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Abstract. In the study of Zeilberger’s conjecture on an integer sequence
related to the Catalan numbers, Lassalle proposed the following conjecture.
Let (t)n denote the rising factorial, and let ΛR denote the algebra of symmet-
ric functions with real coefficients. If ϕ is the homomorphism from ΛR to R
defined by ϕ(hn) = 1/((t)nn!) for some t > 0, then for any Schur function sλ,
the value ϕ(sλ) is positive. In this paper, we provide an affirmative answer to
Lassalle’s conjecture by using the Laguerre–Pólya-Schur theory of multiplier
sequences.
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1 Introduction

The objective of this paper is to prove a positivity conjecture on Schur func-
tions, which was proposed by Lassalle [6] in the study of two combinatorial
sequences related to the Catalan numbers.

Let us begin with an overview of Lassalle’s conjecture. Let

Cn =
1

n+ 1

(
2n

n

)
denote the n-th Catalan number. Lassalle [6] introduced a sequence of num-
bers An for n ≥ 1, which are recursively defined by

(−1)n−1An = Cn +
n−1∑
j=1

(−1)j
(

2n− 1

2j − 1

)
AjCn−j,
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with the initial value A1 = 1. He proved that the sequence {An}n≥2 is
positive and increasing. Josuat-Vergès [4] found a combinatorial interpre-
tation of An in terms of connected matchings in the study of cumulants
of the q-semicircular law. Zeilberger further conjectured that the numbers
{2An/Cn}n≥2 also form an increasing sequence of positive integers. Lassalle
[6] proved Zeilberger’s conjecture. An alternative proof was given by Amde-
berhan, Moll and Vignat [1] using a probabilistic approach.

By using the theory of symmetric functions, Lassalle [6] gave a direct
proof of the positivity and the monotonicity of {An}n≥2, although these two
properties can be deduced from Zeilberger’s conjecture. For the notation
and terminology on symmetric functions, see Macdonald [8] or Stanley [9].
Lassalle’s proof involves the following specialization of symmetric functions.
Let R be the field of real numbers, and let ΛR be the algebra of symmetric
functions with real coefficients. It is well known that the complete symmetric
functions hn (n ≥ 0) are algebraically independent and ΛR is generated by
hn. Thus any homomorphism ϕ from ΛR to R is uniquely determined by the
values ϕ(hn). Lassalle’s specialization is given by

ϕ(hn) =
1

((t)nn!)
, (1.1)

where t > 0 and (t)n = t(t + 1) · · · (t + n − 1). Lassalle proved that this
specialization satisfies

ϕ((−1)n−1pn) > 0 and ϕ(en) > 0,

where pn and en denote the n-th power sum and the n-th elementary sym-
metric function respectively. As shown in [6], the numbers An are equal to
ϕ ((−1)n−12(2n− 1)!pn) when t = 2.

Note that both hn and en are special cases of the Schur functions. Based
on the positivity of ϕ(hn) and ϕ(en), Lassalle further considered the spe-
cialization of a general Schur function sλ indexed by an integer partition λ.
Lassalle [6] posed the following conjecture.

Conjecture 1.1 Let ϕ : ΛR → R be the specialization of hn given by (1.1).
Then ϕ(sλ) is positive for any Schur function sλ.

In this paper, we give an affirmative answer to Conjecture 1.1. Our proof
relies on the theory of total positivity and the theory of multiplier sequences.

2 Preliminaries

In this section, we give an overview of some fundamental results on the theory
of total positivity and the theory of multiplier sequences. A real sequence
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{an}n≥0 is said to be a totally positive sequence if all the minors of the infinite
Toeplitz matrix (aj−i)i,j≥1 are nonnegative, where we set an = 0 for n < 0.
The following representation theorem was conjectured by Schoenberg and
proved by Edrei [3], see also Macdonald [8].

Theorem 2.1 ([8, p. 98]) Let {an}n≥0 be a sequence of real numbers with
a0 = 1. Then {an}n≥0 is totally positive if and only if its generating function

f(x) =
∑
n≥0

anx
n

has the form

exp(θx)

∏
i≥1(1 + ρix)∏
i≥1(1− δix)

, (2.1)

where θ ≥ 0, ρi ≥ 0, δi ≥ 0 for i ≥ 1 and
∑

i≥1(ρi + δi) <∞.

Based on the above theorem, Karlin gave a necessary and sufficient con-
dition to determine the strict positivity of a minor of the Toeplitz matrix
(aj−i)i,j≥1.

Theorem 2.2 ([5, p. 428]) Suppose that {an}n≥0 is a totally positive se-
quence. Let θ, δi, ρi be defined as in (2.1). Let K be the number of positive
entries δi and let L be the number of positive entries ρi, where K and L
are allowed to be infinity. Let I = (i1, i2, . . . , ir) and J = (j1, j2, . . . , jr) be
two increasing sequences of positive numbers. Let T (I, J) be the minor of
(aj−i)i,j≥1 with the row indices i1, i2, . . . , ir and column indices j1, j2, . . . , jr.
Then the following assertions hold:

(i) For θ > 0, the minor T (I, J) is positive if and only if ik ≤ jk for
1 ≤ k ≤ r;

(ii) For θ = 0 and K > 0, the minor T (I, J) is positive if and only if

jk−K − L < ik ≤ jk

for 1 ≤ k ≤ r.

