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Abstract

Let G be a connected graph. The notion of rainbow connection number rc(G)
of a graph G was introduced by Chartrand et al. Basavaraju et al. proved that
for every bridgeless graph G with radius r, rc(G) ≤ r(r + 2) and the bound is
tight. In this paper, we show that for a connected graph G with radius r and
center vertex u, if we let Dr = {u}, then G has r − 1 connected dominating sets
Dr−1, Dr−2, · · · , D1 such that Dr ⊂ Dr−1 ⊂ Dr−2 · · · ⊂ D1 ⊂ D0 = V (G) and
rc(G) ≤ ∑r

i=1 max{2i + 1, bi}, where bi is the number of bridges in E[Di, N(Di)]
for 1 ≤ i ≤ r. From the result, we can get that if bi ≤ 2i + 1 for all 1 ≤ i ≤ r, then
rc(G) ≤ ∑r

i=1(2i+1) = r(r+2); if bi > 2i+1 for all 1 ≤ i ≤ r, then rc(G) =
∑r

i=1 bi,
the number of bridges of G. This generalizes the result of Basavaraju et al. In
addition, an example is given to show that there exist infinitely graphs with bridges
whose rc(G) is only dependent on the radius of G, and another example is given to
show that there exist infinitely graphs with bridges whose rc(G) is only dependent
on the number of bridges in G.
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1 Introduction

All graphs considered in this paper are simple, finite and undirected. Let G =

(V (G), E(G)) be a graph. For two subsets X and Y of V (G), an (X,Y )-path is a path

which connects a vertex of X and a vertex of Y and whose internal vertices belong to nei-

ther X nor Y . We use E[X,Y ] to denote the set of edges of G with one end in X and the

other end in Y and use e(X,Y ) to denote |E[X,Y ]|. The subgraph G[Y ] of G induced by

Y is the graph with vertex set Y and edge set consisting of the edges of G with both ends
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in Y . The distance between two vertices u and v in G, denoted by d(u, v), is the length of a

shortest path between them in G, and the distance between a vertex u and a set S ⊆ V (G)

is defined as d(u, S) = min{d(u, x)|x ∈ S}. The eccentricity of a vertex v in G is defined

as ecc(v) := maxx∈V (G) d(v, x). The radius of G is defined as rad(G) = minx∈V (G) ecc(x),

and the diameter of G is defined as diam(G) = maxx∈V (G) ecc(x). The k-step open neigh-

borhood of S is Nk(S) = {v ∈ V (G)|d(v, S) = k, k ∈ Z, k ≥ 0}. Generally speaking,

N1(S) = N(S), N0(S) = S.

Let c : E(G) → {1, 2, · · · , k}, k ∈ N be an edge-coloring, where adjacent edges may

be colored the same. A graph G is called rainbow connected if every two vertices are

connected by a path whose edges have different colors. The rainbow connection number of

a connected graph G, denoted by rc(G), is the smallest number of colors that are needed in

order to make G rainbow connected. These concepts were introduced by Chartrand et al.

in [4], where they determined the rainbow connection numbers of wheels, complete graphs

and all complete multipartite graphs. Many upper bounds for the rainbow connection

number were obtained, involving other graph parameters. Results involving the minimum

degree were obtained in [3, 8, 7, 5], whereas results involving the parameters σ2 and σk

were obtained in [9, 6].

In [1], Basavaraju et al. proved that for every bridgeless graph G with radius r,

rc(G) ≤ r(r + 2) and the bound is tight. However, we know that bridges are important

objects in a rainbow coloring since every two bridges in a rainbow coloring must receive

different colors. If G is a graph with b ≥ 1 bridges, then rc(G) ≥ b, and from their result in

[1], we can only say that rc(G) ≤ r(r +2)+ b. On the other hand, to save colors, one may

use the colors appeared on bridges to color some 2-connected blocks. As a consequence,

the upper bound r(r + 2) + b could be far from a good bound. In fact, in the following

we give an example to show that there exist infinitely graphs with bridges whose rc(G) is

only dependent on the radius of G but independent of the number of bridges of G, and we

also give another example to show that there exist infinitely graphs with bridges whose

rc(G) is only dependent on the number of bridges G but independent of the radius of G.

