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Abstract. A classification is given of connected vertex-transitive cubic graphs of
square-free order. It is shown that such graphs are well-characterised metacirculants
(including dihedrants, generalized Petersen graphs, Möbius bands), or the Tutte’s
8-cage, or graphs arisen from simple groups PSL(2, p).

1. Introduction

For a graph Γ = (V,E), the number of vertices |V | is called the order of Γ . A
graph Γ is called vertex-transitive if its automorphism group AutΓ is transitive on V .

In 1967, Turner [22] investigated vertex-transitive graphs of prime order, and enu-
merated the isomorphism classes of such graphs by using Pó1ya enumeration theo-
rem. Since then, the class of vertex-transitive graphs of square-free order have been
studied extensively and numerous interesting results have appeared on classification,
isomorphism problem, non-Cayley numbers, etc.. Classification results about vertex-
transitive graphs of square-free order usually focus on specific subclasses regarding
their symmetry properties, orders, valencies, etc. For instance, see [18, 20] for those
graphs of order being a product of two prime, see [4, 5, 9, 10, 15, 17, 19, 24] for those
graphs having certain symmetry properties. In a recent paper [23], a classification
was given of vertex-transitive cubic graphs of order 2pq, where p and q are primes.

In this paper, we classify vertex-transitive cubic graphs of square-free order.
A graph is called a metacirculant if it has a vertex-transitive metacyclic group

of automorphisms. Examples of vertex-transitive cubic graphs of square-free order
include a lot of interesting graphs: K3,3, Petersen graph, Tutte’s 8-cage (30 vertices),
generalized Petersen graphs, Möbius bands, some well-characterised metacirculants,
and some graphs arisen from simple groups PSL(2, p). See Section 2 for definitions
and constructions. Among these graphs, some are Cayley graphs. For a group G and
a subset S ⊂ G with 1 6∈ S = S−1 := {g−1 | g ∈ S}, the Cayley graph Cay(G,S) is
defined on G such that {g, h} is an edge if and only if gh−1 ∈ S.

Throughout this paper, for two groups A and B, denote by A×B, A.B and A:B
the direct product, an extension and a semi-direct product of A by B, respectively;
denote respectively by A′ and Z(A) the commutator subgroup and the center of A;
for a ∈ A, denote by o(a) the order of a in A; for an positive integer n, denote by Zn
and D2n the cyclic group of order n and the dihedral group of order 2n, respectively.

Our classification is stated in the following theorem.

This work was partially supported by two Natural Science Funds of China, a Yunnan High-End-
Talant-Plan fund, and an ARC Discovery Project grant of Australia.
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Theorem 1.1. Let Γ be a connected vertex-transitive cubic graph of square-free order
2n. Then one of the following statements holds.

(1) Γ is a metacirculant, and one of the following is true:
(i) Γ is isomorphic to a generalized Petersen graph P(n, r) for 1 ≤ r < n

2

with r2 ≡ 1 (mod n); AutΓ ∼= Zn:Z2
2 has a regular subgroup 〈a, b | an =

b2 = 1, bab = ar〉, and has no regular subgroups isomorphic to Z2n or D2n

unless r = 1;
(ii) Γ is the Möbius band Mn of order 2n; either AutΓ ∼= Z2n:Z2

∼= D4n or
Γ ∼= K3,3;

(iii) Γ ∼= Cay(〈a, b〉, S) for S = {ab, akb, b} or {ab, a1−kb, b}, 〈a, b〉 ∼= D2n,
o(a) = n > 3 and o(b) = 2, where k 6≡ −1 (mod n) and k2 ≡ 1 (mod n);
in this case, AutΓ ∼= D2n:Z2 contains no cyclic regular subgroups;

(iv) Γ ∼= Cay(〈a, b〉, {ab, akb, b}) for 〈a, b〉 ∼= D2n, o(a) = n > 3 and o(b) = 2,
where k2 − k + 1 ≡ 0 (mod n); in this case, AutΓ ∼= D2n:Z3 except for
Line 1 of Table 1;

(v) Γ ∼= Cay(〈a, b〉, {ak′b, akb, b}) for 〈a, b〉 ∼= D2n, o(a) = n > 3 and o(b) = 2,
where (k, k′) = 1, either (k, n) 6= 1 and (k′, n) 6= 1, or k′ ≡ 1 (mod n),
k2 6≡ 1 (mod n), (k − 1)2 6≡ 1 (mod n), 2k 6≡ 1 (mod n) and k2 − k + 1 6≡
0 (mod n); in this case, AutΓ ∼= 〈a, b〉;

(vi) Γ ∼= Cay(〈a, b, c〉, {cabk, (cabk)−1, bl}), Z(〈a, b, c〉) = 〈c〉, (〈a, b, c〉)′ = 〈a〉,
2 < o(a) < n, 2 < o(b) = 2l and ab

l
= a−1, where 0 < k < l and

(k, l) = 1; in this case, AutΓ ∼= 〈a, b, c〉 except for Lines 2-5 of Table 1;
(vii) Γ ∼= P(n, r) with 1 < r < n

2
and r2 ≡ −1 (mod n); either AutΓ ∼= Zn:Z4,

or AutΓ = S5 and Γ is isomorphic to the Petersen graph;
(2) Γ is isomorphic to the Tutte’s 8-cage, n = 15 and AutΓ = PΓL(2, 9);
(3) AutΓ = PSL(2, p) or PGL(2, p) for a prime p ≥ 5, and Γ is isomorphic to

one of the graphs constructed in Examples 3.5-3.8;
(4) AutΓ = PSL(2, p):D2m for a prime p ≥ 5 and 1 < m = 8n

p(p2−1)
, and Γ is

isomorphic to one of the graphs constructed in Construction 4.2.

Line Regular subgroup k AutΓ Γ (∼=)
1 〈a, b〉 ∼= D14 3 or 5 PGL(2, 7) Example 3.6 (2)
2 〈a, b〉 ∼= Z7:Z6 2 PGL(2, 7) Example 3.8 (2)

3 〈a, b〉 ∼= Zn
3
:Z6, a

b = at 1 D2n:Z3 Lemma 2.3 (3)

t2 − t + 1 ≡ 0 (mod n)

4 〈a, b〉 ∼= Z11:Z10 ab
k

= a7 or a8 PGL(2, 11) Example 3.6 (1)

5 〈a, b〉 ∼= Z23:Z22 ab
k

= a17 or a19 PGL(2, 23) Example 3.6 (2)

Table 1.

We remark that a characterisation of general cubic metacirculants was given in [16],
in which two families of such graphs are proved to be covers of some special graphs
but the covers are not yet determined. Part (1) of Theorem 1.1 gives an explicit
classification of cubic metacirculants of square-free order.
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2. Cubic metacirculants

Let n ≥ 3 and 1 ≤ r < n
2

be two integers. The generalized Petersen graph P(n, r)
is the graph with vertex set and edge set as follows

{α0, α1, . . . , αn−1} ∪ {β0, β1, . . . , βn−1},
{{αi, αi+1}, {αi, βi}, {βi, βi+r} | 0 ≤ i ≤ n− 1},

reading i+1 and i+r modulo n. It was shown in [11] that P(n, r) is vertex-transitive
if and only if either (n, r) = (10, 2) or r2 ≡ ±1 (mod n). Further, AutP(n, r) has
a transitive subgroup isomorphic to Zn:Z4 if r2 ≡ −1 (mod n), and has a regular
subgroup isomorphic to Zn:Z2 if r2 ≡ 1 (mod n). In particular, AutP(n, 1) contains
two regular subgroups isomorphic to Z2n and D2n, respectively.

The Möbius band Mn of order 2n is the graph with vertex set {α0, α1, . . . , α2n−1},
and edge set {{αi, αi+1}, {αi, αi+n} | 0 ≤ i ≤ 2n− 1}, reading the subscripts modulo
2n. For the graph Mn, its automorphism group contains two regular subgroups
isomorphic to Z2n and D2n, respectively.

A graph Γ = (V,E) is called a circulant or dihedrant if AutΓ contains respectively
a cyclic or dihedral subgroup which is regular on the vertex set V .

Let Γ = (V,E) be a graph such that AutΓ has a regular subgroup G. Take
α ∈ V . Then each vertex of Γ is uniquely written as αg for some g ∈ G. Let
Γ (α) be the set of neighbors of α in Γ . Set S = {s ∈ G | αs ∈ Γ (α)}. Then
1 6∈ S = S−1: = {s−1 | s ∈ S} and Γ ∼= Cay(G,S). It is well-known that a Cayley
graph Cay(G,S) is connected whenever S generates the underlying group G, that is,
〈S〉 = G. Moreover, each automorphism σ ∈ Aut(G) of the group G induces naturally
an isomorphism from Cay(G,S) to Cay(G,Sσ). Set

Aut(G,S) = {σ ∈ Aut(G) | Sσ = S}.

For g ∈ G, by ḡ we denote the permutation induced by g on G by right multiplication.
Set Ḡ = {ḡ | g ∈ G}. Then G → Ḡ, g 7→ ḡ is an isomorphism of groups. By [12,
Lemma 2.1], the normalizer NAutCay(G,S)(Ḡ) = Ḡ:Aut(G,S).