(iii) For θ = 0 and K = 0, the minor T (I, J) is positive if and only if

jk − L ≤ ik ≤ jk

for 1 ≤ k ≤ r.
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As pointed out by Craven and Csordas [2], Theorem 2.1 is closely related
to Pólya and Schur’s transcendental characterization of multiplier sequences.
A multiplier sequence is defined to be a sequence {γn}n≥0 of real numbers
such that, whenever the polynomial with real coefficients

m∑
n=0

anx
n

has only real zeros, the polynomial

m∑
n=0

γnanx
n

also has only real zeros. Pólya and Schur obtained the following transcenden-
tal characterization of multiplier sequences consisting of nonnegative num-
bers, see also Levin [7].

Theorem 2.3 ([7, p. 346]) A sequence {γn}n≥0 of nonnegative numbers
with γ0 = 1 is a multiplier sequence if and only if

f(x) =
∑
n≥0

γn
n!
xn

is of the form

exp(θx)
∏
i≥1

(1 + ρix), (2.2)

where θ ≥ 0, ρi ≥ 0 for i ≥ 1 and
∑

i≥1 ρi <∞.

To prove Lassalle’s conjecture, we shall use a classic result of Laguerre on
multiplier sequences, see also Levin [7].

Theorem 2.4 ([7, p. 341]) For any t > 0, the sequence {1/(t)n}n≥0 is a
multiplier sequence.

3 Proof of Lassalle’s conjecture

Before proving Conjecture 1.1, let us recall the Jacobi–Trudi identity for
Schur functions, which relates Lassalle’s conjecture to the theory of total
positivity. Note that an integer partition λ is a weakly decreasing sequence
(λ1, λ2, . . . , λ`) of nonnegative integers. The Jacobi–Trudi identity states that
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a Schur function sλ can be expressed in terms of a determinant of complete
symmetric functions:

sλ = det(hλi−i+j)
`
i,j=1, (3.1)

where hk is defined to be zero if k < 0.

Proof of Conjecture 1.1. By Theorems 2.3 and 2.4, the generating function

f(x) =
∑
n≥0

1

(t)nn!
xn

is entire and has the form (2.2). Further, by Theorem 2.1, the sequence
{1/((t)nn!)}n≥0 is totally positive. Let T = (Ti,j)i,j≥1 be the Toeplitz matrix
corresponding to the sequence {1/((t)nn!)}n≥0, namely

Ti,j =

{
1

(t)j−i(j−i)! , if i ≤ j,

0, otherwise.

The Jacobi–Trudi identity shows that every ϕ(sλ) occurs as a minor T (I, J)
of T with row index set I and column index set J , where

I = (1, 2, . . . , `),

J = (λ` + 1, λ`−1 + 2, . . . , λ1 + `).

Thus, ϕ(sλ) = T (I, J) is nonnegative.

To prove the strict positivity of T (I, J), we need to consider the values
of the parameters K,L and θ which appear in Theorem 2.2 for the sequence
{1/((t)nn!)}n≥0. Since the generating function f(x) is of the form (2.2), we
see that K = 0 and θ ≥ 0.

While it can be shown that θ = 0, we may avoid the computation by
dealing with both cases with the aid of Karlin’s criterion for the strict pos-
itivity of a minor of the Toeplitz matrix. In fact, if θ > 0, by using (i) of
Theorem 2.2, we infer that T (I, J) > 0, since, for 1 ≤ k ≤ `,

ik = k ≤ λ`+1−k + k = jk.

If θ = 0, then we have L = ∞, since f(x) is not a polynomial. By (iii) of
Theorem 2.2, we have T (I, J) > 0, since the condition

jk − L ≤ ik ≤ jk

is satisfied for 1 ≤ k ≤ `. In either case, we have T (I, J) > 0, and hence we
conclude that ϕ(sλ/µ) > 0. This completes the proof.

As suggested by a referee, we give a derivation of the fact that θ = 0 in
the above proof. Let % be the order of f(x), that is,

% = lim
k→∞

k ln k

ln 1
|ak|

= lim
k→∞

k ln k

ln((t)kk!)
.
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By the Stolz-Cesàro theorem, we obtain that

lim
k→∞

k ln k

ln((t)kk!)
= lim

k→∞

(k + 1) ln(k + 1)− k ln k

ln((t)k+1(k + 1)!)− ln((t)kk!)
.

Hence

% = lim
k→∞

ln(1 + 1
k
)k + ln(k + 1)

ln((t+ k)(k + 1))
=

1

2
.

By Hadamard’s theorem on the representation of an entire function of finite
order as an infinite product, we deduce that θ = 0.
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