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Abstract20

The Wiener index W (G) of a connected graph G, introduced by Wiener21

in 1947, is defined as W (G) =
∑

u,v∈V (G) d(u, v) where dG(u, v) is the dis-22

tance between vertices u and v of G. The Steiner distance in a graph, intro-23

duced by Chartrand et al. in 1989, is a natural generalization of the concept24

of classical graph distance. For a connected graph G of order at least 2 and25

S ⊆ V (G), the Steiner distance d(S) of the vertices of S is the minimum26

size of a connected subgraph whose vertex set is S. We now introduce the27

concept of the Steiner Wiener index of a graph. The Steiner k-Wiener index28

SWk(G) of G is defined by SWk(G) =
∑

S⊆V (G)

|S|=k

d(S). Expressions for SWk29

for some special graphs are obtained. We also give sharp upper and lower30
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bounds of SWk of a connected graph, and establish some of its properties in31

the case of trees. An application in chemistry of the Steiner Wiener index32

is reported in our another paper.33
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index..35
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1. Introduction38

All graphs in this paper are undirected, finite, and simple. We refer to [3]39

for graph theoretical notation and terminology not described here. Distance40

is one of the basic concepts of graph theory [4]. If G is a connected graph41

and u, v ∈ V (G), then the distance d(u, v) = dG(u, v) between u and v is the42

length of a shortest path connecting u and v. If v is a vertex of a connected43

graph G, then the eccentricity ε(v) of v is defined by ε(v) = max{d(u, v) |u ∈44

V (G)}. Furthermore, the radius rad(G) and diameter diam(G) of G are defined45

by rad(G) = min{ε(v) | v ∈ V (G)} and diam(G) = max{ε(v) | v ∈ V (G)}. These46

latter two concepts are related by the inequalities rad(G) ≤ diam(G) ≤ 2rad(G).47

Goddard and Oellermann gave a survey paper on this subject [13].48

The Wiener index W (G) of G is defined by

W (G) =
∑

u,v∈V (G)

dG(u, v) .

The first investigations of this distance–based graph invariant were done by49

Harold Wiener in 1947, who realized that there exist correlations between the50

boiling points of paraffins and their molecular structure, see [21, 22, 23]. Mathe-51

maticians study the Wiener index since the 1970s [11].52

The Wiener index obtained wide attention and numerous results have been53

worked out, see the surveys [10, 15, 16, 24], the recent papers [2, 7, 17, 18, 19]54

and the references cited therein.55

The Steiner distance of a graph, introduced by Chartrand et al. [6] in 1989,56

is a natural and nice generalization of the concept of the classical graph distance.57

For a graph G(V,E) and a set S ⊆ V (G) of at least two vertices, an S-Steiner58

tree or a Steiner tree connecting S (or simply, an S-tree) is a such subgraph59

T (V ′, E′) of G that is a tree with S ⊆ V ′. Let G be a connected graph of order60

at least 2 and let S be a nonempty set of vertices of G. Then the Steiner distance61

d(S) among the vertices of S (or simply the distance of S) is the minimum62

size of a connected subgraphs whose vertex set contains S. Note that if H is63
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a connected subgraph of G such that S ⊆ V (H) and |E(H)| = d(S), then H64

is a tree. Clearly, d(S) = min{|E(T )| : S ⊆ V (T )}, where T is subtree of G.65

Furthermore, if S = {u, v}, then d(S) = d(u, v) is nothing new, but the classical66

distance between u and v. Clearly, if |S| = k, then d(S) ≥ k − 1. If G is the67

graph depicted in Figure 1 (a) and S = {x, u, v}, then d(S) = 4. There could be68

several trees of size 4 containing S. One such tree is shown in Figure 1 (b).

(a) (b)

u

z v

x

wy

u

z v

x

y

6

66 55

55

55
4

(c)

Figure 1: Graphs used to illustrate the basic definitions.

