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Abstract. Noncrossing linked partitions arise in the study of certain transforms in free
probability theory. We explore the connection between noncrossing linked partitions and
(3, 2)-Motzkin paths, where a (3, 2)-Motzkin path can be viewed as a Motzkin path for
which there are three types of horizontal steps and two types of down steps. A large (3, 2)-
Motzkin path is a (3, 2)-Motzkin path for which there are only two types of horizontal steps
on the x-axis. We establish a one-to-one correspondence between the set of noncrossing
linked partitions of {1, . . . , n + 1} and the set of large (3, 2)-Motzkin paths of length n,
which leads to a simple explanation of the well-known relation between the large and the
little Schröder numbers.
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1 Introduction

The notion of noncrossing linked partitions was introduced by Dykema [5] in the study of
the unsymmetrized T-transform in free probability theory. Let [n] denote {1, . . . , n}. It
has been shown that the generating function of the number of noncrossing linked partitions
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of [n + 1] is given by

F (x) =

∞∑

n=0

fn+1x
n =

1− x−
√
1− 6x+ x2

2x
. (1.1)

This implies that the number of noncrossing linked partitions of [n + 1] is equal to the
n-th large Schröder number Sn, that is, the number of large Schröder paths of length 2n.
To be more specific, a large Schröder path of length 2n is a lattice path from (0, 0) to
(2n, 0) consisting of up steps (1, 1), horizontal steps (2, 0) and down steps (1,−1) that
does not go below the x-axis. Notice that a large Schröder path is also called a Schröder
path. The first few values of Sn are given below

1, 2, 6, 22, 90, 394, 1806, . . . .

The sequence of the large Schröder numbers is listed as entry A006318 in OEIS [8]. A
bijection from the set of noncrossing linked partitions of [n+1] to the set of large Schröder
paths of length 2n was established by Chen, Wu, and Yan [2].

In this paper, we aim to construct an explicit correspondence between noncrossing
linked partitions and (3, 2)-Motzkin paths. Recall that a Motzkin path of length n is
defined as a lattice path from (0, 0) to (n, 0) consisting of up steps (1, 1), horizontal steps
(1, 0) and down steps (1,−1) that does not go below the x-axis. A (3, 2)-Motzkin path is
a Motzkin path for which each horizontal step colored by one of the three colors 1, 2, and
3, and each down step colored by one of the two colors 1 and 2.

It is known that the number of little Schröder paths of length 2n equals the number
of (3, 2)-Motzkin paths of length n− 1, where a little Schröder path is defined as a large
Schröder path such that there are no horizontal steps on the x-axis. Yan [10] found a
bijective proof of this fact. The number of little Schröder paths of length 2n is referred
to as the little Schröder number sn. Since the large Schröder numbers and the little
Schröder numbers are related by a factor of two, we see that the number of noncrossing
linked partitions of [n+ 1] is twice the number of (3, 2)-Motzkin paths of length n.

In this paper, we introduce a class of Motzkin paths, called large (3, 2)-Motzkin paths,
which are defined as (3, 2)-Motzkin paths such that each horizontal step at the x-axis is
colored by one of the two colors 1 and 2. We shall show that noncrossing linked partitions
of [n+1] are in one-to-one correspondence with large (3, 2)-Motzkin paths of length n. By
examining the connection between large (3, 2)-Motzkin paths and ordinary (3, 2)-Motzkin
paths, we immediately get the relation between the large and the little Schröder numbers.

Let us give a brief review of some terminology. Let mn denote the n-th (3, 2)-Motzkin
number, that is, the number of (3, 2)-Motzkin paths with n steps. An irreducible large

(3, 2)-Motzkin path is defined as a large (3, 2)-Motzkin path that does not touch the x-
axis except for the origin and the destination. Bear in mind that a horizontal step on
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the x-axis is considered as an irreducible large (3, 2)-Motzkin path. The length of a path
is defined to be the number of steps in the path. Denote the set of large (3, 2)-Motzkin
paths by L and the set of large (3, 2)-Motzkin paths of length n by Ln. Let ln be the
number of paths in Ln.

By the decomposition of a large (3, 2)-Motzkin path into irreducible segments, we see
that the generating function

L(x) =
∞∑

n=0

lnx
n

satisfies the functional equation

L(x) = 1 + 2xL(x) + 2x2M(x)L(x), (1.2)

where

M(x) =

∞∑

n=0

mnx
n =

1− 3x−
√
1− 6x+ x2

4x2
(1.3)

is the generating function of the (3, 2)-Motzkin numbers. A similar decomposition has
been used by Cheon, Lee, and Shapiro [3] to derive generating function identities for the
Catalan numbers and the Fine numbers. From (1.2) and (1.3) it follows that L(x) = F (x).
This yields

ln = fn+1. (1.4)

Using the connection between the large (3, 2)-Motzkin paths and ordinary (3, 2)-
Motzkin paths, we are led to a simple explanation of the following relation:

ln = 2mn−1. (1.5)

Since the little Schröder number sn is equal to the (3, 2)-Motzkin number mn−1 (Chen,
Li, Shapiro, and Yan [1] and Yan [10]), we find that relation (1.5) is equivalent to the
well-known relation

Sn = 2sn. (1.6)

Combinatorial interpretations of (1.6) have been given by Shapiro and Sulanke [9], Deutsch
[4], Gu, Li, and Mansour [6], and Huq [7].

