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Abstract. Let S = (g1, · · · , gl) be a sequence of elements from a finite additively
written abelian group G. Let

k(S) =
l∑

i=1

1
ord(gi)

denote the cross number of S. We say a zero-sum sequence S of nonzero elements
from G is a unique factorization zero-sum sequence if S can be written in the form
S = S1 · · ·Sr uniquely, where all Si are minimal zero-sum subsequences of S. In this
short note we investigate the following invariant of G concerning both cross number and
unique factorization. Define

K1(G) = max{k(S)|S is a unique factorization zero-sum sequence over G \ {0}},
where the maximum is taken when S runs over all unique factorization zero-sum se-
quences over G \ {0}. We determine K1(G) for some special groups including the cyclic
groups of prime power order.

1. Introduction and Main Results

Let N denote the set of positive integers and N0 = N ∪ {0}. Let Z denote the set of
integers. For real numbers a, b ∈ R, we set [a, b] = {x ∈ Z|a ≤ x ≤ b}. Let G be an
additively written finite abelian group. We denote by |G| the order of G. A sequence
S = (g1, · · · , gl) of elements (repetition allowed) from G will be called a sequence over G.
For convenience, we often write S in the form S = g1 · . . . · gl. We call |S| = l the length
of S. If g1 = · · · = gl = g then we can simply write S in the form S = gl. For every
g ∈ G, let vg(S) denote the number of the times that g occurs in S. Let T = gi1 · · · git

be a subsequence of S. We call IT
def
= {i1, · · · , it} the index set of T . We denote by ST−1

the subsequence of S with index set {1, · · · , l} \ IT . Let T1 and T2 be two subsequences
of S. By T1 ∩ T2 we denote the sequence with index set IT1 ∩ IT2 . We say T1 and T2 are
disjoint if IT1 ∩ IT2 = ∅, and denote by T1T2 the sequence with index set IT1 ∪ IT2 . We
identify two subsequences S1 and S2 of S if and only if IS1 = IS2 .

Let σ(S) =
∑l

i=1 gi ∈ G denote the sum of S. We call the sequence S

• a zero-sum sequence if σ(S) = 0,
• a zero-sum free sequence if S contains no nonempty zero-sum subsequence,
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• a minimal zero-sum sequence if S is a nonempty zero-sum sequence and S contains
no proper zero-sum subsequence.

Every map of abelian groups φ : G → H extents to a map from the sequences over G
to the sequences over H by φ(S) = φ(g1) · . . . · φ(gl). If φ is a homomorphism, then φ(S)
is a zero-sum sequence if and only if σ(S) ∈ ker(φ).

Let D(G) be the Davenport constant of G which is the smallest integer d such that
every sequence of d elements from G is not zero-sum free. D(G) can also be defined
equivalently as the maximal length of a minimal zero-sum sequence over G.

Let

k(S) =
l∑

i=1

1

ord(gi)

denote the cross number of S. Define

K(G) = max{k(S)|S is minimal zero-sum over G}
where the maximum is taken when S runs over all minimal zero-sum sequences over G.

The following invariant N1(G) was introduced by Narkiewicz in 1979 [13] which like
D(G) and K(G) plays an important role in the study of non-unique factorization prob-
lems in algebraic number theory(see [7], [12], [16] and [6]). Let S be a zero-sum sequence
over G \ {0}, i.e., S is a zero-sum sequence of non-zero elements from G. Clearly, S can
be written in the form S = S1 · · ·Sr with all Si are minimal zero-sum subsequences of S,
and we call S = S1 · · ·Sr an irreducible factorization of S. We identify two irreducible
factorizations S = S1 · · ·Sr and S = T1 · · ·Tm if and only if m = r, and there is permu-
tation τ on {1, · · · , r} such that Si = Tτi holds for every i ∈ [1, r]. We say a zero-sum
sequence S over G\{0} is unique factorization if S has only one irreducible factorization.
Narkiewicz constant N1(G) is the maximal length of a unique factorization sequence over
G \ {0}. Unique factorization sequence and therefore N1(G) can also be formulated in
term of the concept of ”type” like what Geroldinger and Hater-Koch have done in ([6],
Chapter 9).

For |G| > 1, define

K1(G) = max{k(S)|S is a unique factorization zero-sum sequence over G \ {0}}
where the maximum is taken when S runs over all unique factorization zero-sum sequences
over G \ {0}, and let K1(G) = 0 if |G| = 1.

The study of cross number has attracted a lot of attention since it was introduced by
Krause [8] in 1984. (For example, see [5], [9], [2], [6] and [11]).