This paper is to study the rainbow connection number of a graph with bridges. The main

difference of our proof technique different from that in [1] is to divide the bridges into

suitable classes, and then to color these bridges and the remaining non-bridge edges, so

that we can get a new upper bound of rc(G) better than r(r + 2) + b.

Theorem 1 Let G be a connected graph with radius r and center vertex u. If we let

Dr = {u}, then G has r − 1 connected dominating sets Dr−1, Dr−2, · · · , D1 such that

Dr ⊂ Dr−1 ⊂ Dr−2 · · · ⊂ D1 ⊂ D0 = V (G) and rc(G) ≤ ∑r
i=1 max{2i + 1, bi}, where bi

is the number of bridges in E[Di, N(Di)] for 1 ≤ i ≤ r, and the number of bridges in G

is equal to
∑r

i=1 bi.
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Note that if bi ≤ 2i + 1 for all 1 ≤ i ≤ r, then rc(G) ≤ ∑r
i=1(2i + 1) = r(r + 2), which

is independent of the number of bridges in G, whereas if bi > 2i+1 for all 1 ≤ i ≤ r, then

rc(G) =
∑r

i=1 bi, the number of bridges of G. This substantially generalizes the result of

Basavaraju et al.

In the following we give two examples, in which Example 1 constructs a graph G with

rad(G) = r, such that the number of bridges is not more than r(r+2) and rc(G) = r(r+2),

whereas Example 2 constructs a graph G with rad(G) = r, such that the number of bridges

b is at least r(r + 2) + 1 and rc(G) = b.

Example 1. Let C1,1, C1,2, · · · , C1,r be r cycles such that for 1 ≤ i, j ≤ r with |i− j| ≥ 2,

we have |C1,i| = 2(r + 1 − i) + 1 and |V (C1,i) ∩ V (C1,j)| = ∅; for 1 ≤ i ≤ r − 1,

|V (C1,i) ∩ V (C1,i+1)| = 1 and let V (C1,i) ∩ V (C1,i+1) = {u1,i+1}, u1,1 ∈ V (C1,1) and

u1,1u1,2 ∈ E(G). Let u1,ru1,r+1 be an edge of C1,r, and P = u1,1 · · ·u1,r+1 be a path of

length r. For 1 ≤ i ≤ r, u1,i is incident to bi ≤ 2(r + 1 − i) + 1 pendant edges. The

resulting graph is denoted by H. Now, we take tr +1 copies H, denoted by H1, · · · , Htr+1,

such that
⋂tr+1

i=1 V (Hi) = {u1,1} = {u}. The resulting graph is denoted by G.

Now, we use t ≥ r(r + 2) colors to color each u − ui,r+1 (length of r) path Pi =

uui,2ui,3 · · ·ui,r+1 for 1 ≤ i ≤ tr + 1. There are at most tr different ways of colorings.

Hence, there exist two paths Pk, P` such that for any 1 ≤ j ≤ r, c(ek,j) = c(e`,j) where

ek,j = uk,juk,j+1, e`,j = u`,ju`,j+1. Consider any rainbow path R between u`,r+1 and uk,r+1.

One can see that |R| ≥ r +
∑r

i=1 2i = r(r + 2). Hence rc(G) ≥ r(r + 2). In the following

we use r(r + 2) different colors to give G a coloring. Let C2k+1 be a cycle of length

2k +1, we use 2k +1 different colors to color every edge of C2k+1. Call a coloring of C2k+1

appropriate if c(vivi+1) = i for 1 ≤ i ≤ 2k and c(v2k+1v1) = 2k +1. Now, for a given i and

1 ≤ h ≤ [r(r + 2)]r + 1, we use 2(r + 1− i) + 1 different colors, denoted by a set c(Ci,h) of

the colors, to give Ci,h an appropriate coloring and use bi different colors from c(Ci,h) to

color every bridge incident to ui,h. For any i and j with 1 ≤ i 6= j ≤ r, we color Ci,h and

Cj,h in the above way separately such that c(Ci,h) ∩ c(Cj,h) = ∅. Now one can see that G

is rainbow connected and the number of used colors is
∑r

i=1(2(r + 1− i) + 1) = r(r + 2).

