_1 < j_2 < \cdots < j_k \leq n$. Petersen defined the type D sorting index of σ as

$$\operatorname{sor}_{\mathrm{D}}(\sigma) = \sum_{r=1}^{k} (j_r - i_r - 2\chi(i_r < 0)).$$

It has been shown by Petersen that sor_D has the same generating function as inv_D .

Theorem 4.1 For $n \ge 4$,

$$\sum_{\sigma \in D_n} q^{\text{sor}_{\mathcal{D}}(\sigma)} = [n]_q \prod_{r=1}^{n-1} [2r]_q.$$
(4.3)

Thus, sor_D is Mahonian.

Next we define two statistics \tilde{l}'_D and \min_D for a signed permutation $\sigma \in D_n$. For $1 \leq |i| < j \leq n$, we adopt the notation t_{ij} for the transposition (i, j). For $1 < i \leq n$, we define $t_{\bar{i}i} = (\bar{i}, i)(\bar{1}, 1)$. Then we set

$$T^{D} = \{t_{ij} : 1 \le |i| < j \le n\} \cup \{t_{\bar{i}i} : 1 < i \le n\}.$$

We denote by $\tilde{l}'_D(\sigma)$ the minimal number of elements in T^D that are needed to express σ . Define the statistic nmin_D as

$$\operatorname{nmin}_{D}(\sigma) = |\{i : \sigma_{i} > |\sigma_{j}| \text{ for some } j > i\}| + N(\sigma \setminus \{\bar{1}\}),$$

where $N(\sigma \setminus \{\bar{1}\})$ is the number of minus signs associated with elements greater than 1 in the signed permutation notation of σ .

The following theorem is a refinement of the equidistribution of inv_D and sor_D . We shall give a combinatorial proof and an algebraic proof.

Theorem 4.2 For $n \ge 2$, the two pairs of statistics (inv_D, nmin_D) and (sor_D, \tilde{l}'_D) are equidistributed over D_n . Moreover,

$$\sum_{\sigma \in D_n} q^{\text{inv}_{\mathcal{D}}(\sigma)} t^{\text{nmin}_{\mathcal{D}}(\sigma)} = \prod_{r=1}^{n-1} (1 + q^r t + qt \cdot [2r]_q), \tag{4.4}$$

$$\sum_{\sigma \in D_n} q^{\operatorname{sor}_{\mathcal{D}}(\sigma)} t^{\tilde{l}'_{\mathcal{D}}(\sigma)} = \prod_{r=1}^{n-1} (1 + q^r t + qt \cdot [2r]_q).$$
(4.5)

To give a combinatorial proof of the equidistribution of $(inv_D, nmin_D)$ and (sor_D, l'_D) in Theorem 4.2, we introduce the co-sorting index sor'_D which turns out to be equivalent to the sorting index sor_D . To define the co-sorting index, we need the factorization of an element $\sigma \in D_n$ into elements in T^D . More precisely, we can express $\sigma \in D_n$ uniquely in the following form

$$\sigma = t_{i_1 j_1} t_{i_2 j_2} \cdots t_{i_m j_m},$$

where $1 < j_1 < j_2 < \cdots < j_m \leq n$. For example, let $\sigma = \bar{2}\bar{4}5\bar{1}\bar{3}$. Then we have $\sigma = t_{12}t_{\bar{3}3}t_{\bar{2}4}t_{35}$. The co-sorting index of σ is defined by

$$\operatorname{sor}_{\mathrm{D}}'(\sigma) = \sum_{r=1}^{m} (j_r - i_r - 2\chi(i_r < 0)).$$

Lemma 4.3 For any $\sigma \in D_n$, we have $\operatorname{sor}_{D}(\sigma) = \operatorname{sor}'_{D}(\sigma)$.