69

Let n and k be integers such that 2 ≤ k ≤ n. The Steiner k-eccentricity εk(v)70

of a vertex v of G is defined by εk(v) = max{d(S) |S ⊆ V (G), |S| = k, and v ∈71

S}. The Steiner k-radius of G is sradk(G) = min{εk(v) | v ∈ V (G)}, while the72

Steiner k-diameter of G is sdiamk(G) = max{εk(v) | v ∈ V (G)}. Note that for73

every connected graph G, ε2(v) = ε(v) for all vertices v of G, srad2(G) = rad(G)74

and sdiam2(G) = diam(G). Each vertex of the graph G of Figure 1 (c) is labeled75

with its Steiner 3-eccentricity, so that srad3(G) = 4 and sdiam3(G) = 6. For76

more details on Steiner distance, we refer to [1, 5, 6, 8, 13, 20].77

The following observation is easily seen.78

Observation 1.1. Let k be an integer such that 2 ≤ k ≤ n. If H is a spanning79

subgraph of G, then sdiamk(G) ≤ sdiamk(H).80

We now generalize the concept of Wiener index by Steiner distance. The
Steiner k-Wiener index SWk(G) of G is defined by

SWk(G) =
∑

S⊆V (G)

|S|=k

d(S) .

For k = 2, the above defined Steiner Wiener index coincides with the ordinary81

Wiener index. It is usual to consider SWk for 2 ≤ k ≤ n − 1, but the above82

definition implies SW1(G) = 0 and SWn(G) = n− 1.83

In Section 2, we obtain the exact values of the Steiner Wiener k-index of84

the path, star, complete graph, and complete bipartite graph. In Section 3,85
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we obtain sharp lower and upper bounds for SWk for connected graphs and for86

trees. In Section 4 we establish some relations for SWk of trees. An application87

in chemistry of the Steiner Wiener index is reported in our another paper [14].88

2. Results for some special graphs89

Beginning this section, we note that the special case for k = 2 of all formulas90

derived here for the Steiner Wiener index, thus pertaining to the ordinary Wiener91

index, are well known and mentioned many times in the earlier literature.92

Recently, we found the following concept about the Wiener distance. The
average Steiner distance µk(G) of a graph G is defined as the average of the
Steiner distances of all k-subsets of V (G), i.e.,

µk(G) =

(

n

k

)−1
∑

S⊆V (G),|S|=k

dG(S),

which was introduced by Dankelmann, Oellermann and Swart in [8]. This concept93

is similar to our Steiner Wiener index. However, their motivation is to analyse94

transportation or communication networks, but ours is from chemical applications95

of the famous Wiener index. Therefore, fortunately most of their results are96

different from ours. For more details on the average Steiner distance, we refer to97

[8, 9].98

For a connected graph G, one can easily see that

SWk(G) = µk(G)

(

n

k

)

, (1)

Corollary 2.1 of [8] implies that µk(Kn) = (k−1)µ2(Kn). Then from Eq. (1)99

one can immediately get the following result.100

Proposition 2.1. Let Kn be the complete graph of order n, and let k be an101

integer such that 2 ≤ k ≤ n. Then SWk(Kn) =
(

n
k

)

(k − 1).102

For complete bipartite graphs, we have the following result.103

Proposition 2.2. Let Ka,b be the complete bipartite graph of order a+ b (1 ≤
a ≤ b), and let k be an integer such that 2 ≤ k ≤ a+ b. Then

SWk(Ka,b) =























(k − 1)
(

a+b
k

)

+
(

a
k

)

+
(

b
k

)

, if 1 ≤ k ≤ a;

(k − 1)
(

a+b
k

)

+
(

b
k

)

, if a < k ≤ b;

(k − 1)
(

a+b
k

)

, if b < k ≤ a+ b.
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Proof. Let G = Ka,b, and let U = {u1, u2, . . . , ua} and W = {w1, w2, . . . , wb} be104

the two parts of G = Ka,b.105

First, we consider the case 1 ≤ k ≤ a. For any S ⊆ V (G) and |S| = k, we have106

S∩U = ∅, or S∩W = ∅, or S∩U 6= ∅ and S∩W 6= ∅. If S∩U = ∅, then S ⊆ W .107

Without loss of generality, let S = {w1, w2, . . . , wk}. Then the tree T induced by108

the edges in {u1w1, u1w2, . . . , u1wk} is a Steiner tree connecting S. This implies109

d(S) ≤ k. Since G = Ka,b is a complete bipartite graph, it follows that any tree110

connecting S must use at least k edges, and hence d(S) ≥ k. Therefore, d(S) = k.111