Hence, rc(G) ≤ r(r + 2) and so rc(G) = r(r + 2).

Example 2. Similar to the construction of H, we only change the sentence “for 1 ≤
i ≤ r, u1,i is incident to bi ≤ 2(r + 1 − i) + 1 pendant edges” in Example 1 into “for

1 ≤ i ≤ r, u1,i is incident to b1,i ≥ 2(r + 1− i) + 2 pendant edges”. The resulting graph

is denoted by H ′. Now, we take tr + 1 copies of H ′, denoted by H ′
1, · · · , H ′

tr+1, such that⋂tr+1
i=1 V (H ′

i) = {u1,1} = {u}. The resulting graph is denoted by G. For a given i and

1 ≤ h ≤ [r(r + 2)]r + 1, we use bi different colors, denoted by a set c(Bi) of the colors, to

color every bridge incident to ui,h and use 2(r + 1 − i) + 1 different colors from c(Bi) to

give Ci,h an appropriate coloring. For any i and j with 1 ≤ i 6= j ≤ r, we color Ci,h and
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Cj,h in the above way separately such that c(Ci,h) ∩ c(Cj,h) = ∅. One can see that G is

rainbow connected and the number of used colors is
∑r

i=1 bi = b and so rc(G) = b.

2 Proof of Theorem 1

At first we give some definitions which are needed in our proof. Let S be a subset of

V (G). If every vertex in G is at a distance at most k from S, we say that S is a k-step

dominating set. If G[S] is connected, then S is a connected k-step dominating set. Let Dk

be a connected k-step dominating set. A Dk-ear is a path P = v0v1 · · · vp in G such that

P ∩Dk = {v0, vp}. When v0 = vp, P is a closed Dk-ear. Moreover, we say that P is an

acceptable Dk-ear, if P is a shortest Dk-ear containing v0v1. Given 2k + 1 distinct colors

1, 2, 3, · · · , 2k + 1, we call that P is evenly colored if either the edges of P are colored by

this way: c(v0v1) = 1, c(v1v2) = 2, c(v2v3) = 3, · · · , c(vd p
2
e−1vd p

2
e) = dp

2
e, c(vd p

2
evd p

2
e+1) =

2k+2−bp
2
c, · · · , c(vp−2vp−1) = 2k, c(vp−1vp) = 2k+1, or the edges of P are colored by the

contrary way: c(v0v1) = 2k + 1, c(v1v2) = 2k, · · · , c(vp−2vp−1) = 2, c(vp−1vp) = 1 where

p is the length of P . For example, let P = v0v1v2v3v4v5. Then c(v0v1) = 1, c(v1v2) =

2, c(v2v3) = 3, c(v5v4) = 2k + 1, c(v4v3) = 2k is an evenly colored of P .

Before the proof of our Theorem, we need the following lemma and two claims.

Lemma 1 If G is a connected graph and Dk is a connected k-step dominating set of G,

then G has a connected (k − 1)-step dominating set Dk−1 ⊃ Dk such that rc(G[Dk−1]) ≤
rc(G[Dk]) + max{2k + 1, bk}, where bk is the number of bridges of G in E[Dk, N(Dk)].

Proof of Lemma 1: If G is a tree, then every edge of G is a bridge, and the result is

obvious. Hence we assume that G is not a tree.

In the following, we let Dk be a connected k-step dominating set of G. Then G has k

mutually disjoint subsets N1(Dk), N2(Dk), · · · , Nk(Dk) such that V (G) =
⋃k

i=0 N i(Dk).

Claim 1. If there exist x ∈ Dk and y ∈ N(Dk) such that xy is a bridge, then y has only

one neighbor x in Dk and dG[N(Dk)](y) = 0.

