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Abstract

We present a method of computing the generating function fP (x) of P -partitions
of a poset P . The idea is to introduce two kinds of transformations on posets and
compute fP (x) by recursively applying these transformations. As an application, we
consider the partially ordinal sum Pn of n copies of a given poset, which generalizes
both the direct sum and the ordinal sum. We show that the sequence {fPn(x)}n>1

satisfies a finite system of recurrence relations with respect to n. We illustrate the
method by several examples, including a kind of 3-rowed posets and the multi-cube
posets.
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1 Introduction

A P -partition is an order-reversing map from a partially ordered set (poset) to non-
negative integers (see [14, Ch. IV]). Denote the set of P -partitions of a poset P by
Par(P ). The (multivariate) generating function of P -partitions of P is given by

fP (x) =
∑

σ∈Par(P )

∏
a∈P

xσ(a)a ,

where x is the variable vector (xa)a∈P .
Stanley showed that fP (x) can be expressed as a sum over linear extensions of P [14,

Theorem 4.5.4]. Andrews, Paule and Riese [2, 1, 3, 5, 4, 6] computed fPn(x) for sev-
eral sequences {Pn}n>1 of posets by developing MacMahon’s partition analysis. Corteel,
Savage et. al. [8, 9] presented five guidelines for deriving recurrence relations of fPn(x).
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D’Souza [13] provided a Maple package GFPartitions which generates recurrence rela-
tions of fPn(x) once the decomposition of the posets Pn is given manually. Ekhad and
Zeilberger [10] considered the umbral operator on “grafting” of posets. The corresponding
Maple package RotaStanley can generate the recurrence relations automatically.

Our main objective is to find an efficient method of computing fP (x). For this purpose,
we introduce two kinds of transformations on posets in Section 2, which are the deletion
and the partially linear extension. We find that there exist simple relations between the
generating function of P -partitions of a poset and those of its transformations. Thus the
generating function fP (x) can be computed by recursively applying these transformations.

We then consider the posets Pn composed of n copies of a given poset P in Section
3. More precisely, we introduce the partially ordinal sum ⊕R of posets, and denote by
Pn the sum P ⊕R P ⊕R · · · ⊕R P , where P occurs n times. By applying the above two
transformations, we find that the sequence {fPn(x)}n>1 satisfies a system of recurrence
relations with respect to n.

Finally, we provide some examples in Section 4, including a kind of 3-rowed posets
which can not be dealt with by the packages GFPartitions and RotaStanley.

Before our further discussion, let us recall the Hasse diagram of a poset (P,6). For
x, y ∈ P , we say y covers x, denoted by xl y, if x < y and if no element z ∈ P satisfies
x < z < y. The Hasse diagram of P is a graphical representation of P , in which every
element of P is represented by a vertex and two vertices are joined by a line with vertex
x drawn below vertex y if x l y. To coincide with the descriptions used by Andrews,
Paule and Riese [2], we rotate the Hasse diagram by 90 degree clockwise so that smaller
elements lie to the left. For example, the diamond poset D = {1, 2, 3, 4} with cover
relations {1 l 2 l 4, 1 l 3 l 4} can be represented by Figure 1.
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Figure 1: The Hasse diagram of the Diamond poset D.

2 Two Transformations on Posets

In this section, we introduce the deletions and the partially linear extensions. On one
hand, they reduce a poset to simpler ones. On the other hand, the generating function
of P -partitions of a poset can be expressed in terms of those of its transformations. This
enables us to compute fP (x) by recursively transforming the poset P .

the electronic journal of combinatorics 19(4) (2012), #P29 2



2.1 The Deletions

The first transformation we consider is removing an element from a poset. We only
concern on the removable elements, which cover at most one element and are covered by
at most one element.

Let P be a poset and b ∈ P be a removable element of P . The deletion of P with
respect to b is the transformation from P to the induced sub-poset P \{b} of P by deleting
b from P . The following theorem shows the relation between fP (x) and fP\{b}(x).