Every nontrivial finite abelian group G can be written uniquely in the form G =
⊕r

i=1 ⊕
ti
j=1 Cpi

eij , where p1, · · · , pr are distinct primes. Set

K∗
1(G) =

r∑
i=1

ti∑
j=1

p
eij

i − 1

p
eij

i − p
eij−1
i

.

and let K∗
1(G) = 0 if |G| = 1.
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It is not difficult to see that
K1(G) ≥ K∗

1(G)

holds for all finite abelian groups G(See Proposition 2.1 in Section 2). We conjecture that

Conjecture 1.1. K1(G) = K∗
1(G) holds for all finite abelian groups G.

In this paper we shall verify Conjecture 1.1 for some special groups by showing

Theorem 1.2. Let p be a prime, and let G be a finite abelian group. Then, K1(G) =
K∗

1(G) holds if G is one of the following groups:

1. G = Cpm with m ∈ N.
2. G = Cpq with q a prime.
3. G = Cr

2 with r ∈ N.
4. G = Cr

3 with r ∈ N.
5. G = C2

p .

2. An lower bound for K1(G)

Proposition 2.1. Let G be a finite abelian group. (1) If G = G1 ⊕ G2 for some finite
abelian groups G1 and G2 then K1(G) ≥ K1(G1)+K1(G2); (2) K1(G) ≥ K∗

1(G) holds for
all finite abelian groups G.

Proof. If one of G, G1 and G2 is trivial then the proposition holds trivially. So, we may
assume that none of G, G1 and G2 is trivial.

(1). Let S1 = a1 · · · au be a unique factorization zero-sum sequence over G1 with
k(S1) = K1(G1), and Let S2 = b1 · · · bv be a unique factorization zero-sum sequence over
G2 with k(S2) = K1(G2). Let 0G1 denote the identity element of G1, and let 0G2 denote
the identity element of G2. Let

S ′
1 = (a1,0G2)(a2,0G2) · · · (au,0G2)

and let

S ′
2 = (0G1 , b1)(0G1 , b2) · · · (0G1 , bv).

Then S ′
1 and S ′

2 are both sequences over G = G1 ⊕ G2 with |S ′
1| = |S1|, |S ′

2| =
|S2|, k(S ′

1) = k(S1) and k(S ′
2) = k(S2). Let S = S ′

1S
′
2. Clearly, S is a unique factorization

zero-sum sequence over G. Therefore, K1(G) ≥ k(S) = k(S ′
1) + k(S ′

2) = k(S1) + k(S2) =
K1(G1) + K1(G2).

(2). By (1), it suffices to prove K1(G) ≥ K∗
1(G) for every cyclic group G of prime power

order. Let G = Cpm with p a prime, and let g be a generating element of G. Let

S = gp−1 · ((1− p)g) · (pg)p−1 · ((1− p)pg) · · · (pm−2g)p−1 · ((1− p)pm−2g) · (pm−1g)p,

i.e., S is the sequence with vpig(S) = p − 1 and v(1−p)pig(S) = 1 for every i ∈ [0, m − 2],
and vpm−1g(S) = p. Clearly, S is a unique factorization zero-sum sequence. Thus we have

K1(Cpm) ≥ k(S) = 1 + 1
p

+ · · ·+ 1
pm−1 = pm−1

pm−pm−1 = K1(G).
�
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3. Proof of Theorem 1.2

To prove Theorem 1.2 we need some preliminaries begin with a result due to Olson [15].

Let p be a prime, and let G be a finite abelian p-group. For g ∈ G, define α(g) = pn

where n is the largest integer such that g ∈ pnG = {pnx|x ∈ G} (α(0) = ∞). Let
S = g1 · . . . · gl be a sequence over G. Define

α(S) =
l∑

i=1

α(gi).

Lemma 3.1. ([15]) Let p be a prime, and let G = Cpe1 ⊕· · ·⊕Cper . Let S = g1 · · · gk be a
sequence over G. If α(S) =

∑r
i=1 α(gi) ≥ 1 +

∑r
i=1(p

ei − 1), then S is not zero-sum free.

Lemma 3.2. ([3]) Let S be a zero-sum sequence of nonzero elements from a finite abelian
group G. Then, the following statements are equivalent.

(1) S is unique factorization.
(2) For any two zero-sum subsequences S1 and S2 of S we have that the intersection

S1 ∩ S2 is also zero-sum.

Let G be a finite abelian group. It is well known that either |G| = 1 or G can be
written uniquely in the form G = Cn1 ⊕ · · · ⊕ Cnr with 1 < n1| · · · |nr. Narkiewicz [13]
conjectured that N1(G) = n1 + · · ·+nr hold all finite abelian groups. This conjecture has
been verified only for some very special groups. Here we list some of them we need in the
proof of Theorem 1.2.

Lemma 3.3. ([14], [1], [4]) Let p be a prime. Then N1(G) = n1 + · · · + nr holds if G is
one of the following

1. G = Cn with n ∈ N;
2. G = Cr

2 ;
3. G = Cr

3 ;
4. G = C2

p .

