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1 Introduction

In the study of non-commutative symmetric functions, Berg, Bergeron, Saliola, Serrano and
Zabrocki [1] introduced the notion of immaculate tableaux, which was indexed by compositions
of integers. They obtained an amazingly simple product formula to enumerate standard im-
maculate tableaux, which is analogous to the hook-length formula for standard Young tableaux.
Their proof is by induction on the length of the composition. The objective of this paper is to
give a direct bijective proof of the hook-length formula for standard immaculate tableaux.

The classical hook length formula for standard Young tableaux was first discovered by Frame,
Robinson and Thrall [2]. To explore why hooks appear in this formula, many proofs have been
published based on different methods. The first step towards this direction was given by Hillman
and Grassl [5]. They proved a special case of Stanley’s hook-content formula, from which the
hook-length formula follows. Later, Greene, Nijenhuis and Wilf [4] found a probabilistic proof
using the hook walk which shows clearly the role of hooks. The first bijective proof was given
by Franzblau and Zeilberger [3], though it is not so direct. Even though there were so many
proofs, none of them was considered satisfactory. Novelli, Pak and Stoyanovskii [6] presented an
elegant bijective proof of the hook-length formula, based on the work of Pak and Stoyanovskii
[7].

Motivated by Novelli, Pak and Stoyanovskii’s combinatorial proof of the classical hook-length
formula, it is natural to consider whether a naturally bijective proof exists for the hook-length
formula of standard immaculate tableaux, which could clearly illuminate the role of hooks. In
this paper, we shall present such a proof.

Let us first review some notation and terminology concerning the hook-length formula for
standard immaculate tableaux. A composition α of a positive integer n, denoted by α |= n,
is a tuple α = (α1, α2, . . . , αk) of positive integers such that

∑k
i=1 αi = n. The entries αi

are called the parts of α, and the number of parts is called the length of α, denoted by `(α).
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Each composition is associated to a diagram of left-justified array of cells. Given a composition
α = (α1, α2, . . . , αk), the corresponding diagram has αi cells in the i-th row. Here we number
the rows from top to bottom and the columns from left to right. The cell in the i-th row and
j-th column is denoted by the pair (i, j). For example, the diagram of the composition (4, 1, 2, 3)
is as follows.

Figure 1: The diagram of the composition (4, 1, 2, 3)

Following Berg, Bergeron, Saliola, Serrano and Zabrocki [1], we now introduce the definitions
of hooks and immaculate tableaux. Given a composition α and a cell c = (i, j) in α, the hook
of c, denoted Hc, is defined by

Hc = Hi,j =

{
{(i′, j′) : i ≤ i′ ≤ `(α), 1 ≤ j′ ≤ αi′}, if j = 1;

{(i, j′) : j ≤ j′ ≤ αi}, if j > 1.

Correspondingly, the hook-length of the cell c = (i, j), denoted by hc, is defined as

hc = hi,j = |Hi,j |.

For example, taking the cells (1, 2) and (2, 1) of the composition α = (4, 1, 2, 3), the hooks H1,2

and H2,1 are depicted in Figure 2 as the sets of dotted cells. Clearly, we have h1,2 = 3 and
h2,1 = 6.

• • •

H1,2

•
• •
• • •

H2,1

Figure 2: The hooks of (1, 2) and (2, 1)

We proceed to introduce the concept of immaculate tableaux. Given a composition α |= n,
a tableau of shape α is defined to be an array T = (Tij) obtained by filling the diagram of α
with positive integers. For the convenience, let Tij =∞ if the cell (i, j) does not belong to the
diagram of α. We say that T has content β = (β1, β2, . . .) if, for each i ≥ 1, there are βi entries
equal to i in the array. For any 1 ≤ i ≤ `(α) and 1 ≤ j ≤ αi, the entry Tij is said to be stable
in T if either of the following two conditions holds:

• j > 1 and Tij ≤ Ti,j+1; or

• j = 1 and Tij < Ti+1,j and Tij ≤ Ti,j+1.
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An immaculate tableau of shape α is a tableau T = (Tij) of shape α such that:

(i) all entries Tij are stable; and

(ii) for any m ≥ 2, if m appears in T , so does m− 1.