Theorem 1. Let P be a poset and b ∈ P be a removable element of P . Then

fP (x) =
g(x)− h(x)

1− xb
, (1)

where

g(x) =

{
fP\{b}(x)|xc=xbxc , if ∃ c ∈ P such that bl c,

fP\{b}(x), otherwise,

and

h(x) =

{
xbfP\{b}(x)|xa=xaxb , if ∃ a ∈ P such that al b,

0, otherwise.

Proof. We only give the proof for the case when there exist a and c such that al bl c.
The other three cases can be proved in a similar way.

By the definition of P -partitions, we have

fP (x) =
∑

σ∈Par(P\{b})

 σ(a)∑
m=σ(c)

xmb
∏

u∈P\{b}

xσ(u)u


=

∑
σ∈Par(P\{b})

xσ(c)b − xσ(a)+1
b

1− xb

∏
u∈P\{b}

xσ(u)u


=

1

1− xb

∑
σ∈Par(P\{b})

(xbxc)
σ(c)

∏
u∈P\{b,c}

xσ(u)u

− xb
1− xb

∑
σ∈Par(P\{b})

(xaxb)
σ(a)

∏
u∈P\{a,b}

xσ(u)u ,

as desired.
Now we give an example to illustrate the usage of Theorem 1.

Example 2. Let us consider the Diamond poset D as shown in Figure 1. We see that 2
is a removable element of D and D \ {2} is a chain C of length 3 with

fC(x1, x2, x3) =
1

(1− x1)(1− x1x2)(1− x1x2x3)
.
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Invoking equation (1), we derive that

fD(x) =
1

1− x2
(fC(x1, x3, x2x4)− x2fC(x1x2, x3, x4))

=
1− x21x2x3

(1− x1)(1− x1x2)(1− x1x3)(1− x1x2x3)(1− x1x2x3x4)
.

2.2 The Partially Linear Extensions

The second transformation we consider is partially ordering the elements of an anti-chain
of a poset.

Let A be an anti-chain of a poset P and let M be a non-empty subset of A. The
partially linear extension (PLE in short) of P with respect to the pair (M,A) is the
transformation from the poset P to the poset P (M,A) by gluing the elements of M
together and setting the glued element cover the elements of A \ M . More precisely,
P (M,A) is the poset defined on P \M ∪ {M} and partially ordered by x 6 y if and only
if

(a) x, y ∈ P \M and x 6P y, or

(b) x, y ∈ P \M and there exist x′ ∈ A and y′ ∈M such that x 6P x
′, y′ 6P y, or

(c) x = M and there exists y′ ∈M such that y′ 6P y, or

(d) y = M and there exists x′ ∈ A such that x 6P x
′, or

(e) x = y = M .

Example 3. Let P = {1, 2, 3, 4, 5} be the poset as shown in Figure 2.
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Figure 2: The Hasse diagram of the poset P .

Then the posets P ({2}, {2, 3, 4}) and P ({2, 3}, {2, 3, 4}) are given as in Figure 3.

As a generalization of Theorem 2.3 in [11], the generating function of P -partitions of
a poset can be expressed by those of its PLE’s.

Theorem 4. Let P be a poset and A be an anti-chain of P . Then

fP (x) =
∑
∅6=M⊆A

(−1)|M |−1fP (M,A)(x)|xM=
∏

a∈M xa . (2)

the electronic journal of combinatorics 19(4) (2012), #P29 4



P ({2}, {2, 3, 4}) = s ss
s
�
�

�
�

@
@

@
@ s

1

3

4

{2} 5
P ({2, 3}, {2, 3, 4}) = s s s s

1 4 {2, 3} 5

Figure 3: Two partially linear extensions of P .

Proof. For each a ∈ A, we define

Sa = {σ ∈ Par(P ) : σ(a) 6 σ(x),∀x ∈ A}.