Proof. Recall that σ can be written as

$$\sigma = t_{i_1 j_1} t_{i_2 j_2} \cdots t_{i_m j_m}, \tag{4.6}$$

where $t_{i_1j_1}, t_{i_2j_2}, \ldots, t_{i_mj_m} \in T^D$ and $1 < j_1 < j_2 < \cdots < j_m \leq n$. Since the cosorting index of σ can be expressed in terms of the factorization (4.6), to prove the the equivalence of the sorting index and the co-sorting index of σ , we proceed to rewrite (4.6) as a product of transpositions in T^B from which the sorting index of σ can be determined.

In fact, it can be shown that σ can be written as a product of transpositions in T^B which is either of the form

$$(p_1, j_1)(p_2, j_2) \cdots (p_m, j_m),$$
 (4.7)

or of the form

$$(\bar{1},1)(p_1,j_1)(p_2,j_2)\cdots(p_m,j_m),$$
(4.8)

where for $1 \leq k \leq m$,

$$p_{k} = \begin{cases} 1 \text{ or } 1, & \text{if } i_{k} = 1, \\ 1 \text{ or } \bar{1}, & \text{if } i_{k} = \bar{1}, \\ i_{k}, & \text{otherwise.} \end{cases}$$
(4.9)

We claim that for $1 \leq r \leq m$, $t_{i_r j_r} t_{i_{r+1} j_{r+1}} \cdots t_{i_m j_m}$ can be expressed as a product of transpositions in T^B which is either of the form

$$(p_r, j_r)(p_{r+1}, j_{r+1}) \cdots (p_m, j_m)$$
 (4.10)

or of the form

$$(\bar{1},1)(p_r,j_r)(p_{r+1},j_{r+1})\cdots(p_m,j_m),$$
(4.11)

where p_k is given as in (4.9). Let us first consider the case r = m. In this case, if $i_m \neq \overline{j_m}$, then $t_{i_m j_m}$ equals (i_m, j_m) , which is of the form (4.10). If $i_m = \overline{j_m}$, then $t_{i_m j_m}$ equals $(\overline{1}, 1)(i_m, j_m)$, which is of the form (4.11).

Assume that the claim holds for r, where $1 < r \le m$. We wish to show that it holds for r-1. If $t_{i_rj_r}t_{i_{r+1}j_{r+1}}\cdots t_{i_mj_m}$ can be expressed in the form (4.10), then we have

$$t_{i_{r-1}j_{r-1}}t_{i_rj_r}\cdots t_{i_mj_m} = \begin{cases} (\overline{1},1)(i_{r-1},j_{r-1})(p_r,j_r)\cdots(p_m,j_m), & \text{if } i_{r-1}=\overline{j_{r-1}}, \\ (i_{r-1},j_{r-1})(p_r,j_r)\cdots(p_m,j_m), & \text{otherwise}, \end{cases}$$

which is either of the form (4.11) or of the form (4.10). We now assume that $t_{i_r j_r} t_{i_{r+1} j_{r+1}} \cdots t_{i_m j_m}$ can be expressed in the form (4.11). It follows that

$$t_{i_{r-1}j_{r-1}}t_{i_rj_r}\cdots t_{i_mj_m} = \begin{cases} (i_{r-1}, j_{r-1})(p_r, j_r)\cdots(p_m, j_m), & \text{if } i_{r-1} = \overline{j_{r-1}}, \\ (\overline{1}, 1)(\overline{i_{r-1}}, j_{r-1})(p_r, j_r)\cdots(p_m, j_m), & \text{if } i_{r-1} = 1 \text{ or } \overline{1}, \\ (\overline{1}, 1)(i_{r-1}, j_{r-1})(p_r, j_r)\cdots(p_m, j_m), & \text{otherwise}, \end{cases}$$

which is either of the form (4.10) or of the form (4.11). Thus the claim holds for $1 \le r \le m$.