To end this section, let G be a group of square-free order 2n. Then n is odd.

Lemma 2.1. For a group G of square-free order 2n, one of the following holds.

(1) G ∼= Z2n or D2n;
(2) G′ ∼= Zm and G ∼= Zm:Z 2n

m
for odd m with n > m > 2.

Proof. Since G has square-free order, G′ is cyclic and G = G′:H, where H is a cyclic
Hall subgroup of G. Set G′ = 〈a〉 and H = 〈b〉. If G′ = 1, then G = H ∼= Z2n.

Let G′ = 〈a〉 ∼= Zm for m > 1. If m is even, then a
m
2 lies in the center of G, so

G/〈a2〉 ∼= 〈a
m
2 , b〉 is abelian, hence G′ = 〈a〉 ≤ 〈a2〉, which is impossible. Thus m

is odd, and so H is of even order 2n
m

. If n > m, then part (2) occurs. Assume that
m = n. Let C = C〈a〉(b). Then there is a subgroup D of 〈a〉 with 〈a〉 = C×D. It
is easily shown that D is normal in G. Then G/D ∼= C×〈b〉 is abelian, so G′ ≤ D,
hence D = 〈a〉 and C = 1. It follows that ab = a−1, hence G ∼= D2n. �

Let Γ ∼= Cay(G,S), where S be a generating set of G with |S| = 3 and 1 6∈ S = S−1.
Then S either contains only one involution, or consists of involutions. Since Γ is
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connected, 〈S〉 = G, we know that Aut(G,S) is faithful on S. It follows that Aut(G,S)
is isomorphic to a subgroup of the symmetric group S3 of degree 3.

Let G be abelian. Then G is cyclic, S = {x, x−1, z} and Aut(G,S) ∼= Z2, where
z is the unique involution in G. Since 〈S〉 = G, either G = 〈x〉 or G = 〈x〉×〈z〉. If
G = 〈x〉×〈z〉, then Γ ∼= P(n, 1). Let G = 〈x〉. Then z = xn. Set αi = xi. Then
αi and αj are adjacent whenever j − i ≡ ±1 (mod 2n) or j − i ≡ n (mod 2n). Thus
Γ ∼= Mn, and the next result follows.

Lemma 2.2. A connected cubic circulant of order 2n is either the ladder graph P(n, 1)
or the Möbius band Mn.

Thus we assume next that G is not abelian. Since G has square-free order, a Sylow
2-subgroup of G has order 2, it follows that all involutions in G are conjugate. The
next lemma give a characterisation of connected cubic dihedrants.

Lemma 2.3. Let G the dihedral group of order 2n, and let Γ be a connected cubic
Cayley graph of G. Set G = 〈a, b〉 with o(a) = n, o(b) = 2 and ab = a−1. Then
Γ ∼= Cay(G,S) for one of the following subset S of G.

(1) S = {a, a−1, b}; in this case, Aut(G,S) ∼= Z2 and Γ ∼= P(n, 1);
(2) n = 3 and S = {ab, a2b, b}; in this case, Γ ∼= K3,3;
(3) S = {ab, akb, b}, k2 − k + 1 ≡ 0 (mod n), n > 3; in this case, Aut(G,S) ∼= Z3;
(4) S = {ab, aeb, b} or {ab, a1−eb, b} for n > 3 and e2 ≡ 1 (mod n); in this case,

Aut(G,S) ∼= Z2;
(5) S = {ab, akb, b}, n > 3, k2 6≡ 1 (mod n), (k−1)2 6≡ 1 (mod n), 2k 6≡ 1 (mod n)

and k2 − k + 1 6≡ 0 (mod n); in this case, Aut(G,S) = 1;
(6) S = {ak′b, akb, b}, n > 3, (k, k′) = 1, (k, n) 6= 1 and (k′, n) 6= 1; in this case,

Aut(G,S) = 1.

Proof. Let Γ = Cay(G,S). Recall that all involutions in G are conjugate. Up to
isomorphism of graphs we may choose b ∈ S. If S has only one involution, then
S = {as, a−s, b}, where (s, n) = 1. It is easily shown that Aut(G,S) ∼= Z2. Take
σ ∈ Aut(G) with (as)σ = a and bσ = b, refer to [14]. Then Γ ∼= Cay(G,Sσ) and
Sσ = {a, a−1, b}. Set αi = ai and βi = bai for 0 ≤ i ≤ n − 1. Then Cay(G,Sσ) has
edges {αi, αi+1}, {βi, βi+1} and {αi, βi}. Thus Γ ∼= P(n, 1).

Assume that S = {x, y, b} consists of 3 involutions. Then S = {aib, ajb, b} for
some positive integers i and j. Let d = (i, j), i = kd and j = k′d. Then G =
〈S〉 = 〈ai, aj, b〉 = 〈ai, aj〉:〈b〉 = 〈ad〉:〈b〉, so 〈ad〉 = 〈a〉, hence (d, n) = 1. Thus
sd ≡ 1 (mod n) for some s coprime to n. Take an automorphism σ ∈ Aut(G) with
aσ = as and bσ = b, refer to [14]. Then Sσ = {akb, ak′b, b} and Γ ∼= Cay(G,Sσ).

Suppose that Aut(G,Sσ) has an element τ of order 3. Let aτ = at for some
t coprime to n. Then t3 ≡ 1 (mod n). Noting that τ−1 ∈ Aut(G,Sσ), without
loss of generality, we may set bτ = ak

′
b. Since Sστ = Sσ, computation shows that

Sσ = {b, ak′b, ak′(t+1)b}, k′(t + 1) ≡ k (mod n), k′(t2 + t + 1) ≡ 0 (mod n). By the
argument in above paragraph, we know that (k′, n) = 1. Thus we have

(i) Sσ = {b, ak′b, ak′(t+1)b}, (k′, n) = 1, (k, n) = 1, k′(t+ 1) ≡ k (mod n), (t2 + t+
1) ≡ 0 (mod n).
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Suppose that Aut(G,Sσ) has an involution ε. Let aε = ae for some e coprime to
n. Then e2 ≡ 1 (mod n). Note that ε fixes one involution in Sσ and interchanges the
other two. Then one of the following occurs:

(ii) Sσ = {ak′b, ak′eb, b}, (k′, n) = 1, (k, n) = 1 and k ≡ k′e (mod n);
(iii) Sσ = {ak′b, ak′(1−e)b, b}, (k′, n) = 1, k′ − k′e ≡ k (mod n);
(iii)′ Sσ = {a(1−e)kb, akb, b}, (k, n) = 1, k ≡ k′ + ke (mod n).

Conversely, it is easily shown that Aut(G,Sσ) 6= 1 if Sσ is described as in one of
the above items (i)-(iii)′. It is easily shown that Aut(Sσ) ∼= S3 if and only if n = 3.

By the above argument, Aut(G,Sσ) = 1 if neither (k, n) = 1 nor (k′, n) 6= 1, and
then part (6) follows. Thus, without loss of generality, we assume next that (k′, n) = 1.
Then, by [14], there is δ ∈ Aut(G) with (ak

′
)δ = a and bδ = b. Since Cay(G,Sσ) ∼=

Cay(G,Sσδ), replacing Sσ by Sσδ, we may assume that Sσ = {ab, akb, b}, that is, take
k′ = 1. If n = 3, then the part (2) of the lemma follows. Let n > 3. If item (i) holds,
then part (3) follows. If item (ii) or (iii) holds, then part (4) follows. Assume that
(iii)′ holds then 1 = k′ ≡ k(1− e) (mod n), so (1− e, n) = 1. Hence e ≡ −1 (mod n)
as e2 ≡ 1 (mod n). Thus 2k ≡ 1 (mod n). Noting that (k, n) = 1, we may take
an automorphism of G with ak 7→ a and b 7→ b. Then Γ ∼= Cay(G, {ab, akb, b}) ∼=
Cay(G, {a2b, ab, b}), which is a graph given in part (4). For Sσ = {ab, akb, b}, by the
above argument, Aut(G,Sσ) = 1 if and only if n > 3, k2 6≡ 1 (mod n), (k − 1)2 6≡
1 (mod n), 2k 6≡ 1 (mod n) and k2 − k + 1 6≡ 0 (mod n). Then part (5) follows. �

Corollary 2.4. Let n > 3 and G = 〈a〉:〈b〉 ∼= D2n be of square-free order, and let
S = {ab, aeb, b} or {ab, a1−eb, b} be as in Lemma 2.3 (4). Then Ḡ:Aut(G,S) has a
cyclic regular subgroup if and only if e ≡ −1 (mod n).

Proof. Let Γ = Cay(G,S). Then Aut(G,S) = 〈σ〉 ∼= Z2, where σ ∈ Aut(G) with
aσ = ae and either bσ = b for S = {ab, aeb, b} or bσ = a1−eb for S = {ab, a1−eb, b}. Let
g ∈ S with gσ = g. It is easily shown that each regular subgroup of Ḡ:Aut(G,S) can
be written as R := 〈ā, σj ḡ〉 for j = 0 or 1. Clearly, R is cyclic if and only if j = 1 and
ā−e = āσḡ = (σḡ)−1āσḡ = ā, that is, e ≡ −1 (mod n). �

Now assume that G satisfies Lemma 2.1 (2). Then G can not be generated by three
involutions. Thus, for a connected cubic graph Cay(G,S), the subset S contains only
one involution of G. Since G is not abelian, this involution is not contained in the
center of G. Let H < G with G = G′:H, and let C = CH(G′). Then C is the center
of G and of odd order, and G = C×(G′:〈b〉) for a cyclic subgroup 〈b〉 of H of even
order. Set C = 〈c〉 and G′ = 〈a〉. Then o(c)o(b) > 2, and so 2 < o(a) < n.