Proof of Claim 1: If there exist x′ ∈ Dk with x′ 6= x such that yx′ ∈ E(G), since

G[Dk] is connected, then G[Dk] has a path connecting x and x′. So xy is in a cycle, a

contradiction to that xy is a bridge. Hence y has only one neighbor x in Dk. If there exists

y1 ∈ N(Dk) such that yy1 ∈ E(G), since Dk is a dominating set of N(Dk), then there

exists a vertex x1 ∈ Dk such that x1y1 ∈ E(G) (x1 may be x). Then xyy1x1 is a path,

and so we can also get that xy is in some cycle, a contradiction. Hence, dG[N(Dk)](y) = 0.
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Now, we let x1y1, x2y2, · · · , xbk
ybk

be all the bridges in E[Dk, N(Dk)], where xi ∈ Dk

and yi ∈ N(Dk) for 1 ≤ i ≤ bk, and let B = {y1, · · · , ybk
}, BE = {x1y1, x2y2, · · · , xbk

ybk
}

and D1 = Dk ∪ B. We rainbow color G[Dk] with rc(G[Dk]) colors. If N(Dk) = B, then

D1 = Dk∪B is a connected (k−1)-step dominating set. Thus, we let Dk−1 = D1 and use

bk fresh colors to color these bk bridges, respectively. Hence rc(G[Dk−1]) ≤ rc(G[Dk])+bk,

and so the theorem follows. So we assume N(Dk) 6= B, and then N(Dk) \ B 6= ∅. In

the following we will construct a connected (k − 1)-step dominating set Dk−1 and color

every edge of G[Dk−1] such that G[Dk−1] is rainbow connected. Since E[Dk, N(Dk) \ B]

has no bridges, for each edge e of E[Dk, N(Dk) \ B], e must be in some cycle. So there

exists an acceptable Dk-ear P containing e. We use 2k + 1 fresh colors, different from

the used colors of G[Dk], to evenly color the edges of P . So we can construct a sequence

of sets D1 ⊂ D2 ⊂ D3 ⊂ · · · ⊂ Dt = Dk−1, where D1 = Dk ∪ B, D2 = D1 ∪ P1,

D3 = D2 ∪ P2, · · · , Dt = Dt−1 ∪ Pt−1, P1, · · · , Pt−1 are all acceptable Dk-ears. We color

the new edges in every induced subgraph G[Di] such that every x ∈ Di\D1 lies in an evenly

colored acceptable Dk-ear for all 1 ≤ i ≤ t. If for some Di we have N(Dk) ⊂ Di, note that

N(Dk) 6⊂ Dj for 1 ≤ j ≤ i− 1, then Di is a connected (k − 1)-step dominating set. Now

we stop the procedure, and set Dk−1 = Di. Then we evenly color the edges of Pi−1 and

color the remaining uncolored new edges of G[Di] with a used color. Otherwise, we will

construct Di+1 as follows: We choose any edge vw ∈ E[Dk, N(Dk)\Di] with v ∈ Dk, w ∈
N(Dk) \Di. If P is an acceptable Dk-ear containing vw and P ∩ (Di \D1) = ∅, then we

let Di+1 = Di ∪ P and evenly color P . For the uncolored new edges of G[Di+1], we color

them with a used colors. Otherwise, the acceptable Dk-ear P containing vw must satisfy

P ∩ (Di \D1) 6= ∅. Assume P1 ⊂ P , and let P1 = vw(v1) · · · v` and P1 ∩ (Di \D1) = {v`}.
Since v` ∈ Di \D1, v` is in an evenly colored acceptable Dk-ear Q. Let Q1 be the shorter

segment of Q respect to v`. Then P = P1 ∪ Q1 is an acceptable Dk-ear containing vw.

If Q1 is evenly colored by the colors from {2k + 1, 2k, 2k − 1, · · · }, then we will evenly

color P where c(vw) = 1. If Q1 is evenly colored by the colors from {1, 2, 3, · · · , then

we will evenly color P where c(vw) = 2k + 1. Hence, P is evenly colored, and we let

Di+1 = Di ∪ P . For the uncolored new edges of G[Di+1], we color them with a used

color. Clearly, every x ∈ Di+1 \D1 lies in an evenly colored acceptable Dk-ear in G[Di+1].

Thus, we have constructed a connected (k− 1)-step dominating set Dk−1 and every edge

of G[Dk−1 \B] is colored.

Now, we are ready for coloring BE: If bk ≤ 2k + 1, then we use bk different colors

from {1, 2, · · · , 2k + 1} to color each edge of BE, respectively. If bk > 2k + 1, then we

first use colors 1, 2, · · · , 2k + 1 to color any 2k + 1 edges of BE, respectively, we then use

bk − (2k + 1) fresh colors to color the remaining uncolored edges of BE, respectively.