Lemma 3.4. Let p be a prime, and let r be a positive integer. Then, N1(C
r
p) = rp if and

only if K1(C
r
p) = r.

Proof. Let G = Cr
p . Since every nonzero element of G has order p, the result follows from

the definition of N1(G) and K1(G). �

Proof of Theorem 1.2. 1. By Proposition 2.1, it suffices to prove the upper bound.
We proceed by induction on m. m = 1, let S = g1 · · · gk be a zero-sum sequence over

G with k(S) = k
p

> 1. Since N1(Cp) = p we know that S is not unique factorization.

Therefore we obtain K1(Cp) = 1.
Let now m ≥ 2. Let S be a unique factorization zero-sum sequence over G∗ = Cpm \{0}.

We need to show that k(S) ≤ 1 + 1
p

+ · · ·+ 1
pm−1 .
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Assume to the contrary that k(S) > 1+ 1
p
+ · · ·+ 1

pm−1 . We shall derive a contradiction.

Write S in the form

S = g11 · · · g1r1g21 · · · g2r2 · · · gm1 · · · gmrm =
m∏

i=1

ri∏
j=1

gij

with gij ∈ Cpm and ord(gij) = pi. Then

k(S) =
m∑

i=1

ri∑
j=1

1

ord(gij)
=

r1

p
+ · · ·+ rm

pm
.

Therefore, r1

p
+ · · ·+ rm

pm > 1+ 1
p
+ · · ·+ 1

pm−1 . Multiple the two sides of the above inequality

with p we obtain

r1 +
r2

p
+ · · ·+ rm

pm−1
> p + 1 +

1

p
+ · · ·+ 1

pm−2
.

Let φ be the canonical epimorphism from Cpm to Cpm/Cp. Let T = g11 · · · g1r1 and let
S ′ = ST−1. Then φ(S ′) = φ(ST−1) =

∏m
i=2

∏ri

j=1 φ(gij) and

k(φ(S ′)) =
r2

p
+ · · ·+ rm

pm−1
> p− r1 + 1 +

1

p
+ · · ·+ 1

pm−2
.

By multiple the two sides of the above inequality with pm−1 we obtain that r2p
m−2 +

r3p
m−3 + · · ·+ rm ≥ pm−1(p− r1 + 1) + pm−2 + · · ·+ p + 1. Therefore,

α(φ(S ′)) = r2p
m−2 + r3p

m−3 + · · ·+ rm ≥ pm−1(p− r1 + 1) + pm−2 + · · ·+ p + 1.

Let t ≥ 0 be maximal such that there are disjoint subsequences S1, . . . , St of S ′ with
σ(Si) ∈ ker φ \ {0}. By the maximality of t we infer that φ(Si) is minimal zero-sum for
each i ∈ [1, t]. It follows from Lemma 3.1 that

α(φ(Si)) ≤ pm−1

for each i ∈ [1, t]. We assert that

t + r1 ≥ p + 1.

Assume to the contrary that t + r1 ≤ p. Then, α(φ(S ′(S1 · · ·St)
−1)) = α(φ(S ′)) −∑t

i=1 α(φ(Si)) ≥ pm−1(p−r1+1)+pm−2+· · ·+p+1−(p−r1)p
m−1 ≥ pm−1+pm−2+· · ·+p+1.

Let S ′′ = S ′(S1 · · ·St)
−1. We just proved that α(φ(S ′′)) ≥ pm−1 + pm−2 + · · · + p + 1.

Let r′′j be the number of elements x(counted with multiple) of φ(S ′′) with ord(x) = pj

for every j ∈ [1, m − 1]. It follows that r′′1p
m−2 + · · · + r′′m−2p + r′′m−1 = α(φ(S ′′)) ≥

pm−1 + pm−2 + · · ·+ p + 1. Therefore,

K(φ(S ′′)) =
r′′1
p

+ · · ·+
r′′m−2

pm−2
+

r′′m−1

pm−1
≥ 1 +

1

p
+ · · ·+ 1

pm−2
+

1

pm−1
.

By the induction hypothesis, we have K1(φ(Cpm)) = K1(Cpm−1) = 1 + 1
p

+ · · · + 1
pm−2 .

Therefore, φ(S ′′) is not unique factorization. By Lemma 3.2 there exist two subsequences
T1, T2 of S ′′ such that both φ(T1) and φ(T2) are minimal zero-sum sequences but φ(T1∩T2)
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is not zero-sum over φ(G) = Cpm−1 . Hence, T1 ∩ T2 is not zero-sum over Cpm . Since S is
unique factorization, again by Lemma 3.2 we obtain that either σ(T1) ∈ ker φ \ {0}, or
σ(T2) ∈ ker φ\{0}, a contradiction of the maximality of t. This proves that t+r1 ≥ p+1.