Since Par(P ) = ∪a∈ASa, by the inclusion-exclusion principle we derive that

fP (x) =
∑
∅6=M⊆A

(−1)|M |−1
∑
σ∈SM

∏
u∈P

xσ(u)u ,

where SM =
⋂
a∈M Sa.

Given a P -partition σ ∈ SM , we denote m = min{σ(a) : a ∈ A}. Then by the
definition of SM we have σ(x) = m for any x ∈M . Let

σ′(u) =

{
σ(u), u ∈ P \M,

m, u = M.

One sees that σ′ is a P -partition of P (M,A). Conversely, let σ′ be a P -partition of
P (M,A). By defining

σ(u) =

{
σ′(u), u ∈ P \M,

σ′(M), u ∈M,

we obtain a P -partition of P in SM . We thus set up a one-to-one corresponding between
the P -partitions of P in SM and the P -partitions of P (M,A). Therefore,

fP (x) =
∑
∅6=M⊆A

(−1)|M |−1
∑

σ′∈Par(P (M,A))

∏
u∈M

xσ
′(M)
u ·

∏
u∈P\M

xσ
′(u)
u

=
∑
∅6=M⊆A

(−1)|M |−1fP (M,A)(x)|xM=
∏

a∈M xa .

This completes the proof.
The Hasse diagrams provide a simple graphical representation for Equation (2).

Example 5. Let P = {1, 2, 3, 4} be the poset as shown in Figure 4. Taking the anti-chain
{1, 2} into account, we find that the PLE’s are shown as in Figure 5, from which we read
out

fP (x) = fP ({1},{1,2})(x2, x1, x3, x4) + fP ({2},{1,2})(x1, x2, x3, x4)

− fP ({1,2},{1,2})(x1x2, x3, x4).
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Figure 4: The Hasse diagram of the poset P .
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Figure 5: A graphical representation of Equation (2).

2.3 Computing fP (x) via two Transformations

We shall show that the deletion and the partially linear extension are powerful enough
for computing fP (x) for any poset P .

Theorem 6. Any poset can be reduced to the empty poset by applying the deletion and
the partially linear extension finite times.

Proof. Let ac(P ) denote the number of distinct anti-chains of a poset P . For any remov-
able element b, it is easy to see that the set of anti-chains in P \ {b} is a subset of that in
P . Moreover, {b} itself is an anti-chain, thus ac(P \ {b}) 6 ac(P )− 1, which implies that
the deletion reduces ac(P ) by at least one.

Suppose that A is an anti-chain of P with cardinality at least two and M is a non-
empty subset of A. If M 6= A, there exist x ∈ M and y ∈ A \M . Then {x, y} is an
anti-chain of P but is not an anti-chain of P (M,A). If M = A, the cardinality of P (M,A)
is strictly less than that of P . Thus in either case, we have ac(P (M,A)) 6 ac(P )− 1.

Now iteratively apply the deletion whenever there is a removable element and apply
the partially linear extension whenever there is an anti-chain with cardinality at least two.
Since ac(P ) is a finite number, the procedure eventually stops. The final poset contains
no removable element and no anti-chain with cardinality at least two. The only poset
satisfying this property is the empty poset.

3 Partially Ordinal Sums

In this section, we consider a kind of posets composed of small blocks.
Let P,Q be two posets and R be a subset of the Cartesian product P × Q. The

partially ordinal sum (or R-plus, for short) of P and Q with respect to R is the poset
P⊕RQ defined on the disjoint union of P and Q and partially ordered by x 6 y in P⊕RQ
if and only if

(a) x, y ∈ P and x 6P y, or
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(b) x, y ∈ Q and x 6Q y, or

(c) x ∈ P, y ∈ Q and there exists (x′, y′) ∈ R such that x 6P x
′ and y′ 6Q y.

As special cases, R-plus reduces to the direct sum if R = ∅ and to the ordinal sum if
R = P ×Q, respectively.

Example 7. Figure 6 gives the R-plus of P and Q, where P = {1, 2} is an anti-chain,
Q = {3, 4} is a chain, and R = {(1, 4), (2, 3), (2, 4)}.