Lemma 2.5. Let G = 〈c〉×(〈a〉:〈b〉) be a group of square-free order 2n, where Z(G) =
〈c〉 and G′ = 〈a〉 ∼= Zm with 2 < m < n. Let Γ be a connected cubic Cayley graph of

G. Then o(b) = 2l, ab
l

= a−1 and Γ ∼= Cay(G,Sk) for Sk = {cabk, (cabk)−1, bl}, where
l ≥ 1, 0 ≤ k ≤ l and (k, l) = 1. Moreover, Aut(G,Sk) 6= 1 if and only if l = 1; in this
case, either Γ is a dihedrant, or Γ ∼= P(n, r) with 1 < r < n

2
and r2 ≡ 1 (mod n).

Proof. Let Γ ∼= Cay(G,S). By the above argument, o(b) is even. Set o(b) = 2l.
Recall that all involutions in G are conjugate. Up to isomorphism of graphs, we may
choose bl ∈ S and set S = {xyz, (xyz)−1, bl}, where x ∈ 〈c〉, y ∈ 〈a〉 and z ∈ 〈b〉.
Since 〈S〉 = G, we have 〈x〉 = 〈c〉, 〈y〉 = 〈a〉 and 〈z, bl〉 = 〈b〉. Take σ ∈ Aut(G)



6 LI, LU, AND WANG

with xσ = c, yσ = a and bσ = b, refer to [14]. Then Sk := Sσ = {cabk, (cabk)−1, bl}
for some 0 ≤ k < 2l coprime to l, and so Γ ∼= Cay(G,Sk). Setting ab = ar, by

[14], we may take ρ ∈ Aut(G) with cρ = c−1, aρ = a−r
2l−k

and bρ = b. Then
Sρk = {cab2l−k, (cab2l−k)−1, bl} = S2l−k, so Cay(G,Sk) ∼= Cay(G,S2l−k). Thus, up to
isomorphism of graphs, we may choose k < l or k = l = 1.

Since Γ is connected, G = 〈Sk〉 = 〈c〉×〈abk, bl〉, we have 〈abk, bl〉 = 〈a, b〉. Since

〈a〉 is normal in 〈a, b〉, we may set ab
l

= ae for some integer e. Since o(a) = m, we
have e2 ≡ 1 (mod m), and so H := 〈a, b〉 = 〈abk, bl〉 = 〈aebk, abk, bl〉 = 〈ae−1, abk, bl〉 =

〈ae−1〉〈abk, bl〉. Let K = 〈ae−1〉. Since (abk)b
l

= aebk = ae−1abk, we have K(abk)b
l

=
Kae−1abk = Kabk. Thus the quotient group H/K is abelian, so 〈a〉 = H ′ ≤ K =
〈ae−1〉. Then 〈a〉 = 〈ae−1〉, and so (e − 1,m) = 1. Hence e ≡ −1 (mod m) as

e2 ≡ 1 (mod m), and so ab
l

= a−1.
Now we show that Aut(G,Sk) 6= 1 if and only if l = 1. Suppose that Aut(G,Sk) 6= 1.

Then, since Sk contains only one involution, we conclude that Aut(G,Sk) = 〈τ〉 ∼= Z2,
bl = (bl)τ and (cabk)τ = (cabk)−1. Then cτ = c−1 and (abk)τ = (abk)−1 = b−ka−1 =

(a−1)b
k
b−k = asb−k for some s. By [14], we set aτ = ai and bτ = ajb for some i and j.

Then, noting ab ∈ 〈a〉, computation shows that (abk)τ = aτ (bτ )k = ai+tbk for some t.
Thus ai+tbk = asb−k, yielding k ≡ −k (mod 2l), and so l = 1 as (l, k) = 1.

Conversely, suppose that l = 1. Then o(c) = 2n
o(a)o(b)

= n
m
> 1, k = 0 or 1, and

Sk = {ca, c−1a−1, b} or {cab, c−1ab, b}. Assume first that Sk = {cab, c−1ab, b}. Take
τ ∈ Aut(G) with cτ = c−1, aτ = a and bτ = b. Then 1 6= τ ∈ Aut(G,Sk), and
AutCay(G,Sk) has a regular subgroup 〈c̄ā, b̄τ〉 ∼= D2n, so Γ is a dihedrant. Now let
Sk = {ca, c−1a−1, b}. By [14], take τ ∈ Aut(G) with cτ = c−1, aτ = a−1 and bτ = b.
Then 1 6= τ ∈ Aut(G,Sk). Since 〈ca〉 is normal in G, we set (ca)b = (ca)t for some
1 < t < n. Then t2 ≡ 1 (mod n) as o(b) = 2 and o(ca) = n. Let r = t or n − t
such that r < n

2
. For 0 ≤ i ≤ n − 1, we label αi = (ca)i and βi = b(ca)i if r = t,

or αi = (ca)−i and βi = b(ca)−i if r = n − t. Then Cay(G,Sk) has edges {αi, αi+1},
{αi, βi} and {βi, βi+r}. Thus Γ ∼= Cay(G,Sk) ∼= P(n, r). �

3. Cubic coset graphs

In a graph, an arc is an ordered pair of adjacent vertices, and a 2-arc is a directed
path of length 2. A graph Γ is called arc-transitive or 2-arc-transitive if AutΓ is
transitive on the arcs or the 2-arcs of Γ , respectively. For a graph Γ and G ≤ AutΓ ,
we say Γ to be G-vertex-transitive or G-arc-transitive if G acts transitively on the
vertices or the arcs of Γ , respectively.

Let Γ = (V,E) be a G-vertex-transitive graph. Then, for α ∈ V , the stabilizer Gα

is a core-free subgroup in G, that is, ∩g∈GGg
α = 1. Set H = Gα and D = {x | αx ∈

Γ (α)}, where Γ (α) is the set of neighbors of α in Γ . Then D is a union of several
double cosets HxH. Since Γ is undirected, we have D = D−1 := {x−1 | x ∈ D}.
Moreover, Γ is isomorphic the coset graph Cos(G,H,D) defined over {Hx | x ∈ G}
with edge set {{Hg1, Hg2} | g2g

−1
1 ∈ D}.

The following statements for coset graphs are well-known.

(a) Γ is connected if and only if 〈H,D〉 = G.
(b) Γ is G-arc-transitive if and only if D = HgH for g ∈ G with g2 ∈ H; moreover,

g can be chosen as a 2-element with g ∈ NG(H ∩Hg) and g2 ∈ H ∩Hg.
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The next lemma gives a characterisation of the prime divisors of |Gα|.
Lemma 3.1 ([7]). If Γ is connected and of valency k, then each prime divisor of
|Gαβ| is less than k, where {α, β} is an edge of Γ .

Now assume that Γ is cubic and connected. If G is regular on V , then Γ is a
Cayley graph of G. If G is transitive on the arcs of Γ , then Γ ∼= Cos(G,Gα, GαgGα)
where g is a 2-element with 〈g,Gα〉 = G, αg ∈ Γ (α), g ∈ NG(Gααg) and g2 ∈ Gααg ;
moreover, the well-known result of Tutte determines Gα, refer to [2].

Theorem 3.2. If Γ is G-arc-transitive, then Gα
∼= Z3, S3, D12, S4 or S4×S2.

Suppose that G is not regular on V and not transitive on the arcs of Γ . Then
Gα fixes one of neighbors, say γ, and transitive on the other two neighbors, say β1

and β2, of α. Thus Gα is a non-trivial 2-group by Lemma 3.1. Moreover, Γ is an
arc-disjoint union of two G-arc-transitive graphs, one of valency 2 and the other of
valency 1. Then Γ ∼= Cos(G,Gα{x, y}Gα), where x and y are 2-elements such that
α = βx1 , x ∈ NG(Gαβ1), x

2 ∈ Gαβ1 , α
y = γ, y ∈ NG(Gα), y2 ∈ Gα and 〈x, y,Gα〉 = G.

Thus, if a characteristic subgroup M ≤ Gαβ1 is normal in 〈y,Gα〉 then M = 1; if G
has an abelian Sylow 2-subgroup, then 〈y,Gα〉 is an abelian 2-group, and so Gαβ1 is
normal in G, hence Gαβ1 = 1. Then the next lemma follows.

Lemma 3.3. Assume that {β1, β2} and {γ} are the two Gα-orbits on Γ (α). Then
Gα and Gαβ1 do not contain a common non-trivial characteristic subgroup. If further
G has an abelian Sylow 2-subgroup, then Gα

∼= Z2.

Some of the generalized Petersen graphs can be constructed as coset graphs.