Similarly, if S∩W = ∅, then d(S) = k. Suppose S∩U 6= ∅ and S∩W 6= ∅. With-112

out loss of generality, let S = {u1, u2, . . . , ux, w1, w2, . . . , wk−x}. Then the tree T113

induced by the edges in {u1w1, w1u2, w1u3, . . . , w1ux, u1w2, u1w3, . . . , u1wk−x} is114

a Steiner tree connecting S, which implies d(S) ≤ k− 1. Since |S| = k, it follows115

that any tree connecting S must use at least k−1 edges, and hence d(S) = k−1.116

Thus,117

SWk(G) =
∑

S⊆V (G)

S∩U=∅

d(S) +
∑

S⊆V (G)

S∩U=∅

d(S) +
∑

S⊆V (G)

S∩U 6=∅,S∩U 6=∅

d(S)

= k

(

a

k

)

+ k

(

b

k

)

+ (k − 1)

[

a
∑

x=1

(

a

x

)(

b

k − x

)

]

= k

(

a

k

)

+ k

(

b

k

)

+ (k − 1)

[(

a+ b

k

)

−

(

b

k

)

−

(

a

k

)]

= (k − 1)

(

a+ b

k

)

+

(

a

k

)

+

(

b

k

)

.

Next, we consider the case a < k ≤ b. For any S ⊆ V (G) and |S| = k,118

we have S ∩ U = ∅ or S ∩ U 6= ∅. If S ∩ U = ∅, then S ⊆ W . With-119

out loss of generality, let S = {w1, w2, . . . , wk}. Then the tree T induced by120

the edges in {u1w1, u1w2, . . . , u1wk} is a Steiner tree connecting S, which im-121

plies d(S) ≤ k. Since G = Ka,b is a complete bipartite graph, it follows that122

any tree connecting S must use at least k edges, and hence d(S) ≥ k. There-123

fore, d(S) = k. Suppose S ∩ U 6= ∅. Without loss of generality, let S =124

{u1, u2, . . . , ux, w1, w2, . . . , wk−x} (1 ≤ x ≤ a). Then the tree T induced by the125

edges in {u1w1, w1u2, w1u3, . . . , w1ux, u1w2, u1w3, . . . , u1wk−x} is a Steiner tree126

connecting S, which implies d(S) ≤ k − 1. Since |S| = k, it follows that any tree127
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connecting S must use at least k − 1 edges, and hence d(S) = k − 1. Thus,128

SWk(G) =
∑

S⊆V (G)

S∩U=∅

d(S) +
∑

S⊆V (G)

S∩U 6=∅

d(S)

= k

(

b

k

)

+ (k − 1)

[

a
∑

x=1

(

a

x

)(

b

k − x

)

]

= k

(

b

k

)

+ (k − 1)

[

∞
∑

x=1

(

a

x

)(

b

k − x

)

]

= k

(

b

k

)

+ (k − 1)

[(

a+ b

k

)

−

(

b

k

)]

= (k − 1)

(

a+ b

k

)

+

(

b

k

)

.

In this end, we consider the remaining case b < k ≤ a + b. For any S ⊆
V (G) and |S| = k, we have S ∩ U 6= ∅ and S ∩ U 6= ∅. Without loss of
generality, let S = {u1, u2, . . . , ux, w1, w2, . . . , wk−x}. Then the tree T induced
by the edges in {u1w1, w1u2, w1u3, . . . , w1ux, u1w2, u1w3, . . . , u1wk−x} is a Steiner
tree connecting S, which implies d(S) ≤ k − 1. Since |S| = k, it follows that any
tree connecting S must use at least k − 1 edges, and hence d(S) = k − 1. Thus,

SWk(G) =
∑

S⊆V (G)

S∩U=∅

d(S) = (k − 1)

(

a+ b

k

)

.