In the following we show that G[Dk−1] is rainbow connected. For any two vertices
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x, y ∈ D1, we know that x and y are rainbow connected. For x ∈ Dk−1 \ D1, y ∈ Dk,

since x is in an acceptable Dk-ear P , P ∩ Dk has at least one vertex, say y1. Since in

G[Dk] there exists a rainbow path connecting y and y1, we can get that there is a rainbow

path connecting x and y. For x ∈ Dk−1 \ D1, y ∈ B, we know that x is in an evenly

colored acceptable Dk-ear P . Let c(P ) be the set of all colors used for the edges of P . If

the bridge yy1 ∈ BE(y1 ∈ Dk) is colored by a color cyy1 from c(P ), then we choose the

segment (which does not contain the color cyy1) from x to Dk. So there is a rainbow path

connecting x and y. If the bridge yy1 ∈ BE(y1 ∈ Dk) is colored by a color cyy1 not in

c(P ), then we arbitrarily choose a segment of P from x to Dk, and we can also find a

x− y rainbow path.

Since for any v ∈ Dk−1 \ D1, v is in an evenly colored acceptable Dk-ear. For any

x ∈ Dk−1 \ D1 and y ∈ Dk−1 \ D1 and x ∈ P and y ∈ Q, P and Q are evenly colored

acceptable Dk-ears. If P = Q, then x and y are rainbow connected. Hence we may assume

P 6= Q. Let P = x0x1 · · ·xi(x)xi+1 · · ·xp and Q = y0y1 · · · yj(y)yj+1 · · · yq. We distinguish

two cases to show that x and y are rainbow connected.

Case 1. P and Q are internally disjoint.

Without loss of generality, we assume that x0x1 · · ·xd p
2
e and y0y1 · · · yd q

2
e are evenly

colored by the colors from {1, 2, 3, · · · , k + 1}, respectively. We distinguish four subcases

to show that there is an x − y rainbow path. Since G[Dk] is rainbow connected, there

exists a rainbow path of G[Dk] connecting any two vertices of Dk.

Subcase 1.1. i ≤ bp
2
c, j > b q

2
c.

Let R1 be a rainbow path of G[Dk] connecting x0 and y0. Since the edges of x =

xixi−1 · · ·x0 are colored by the colors from {1, 2, · · · , k + 1}, the edges of yqyq−1 · · · yj = y

are colored by the colors from {2k + 1, 2k, · · · , k + 2}. Hence xixi−1 · · ·x1R1yq−1 · · · yj is

an x− y rainbow path.

Subcase 1.2. i > bp
2
c, j ≤ b q

2
c.

Let R2 be a rainbow path of G[Dk] connecting x0 and y0. Then xixi+1 · · ·xp−1R2y1 · · · yj

is an x− y rainbow path.

Subcase 1.3. i ≤ bp
2
c, j ≤ b q

2
c.

If i < j, let R3 be a rainbow path of G[Dk] connecting x0 and yq, then xixi−1 · · ·x1R3yq−1

· · · yj is a x− y rainbow path. If i ≥ j, let R4 be a rainbow path of G[Dk] connecting xp

and y0, then xixi+1 · · ·xp−1R4y1

· · · yj is an x− y rainbow path.

Subcase 1.4. i > bp
2
c, j > b q

2
c.
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If p − i ≤ q − j, let R5 be a rainbow path of G[Dk] connecting xp and y0, then

xixi+1 · · ·xp−1R5y1 · · · yj is an x − y rainbow path. If p − i > q − j, let R6 be a rainbow

path of G[Dk] connecting x0 and yq, then xixi−1 · · ·x1R6yq−1 · · · yj is an x − y rainbow

path.

Case 2. P intersects Q at some of their internal vertices.

According to the construction and the coloring of Dk−1, we may assume that P ⊂
Di1 and Q ⊂ Di2 with i1 > i2, and x` is the first internal vertex of P in Q. If

xpxp−1 · · ·xl+1xl = yqyq−1 · · · yl+1yl, then the case is similar to Case 1 in essence. So

we assume xpxp−1 · · ·xl+1xl

= y0y1, · · · , yp−l. We also distinguish four subcases to show that there is an x−y rainbow

path.