2 Noncrossing Linked Partitions

In this section, we give a bijection from the set of large (3, 2)-Motzkin paths of length n

to the set of noncrossing linked partitions of [n+ 1].

A linked partition of [n] is a collection of nonempty subsets B1, . . . , Bk of [n], called
blocks, such that the union of B1, . . . , Bk is [n] and any two distinct blocks are nearly

3



disjoint. Two blocks Bi and Bj are said to be nearly disjoint if for any k ∈ Bi ∩ Bj , one
of the following conditions holds:

(a) k = min(Bi), |Bi| > 1 and k 6= min(Bj), or

(b) k = min(Bj), |Bj| > 1 and k 6= min(Bi).

We say that π = {B1, . . . , Bk} is a noncrossing linked partition if in addition, for any
two distinct blocks A and B in π, there does not exist a, b ∈ A and c, d ∈ B such that
a < c < b < d. Let NCL(n) denote the set of noncrossing linked partitions of [n].

In this paper, we adopt the linear representation of linked partitions, introduced by
Chen, Wu, and Yan [2]. For a linked partition π of [n], first we draw n vertices 1, . . . , n
on a horizontal line in increasing order. For each block B = {i1, . . . , ik}, we write the
elements i1, . . . , ik in increasing order, and we use min(B) to denote the minimum element
i1 of B. If k ≥ 2, then we draw an arc joining i1 and any other vertex in B. We shall use
a pair (i, j) to denote an arc between i and j, where we assume that i < j. It can be seen
that a linked partition is noncrossing if and only if it does not contain any crossing arcs
in its linear representation. For example, the linear representation of a noncrossing linked
partition π = {1, 4, 9}{2, 3}{5, 6}{6, 7}{8} is illustrated in Figure 2.1, where 6 belongs to
both blocks {5, 6} and {6, 7}.

1 2 3 4 5 6 7 8 9

Figure 2.1: The linear representation of π = {1, 4, 9}{2, 3}{5, 6}{6, 7}{8}.

Below is the main result of this paper.

Theorem 2.1 There is a bijection from the set of large (3, 2)-Motzkin paths of length n

to the set of noncrossing linked partitions of [n + 1].

Proof. To establish the correspondence, we define a map ϕ from Ln to NCL(n + 1) in
terms of a recursive procedure. Let P be a large (3, 2)-Motzkin path in Ln, which is
represented as a sequence on {u, d1, d2, h1, h2, h3}, where u is an up step, di is an down
step with color i for i = 1, 2, and hj is a horizontal step with color j for j = 1, 2, 3. We
proceed to construct a noncrossing linked partition π = ϕ(P ).

If P = ∅, then set ϕ(P ) = {1}. If P is nonempty, then it can be decomposed into
a sequence of irreducible large (3, 2)-Motzkin paths, say, P = P1P2 · · ·Pk. Note that a
horizontal step on the x-axis is an irreducible large (3, 2)-Motzkin path. For each segment
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Pi, let pi denote the length of Pi. We wish to construct a noncrossing linked partition
ϕ(Pi) on the set {1, . . . , pi + 1}. We can then recover a noncrossing linked partition π by
piecing together the noncrossing linked partitions ϕ(P1), ϕ(P2), . . . , ϕ(Pk) and relabeling
the elements from left to right with 1, . . . , n+ 1.

Case 1: Pi contains only one step. If Pi = h1, then set ϕ(Pi) = {1, 2}; if Pi = h2, then
set ϕ(Pi) = {1}{2}. Figure 2.2 is an illustration of this case.

h2 -ϕ

1 2

h1 -ϕ

1 2

Figure 2.2: Case 1.

Case 2: Pi contains at least two steps. In this case, we may write Pi in the form
uQ1h3Q2h3 · · ·h3Qrd, where r ≥ 1, d = d1 or d2, and Qj ∈ L is a large (3, 2)-Motzkin path
that is allowed to be empty. Then ϕ(Pi) can be generated by the following operations on
the linear representations of ϕ(Q1), ϕ(Q2), . . . , ϕ(Qr).

For the case d = d1, arrange the linear representations of ϕ(Q1), ϕ(Q2), . . ., ϕ(Qr)
from left to right, and relabel the vertices also from left to right by 1, . . . , pi − 1. For
j = 1, . . . , r − 1, add an arc connecting the minimal vertex of ϕ(Qj) and the minimal
vertex of ϕ(Qj+1). Then add two vertices pi and pi + 1 to the right of ϕ(Qr). Finally,
add an arc connecting the minimal vertex of ϕ(Qr) and the vertex pi and add an arc
connecting 1 and the vertex pi + 1. See Figure 2.3.

u d1

Q1h3···h3Qr

-ϕ

1 pi pi + 1
. . .