The proof is now complete.129

From the above proposition, we can derive the following corollary.130

Corollary 2.3. Let Sn be the star of order n (n ≥ 3), and let k be an integer
such that 2 ≤ k ≤ n. Then

SWk(Sn) =

(

n− 1

k − 1

)

(n − 1) .

Proof. From Proposition 2.2, we have that SWk(Sn) = SWk(K1,n−1) =
(

n
n

)

(n−

1) = n − 1 for k = n and SWk(Sn) = SWk(K1,n−1) = (k − 1)
(

n
k

)

+
(

n−1
k

)

for
2 ≤ k ≤ n− 1. We conclude that

SWk(Sn) = (k − 1)

(

n

k

)

+

(

n− 1

k

)

=

(

n− 1

k − 1

)

(n− 1).

131
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Lemma 2.1 of [8] says that µk(Pn) =
k−1
k+1(n+1). Then from Eq. (1) one can132

easily get the following result.133

Proposition 2.4. Let Pn be the path of order n (n ≥ 3), and let k be an integer
such that 2 ≤ k ≤ n. Then

SWk(Pn) = (k − 1)

(

n+ 1

k + 1

)

.

3. Lower and upper bounds for general graphs134

The following observation is immediate.135

Observation 3.1. Let G be a connected graph of order n, e ∈ E(G), and let k
be an integer such that 2 ≤ k ≤ n. Furthermore, let H be the graph with vertex
set V (H) = V (G) and edge set E(G) \ e. Then

SWk(G) ≤ SWk(H).

This straightforwardly leads to the following result.136

Proposition 3.2. Let G be a connected graph of order n, and T a spanning tree
of G. Let k be an integer such that 2 ≤ k ≤ n. Then

SWk(G) ≤ SWk(T )

with equality if and only if G is a tree.137

For a tree T , Proposition 3.1 of [8] says that k(1− 1
n
) ≤ µk(T ) ≤

k−1
k+1(n+1).138

Then from Eq. (1) one can derive lower and upper bounds for the Steiner Wiener139

index of a tree.140

Theorem 3.3. Let T be a tree of order n, and let k be an integer such that
2 ≤ k ≤ n. Then

(

n− 1

k − 1

)

(n − 1) ≤ SWk(T ) ≤ (k − 1)

(

n+ 1

k + 1

)

.

Moreover, among all trees of order n, the star Sn minimizes the Steiner Wiener141

k-index whereas the path Pn maximizes the Steiner Wiener k-index.142

We recall that Theorem 3.3 provides a generalization of the much older results143

known for the Wiener index [11], i.e., it yields this previous result by setting k = 2.144

For a connected graph G, Theorem 2.1 of [8] says that k − 1 ≤ SWk(G) ≤145

k−1
k+1(n+1). Then from Eq. (1) one can get the following upper and lower bounds146

of SWk(G) for a general connected graph G.147
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Theorem 3.4. Let G be a connected graph of order n, and let k be an integer
such that 2 ≤ k ≤ n. Then

(

n

k

)

(k − 1) ≤ SWk(G) ≤ (k − 1)

(

n+ 1

k + 1

)

.

Moreover, the lower bound is sharp.148

4. The Steiner Wiener index for trees149

Theorem 4.1. Let T be a tree of order n, possessing p pendent vertices. Then

SWn−1(T ) = n(n− 1)− p, (2)

irrespective of any other structural detail of T .150

Proof. Since k = n− 1, the respective subsets S contain all except one vertices151

of T . If the vertex missing from S is pendent, then the vertices contained in S152

form a tree of order n − 1. Therefore d(S) = n − 2. There are p such subsets,153

contributing to SWn−1 by p× (n− 2).154

If the vertex of T , not present in S, is non-pendent, then the vertices con-155

tained in S cannot form a tree, and the respective Steiner tree must contain all156