So we have shown that σ can be expressed as (4.7) or (4.8). Hence the sorting index $\operatorname{sor}_{D}(\sigma)$ can be determined by this factorization, namely,

$$\operatorname{sor}_{\mathrm{D}}(\sigma) = \sum_{r=1}^{m} (j_r - p_r - 2\chi(p_r < 0)).$$

By (4.9), we find that

$$j_r - p_r - 2\chi(p_r < 0) = j_r - i_r - 2\chi(i_r < 0)$$

for $1 \leq r \leq m$. In view of (4.6), we see that

$$\operatorname{sor}_{\mathrm{D}}'(\sigma) = \sum_{r=1}^{m} (j_r - i_r - 2\chi(i_r < 0)).$$

It follows that $\operatorname{sor}_{D}(\sigma) = \operatorname{sor}'_{D}(\sigma)$. This completes the proof.

To justify the equidistribution of $(inv_D, nmin_D)$ and (sor_D, l'_D) , we shall give a bijection which transforms $(inv_D, nmin_D)$ to (sor_D, \tilde{l}'_D) . This bijection can be described in terms of two codes, called the E-code and the F-code of an element of D_n . It can be shown that the pair of statistics $(inv_D, nmin_D)$ can be computed from the E-code, whereas the pair of statistics (sor_D, \tilde{l}'_D) can be computed from the F-code.

Given an element $\sigma \in D_n$, the E-code of σ is an integer sequence $e = (e_1, e_2, \ldots, e_n)$ generated by the following procedure. We wish to construct a sequence of signed permutations $\sigma^{(n)}, \sigma^{(n-1)}, \ldots, \sigma^{(1)}$, where $\sigma^{(i)} \in D_i$ for $1 \leq i \leq n$. First, we set $\sigma^{(n)} = \sigma$. For *i* from *n* to 2, we construct $\sigma^{(i-1)}$ from $\sigma^{(i)}$. Consider the letter *i* in $\sigma^{(i)}$. If *i* has a positive sign in $\sigma^{(i)}$, say, *i* appears at the *p*-th position in $\sigma^{(i)}$, then we set $e_i = p$ and let $\sigma^{(i-1)}$ be the signed permutation obtained from $\sigma^{(i)}$ by deleting the element *i*. If *i* has a minus sign in $\sigma^{(i)}$, say, *i* appears at the *p*-th position in $\sigma^{(i)}$, then set $e_i = -p$. Let σ' be the signed permutation obtained from $\sigma^{(i)}$ by deleting *i*, and let $\sigma^{(i-1)}$ be the signed permutation obtained from $\sigma^{(i)}$ by deleting *i*, and let $\sigma^{(i-1)}$ be the signed permutation obtained from $\sigma^{(i)}$ by changing the sign of the element at the first position.

It can be checked that the resulting signed permutation $\sigma^{(1)}$ is the identity permutation 1. Finally, we set $e_1 = 1$. For example, let $\sigma = 2\bar{4}51\bar{3}$. Then we have

$\sigma^{(5)} =$	$2 \bar{4} 5 1 \bar{3},$	$e_5 = 3,$
$\sigma^{(4)} =$	$2 \bar{4} 1 \bar{3},$	$e_4 = -2,$
$\sigma^{(3)} =$	$\bar{2} \ 1 \ \bar{3},$	$e_3 = -3,$
$\sigma^{(2)} =$	2 1,	$e_2 = 1,$
$\sigma^{(1)} =$	1,	$e_1 = 1.$

Hence the E-code of $\sigma = 2\bar{4}51\bar{3}$ is (1, 1, -3, -2, 3).

It can be seen that the above procedure is reversible. In other words, one can recover an element $\sigma \in D_n$ from an E-code $e = (e_1, e_2, \ldots, e_n)$. For $1 < r \leq n$, it is routine to verify that

$$\operatorname{inv}_{\mathcal{D}}(\sigma^{(r)}) - \operatorname{inv}_{\mathcal{D}}(\sigma^{(r-1)}) = r - e_r - 2\chi(e_r < 0)$$
(4.12)

ľ

and

$$\operatorname{nmin}_{D}(\sigma^{(r)}) - \operatorname{nmin}_{D}(\sigma^{(r-1)}) = 1 - \chi(e_{r} = r).$$
(4.13)

So we are led to the following formulas for $inv_D(\sigma)$ and $mmi_D(\sigma)$.