Lemma 3.4. Let Γ be a connected G-vertex-transitive cubic graph with Zn:Z4
∼= G ≤

AutΓ , where n is odd and square-free. Then either G is a regular subgroup of AutΓ ,
or Γ ∼= P(n, r) for 1 < r < n

2
with r2 ≡ −1 (mod n).

Proof. Let 〈a〉 be the normal subgroup of G of order n. Then 〈a〉 is a semiregular
subgroup of G. Since 〈a〉 has odd order and Γ has valency 3, we conclude that 〈a〉 is
intransitive on V Γ . Thus Γ has order 2n or 4n. If Γ has order 4n, then G is a regular
subgroup of AutΓ . Hence, we assume Γ has order 2n. Let b ∈ G be of order 4. Then
G = 〈a〉:〈b〉 and ab = ar as 〈a〉 normal in G, where 1 ≤ r < n with r4 ≡ 1 (mod n).

Note all involutions of G are conjugate and contained in 〈a, b2〉. Then H := Gα =
〈b2〉 for some α ∈ V Γ . Write Γ ∼= Cos(G,H,H{x, y}H), where x is an involution
and y ∈ NG(H) with y2 ∈ H. Let C〈a〉(b

2) = 〈a1〉. Since o(a) = n is square-free,
we may write 〈a〉 = 〈a1〉×〈a2〉. Then a2 6= 1; otherwise, C〈a〉(b

2) = 〈a〉, yielding

H = 〈b2〉 is normal in G, a contradiction. It is easily shown that ab
2

2 = a−1
2 , yielding

ar
2

2 = a−1
2 , and hence r2 ≡ −1 (mod o(a2)). Note that NG(H) = 〈a1〉:〈b〉 and all

involutions of G are contained in 〈a2, b
2〉. Since HbH = Hb−1H and 〈x, y,H〉 = G,

we may choose x = at2b
2 and y = ai1b with y2 ∈ H. Then y2 = ai1b

2(b−1ai1b) =
ai+ri1 b2, yielding y2 = b2. In particular, y has order 4. Thus, since Γ is connected,
G = 〈x, y,H〉 = 〈at2b2, y, y2〉 = 〈at2, y〉 = 〈at2〉:〈y〉. It follows that 〈a〉 = 〈at2〉, and so
n = o(a) = o(a2) = o(at2), a1 = 1 and r2 ≡ −1 (mod n). Thus y = b, and it is easily
shown that NG(H) = 〈b〉. Write at2 = as. Then x = asb2 and G = 〈as〉:〈b〉.

Since H{x, y}H = H{as, b}H, we have Γ ∼= Cos(G,H,H{as, b}H). Since HbH =

Hb3H and ab
3

= an−r, replacing b by b3 if necessary, we assume that r < n
2
.
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Now label αi = Hasi and βi = Hbasi, where 0 ≤ i ≤ n − 1, which gives rise to
all vertices of Γ . Then, {αi, αi+1} and {αi, βi} are edges. Moreover, βi = Hbasi and
βj = Hbasj are adjacent whenever (as)(j−i)(−r) = basj−sib−1 = basj(basi)−1 equals to
as or a−s, i.e., (j − i)(−r) ≡ ±1 (mod n). Thus {βi, βj} is an edge if and only if
j ≡ i± r (mod n). Therefore, Γ ∼= Cos(G,H,H{as, b}H) ∼= P(n, r). �

We next describe some graphs associated with simple groups PSL(2, p) with p
prime. As usual, for two integers d, n, by d

∥∥n we mean d divides n, and (d, n
d
) = 1.

Example 3.5. Let T = PSL(2, p), where p is a prime.

(1) Assume that p ≡ ±3 (mod 8). Then 4
∥∥ (p − ε), where ε = 1 or −1. Take a

subgroup H ∼= S3 of T , and let K ∼= Z2 be a Sylow 2-subgroup of H. Then
NT (K) = Dp−ε, and let g ∈ NT (K)\K be an involution such that 〈H, g〉 = T .

(2) Assume that p ≡ ±7 (mod 16). Then 8
∥∥ (p − ε), where ε = 1 or −1. Take a

subgroup H ∼= D12 of T , and let K ∼= Z2
2 be a Sylow 2-subgroup of H. Then

NT (K) = S4, and let g ∈ NT (K) \K be an involution such that 〈H, g〉 = T .
(3) Assume that p ≡ ±15 (mod 32). Then 16

∥∥ (p− ε), where ε = 1 or −1. Take
a subgroup H ∼= S4 of T , and let K ∼= D8 be a Sylow 2-subgroup of H. Then
NT (K) = D16, and let g ∈ NT (K) \K be an involution such that 〈H, g〉 = T .

In each of these three cases, the coset graph Γ = Cos(T,H,HgH) is a connected
2-arc-transitive cubic graph, and the order of Γ is even and indivisible by 4.

Example 3.6. Let T = PSL(2, p), and let G = PGL(2, p), where p is a prime.

(1) Assume that p ≡ ±3 (mod 8). Then 4
∥∥ (p − ε), where ε = 1 or −1. Take a

subgroup H ∼= D12 of T , and let K ∼= Z2
2 be a Sylow 2-subgroup of H. Then

NG(K) = S4. Let g ∈ NG(K) \K be an involution such that 〈H, g〉 = G.
(2) Assume that p ≡ ±7 (mod 16). Then 8

∥∥ (p − ε), where ε = 1 or −1. Take a
subgroup H ∼= S4 of T , and let K ∼= D8 be a Sylow 2-subgroup of H. Then
NG(K) = D16, and let g ∈ NG(K)\K be an involution such that 〈H, g〉 = G.

If g is described as in (1) or (2), then the coset graph Γ = Cos(G,H,HgH) is
bipartite, connected, cubic and 2-arc-transitive.

The final two examples give several families of cubic graphs associated with PSL(2, p),
which are not arc-transitive.

Example 3.7. Let T = PSL(2, p), where p is a prime.

(1) Assume that p ≡ ±3 (mod 8). Then 4
∥∥ (p − ε), where ε = 1 or −1. Let

Z2
∼= H < T . Then NT (H) = Dp−ε. Let x ∈ NT (H) \H and y ∈ T \NT (H)

be two involutions. Then 〈H, x, y〉 = T .
(2) Assume that p ≡ ±7 (mod 16). Then 8

∥∥ (p − ε), where ε = 1 or −1. Let
Z2

2
∼= H < T , and let K ∼= Z2 be a subgroup of H. Then NT (H) = S4

and NT (K) = Dp−ε. Let x ∈ NT (H) \ H and y ∈ NT (K) \NNT (H)(K) be
involutions such that 〈H, x, y〉 = T .

(3) Assume that p ≡ ±15 (mod 32). Then 16
∥∥ (p − ε), where ε = 1 or −1. Let

D8
∼= H < T and K ∼= Z2

2 be a subgroup of H. Then NT (H) = D16 and
NT (K) = S4. Let x ∈ NT (H) \ H and y ∈ NT (K) \ H be involutions such
that 〈H, x, y〉 = T .
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Take x and y as in (1), (2) or (3). Then the coset graph Γ = Cos(T,H,H{x, y}H)
is a connected cubic graph, and Γ has even indivisible by 4.

Example 3.8. Let T = PSL(2, p), and let G = PGL(2, p), where p is a prime.

(1) Assume that p ≡ ±3 (mod 8). Then 4
∥∥ (p − ε), where ε = 1 or −1. Let

Z2
2
∼= H < T and K ∼= Z2 be a subgroup of H. Then NG(K) = D2((p−ε))

and NG(H) = S4. Let x ∈ NG(H) \H and y ∈ NG(K) \NNG(K)(H) be two
involutions such that 〈H, x, y〉 = G.

(2) Assume that p ≡ ±7 (mod 16). Then 8
∥∥ (p − ε), where ε = 1 or −1. Let

D8
∼= H < T and let K ∼= Z2

2 be a subgroup of H. Then NG(H) = D16 and
T > NG(K) = S4. Let x ∈ NG(H) \H and y ∈ NG(K) \H be an involution
such that 〈H, x, y〉 = G.

For each of (1) and (2), the coset graph Γ = Cos(G,H,H{x, y}H) is bipartite,
connected and cubic, and the order of Γ is even and indivisible by 4.

4. Normal quotients

Let Γ = (V,E) be a connected G-vertex-transitive graph, where G ≤ AutΓ .
For a normal subgroup N �G, the normal quotient ΓN of Γ , induced by N , is the

graph whose vertices are the N -orbits on V such that B and C are adjacent if and
only if there exists an edge {β, γ} ∈ E with β ∈ B and γ ∈ C. Clearly, the valency
of ΓN is at most the number of Nα-orbits on Γ (α). Let K be the kernel of G acting
on the N -orbits. Then G/K can be viewed as a subgroup of AutΓN . If the valency
of ΓN equals the valency of Γ , then Γ is a cover of ΓN and, in this case, K = N is
semiregular on V .

From now on, we assume that Γ is connected and cubic. Suppose that G is neither
regular on V nor transitive on the arcs of Γ . Then Gα is a non-trivial 2-group, where
α ∈ V . Set Γ (α) = {β1, β2, γ} such that Gα is transitive on {β1, β2} and fixes γ.