P = s
s
1

2

Q = s s
3 4

P ⊕R Q = s
s s s
���

���
��

HHH
H

1

2

3 4

Figure 6: The partially ordinal sum of P and Q w.r.t. R.

It is easy to check that the partially ordinal sum is associative up to isomorphic.
Therefore we can naturally extend the definition of partially ordinal sum of two posets to
several posets. In particular, we denote by P n

R the partially ordinal sum P⊕RP⊕R · · ·⊕RP
of n copies of P w.r.t. R.

The sequence {fPn
R

(x)}n>1 satisfies a kind of recurrence relations which is given as
follows. We say a sequence {fn(x)}n>1 of functions is substituted recursive if there are
finitely many sequences

{f (0)
n (x)}n>1, {f (1)

n (x)}n>1, . . . , {f (I)
n (x)}n>1

such that f
(0)
n (x) = fn(x) and for i = 0, 1, . . . , I,

f (i)
n (x) =

I∑
j=0

K∑
k=0

ri,j,k(x)f
(j)
n−1(y

(j,k)), (3)

where ri,j,k(x) are rational functions and each component of the variable vector y(j,k) is a
monomial in x1, . . . , xn.

For example, suppose that

fn(x1, . . . , xn) =
1

1− x1
gn−1(x2, . . . , xn),

and

gn(x1, . . . , xn) =
gn−1(x1x2, x3, . . . , xn)

1− x1x2
− gn−1(x1, x2x3, x4, . . . , xn)

1− x1x3
.

Then both {fn(x)}n>1 and {gn(x)}n>1 are substituted recursive.
To compute fPn

R
(x), we consider the more general posets

Xn = A⊕R1 P
n
R ⊕R2 B, (4)

where A,B are posets and R1 ⊆ A× P,R2 ⊆ P ×B.
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Theorem 8. Let Xn be given as in (4). Then the sequence {fXn(x)}n>1 of generating
functions of P -partitions of Xn is substituted recursive.

Proof. Let S denote the set of all pairs (C,R′) such that C is a chain, R′ ⊆ C × P ,
and none of the elements of C in C ⊕R′ P is removable. Since each element of C is not
removable, it must be covered by a certain element of P . Moreover, two distinct elements
of C can not be covered by the same element in P . This implies that the cardinality of
C is less than that of P . Therefore, S is a finite set.

Now we apply the deletion and the partially linear extension to the elements of A⊕R1P
in Xn whenever possible. As shown in the proof of Theorem 6, we eventually arrive at
posets of the form C ⊕R′ P n−1

R ⊕R2 B with (C,R′) ∈ S. Moreover, we have

fXn(x) =
∑

(C,R′)∈S

r(C,R′,x)fC⊕R′P
n−1
R ⊕R2

B(y(C,R′)),

where r(C,R′,x) are rational functions of x depending on C and R′ and each component of
the variable vector y(C,R′) is a monomial in x. By a similar discussion, for each (C,R′) ∈ S
we have

fC⊕R′P
n
R⊕R2

B(x) =
∑

(C′,R′′)∈S

r′(C,R′, C ′, R′′,x)fC′⊕R′′P
n−1
R ⊕R2

B(y(C,R′,C′,R′′)),

where r′(C,R′, C ′, R′′,x) are rational functions of x that depend on C,R′, C ′ and R′′. This
completes the proof.

Note that the proof of Theorem 8 provides an algorithm for generating substituted
recurrence relations of fXn(x). The corresponding Maple package is available at
http://www.combinatorics.net.cn/homepage/hou/.

4 Some Examples

In this section, we present some examples to illustrate our approach to the computation
of fXn(x). We begin with an introductory example, i.e., the 3-rowed plane partition
introduced by Souza [13]. Then we provide some more examples, including the zigzag
posets, the 2-rowed posets with double diagonals and the multi-cube posets.