Proposition 4.4 Given an element $\sigma \in D_n$, let $e = (e_1, e_2, \ldots, e_n)$ be its E-code. Then

$$inv_{\rm D}(\sigma) = \sum_{r=1}^{n} (r - e_r - 2\chi(e_r < 0))$$
(4.14)

and

$$n\min_{D}(\sigma) = n - \sum_{r=1}^{n} \chi(e_r = r).$$
(4.15)

We now define the F-code of an element $\sigma \in D_n$ as an integer sequence $f = (f_1, f_2, \ldots, f_n)$ given by the following procedure. To compute the F-code f, we shall generate a sequence of signed permutations $\sigma^{(n)}, \sigma^{(n-1)}, \ldots, \sigma^{(1)} \in D_n$. Let us begin with $\sigma^{(n)} = \sigma$. For i from n to 2, we construct $\sigma^{(i-1)}$ from $\sigma^{(i)}$. Consider the letter i in $\sigma^{(i)}$. If i has a positive sign in $\sigma^{(i)}$, say, $\sigma^{(i)}(p) = i$, then let $f_i = p$ and let $\sigma^{(i-1)}$ be the signed permutation obtained from $\sigma^{(i)}$ by exchanging the letter i and the letter at the i-th position. If i has a minus sign in $\sigma^{(i)}$ and $\sigma^{(i)}(i) = \bar{i}$, then let $f_i = -i$ and let $\sigma^{(i-1)}$ be the signed permutation obtained from $\sigma^{(i)}$ by changing both the signs of the element at the i-th position and the element at the first position. If i has a minus sign in $\sigma^{(i)}$ and $\sigma^{(i)}(i) \neq \bar{i}$, say, $\sigma^{(i)}(p) = \bar{i}$, then let $f_i = -p$ and let $\sigma^{(i-1)} = \sigma^{(i)}(\bar{p}, i)$. It can be readily seen that the resulting signed permutation $\sigma^{(1)}$ is the identity permutation $1 2 \cdots n$. Finally, we set $f_1 = 1$.

For example, let $\sigma = \overline{2} \overline{4} 5 \overline{1} \overline{3}$. Then we have

$$\begin{aligned}
\sigma^{(5)} &= \bar{2} \bar{4} 5 \bar{1} \bar{3}, & f_5 = 3, \\
\sigma^{(4)} &= \bar{2} \bar{4} \bar{3} \bar{1} 5, & f_4 = -2, \\
\sigma^{(3)} &= \bar{2} 1 \bar{3} 4 5, & f_3 = -3, \\
\sigma^{(2)} &= 2 1 3 4 5, & f_2 = 1, \\
\sigma^{(1)} &= 1 2 3 4 5, & f_1 = 1.
\end{aligned}$$

Hence the F-code of $\sigma = \overline{2}\overline{4}5\overline{1}\overline{3}$ is (1, 1, -3, -2, 3). It is easily seen that the above procedure is reversible. So we can recover σ from its F-code.

The following proposition gives expressions of $\operatorname{sor}_{D}(\sigma)$ and $\tilde{l}'_{D}(\sigma)$ in terms of the F-code of σ .

Proposition 4.5 Given an element $\sigma \in D_n$, let $f = (f_1, f_2, \ldots, f_n)$ be its F-code. Then

$$\operatorname{sor}_{\mathrm{D}}(\sigma) = \sum_{r=1}^{n} (r - f_r - 2\chi(f_r < 0))$$
(4.16)

and

$$\tilde{l}'_{\rm D}(\sigma) = n - \sum_{r=1}^{n} \chi(f_r = r).$$
 (4.17)

Proof. For $1 \leq i \leq n$, we let t_{ii} denote the identity permutation. Examining the procedure to construct the F-code of σ , we see that for $1 < r \leq n$, we have

$$\sigma^{(r)} = \sigma^{(r-1)} t_{f_r r}.$$
 (4.18)