Let N � G have at least 3 orbits on V , and VN be the set of N -orbits. Then the
quotient graph ΓN has valency 2 or 3. If ΓN has valency 3, then Γ is a cover of ΓN .

Lemma 4.1. Let K be the kernel of G acting on VN . If Γ is not a cover of ΓN , then
ΓN is an l-cycle and either

(1) each N-orbit is a matching, K = N is semiregular, G/N ∼= D2l, and G has a
regular subgroup N.Zl; or

(2) Gα = Kα is a 2-group, l is even, and G/K ∼= Dl acting on VN regularly.

Proof. Suppose that ΓN has valency 2. Then ΓN is an l-cycle for some integer l.
Noting that (γN)Gα = γN and (βN1 )g = βN2 for some g ∈ Gα, either αN = γN and
βN1 6= βN2 , or αN 6= γN and βN1 = βN2 .

We assume first that αN = γN and βN1 6= βN2 . Then αN induces a matching,
and G/K is transitive on the arcs of ΓN , and so G/K ∼= D2l. Noting that Kα fixes
Γ (α) = {β1, β2, γ} point-wise, it implies that Kα = 1, hence N = K is a semiregular
subgroup of G. Then G contains a subgroup N.Zl which is regular on V .

Now let αN 6= γN and βN1 = βN2 . Then the induced subgraphs [αN ∪ βN1 ] and
[αN ∪ γN ] are regular and have valency 2 and 1, respectively. Thus there is no an
element in G which maps {αN , βN1 } to {αN , γN}. Therefore, G/K is transitive on
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VN but not on the edges of ΓN . Noting that AutΓN ∼= D2l, it follows that l is even,
G/K ∼= Dl and G/K acting on VN regularly. Moreover, Kα = Gα. �

This leads us to define a special type of cover for some cubic graphs.

Construction 4.2. Assume thatX = PGL(2, p), T = PSL(2, p) and p ≡ ±3 (mod 8).
Then 4

∥∥ (p−ε), where ε = 1 or −1. Let Z2
2
∼= H < T and K ∼= Z2 be a subgroup of H.

Then NX(K) = D2((p−ε)) and NX(H) = S4. Let x ∈ NX(H) \ T and y ∈ NX(K) \ T
be such that x2 ∈ H, y2 ∈ K and 〈H, x, y〉 = X. Let M = 〈c〉 ∼= Zm with odd m
coprime to |T |, and let G = (T×M)〈x〉 such that cx = c−1 (and so cy = c−1). Then
G = T :D2m, and Σ = Cos(G,H,H{cix, cjy}H) is a cubic graph.

It is easily shown that Σ is connected if and only if (i − j,m) = 1. Moreover,
ΣM
∼= Cos(X,H,H{x, y}H) and ΣT is a cycle of length 2m.

5. Soluble automorphism groups

Let Γ = (V,E) be a connected cubic G-vertex-transitive graph of square-free order
2n, where G ≤ AutΓ . In this section, we consider the case where G is soluble.

If G is regular on V , then Γ is a Cayley graph of G, and Γ is known by Lemmas 2.1-
2.5 and Corollary 2.4. Thus, in the following, we assume that G is not regular on V ,
that is, Gα 6= 1 for α ∈ V . Then Lemma 4.1 is available.

As usual, for a prime divisor p of |G|, let Op(G) be the largest normal p-subgroup
of G. Since the order |G : Gα| of Γ is square-free and Gα is a {2, 3}-group, either
|Op(G)| ≤ p, or |Op(G)| ≥ p2 and p ∈ {2, 3}.

Lemma 5.1. If O2(G) 6= 1, then G ∼= Z2n:Z2
∼= D4n, and Γ = Mn or P(n, 1).

Proof. Let N = O2(G) 6= 1. Then each N -orbit has length 2, and the quotient
graph ΓN is of odd order n. It follows from Lemma 4.1 that Gα

∼= Z2, N ∼= Z2 and
G contains a regular subgroup N.Zn ∼= Z2n, and so G ∼= Z2n:Z2. Thus G contains
a normal regular subgroup R ∼= Z2n. Write Γ = Cay(R, S). Then S = {a, a−1, b},
where b is the unique involution in R, and o(a) = n or 2n. Thus, Γ = Mn or P(n, 1).

Let α be the vertex corresponding the identity of R. Then Gα ≤ Aut(R). Set
Gα = 〈σ〉. Then aσ = a−1 as Sσ = S, and thus G = R:〈σ〉 ∼= D4n. �

Lemma 5.2. If O3(G) has order divisible by 9, then Γ = K3,3 and AutΓ = S3 o S2.

Proof. Let N = O3(G). Assume that |N | > 3. Then N is not semiregular on V , and
Nα is a non-trivial 3-group. It follows that Nα is transitive on Γ (α). For β ∈ Γ (α),
the orbit βNα has size 3. It follows that the induced subgraph of Γ with vertex set
αN ∪ βN is isomorphic to K3,3. So Γ ∼= K3,3, and clearly, AutΓ = S3 o S2 �

Let F be the Fitting subgroup of G, the largest nilpotent normal subgroup of G.
Then F 6= 1 and CG(F ) ≤ F as G is soluble, and F = 〈Op(G) | p

∣∣ |G|〉.
Lemma 5.3. Assume that O2(G) = 1 and O3(G) = 1 or Z3. Then Fitting subgroup
of G is cyclic and has exactly two orbits on V , and either Γ ∼= K3,3 or one of the
following holds.

(1) Zn:Z4 and Γ ∼= P(n, r), where r2 ≡ −1 (mod n);
(2) G ∼= Zn:Z2

2 and Γ ∼= Mn or P(n, r), where r2 ≡ 1 (mod n);
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(3) G ∼= Zn:Z6
∼= D2n:Z3 and Γ is isomorphic to one of the graphs involved in

Lemma 2.3 (3).

Proof. Let F be the Fitting subgroup of G. Noting that O2(G) = 1 and Op(G) = 1
or Zp for each odd prime p divisor of |G|, we conclude that F is cyclic and of odd
order. It follows that F is semiregular on V . Since CG(F ) ≤ F , we have CG(F ) = F .
Then G/F = NG(F )/CG(F ) is isomorphic to a subgroup of Aut(F ), which is abelian.

Suppose that F has at least 3-orbits on V . Then, by Lemma 4.1, Γ is a cover of
ΓF . Thus G/F is isomorphic to a subgroup of AutΓF , and so G/F is regular on VF
as it is abelian. Then G is regular on V , which is not the case.

Thus, F has at most two orbits on V . Since F has odd order, F has exactly 2 orbits
on V . Since G/F is abelian, G has an abelian Sylow 2-subgroup. If G is not transitive
on the arcs of Γ , then Gα

∼= Z2 by Lemma 3.3, and so G = F :Z2
2 or F :Z4. On the

other hand, Gα
∼= Gα/Fα ∼= FGα/F ≤ G/F is abelian. If Γ is G-arc-transitive, then

Gα
∼= Z3 by Theorem 3.2, so G = F :Z6. If G ∼= Zn:Z4 then (1) holds by Lemma 3.4.

If G 6∼= Zn:Z4 then G has a normal regular subgroup R ∼= Zn:Z2, and so Γ is known
by Lemmas 2.1-2.5 and Corollary 2.4. This completes the proof. �

6. Insoluble automorphism groups

Let Γ = (V,E) be a connected cubic G-vertex-transitive graph of square-free order
2n, where G ≤ AutΓ . In this section, we assume that G is insoluble.

Recall that the soluble radical of a group G is the largest soluble normal subgroup
of G. Since G is insoluble, the next lemma is a consequence of Lemma 4.1.

Lemma 6.1. Let M be the soluble radical of G. Then Γ is a cover of ΓM ; in
particular, M is semiregular on V and of odd order.

Proof. Let VM be the set of M -orbits on V , and let K be the kernel of G acting
on VM . Then M �K � G, and K = MKα. Since Kα � Gα is soluble, so is K, and
hence K = M . Thus, G/M ≤ AutΓM is insoluble, and so ΓM is cubic. Hence M is
semiregular, and |VM | is even. Since |V | = |M ||VM | is square-free, |M | is odd. �

We first deal with the case where G has trivial soluble radical.

Lemma 6.2. Suppose that the soluble radical of G is trivial. Then G is almost simple.

Proof. Let N be a minimal normal subgroup of G. Then N is insoluble. Let VN be
the set of N -orbits on V , and let K be the kernel of G on VN . Then K = NKα, and
so K/N is soluble. Since |V | is square-free, N is not semiregular on V , and hence the
quotient graph ΓN has valency 0, 1 or 2. Thus, G/K ≤ AutΓN is soluble, and so is
G/N . Hence N is the only minimal normal subgroup of G. Since |G| is not divisible
by p2 with p ≥ 5 prime, N is simple, and G is almost simple. �

Lemma 6.3. Let G be almost simple with socle soc(G) = T . Assume that Γ is
G-arc-transitive. Then either

(1) T = A6, AutΓ = PΓL(2, 9) and Γ is isomorphic to the Tutte’s 8-cage, or
(2) T = PSL(2, p) such that a Sylow 2-subgroup of T is Z2

2, D8 or D16, and Γ is
a 2-arc-transitive graph; moreover Γ is described as in Example 3.5 or 3.6.
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Proof. By Theorem 3.2, |Gα| is not divisible by 25 · 32. Since |V | = |G : Gα| is
square-free, |G| is not divisible by 26, 33 and r2, where r is a prime with r > 3.
Inspecting the orders of finite simple groups, we obtain that T is one of A6, A7, M11,
J1, PSL(2, 2f ), PSL(2, p) for prime p ≥ 5.