Without loss of generality, assume that the edges of y0y1 · · · yd q
2
e are colored by 1, 2, · · · , d q

2
e.

According to the coloring of Dk−1, the edges of xpxp−1 · · ·xb p
2
c are also colored by the col-

ors from {1, 2, · · · , k + 1} and the edges of x0x1 · · ·xd p
2
e are colored by the colors from

{2k + 1, 2k, · · · , k + 2}.
Subcase 2.1. i ≤ bp

2
c, j > b q

2
c.

If i < q−j, let P1 be a rainbow path of G[Dk] connecting x0 and y0, then xixi−1 · · ·x1P1y1

· · · yj is an x− y rainbow path. If i ≥ q− j, let P2 be a rainbow path of G[Dk] connecting

xp and yq, then xixi+1 · · ·xp−1P2yq−1 · · · yj is an x− y rainbow path.

Subcase 2.2. i > bp
2
c, j ≤ b q

2
c.

If p−i ≤ j, let P3 be a rainbow path of G[Dk] connecting xp and yq, then xixi+1 · · ·xp−1P3

yq−1 · · · yj is an x− y rainbow path. If p− i > j, let P4 be a rainbow path of G[Dk] con-

necting x0 and y0, then xixi−1 · · ·x1P4y1

· · · yj is an x− y rainbow path.

Subcase 2.3. i ≤ bp
2
c, j ≤ b q

2
c.

Let P5 be a rainbow path of G[Dk] connecting c0 and y0. Then xixi−1 · · ·x1P5y1 · · · yj

is an x− y rainbow path.

Subcase 2.4. i > bp
2
c, j > b q

2
c.

Let P6 be a rainbow path of G[Dk] connecting xp and yq. Then xixi+1 · · ·xp−1P6yq−1 · · · yj

is an x− y rainbow path.

Hence, for any two vertices x, y ∈ Dk−1 \D1, there is a rainbow path connecting x and

y. Thus, we have constructed a connected (k−1)-step dominating set Dk−1 from Dk, and
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rc(G[Dk−1]) ≤ rc(G[Dk]) + max{2k + 1, bk}. The proof of Lemma 1 is now complete.

Claim 2. G[Dk−1 \Dk] has no bridges.

Proof of Claim 2: Since the bridges in BE are incident to the vertices x1, · · · , xbk
,

G[Dk−1 \ Dk] does not contain any edge of BE. Suppose that xy is a bridge with xy ∈
E(G[Dk−1\Dk]). We know that xy 6∈ E(G[B]), or else xy is in a cycle. If xy ∈ E[B, Dk−1\
D1], then xy is also in some cycle. Hence we assume x, y ∈ Dk−1 \D1. If xy is in some

acceptable Dk-ear, then xy is in a cycle, a contradiction. If x is in some acceptable Dk-

ear P and y is in some acceptable Dk-ear Q, we still can get that xy is in a cycle, a

contradiction. Hence Claim 2 is true.

Let u be a center vertex of G and set Dr = {u}. Then Dr is an r-step domi-

nating set of G and rc(G[Dr]) = 0. By making use of Lemma 1, we can construct

Dr−1, Dr−2, · · · , D2, D1 such that Dr ⊂ Dr−1 ⊂ Dr−2 · · · ⊂ D1 ⊂ D0 = V (G), and so we

have

rc(G[Dr−1]) ≤ rc(G[Dr]) + max{2r + 1, br},
rc(G[Dr−2]) ≤ rc(G[Dr−1]) + max{2(r − 1) + 1, br−1},

· · · ,

rc(G[D0]) ≤ rc(G[D1]) + max{2 + 1, b1},
where rc(G[D0]) = rc(G), and for 1 ≤ i ≤ r, bi is the number of bridges in E[Di, N(Di)].

Thus we get that rc(G) ≤ rc(G[Dr]) +
∑r

i=1 max{2i + 1, bi} =
∑r

i=1 max{2i + 1, bi}.
From Claim 2, we can see that the number of bridges of G is equal to

∑r
i=1 bi.

This completes the proof of Theorem 1.
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