It follows that

$$\sigma^{(r)} = t_{f_1 1} t_{f_2 2} \cdots t_{f_r r}. \tag{4.19}$$

By the definition of the co-sorting index, we find

$$\operatorname{sor}_{\mathrm{D}}^{\prime}(\sigma^{(r)}) - \operatorname{sor}_{\mathrm{D}}^{\prime}(\sigma^{(r-1)}) = r - f_r - 2\chi(f_r < 0).$$
(4.20)

Applying Lemma 4.3, we get

$$\operatorname{sor}_{\mathcal{D}}(\sigma^{(r)}) - \operatorname{sor}_{\mathcal{D}}(\sigma^{(r-1)}) = r - f_r - 2\chi(f_r < 0).$$
 (4.21)

Summing (4.21) over r gives (4.16).

To prove (4.17), it suffices to show that

$$\tilde{l}'_{\rm D}(\sigma^{(r)}) - \tilde{l}'_{\rm D}(\sigma^{(r-1)}) = 1 - \chi(f_r = r)$$
(4.22)

for $1 < r \le n$. If $f_r = r$, then it is clear that $\sigma^{(r)} = \sigma^{(r-1)}$. So (4.22) holds in this case. If $f_r \ne r$, let $\tilde{l}'_D(\sigma^{(r)}) = l$. Then $\sigma^{(r)}$ can be decomposed as follows

$$\sigma^{(r)} = t_{i_1 j_1} t_{i_2 j_2} \cdots t_{i_l j_l}, \tag{4.23}$$

where $t_{i_1j_1}, t_{i_2j_2}, \dots, t_{i_lj_l} \in T^D$. For $t = t_{ij} \in T^D$ and $1 < k \leq n$, we say that t fixes k if and only if $k \neq i, \overline{i}, j$ or \overline{j} in the sense that if $k \neq i, \overline{i}, j$ or \overline{j} , then t_{ij} maps k to k when we consider t_{ij} as a map on $\{1, 2, \dots, n, \overline{1}, \overline{2}, \dots, \overline{n}\}$. It can be verified that for any $1 < k \leq n$ and $t_1, t_2 \in T^D$, there exist $t_3, t_4 \in T^D$ such that $t_1t_2 = t_3t_4$ and t_3 fixes k. Thus we can use (4.23) to express $\sigma^{(r)}$ in the following form

$$\sigma^{(r)} = t_{i'_1 j'_1} t_{i'_2 j'_2} \cdots t_{i'_l j'_l}, \tag{4.24}$$

where $t_{i'_1j'_1}, t_{i'_2j'_2}, \dots, t_{i'_lj'_l} \in T^D$ and $t_{i'_pj'_p}$ fixes r for $1 \le p \le l-1$. Since $f_r \ne r$, it follows from (4.19) that $\sigma^{(r)}$ maps f_r to r. Hence we deduce that $t_{i'_lj'_l} = t_{f_rr}$. By (4.18) and (4.24), we get

$$t_{i'_1j'_1}t_{i'_2j'_2}\cdots t_{i'_{l-1}j'_{l-1}} = \sigma^{(r-1)}$$

So we arrive at

 $\tilde{\mathbf{l}}'(\sigma^{(r-1)}) \le l - 1.$ $l < \tilde{\mathbf{l}}'(\sigma^{(r-1)}) + 1.$

By (4.18), we see that

Thus we conclude that

$$l = \tilde{l}'(\sigma^{(r-1)}) + 1.$$
(4.25)

This completes the proof of (4.17).

Using the E-code and the F-code, we can define a bijection $\rho: D_n \longrightarrow D_n$ as given by

$$\rho = \text{F-code}^{-1} \circ \text{E-code}.$$

Combining Proposition 4.4 and Proposition 4.5, we obtain the following property.