Suppose that T = PSL(2, 2f ) with f ≥ 3. Then f = 3, 4 or 5. By the information
given in the Atlas [8], we conclude that G has no a subgroup of square-free index as
listed in Theorem 3.2, which a contradiction.

Suppose that T = A7. Note that |G : Gα| is even and square-free. Then either
|Tα| = 12 and T is transitive on V , or |Gα| = |Tα| = 24 and T has two orbits on V .
Thus, Γ is a G-arc-transitive graph of order 210; however, by [6], there exists no such
a graph, which is a contradiction.

Suppose that T = M11. Then G = T and |Tα| = 24, so Tα ∼= S4. Thus, Tαβ ∼= D8

and NT (Tαβ) is a Sylow 2-subgroup of T , where β ∈ Γ (α). Further, computation using
GAP shows that all subgroups of T isomorphic to S4 are conjugate. Thus we may as-
sume that Tα is contained in a maximal subgroup M ∼= M10. So NT (Tαβ) = NM(Tαβ).
Then there is no an x ∈ NT (Tαβ) with 〈x, Tα〉 = T , which is a contradiction.

Suppose that T = J1. Then G = T and Tα ∼= D12, so Tαβ ∼= Z2
2 for β ∈ Γ (α). It

follows from the information given in the Atlas [8] that NT (Tαβ) = Z2×(Tαβ:Z3) ∼=
Z2×A4. Since all elements of order 6 of T are conjugate, all subgroups of T isomorphic
to D12 are conjugate. Thus, we assume that Tα is contained in a maximal subgroup
M ∼= Z2×A5. Then NM(Tαβ) ∼= Z3

2 is the Sylow 2-subgroup of NT (Tαβ). Thus, there
is no a 2-element x ∈ NT (Tαβ) with 〈x, Tα〉 = T , which is a contradiction.

Assume that T = A6. Then 12 divides |Tα|, so Tα ∼= A4 or S4 by checking the
subgroups of A6. If Tα ∼= A4, then T is transitive on V . Hence Γ is T -arc-transitive,
and so A4

∼= Tα ≥ S3 by Theorem 3.2, a contradiction. Thus Tα ∼= S4 and T
has exactly two orbits on V , say U and W . Considering the possible permutation
representations of A6 of degree 15, we may assume that each of U and W consists of
either the 2-subsets of Λ := {1, 2, 3, 4, 5, 6}, or the partitions with part size 2 of Λ.
Noting that, for α ∈ U , the neighborhood Γ (α) is a Tα-orbit on W . Since |Γ (α)| = 3,
computation shows that, relabeling if necessary, U consists 2-subsets, and W consists
of partitions, such that α ∈ U is adjacent to β ∈ W if and only if α is a part of β.
Thus Γ is isomorphic to the Tutte’s 8-cage, and then part (1) of this lemma follows.

Now assume that T = PSL(2, p), for a prime p ≥ 5. Then G = PSL(2, p) or
PGL(2, p). Inspecting subgroups of G listed in [13, Chapter II, 8.27] and [3], G does
not have subgroups isomorphic to S4×S2. Thus, Gα is isomorphic to one of S3, D12

and S4. It follows that either Tα = Gα, or Tα ∼= S3 and Gα
∼= D12.

First, let Tα ∼= S3. Since |G : Gα| is square-free, so is |T : Tα|. Thus, 8 does not
divide |T | = p(p2−1)/2, and so p ≡ ±3 (mod 8). Since |T : Tα| is even, T is transitive
on V . Hence Γ can be written as a coset graph as in Example 3.5 (1).

Suppose now that Tα = Gα
∼= D12. Since |G : Gα| is even and square-free, 8 divides

|G| but 16 does not. Thus, either G = T = PSL(2, p), p ≡ ±7 (mod 16) and Γ is
isomorphic to a coset graph in Example 3.5 (2), or G = PGL(2, p), p ≡ ±3 (mod 8)
and Γ is isomorphic to a coset graph given in Example 3.6 (1).

In the case where Tα = Gα = S4, the order |G| is divisible by 16 but not 32 since |G :
Gα| is even and square-free. Hence either G = T = PSL(2, p) with p ≡ ±15 (mod 32)
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and Γ is isomorphic to the coset graph in Example 3.5 (3), or G = PGL(2, p) with
p ≡ ±7 (mod 16) and Γ is isomorphic to the coset graph in Example 3.6 (2). �

Now we consider the case where G is not transitive on the arcs of Γ . Then Γ ∼=
Cos(G,Gα{x, y}Gα), where x and y are 2-elements such that 〈x, y,Gα〉 = G, αx, αy ∈
Γ (α), x ∈ NG(Gα) with x2 ∈ Gα, y ∈ NG(Gααy) with y2 ∈ Gααy .

Lemma 6.4. Assume that G is almost simple with socle soc(G) = T and Γ is not
G-arc-transitive. Then T = PSL(2, p), and either Gα

∼= Z2
2, or Gα = Tα ∼= Z2 or D8;

moreover, Γ is isomorphic to a graph given in Examples 3.7 and 3.8.

Proof. Since Γ is not G-arc-transitive and G is not regular, Gα is a nontrivial 2-
group. Then r2 is not a divisor of |G|, where r is an arbitrary odd prime. Checking
the orders of finite simple groups, T = soc(G) is one of J1, PSL(2, p) for prime p ≥ 5,
PSL(2, 2f ) with f ≥ 4, and Sz(2f ) for odd f ≥ 3.

Suppose that T = PSL(2, 2f ) with f ≥ 4 or Sz(2f ) for f ≥ 3. Then any two
distinct Sylow 2-subgroups of T intersect trivially, see [13, Chapter II, 8.5] and [21].
Now |Tα| ≥ 24 and for β ∈ Γ (α), we have |Tα : Tαβ| ≤ 2, and hence Tαβ 6= 1. Thus,
Tα and Tβ are contained in the same Sylow 2-subgroup Q of T . Since Γ is connected,
it follows that Tγ ≤ Q for all vertices γ of Γ . Hence, Q contains a non-trivial normal
subgroup 〈Tβ | β ∈ V Γ 〉 = 〈T gα | g ∈ G〉 of T , which is a contradiction.

Suppose that T = J1. Then T = G, and since |T : Tα| is even and square-
free, we have Tα ∼= Z2

2. Let β ∈ Γ (α) with Tαβ = Z2. Since Γ is connected,
〈Tα, x, y〉 = T , where x ∈ NT (Tα) with x2 ∈ Tα, and y ∈ NT (Tαβ) with y2 ∈ Tαβ.
By the Atlas [8], NT (Tαβ) ∼= Z2×A5 and NT (Tα) ∼= Z2×A4. Then x is contained in
the unique Sylow 2-subgroup 〈Tα, x〉 of NT (Tα). Since Tαβ < 〈Tα, x〉 ∼= Z3

2, we have
x ∈ 〈Tα, x〉 < NT (Tαβ). Thus 〈x, y,Gα〉 ≤ NT (Tαβ) 6= T , which is a contradiction.

Thus, T = PSL(2, p) for a prime p ≥ 5. Then G = PSL(2, p) or PGL(2, p), and a
Sylow 2-subgroup of G is a dihedral group.

If |Gα| = 2, then Gα
∼= Z2, G = T = PSL(2, p) with p ≡ ±3 (mod 8), and Γ is

isomorphic to a coset graph in Example 3.7 (1).
Assume that |Gα| = 4. Then, by Lemma 3.3, Gα is not cyclic, so Gα

∼= Z2
2.

Hence either G = T = PSL(2, p) with p ≡ ±7 (mod 16), or G = PGL(2, p) with p ≡
±3 (mod 8). For the former case, Γ is isomorphic to a coset graph in Example 3.7 (2).
The later case implies that Tα ∼= Z2 or Z2

2 depending on T is or not transitive on V ,
and so Γ is isomorphic to a coset graph in Example 3.7 (1) or 3.8 (1), respectively.

Finally, assume that Gα = 〈a〉:〈b〉 ∼= D2e for e ≥ 3. Let β ∈ Γ (α) with Gα 6= Gβ.
Then Gαβ has index 2 in Gα. If Gαβ contains a cyclic subgroup Z with |Z| ≥ 4, then
Z is characteristic in both Gα and Gαβ, which contradicts with Lemma 3.3. Thus
Gαβ

∼= Z2
2 and Gα

∼= D8. Suppose that Gα 6= Tα. Then |Tα| = 4, G = PGL(2, p),
and T is transitive on V . Since T is not regular, Tαβ ∼= Z2, and so Gαβ 6≤ T . Thus
NG(Gαβ) ∼= D8 by [3], so NG(Gαβ) = Gα. Then there are no x ∈ NG(Gα) and
y ∈ NG(Gαβ) such that 〈Gα, x, y〉 = G, a contradiction.