the n vertices of T . Therefore, d(S) = n − 1. There are n − p such subsets,157

contributing to SWn−1 by (n− p)× (n− 1).158

Thus, SWn−1(T ) = p(n− 2) + (n− p)(n− 1), which straightforwardly leads159

to Eq. (2).160

Let G be any graph (not necessarily connected) with vertex set V (G). Let e161

be an edge of G, connecting the vertices x and y. Define the sets162

N1(e) = {u |u ∈ V (G), d(u, x) < d(u, y)}

N2(e) = {u |u ∈ V (G), d(u, x) > d(u, y)}

and let their cardinalities be n1(e) = |N1(e)| and n2(e) = |N2(e)|, respectively.163

In other words, n1(e) counts the vertices of G, lying closer to one end of the edge164

e than to its other end, and the meaning of n2(e) is analogous.165

In his seminal paper [23], Wiener discovered the following result:166

Proposition 4.2. If T is a tree, then for its Wiener index holds:

W (T ) =
∑

e∈E(T )

n1(e)n2(e).
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We now state the generalization of Proposition 4.2 to Steiner Wiener indices:167

Theorem 4.3. Let k be an integer such that 2 ≤ k ≤ n. If T is a tree, then for
its Steiner k-Wiener index holds:

SWk(T ) =
∑

e∈E(T )

k−1
∑

i=1

(

n1(e)

i

)(

n2(e)

k − i

)

. (3)

Proof. The Steiner k-Wiener index is equal to the sum of distances of all k-168

element subsets S of the vertex set of T . Each such subset determines a unique169

subtree of T and its contribution to SWk is just the number edges of this subtree.170

Now, instead of counting these edges and adding them over all subsets S, we can171

count how many times a given edge, say e, is contained in the subtrees formed172

by all subsets S, and add this over all edges.173

Let e be an edge of the tree T . On its two sides there are n1(e) and n2(e)174

vertices, respectively. Choose i vertices on one side and k − i vertices on the175

other side. Such a choice determines a k-element subset S, whose associated176

subtree contains the edge e. Evidently, the above described choice can be done177

in
(

n1(e)
i

) (

n2(e)
k−i

)

different ways. If we sum these terms over all possible values of178

i, we obtain the total number of times the edge e is in a k-vertex Steiner tree of179

T . Eq. (3) thus follows.180

Corollary 4.4. Proposition 4.2 is obtained from Eq. (3) by setting k = 2.181

Corollary 4.5. If k = 3, then the Steiner k-Wiener index of a tree of order n is
directly related to the ordinary Wiener index as

SW3(T ) =
n− 2

2
W (T ). (4)

Proof. The special case of Eq. (3) for k = 3 reads:182

SW3(T ) =
∑

e∈E(T )

[(

n1(e)

1

)(

n2(e)

2

)

+

(

n1(e)

2

)(

n2(e)

1

)]

=
1

2

∑

e∈E(T )

n1(e)n2(e)
[

n1(e) + n2(e)
]

−
∑

e∈E(T )

n1(e)n2(e) .

Eq. (4) follows now from Proposition 4.2 and the fact that for any edge of an183

n-vertex tree, n1(e) + n2(e) = n.184

Remark. The Wiener index or the Steiner 2-Wiener index for any graph can be185

computed in polynomial time since one needs only to compute the distances of186
(

n
2

)

pairs of vertices in a graph of order n. However, since the problem of “Steiner187
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Tree in Graphs” is NP-complete (see [12]), it is NP-hard to compute the Steiner188

k-Wiener index SWk(G) for a general graph G and a general positive integer k.189

Recall that the problem of “Steiner Tree in Graphs” is stated as follows: Given190

a graph G = (V,E), a weight w(e) (a positive integer) for each e ∈ E, a subset191

R ⊆ V and a positive integer B, is there a subtree of G that includes all the192

vertices of R and such that the sum of the weights of the edges in the subtree193

is no more than B ? This problem remains NP-complete if all edge weights are194

equal.195

Acknowledgement. The authors are very grateful to the referees for their196
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