In these examples, we consider the q-generating function fP (q) obtained from fP (x)
by setting all variables xi equal the indeterminant q. For brevity, we omit some variables
equating q and write f(x1, x2, . . . , xk) instead of f(x1, x2, . . . , xk, q, q, . . . , q). We also
adopt the standard notation

(a; q)n := (1− a)(1− aq) · · · (1− aqn−1),

(a; q)∞ :=
∞∏
n=0

(1− aqn).
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4.1 An Introductory Example

D’Souza[13] introduced the 3-rowed plane partition whose corresponding poset Pn is given
by Figure 7. He failed to find out recurrence relations of the generating function fPn(x).
Our approach gives substituted recurrence relations of fPn(x).
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Figure 7: The graphical representation of the 3-rowed poset Pn.

It is easy to see that Pn = P n
R, where P is the poset on {1, 2, 3} with 1 l 2 and 1 l 3,

and R = {(2, 2), (3, 3)}.
By deleting the removable elements 2 and 3 of P , we reduce the poset Pn to Qn−1 =

1⊕R′ P n−1
R , where 1 is the poset with only one element and R′ = {(1, 2), (1, 3)} ⊂ 1×P .

See Figure 8 for a demonstration. According to Theorem 1, we derive that

fPn(x1, x2, x3) =
1

(1− x2)(1− x3)

×
(
fQn−1(x1, q, qx2, qx3)− x2fQn−1(x1x2, q, q, qx3)

− x3fQn−1(x1x3, q, qx2, q) + x2x3fQn−1(x1x2x3, q, q, q)
)
. (5)
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Figure 8: The transformation from Pn to Qn−1.

Now let us consider Qn = 1 ⊕R′ P n
R. It is readily to see that the unique element of

1 and the minimal element of P are not comparable. Thus we can apply PLE to the
anti-chain consisting of these two elements, as shown in Figure 9.
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Figure 9: The PLE transformation of Qn.
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After further deletions, all the posets generated by the PLE transformation reduce to
Qn−1. We thus obtain the recurrence relation

fQn(x1, x2, x3, x4) =
1− x1x2

(1− x1)(1− x2)(1− x3)(1− x4)

×
(
fQn−1(x1x2, q, qx3, qx4)− x3fQn−1(x1x2x3, q, q, qx4)

− x4fQn−1(x1x2x4, q, qx3, q) + x3x4fQn−1(x1x2x3x4, q, q, q)
)
. (6)

By the recurrence relations (5) and (6) and the initial condition

fQ1(x1, x2, x3, x4) =
1− x21x22x3x4

(1− x1)(1− x2)(1− x1x2x3)(1− x1x2x4)(1− x1x2x3x4)
,

we can compute fPn(q) recursively.

4.2 More Examples

In this subsection, we give three more examples: the zigzag posets, the 2-rowed posets
with double diagonals and the multi-cube posets.

Example 9. Let P = {1, 2} be a chain with 2l1 and let R = {(2, 1)}. The zig-zag poset
of length n is given by Zn = P n

R. We have

fZn(x1, x2) =
fZn−1(qx2, q)

(1− x1)(1− x2)
−

x1fZn−1(qx1x2, q)

(1− x1)(1− x1x2)
.

The initial condition is given by

fZ1(x1, x2) =
1

(1− x2)(1− x1x2)
.

Note that the P -partitions of Zn is exactly the up-down sequences defined by Carlitz
[7].

Example 10. Let Pn be the 2-rowed poset with double diagonals depicted in Figure 10.
Then we have

fPn(q) =
(−q2; q2)n−1

(q; q)2n
. (7)

Davis, Souza, Lee and Savage [9] used the “digraph method” to derive formulae (7).
Using the inclusion-exclusion principle, Gao, Hou and Xin [11] obtained the same gener-
ating function. Our approach leads to a recurrence relation as follows

fPn(x1, x2, x3, . . . , x2n)

=
1− x21x2x3

(1− x1)(1− x1x2)(1− x1x3)
fPn−1(x1x2x3, x4, x5, . . . , x2n).