ϕ(Q1) ϕ(Q2) ϕ(Qr)

Figure 2.3: The case for d = d1.

For the case d = d2, the construction of ϕ(Pi) is similar to the case d = d1, except
that we do not add the arc connecting the vertex 1 and the minimal vertex of ϕ(Q2). See
Figure 2.4. If r = 1, namely Pi = uQ1d2, then pi is an isolated vertex in ϕ(Pi).

Finally, we join the last vertex of ϕ(Pi) and the first vertex of ϕ(Pi+1), for i = 1, . . . , k−
1. Now π = ϕ(P ) can be obtained by relabeling the vertices from left to right with
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u d2

Q1h3···h3Qr

-ϕ

1 pi pi + 1
. . .

ϕ(Q1)ϕ(Q1) ϕ(Q2) ϕ(Qr)

Figure 2.4: The case for d = d2.

{1, . . . , n + 1}. It can be seen that π is a noncrossing linked partition of [n + 1]. Figure
2.5 is an illustration of the operation of piecing together noncrossing linked partitions
that correspond to irreducible large (3, 2)-Motzkin paths, where we use a dotted arc to
represent a boundary arc. More precisely, a boundary arc of a partition is an arc that is
not covered by any other arc.

ϕ(P1) ϕ(P2) ϕ(Pk)
ϕ(P ):

⇓

ϕ(P1) ϕ(P2) ϕ(Pk)

Figure 2.5: The operation of piecing together noncrossing linked partitions.

To show that ϕ is a bijection, we aim to construct the inverse map ϕ−1 from noncrossing
linked partitions inNCL(n+1) to large (3, 2)-Motzkin paths in Ln. Let π be a noncrossing
linked partition in NCL(n+1). As the inverse step of decomposing a large (3, 2)-Motzkin
path into irreducible segments, we can decompose a noncrossing linked partition also into
irreducible segments. We say that a noncrossing linked partition π of [n+1] is irreducible
if it has a boundary arc or it is {1}{2} for n = 1. It is easy to decompose π into irreducible
segments. In the linear representation of π, if there is a boundary arc from 1 to j, for
j ≥ 2, then the partition of [j] consisting of the arcs of the linear representation of π forms
an irreducible noncrossing linked partition. Removing the vertices 1, . . . , j− 1, we obtain
a noncrossing linked partition. If 1 is an isolated vertex, then we may form an irreducible
partition {1}{2}. Removing the vertex 1, we obtain a noncrossing linked partition. In
either case, we can iterate this process to decompose π into irreducible segments.

It is routine to verify that for any irreducible noncrossing linked partition, one can
reverse every step of the map ϕ to obtain an irreducible large (3, 2)-Motzkin path. Thus
the map ϕ is a bijection. This completes the proof.
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For example, the decomposition of π = {1, 3, 5}{2}{4}{5, 6}{7}{8} ∈ NCL(8) is
shown in Figure 2.6.

1 2 3 4 5 6 7 8

π = {1, 3, 5}{2}{4}{5, 6}{7}{8}
= (π1, π2, π3, π4)

=⇒

7 8
π4 = {7}{8}

6 7
π3 = {6}{7}

5 6
π2 = {5, 6}

1 2 3 4 5
π1 = {1, 3, 5}{2}{4}

Figure 2.6: The decomposition of π = {1, 3, 5}{2}{4}{5, 6}{7}{8}.

An example of the above bijection is given in Figure 2.7.

1 2 3 4 5 6 7 8 9 10 11 12 13

π

?
6ϕ

P
h2

d1
h2

d1 h3
d2 h3

d2

Figure 2.7: Bijection ϕ : L12 → NCL(13).

The above bijection implies that the large Schröder number Sn equals the number
ln of large (3, 2)-Motzkin paths of length n. On the other hand, there is a one-to-one
correspondence between (3, 2)-Motzkin paths of length n− 1 and little Schröder paths of
length 2n. Therefore, the relation Sn = 2sn can be rewritten as

ln = 2mn−1, (2.7)

that is, the number of large (3, 2)-Motzkin paths of length n is twice the number of
ordinary (3, 2)-Motzkin paths of length n−1. Here we give a combinatorial interpretation
of this fact. Let P be a (3, 2)-Motzkin path of length n − 1. If P does not have any
horizontal step h3 on the x-axis, then we can get two large (3, 2)-Motzkin paths by adding
a horizontal step h1 or h2 at the end of P . Otherwise, we remove the first horizontal step
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h3 on the x-axis in P , and elevate the path after this h3 horizontal step by adding an up
step at the beginning and a down step at the end so that the resulting path is a large
(3, 2)-Motzkin path of length n. In this case, there are also two choices for the last down
step. It is easy to see that the above construction is reversible. Hence we obtain (2.7).
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