Therefore, Gα = Tα ∼= D8. Then either G = T = PSL(2, p) with p ≡ ±15 (mod 32)
and Γ is isomorphic to a coset graph in Example 3.7 (3), or G = PGL(2, p) with
p ≡ ±7 (mod 16) and Γ is isomorphic to a coset graph in Example 3.8 (2). �
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By Lemmas 6.3, 6.4 and their proofs, the next result determines some connected
cubic Cayley graphs of square-free order which have insoluble automorphism groups.

Corollary 6.5. Assume that T := soc(G) = PSL(2, p) for a prime p > 5. Then G
contains no regular subgroups unless:

(1) G = PGL(2, 7), G has a regular subgroup R ∼= D14, NG(R) = R:Z3 and Γ is
constructed as in Example 3.6 (2);

(2) G = PGL(2, 7), G has a regular subgroup R ∼= Z7:Z6, NG(R) = R and Γ is
constructed as in Example 3.8 (2);

(3) G = PGL(2, 11), G has a regular subgroup R ∼= Z11:Z10, NG(R) = R and Γ
is constructed as in Example 3.6 (1);

(4) G = PGL(2, 23), G has a regular subgroup R ∼= Z23:Z22, NG(R) = R and Γ
is constructed as in Example 3.6 (2).

Proof. By Lemmas 6.3 and 6.4, Tα (or Gα) and Γ are known and listed as follows:

Tα Gα Γ p
S3 3.5 (1) 5, 11
D12 D12 3.5 (2), 3.6 (1) 5, 7, 11, 23
S4 S4 3.5 (3), 3.6 (2) 7, 23, 47
Z2 Z2 3.7 (1) none

Z2
2 3.7 (1)-(2), 3.8 (1) 7

D8 D8 3.7 (3), 3.8 (2) 7

Suppose that G has a regular subgroup R. Then Γ is a Cayley graph and, since

|G : T | ≤ 2, we know that T contains a subgroup of order |R|
2

. Thus T has a subgroup

of square-free order |T |
|Tα| or |T |

2|Tα| , and such a subgroup has order divided by p as Tα is

a {2, 3}-group. Checking the subgroups of T (see [13, 8.27]), we conclude that p + 1
divides |Tα| or 2|Tα|. It follows that all possible p are listed at the last column of the
above table. If p = 5 then Γ is a 2-arc-transitive graph, and so Γ is the Petersen
graph, which is not a Cayley graph. If p = 47 then Tα = Gα

∼= S4 and Γ is constructed
as in Example 3.5 (3); however, G = T has no a subgroup of order 47 · 46.

Assume that p = 7. Then Gα
∼= D12, S4, Z2

2 or D8, and Γ is respectively constructed
as in Example 3.5 (2), Example 3.6 (2), Example 3.7 (2) or Example 3.8 (2). Note that
G has neither subgroups isomorphic to D12 and of square-free index, nor subgroups

of order |G|
4

. Then one of items (1) and (2) occurs.
Assume that p = 11. Then Γ is a 2-arc-transitive cubic graph of order 110. By [6],

such a graph is isomorphic to a bipartite graph. It follows that T is not transitive on
the vertices of Γ . Thus item (3) follows.

Finally, let p = 23. Then Γ is constructed as in Example 3.5 (2) or Example 3.6 (2).

In this case, by the Atlas [8], G has no subgroups of order |G|
12

, and then (4) follows. �

Now we can determine the structure of G in the general case.
Let M be the soluble radical of G and let G(∞) be the smallest normal subgroup

of G such that G/G(∞) is soluble. By Lemma 6.1, M has odd order and Γ is a
cover of the quotient ΓM , so ΓM is cubic. Moreover, G/M , viewed as a transitive
subgroup of AutΓM , has trivial soluble radical. Then, by Lemmas 6.2, 6.3 and 6.4,
G/M is almost simple with socle A6 or PSL(2, p). Set soc(G/M) = Y/M . Then
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G/Y ∼= (G/M)/(Y/M) is soluble, so G(∞) ≤ Y . Thus Y = MG(∞), and soG(∞)/(M∩
G(∞)) ∼= MG(∞)/M = Y/M ∼= A6 or PSL(2, p).

On the other hand, Aut(M) is soluble asM has square-free order. SinceG/CG(M) =
NG(M)/CG(M) is isomorphic to a subgroup of Aut(M), we have G(∞) ≤ CG(M).
Then M ∩G(∞) is the center of G(∞). Since M has odd order and 33 is not a divisor
of |G|, we conclude that M ∩ G(∞) = 1 by checking the Schur multipliers of A6 and
PSL(2, p). Then Y = M×T , and so G = (M×T ).O, where T = G(∞) = A6 or
PSL(2, p), and O lies in the outer automorphism group Out(T ) of T .

Lemma 6.6. Assume that G is insoluble. Then one of the following holds:

(1) G is almost simple with socle isomorphic to A6 or PSL(2, p);
(2) Γ is not G-arc-transitive, and G = T :D2m such that T = PSL(2, p), Gα =

Tα ∼= Z2
2 is a Sylow 2-subgroup of T , and (|T |,m) = 1; G contains no regular

subgroups, and Γ can be constructed as in Construction 4.2.

Proof. Recall that G = (M×T ).O, where T = A6 or PSL(2, p), and O ≤ Out(T ).
If M = 1, then (1) follows from Lemmas 6.2, 6.3 and 6.4. Thus we assume next

that M 6= 1. Then m = |M | ≥ 3 is odd square-free.
Suppose that T has at most two orbits on V . Then M fixes one T -orbit U . By Lem-

ma 6.1, M is semiregular and of odd square-free order. Then |M |
∣∣ |U |, so |M |

∣∣ |T |,
and hence |M |2

∣∣ |G|. Since |V | = |G : Gα| is square-free for α ∈ U , we have |M |
∣∣ |Gα|.

Note that Gα is either a 2-group or isomorphic to one of S3, D12 and S4. It follows
that |M | = 3 and 3

∣∣ |Gα|. Thus Gα is 2-transitive on Γ (α), and so Tα is transitive

on Γ (α) as Tα is normal in Gα and T is not semiregular on V ; in particular, 3
∣∣ |Tα|.

Since |M |
∣∣ |V | and |V | = |U | or |2|U |, we know that 3 divides |U | = |T : Tα|. Then

32
∣∣ |T |, so 33

∣∣ |G|, hence 32
∣∣ |Gα|, a contradiction. Thus T has at least 3 orbits on V .

Let K be the kernel of G acting on the T -orbits. Then, by Lemma 4.1, ΓT ∼= Cl,
Gα = Kα is a 2-group, l is even, and G/K = Dl acting regularly on T -orbits. Then
M ∼= KM/K ∼= Z l

2
and l = 2m. In particular, G is not transitive on the arcs of

Γ , and so G/M is not transitive on the arcs of ΓM . It follows from Lemma 6.4 that

soc(G/M) ∼= PSL(2, p). Since K ≥ T and |G/M | = |G|
|M | = l|K|

m
= 2|K|, we have

G/M ∼= PGL(2, p) and K = T = PSL(2, p). Clearly, soc(G/M) has two orbits on
the vertices of ΓM . By Lemma 6.4, (G/M)∆

∼= Z2
2 or D8 for an M -orbit ∆. Let

α ∈ ∆. Then G∆ = MGα = MTα, and so Tα ∼= G∆/M ∼= (G/M)∆
∼= Z2

2 or D8.
Since |V | = 2m|T : Tα| is square-free, Gα = Tα is a Sylow 2-subgroup of T and m is
coprime to |T |. Thus, we may assume that G = M :X with T < X ∼= PGL(2, p). Then
NG(Gα) = MNX(Tα) and NG(Gαβ) = MNX(Tαβ), where β ∈ Γ (α) with Gα 6= Gβ.

Suppose that Gα = Tα ∼= D8. Then NX(Gα) ∼= D16, Tαβ = Gαβ
∼= Z2

2, S4
∼=

NX(Tαβ) = NT (Tαβ). Thus NG(Gα) = M :D16 and NG(Gαβ) = M×S4. Then, for
x ∈ NG(Gα) and y ∈ NG(Gαβ), either 〈Gα, x, y〉 ≤ M×T or 〈Gα, x, y〉 . PGL(2, p),
which contradicts with the connectedness of Γ .

Assume that Gα = Tα ∼= Z2
2. Then NX(Gα) ∼= S4 and NX(Gαβ) ∼= D2(p−ε),

where ε = ±1 such that 4
∥∥ p − ε. Note that Gα ≤ NX(Gαβ). Take an involution

b ∈ NX(Gαβ) with Gα:〈b〉 ∼= D8. Then b ∈ X \ T , M :〈b〉 ∼= D2m, NG(Gα) =
(M ×NT (Tα))〈b〉 and NG(Gαβ) = M ×NT (Tαβ)〈b〉. Thus Γ can be constructed as
in Construction 4.2.
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Suppose that G has a regular subgroup. Then, since |G : MT | = 2, we know that

MT = M×T contains a subgroup of order |G:Gα|
2

= |MT |
4

. Thus T has a subgroup of
index 4, which is impossible as T is simple. Then the result follows. �

7. Proof of Theorem 1.1

Let Γ be a connected vertex-transitive cubic graph of square-free order 2n.
If AutΓ is insoluble then Γ is known as in parts (2)-(4) of Theorem 1.1 by the

argument in Section 6. To complete the proof, we first determine the Cayley graphs
which have insoluble automorphism groups. Assume that AutΓ is insoluble and has
a regular subgroup G. By Corollary 6.5 and Lemma 6.6 (2), either

(i) AutΓ = PGL(2, 7), G = 〈a〉:〈b〉 ∼= D14 and NAutΓ (R) = R:Z3; or
(ii) AutΓ = PGL(2, p), G = 〈a〉:〈b〉 ∼= Zp:Zp−1 and NAutΓ (R) = R, where p ∈
{7, 11, 23}.