Theorem 4.6 The bijection ρ transforms (inv_D, nmin_D) to (sor_D, \tilde{l}'_D), that is, for any $\sigma \in D_n$, we have

$$(inv_D, nmin_D) \sigma = (sor_D, \tilde{l}'_D) \rho(\sigma).$$
 (4.26)

Proof. For $\sigma \in D_n$, let $g = (g_1, g_2, \ldots, g_n)$ be the E-code of σ . It is clear that g is also the F-code of $\rho(\sigma)$. It follows from Proposition 4.4 and Proposition 4.5 that

$$(\text{inv}_{\rm D}, \text{nmin}_{\rm D}) \ \sigma = \left(\sum_{r=1}^{n} (r - g_r - 2\chi(g_r < 0)), n - \sum_{r=1}^{n} \chi(g_r = r) \right),$$
$$(\text{sor}_{\rm D}, \tilde{\mathbf{l}}'_{\rm D}) \ \rho(\sigma) = \left(\sum_{r=1}^{n} (r - g_r - 2\chi(g_r < 0)), n - \sum_{r=1}^{n} \chi(g_r = r) \right).$$

Thus we obtain (inv_D, nmin_D) $\sigma = (\text{sor}_{D}, \tilde{l}'_{D}) \rho(\sigma)$. This completes the proof.

We now present a proof of Theorem 4.2 based on two factorizations of the diagonal sum $\sum_{\sigma \in D_n} \sigma$ in the group algebra $\mathbb{Z}[D_n]$. It turns out that the bivariate generating functions of $(inv_D, nmin_D)$ and (sor_D, \tilde{l}'_D) are both equal to

$$D_n(q,t) = \prod_{r=1}^{n-1} (1 + q^r t + qt \cdot [2r]_q).$$

To derive the bivariate generating function of $(inv_D, nmin_D)$, we recall Petersen's factorization of the diagonal sum $\sum_{\sigma \in D_n} \sigma$. The elements $\Psi_1, \Psi_2, \ldots, \Psi_{n-1}$ of the group algebra of D_n are recursively defined as follows. Recall that $s_i = (i, i+1)$ for $1 \le i < n$ and $s_{\bar{1}} = (\bar{1}, 2)$. For i = 1, let

$$\Psi_1 = 1 + s_1 + s_{\bar{1}} + s_1 s_{\bar{1}}.$$

For $i \geq 2$, let

$$\Psi_i = 1 + s_i \Psi_{i-1} + s_i \cdots s_2 s_1 s_{\bar{1}} s_2 \cdots s_i.$$

Petersen found the following factorization.

Proposition 4.7 For $n \ge 2$, we have

$$\sum_{\sigma\in D_n}\sigma=\Psi_1\Psi_2\cdots\Psi_{n-1}.$$

For an element $\sigma \in D_n$, we define the weight of σ to be

$$\mu(\sigma) = q^{\mathrm{inv}_{\mathrm{D}}(\sigma)} t^{\mathrm{nmin}_{\mathrm{D}}(\sigma)}.$$

As usual, the weight function is considered as a linear map on $\mathbb{Z}[D_n]$. It can be easily checked that

$$\mu(\Psi_i) = 1 + tq^i + tq \left(1 + q + \dots + q^{2i-1}\right) = 1 + tq^i + tq \left[2i\right]_q.$$
(4.27)

We are now ready to finish the proof of relation (4.4) concerning the bivariate generating function of $(inv_D, nmin_D)$.

Proof of (4.4) in Theorem 4.2. By Proposition 4.7 and relation (4.27), we see that (4.4) can be rewritten as

$$\mu(\Psi_1\cdots\Psi_{n-1})=\mu(\Psi_1)\cdots\mu(\Psi_{n-1}).$$

Notice that for $i \ge 1$ and $i + 2 \le k \le n$, each term of Ψ_i fixes k. Here we say that an element $\sigma \in D_n$ fixes k if σ maps k to k. Thus Ψ_i can be considered as an element of $\mathbb{Z}[D_j]$ for i < j < n. It is evident the weight function μ is well-defined in this sense. Therefore we only need to show that

$$\mu(\Psi_1 \cdots \Psi_{n-2} \Psi_{n-1}) = \mu(\Psi_1 \cdots \Psi_{n-2}) \, \mu(\Psi_{n-1}).$$