Since σ(φ(S(TS1 · · ·St)
−1)) = 0, S(TS1 · · ·St)

−1 = R1 · · ·R` with φ(Ri) is minimal
zero-sum for each i ∈ [1, `]. By the maximality of t, σ(Ri) = 0 for each i ∈ [1, `]. It follows
that both S(TS1 · · ·St)

−1 and TS1 · · ·St are a zero-sum sequences. Now Tσ(S1) · · ·σ(St) is
a zero-sum sequence over Cp\{0} and |Tσ(S1) · · ·σ(St)| = r1+t ≥ p+1. By N1(Cp) = p we
obtain that Tσ(S1) · · ·σ(St) is not unique factorization, and so is S, a contradiction. �

2. From 1 we may assume that p 6= q. It suffices to prove the upper bound. Let S be a
unique factorization zero-sum sequence over Cpq \ {0}. We need to show that k(S) ≤ 2.
Assume to the contrary that,

k(S) > 2.

Write S in the form
S = g11 · · · g1mg21 · · · g2ng31 · · · g3k

with

ord(gij) =


p if i = 1

q if i = 2

pq if i = 3.

Then

k(S) =
m

p
+

n

q
+

k

pq
> 2.

Therefore,

(3.1) mq + np + k ≥ 2pq + 1.

Let T = g11 · · · g1m, and let φ be the canonical epimorphism from Cpq to Cpq/Cp. Then

φ(ST−1) = φ(g21) · · ·φ(g2n)φ(g31) · · ·φ(g3k)

and k(φ(ST−1)) = n+k
q

. Since σ(S) = 0 we have σ(φ(ST−1)) = 0.

Let t ≥ 0 be maximal such that there are disjoint subsequences S1, . . . , St of ST−1 with
σ(Si) ∈ ker φ \ {0}. By the maximality of t we infer that φ(Si) is minimal zero-sum over
φ(Cpq) ∼= Cq. It follows from D(Cq) = q that

|Si| = |φ(Si)| ≤ q

for each i ∈ [1, t]. In a similar way to the proof of 1 we get that Tσ(S1) · · ·σ(St) is a
zero-sum sequence over Cp \ {0}. If m + t ≥ p + 1 > p = N1(Cp) then Tσ(S1) · · ·σ(St) is
not unique factorization, and so is S, a contradiction. Therefore,

m + t ≤ p.

If n ≥ q + 1 then switch p and q and repeat the procedure above we can derive a
contradiction. Therefore,

n ≤ q.
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By equation (3.1) we have that np + k − (p−m)q ≥ pq + 1. This together with n ≤ q
gives that k− (p−m)q > 0. Therefore, np+(k− (p−m)q)p > np+k− (p−m)q ≥ pq+1.
Hence,

n + k − (p−m)q ≥ q + 1.

Now |S(TS1 · · ·St)
−1| ≥ |S|−m−tq = n+k−tq ≥ n+k−(p−m)q ≥ q+1 > q = N1(Cq).

So, φ(S(TS1 · · ·St)
−1) is not unique factorization. Now in a similar way to the proof of 1

we can derive a contradiction.

3-5. The result follows from Lemma 3.3 and Lemma 3.4. �

4. Concluding Remarks

For general case we have the following

Proposition 4.1. Let G be a nontrivial finite abelian group, and p be the smallest prime
divisor of |G|. Then K1(G) < ln |G|+ 1

p
log2 |G|.

Proof. Let S be a unique factorization sequence over G \ {0}. Let S = S1 · · ·St be
an irreducible factorization of S, where t ∈ N, and all S1, . . . , St are minimal zero-sum
subsequences of S. Then we have |Si| ≥ 2 for every i ∈ [1, t]. By a result due to Narkiewicz
(see [14], Proposition 6; or [1], Lemma 2), Πt

i=1|Si| ≤ |G|. Therefore,

t ≤ log2 |G|.

For every i ∈ [1, t] we choose an element gi ∈ supp(Si). It follows from S is unique
factorization that the sequence T = g−1

1 S1 · · · g−1
t St is zero-sum free. Now by a result due

to Geroldinger and Schneider [9], k(T ) ≤ ln |G|. Therefore,

k(S) = k(T ) +
t∑

i=1

1

ord(gi)
≤ ln |G|+ t

1

p
≤ ln |G|+ log2 |G|

p
.

�

Let G be a finite abelian group. It is easy to see that

K(G) ≤ K1(G)

holds for all nontrivial finite abelian group G. Unlike the Davenport constant D(G), we
even don’t known the exact value of K(G) for most of cyclic groups. Also, very little is
known about the Narkiewicz constant N1(G). So, we can’t go too far in the determining
of K1(G) since it is essentially involving the determining of K(G) and N1(G).
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