For (i), by Lemma 2.3 (3), Γ ∼= Cay(G, {ab, a3b, b}) or Cay(R, {ab, a5b, b}). Verified
by Magma, Cay(R, {ab, a3b, b}) ∼= Cay(R, {ab, a5b, b}), so Line 1 of Table 1 occurs.

For (ii), by Lemma 2.5, Γ ∼= Cay(G, {abk, (abk)−1, bl}) with ab
p−1
2 = a−1, 0 < k < p−1

2

and (k, p−1
2

) = 1. Then, verified by Magma, one of Lines 2,4 and 5 of Table 1 occurs.

Now assume that AutΓ is soluble. Then either Γ is a Cayley graph or a generalized
Petersen graph by the argument in Section 5, and hence Γ is known by the argument in
Section 2. Assume that Γ ∼= P(n, r) is a generalized Petersen graph, where 1 ≤ r < n

2
.

If r2 ≡ 1 (mod n) then, by [11], AutP(n, r) ∼= Zn:Z2
2 contains a regular subgroup

described as in (i), and it is easily shown that P(n, r) is neither a circulant nor a
dihedrant unless r = 1. For r2 ≡ −1 (mod n), again by [11], either AutP(n, r) ∼= Zn:Z4

or (n, r) = (5, 2) and Γ is the Petersen graph; moreover, in this case, Γ is not
isomorphic to a Cayely graph. Then one of Theorem 1.1 (i) and (vii) occurs.

Therefore, we assume next that Γ = Cay(G,S) is a Cayley graph. If G has a
subgroup isomorphic to Zn then G ∼= Zn:Z2, hence AutΓ = Ḡ:Aut(G,S) and one of
(i)-(v) occurs by Lemmas 2.2-2.5, Corollary 2.4 and the argument in Section 5.

Suppose that G has no subgroups isomorphic to Zn. By Lemmas 2.1 and 2.5,
we may assume that n > 3, Γ = Cay(G,Sk) and Aut(G,Sk) = 1, where G =

〈c〉×(〈a〉:〈b〉), o(b) = 2l > 2, Z(G) = 〈c〉, G′ = 〈a〉, abl = a−1, Sk = {cabk, (cabk)−1, bl},
1 < k < l and (k, l) = 1. Then, by the argument in Section 5 , either AutΓ = Ḡ or
AutΓ ∼= Zn:Z6

∼= D2n:Z3. We next show Theorem 1.1 (vi) occurs, it suffices to show
that AutΓ ∼= Zn:Z6 if and only if G and k are described as in Line 3 of Table 1.

Suppose that G = 〈a〉:〈b〉 with o(b) = 6 and ab = at such that t2−t+1 ≡ 0 (mod n).
Let Γ = Cay(G,S), where S = {ab, (ab)−1, b3}. Define a map

π : G→, aibj 7→



ait
2
, if j ≡ 0 (mod 6);

ait
2−t+1b2, if j ≡ 2 (mod 6);

ait
2−tb4, if j ≡ 4 (mod 6);

a−itb5, if j ≡ 1 (mod 6);
a−it+1b, if j ≡ 3 (mod 6);
a−it−t+1b3, if j ≡ 5 (mod 6).

It is easily shown π is an automorphism of Γ and fixes the vertex 1. Note that all
Cayley graphs with insoluble automorphism groups are known, whose order is either
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42 or not divisible 3. If |G| = 42 then, verified by Magma, AutΓ is soluble and has
order 126. Thus we conclude that AutΓ is soluble. By the argument in Section 5, we
conclude that AutΓ ∼= Zn:Z6.

Suppose now that AutΓ ∼= Zn:Z6. Then AutΓ has a unique {2, 3}′-Hall subgroup
L. Clearly, L is cyclic and normal in AutΓ . Consider the subgroup X := LḠ of
AutΓ . Since X is transitive on the vertices of Γ , we have X = ḠXα for some vertex

α. Then |L||G|
|L∩Ḡ| = |LḠ| = |X| = |G||Xα| = |G| or 3|G|, yielding L < Ḡ. Thus L is

a cyclic normal subgroup of Ḡ. Let N be the Fitting subgroup of Ḡ. Then L ≤ N .
Since Ḡ has square-free order, N is cyclic. It is easily shown that N = 〈c̄〉×〈ā〉. Then
2l = |Ḡ:N | divides |Ḡ:L|, so |Ḡ:L| ≥ 2l ≥ 6. Note that L is a {2, 3}′-Hall subgroup
of Ḡ. Thus |Ḡ:L| divides 6, and so 2l divides 6. Thus 2l = 6 as l > 1, and hence
L = N . Since 0 < k < l = 3, we have k = 1 or 2.

Consider the normal quotient graph ΓN . We know that ΓN ∼= Cay(〈b〉, {bk, b−k, b3}).
Then either ΓN ∼= K3,3 for k = 1, or ΓN ∼= P(3, 1) for k = 2. Since N is normal in
AutΓ and Γ is arc-transitive, ΓN is also arc-transitive. It follows that k = 1.

By Lemma 5.3, AutΓ has a normal regular subgroup R ∼= D2n. Note that each
Sylow 2-subgroup of AutΓ ∼= Zn:Z6 has order 2. It follows that all involutions in AutΓ
are conjugate. Thus we may choose R such that b̄3 ∈ R. Recalling L = N = 〈c̄, ā〉 is

the {2, 3}′-Hall subgroup of AutΓ , we have N = 〈c̄, ā〉 < R. Then c̄b̄
3

= c̄−1, yielding
o(c) = o(c̄) = 1 as c̄b̄ = b̄c̄. Thus o(a) = n

3
and Ḡ ∼= G = 〈a, b〉 has trivial center.

Moreover, R = 〈āz, b̄3〉 for some z with o(z) = 3 and zā = āz. It is easily shown that
〈āz〉 ∩ 〈b̄〉 ≤ Z(Ḡ). Then 〈āz〉 ∩ 〈b̄〉 = 1, and so AutΓ = 〈āz〉:〈b̄〉 = R:〈b̄2〉.

Assume that θ ∈ AutΓ has order 3. Note that AutΓ has an abelian Sylow 3-
subgroup 〈z, b̄2〉. Then θ ∈ 〈z, b̄2〉āi for some i. Assume further that θ fixes the vertex
1 of Γ . Then, replacing z by z−1 if necessary, we may set θ = zḡ for g = a−ib±2ai.
Thus 1 = 1θ = 1zg, and so 1z = g−1. Since zḡ = ḡz, we have 1 = 1θ = 1ḡz = gz,
and so 1z

−1
= g. Let ab = ar for some r coprime to n

3
. Then r6 ≡ 1 (mod n

3
) and

r3 ≡ −1 (mod n
3
). Thus (b3)θ = 1b̄

3zḡ = 1z
−1b̄3ḡ = gb3g = a−i(r+1)2b or a−i(r

2−1)2b−1.

Since Γ is arc-transitive, 〈θ〉 is transitive on {ab, (ab)−1, b3}. Then (b3)θ = ab or

(ab)−1. Therefore, either a−i(r+1)2b = ab or a−i(r
2−1)2b−1 = (ab)−1 = a−rb−1. Then

−i(r + 1)2 ≡ 1 (mod n
3
) or −i(r2 − 1)2 ≡ −r (mod n

3
), it follows that (r + 1, n

3
) = 1.

Since r3 ≡ −1 (mod n
3
), we have r2 − r + 1 ≡ 0 (mod n

3
).

Since 〈āz〉 is normal in AutΓ , we set (āz)b̄ = (āz)t for some t coprime to n.

Then (āz)t
3

= (āz)b̄
3

= āb̄
3
zb̄

3
= ā−1z−1 = (āz)−1, so t3 ≡ −1 (mod n), hence

t3 ≡ −1 (mod n
3
). Note that ātzt = (āz)t = (āz)b̄ = āb̄zb̄ = ārzb̄

4b̄3 = ārz−1. It
follows that t ≡ r (mod n

3
) and t ≡ −1 (mod 3). Since t ≡ −1 (mod 3), we know

that 3
∣∣ (t2 − t + 1). Since r2 − r + 1 ≡ 0 (mod n

3
) and t ≡ r (mod n

3
), we have

t2 − t+ 1 ≡ 0 (mod n
3
). Then, since (3, n

3
) = 1, we have t2 − t+ 1 ≡ 0 (mod n). Thus

Theorem 1.1 (vi) occurs. This completes the proof.
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