It suffices to prove that

$$\mu(\sigma \cdot \Psi_{n-1}) = \mu(\sigma) \cdot \mu(\Psi_{n-1}) \tag{4.28}$$

for any $\sigma = \sigma_1 \cdots \sigma_{n-1} \in D_{n-1}$. Note that σ is considered as an element of D_n which fixes n. It is easy to see that

$$\sigma \cdot \Psi_{n-1} = \sigma_1 \cdots \sigma_{n-1} n + \sigma_1 \cdots \sigma_{n-2} n \sigma_{n-1} + \cdots + \sigma_1 n \cdots \sigma_{n-1} + n \sigma_1 \cdots \sigma_{n-1} + \bar{n} \bar{\sigma_1} \cdots \sigma_{n-1} + \bar{\sigma_1} \bar{n} \cdots \sigma_{n-1} + \cdots + \bar{\sigma_1} \cdots \sigma_{n-1} \bar{n}.$$

Thus we have

$$\mu(\sigma \cdot \Psi_{n-1})$$

$$= \mu(\sigma_1 \cdots \sigma_{n-1}n) + \mu(\sigma_1 \cdots \sigma_{n-2}n\sigma_{n-1}) + \cdots + \mu(\sigma_1 n \cdots \sigma_{n-1}) + \mu(n\sigma_1 \cdots \sigma_{n-1})$$

$$+ \mu(\bar{n}\sigma_1 \cdots \sigma_{n-1}) + \mu(\bar{\sigma}_1 \bar{n} \cdots \sigma_{n-1}) + \cdots + \mu(\bar{\sigma}_1 \cdots \sigma_{n-1}\bar{n})$$

$$= \mu(\sigma) + qt \,\mu(\sigma) + \cdots + q^{n-2}t \,\mu(\sigma) + q^{n-1}t \,\mu(\sigma)$$

$$+ q^{n-1}t \,\mu(\sigma) + q^n t \,\mu(\sigma) + \cdots + q^{2n-2}t \,\mu(\sigma)$$

$$= (1 + tq^{n-1} + tq(1 + q + \dots + q^{2n-3})) \mu(\sigma).$$

Therefore, (4.28) can be deduced from (4.27). This completes the proof.

To prove formula (4.5) for the bivariate generating function of $(\text{sor}_{D}, \tilde{l}'_{D})$, we shall use another factorization of the diagonal sum $\sum_{\sigma \in D_{n}} \sigma$ due to Petersen. For $2 \leq j \leq n$, let

$$\Phi_j = 1 + \sum_{\substack{i \neq 0\\ \bar{j} \le i < j}} t_{ij}$$

Proposition 4.8 For $n \ge 2$, we have

$$\sum_{\sigma\in D_n}\sigma=\Phi_2\,\Phi_3\cdots\Phi_n.$$

For an element $\sigma \in D_n$, we define another weight function

$$\nu(\sigma) = q^{\mathrm{sor}_{\mathrm{D}}(\sigma)} t^{\hat{\mathrm{l}}'_{\mathrm{D}}(\sigma)}.$$

Again, the weight function ν is considered as a linear map. It can be checked that

$$\nu(\Phi_i) = 1 + tq^{i-1} + tq(1 + q + \dots + q^{2i-3}) = 1 + tq^{i-1} + tq[2i-2]_q.$$
(4.29)

Proof of (4.5) in Theorem 4.2. By Proposition 4.8 and relation (4.29), we find that (4.5) can be expressed in the following form

$$u(\Phi_2\cdots\Phi_n)=\nu(\Phi_2)\cdots\nu(\Phi_n).$$

As in the proof of (4.4), we only need to show that

1

 $\nu(\Phi_2\cdots\Phi_n)=\nu(\Phi_2\cdots\Phi_{n-1})\,\nu(\Phi_n).$

It suffices to prove that

$$\nu(\sigma \cdot \Phi_n) = \nu(\sigma) \cdot \nu(\Phi_n), \qquad (4.30)$$

for any $\sigma = \sigma_1 \cdots \sigma_{n-1} \in D_{n-1}$. Again, σ is considered as an element of D_n which fixes n. Since