Note further that P2 is the Diamond poset D given in Figure 1. By iterating the recurrence
relation and substituting all xi with q, we arrive at (7).
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Figure 10: The 2-rowed poset with double diagonals.

Example 11. Let D = {1, 2, 3, 4} be the Diamond poset shown as in Figure 1 and

R = {(1, 1), (2, 2), (3, 3), (4, 4)},

The n-th multi-cube poset Cn is defined by Cn = Dn
R, as shown in Figure 11. Using the

substituted recurrence relations, we compute fCn(q) for n 6 6. For example,

fC6(q) =
q192 + 2q190 + · · ·+ 40660110q96 + · · ·+ 2q2 + 1

(q; q)24
.
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Figure 11: The graphical representation of multi-cube posets.

MacMahon [12, Section 7] first considered the P -partitions of the poset C2. Under the
framework of partition analysis, Andrews, Paule and Rises [1] computed the fC2(q) using
the Omega package. When n > 3, the computation of fCn(q) seems not feasible by using
Omega.

Acknowledgements

This work was partially done during the second author’s visiting at RISC-Linz. He would
like to thank Peter Paule for his invitation.

References

[1] G. E. Andrews, P. Paule and A. Riese, MacMahon’s partition analysis III: the Omega
package, Europ. J. Combin., 22:887–904, 2001.

[2] G. E. Andrews, P. Paule and A. Riese, MacMahon’s partition analysis VIII: plane
partition diamonds, Adv. in Appl. Math., 27:231–242, 2001.

the electronic journal of combinatorics 19(4) (2012), #P29 11



[3] G. E. Andrews, P. Paule and A. Riese, MacMahon’s partition analysis IX: k-gon
partitions, Bull. Austral. Math. Soc., 64:321–329, 2001.

[4] G. E. Andrews, P. Paule and A. Riese, MacMahon’s partition analysis X: plane
partitions with diagonals, South East Asian J. Math. Sci., 3:3–14, 2004.

[5] G. E. Andrews, P. Paule and A. Riese, MacMahon’s partition analysis XI: hexagonal
plane partitions, 2004. SFB Report n. 2004–4, J. Kepler University, Linz.

[6] G. E. Andrews and P. Paule, MacMahon’s partition analysis XII: plane partitions,
J. London Math. Soc., 76:647–666, 2007.

[7] L. Carlitz, Enumeration of up-down sequences. Discrete Math., 4:273–386, 1973.

[8] S. Corteel, S. Lee and C. D. Savage, Five guidelines for partition analysis with ap-
plications to lecture hall-type theorems, Comb. Number theory., 297:131–155, 2007.

[9] J. W. Davis, E. D’ Souza, S. Lee and C. D. Savage, Enumeration of integer solutions to
linear inequalities defined by digraphs, Integer points in polyhedra-geometry, number
theory, representati on theory, algebra, optimization, statistics, 79–91, Contemp.
Math., 452, Amer. Math. Soc., Providence, RI, 2008.

[10] S. B. Ekhad and D. Zeilberger, Using Rota’s umbral calculus to enumerate to Stan-
ley’s P -partitions, Adv. in Appl. Math., 41:206-217, 2008.

[11] W. Gao, Q.H. Hou, and G.C. Xin, On P -partitions related to ordinal sums of posets,
European J. Combin., 30:1370–1381, 2009.

[12] P.A. MacMahon, Memoir on the theory of the partition of numbers — Part VI, Phil.
Trans., 211:245–373, 1912.

[13] E. D’ Souza, Automating the enumeration of sequences defined by digraphs, Thesis.

[14] R. P. Stanley, Enumerative Combinatorics Vol. I, Cambridge University Press, Cam-
bridge, 1997.

the electronic journal of combinatorics 19(4) (2012), #P29 12


	Introduction
	Two Transformations on Posets
	The Deletions
	The Partially Linear Extensions
	Computing fP(x) via two Transformations

	Partially Ordinal Sums
	Some Examples
	An Introductory Example
	More Examples