$$\sigma \cdot \Phi_n = \sigma_1 \cdots \sigma_{n-1} n + \sigma_1 \cdots \sigma_{n-2} n \sigma_{n-1} + \cdots + \sigma_1 n \cdots \sigma_{n-1} \sigma_2 + n \sigma_2 \cdots \sigma_{n-1} \sigma_1 + \bar{n} \sigma_2 \cdots \sigma_{n-1} \bar{\sigma_1} + \sigma_1 \bar{n} \cdots \sigma_{n-1} \bar{\sigma_2} + \cdots + \bar{\sigma_1} \cdots \sigma_{n-1} \bar{n},$$

we get

$$\nu(\sigma \cdot \Phi_n)$$

= $\nu(\sigma_1 \cdots \sigma_{n-1}n) + \nu(\sigma_1 \cdots \sigma_{n-2}n\sigma_{n-1}) + \cdots + \nu(\sigma_1 n \cdots \sigma_{n-1}\sigma_2) + \nu(n\sigma_2 \cdots \sigma_{n-1}\sigma_1)$

$$+\nu(\bar{n}\sigma_2\cdots\sigma_{n-1}\bar{\sigma_1}) +\nu(\sigma_1\bar{n}\cdots\sigma_{n-1}\bar{\sigma_2}) +\cdots +\nu(\bar{\sigma_1}\sigma_2\cdots\sigma_{n-1}\bar{n})$$

$$= \nu(\sigma) + qt\,\nu(\sigma) +\cdots + q^{n-2}t\,\nu(\sigma) + q^{n-1}t\,\nu(\sigma)$$

$$+q^{n-1}t\,\nu(\sigma) + q^nt\,\nu(\sigma) +\cdots + q^{2n-2}t\,\nu(\sigma)$$

$$= (1 + tq^{n-1} + tq(1 + q + \cdots + q^{2n-3}))\,\nu(\sigma).$$

Hence (4.30) follows from (4.29). This completes the proof.

Acknowledgments. We wish to thank the referee for helpful suggestions. This work was supported by the 973 Project, the PCSIRT Project of the Ministry of Education, and the National Science Foundation of China.

References

- [1] A. Björner, F. Brenti, Combinatorics of Coxeter Groups, Springer, New York, 2005.
- [2] F. Brenti, q-Eulerian polynomials arising from Coxeter groups, European J. Combin. 15 (1994) 417-441.
- [3] W.Y.C. Chen, R.P. Stanley, Derangements on the *n*-cube, Discrete Math. 115 (1993) 65-70.
- [4] R. Cori, Indecomposable permutations, hypermaps and labeled Dyck paths, J. Combin. Theory Ser. A 116 (2009) 1326-1343.
- [5] P. Ossona de Mendez, P. Rosenstiehl, Transitivity and connectivity of permutations, Combinatorica 24 (2004) 487-502.
- [6] D. Foata, G.-H. Han, New permutation coding and equidistribution of set-valued statistics, Theoret. Comput. Sci. 410 (2009) 3743-3750.
- [7] D. Foata, G.-H. Han, Signed words and permutations, I: a fundamental transformation, Proc. Amer. Math. Soc. 135 (2007) 31-40.
- [8] D.E. Knuth, The Art of Computer Programming, Vol. 3, Addison-Wesley, 1998.
- [9] D.H. Lehmer, Teaching combinatorial tricks to a computer, in: Proc. Sympos. Appl. Math., Vol. 10, Amer. Math. Soc, Providence, RI, 1960, pp. 179-193.
- [10] T.K. Petersen, The sorting index, Adv. Appl. Math. 47 (2011) 615-630.
- [11] M.C. Wilson, An interesting new Mahonian permutation statistic, Electron. J. Combin. 17 (2010) R147.
- [12] M.C. Wilson, Random and exhaustive generation of permutations and cycles, Ann. Combin. 12 (2009) 509-520.