Condition (ii) implies that the content of an immaculate tableau must be a composition β of
the form (β1, . . . , β`(β)) whose components are all positive. Given an immaculate tableau T of
shape α, we say that it is standard if T has content (1n).

Remarkably, Berg, Bergeron, Saliola, Serrano and Zabrocki [1] found that the standard
immaculate tableaux can be enumerated by using the above defined hook-lengths of the cells
of the indexed composition. Given a composition α, denote by fα the number of standard
immaculate tableaux of shape α. The hook-length formula for standard immaculate tableaux
reads as follows.

Theorem 1.1 ([1, Proposition 3.13]). For any composition α |= n, we have

fα =
n!∏

(i,j)∈α hi,j
. (1)

For instance, the composition (2, 1, 2) has hook lengths given by

5 1

3

2 1

From the hook-length formula (1) it follows that the number of standard immaculate tableaux
of shape (2, 1, 2) is

5!

5 · 1 · 3 · 2 · 1
= 4.

In fact, there are exactly 4 standard immaculate tableaux of shape (2, 1, 2) as illustrated below.

1 2

3

4 5

1 3

2

4 5

1 4

2

3 5

1 5

2

3 4

Figure 3: The standard immaculate tableaux of shape (2, 1, 2)

2 A bijective proof of Theorem 1.1

The aim of this section is to present a bijective proof of Theorem 1.1. Towards this end, we first
rewrite (1) as

n! = fα
∏

(i,j)∈α

hi,j . (2)
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Then we need to construct two sets such that their cardinalities are respectively given by the
left-hand side and the right-hand side of (2). Let X be the set of tableaux of shape α and
content (1n), and let Y be the set of {(P, J)}, where P is a standard immaculate tableau of
shape α and J is an array of shape α with Ji,j ∈ {1, . . . , hi,j}. We call J a hook tableau. It is
easy to see that

|X| = n! and |Y | = fα
∏

(i,j)∈α

hi,j .

There remains to show that there exists a bijection between X and Y .

For the construction of our bijection, a total order on the cells of α is needed. Following Nov-
elli, Pak and Stoyanovskii, we totally order the cells of the diagram of α by reverse lexicographic
order on their coordinates. Precisely, we have

(i, j) ≤ (i′, j′) if and only if j > j′; or j = j′ and i ≥ i′.

As will be shown below, this order is critical for the construction of our bijection. Label the
cells of α in the given order c1 < c2 < · · · < cn. For example, Figure 4 displays the total order
for the diagram of shape (4, 1, 4, 2, 1).

c12 c7 c4 c2

c11

c10 c6 c3 c1

c9 c5

c8

Figure 4: The total order

Given a tableau T of shape α and a cell c, let T≤c (resp. T<c) denote the partial tableau
composed of all cells b of T with b ≤ c (resp. b < c). For example,

if T =

11 5 8 9

3

10 2 4 12

1 6

7

, then T≤c8 =

8 5 9

12 2 4

6

7

.

For the convenience, we say that the partial tableau T≤c (resp. T<c) is standard if all the entries
in T≤c (resp. T<c) are stable with respect to the diagram of α.

We now construct a map ψ from Y to X. Given a pair (P, J) ∈ Y , we construct a tableau
T ∈ X in the following way. Without loss of generality, we may assume that n > 1. Begin
with (P1, J1) = (P, J). If (Pk, Jk) are defined for 1 ≤ k < n, then let Jk+1 = Jk except for
(Jk+1)ij = 1 if the cell cn+1−k lies in the i-th row and j-th column. Suppose that the (Jk)ij-th
cell of the hook set Hij , reading from left to right and top to bottom, lies in the i′-th row and
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j′-th column of the diagram of α. The cells (i, j) and (i′, j′) uniquely determine a path L in the
following way.

(a) If i = i′, then let L = {(i, j), (i, j + 1), . . . , (i, j′)};

(b) Suppose that i 6= i′. Then by the definition of the hook function, we must have i < i′ and
j = 1. In this case, let L = {(i, 1), (i+ 1, 1), . . . , (i′, 1), (i′, 2), . . . , (i′, j′)}.

The tableau Pk+1 is obtained from Pk by a circular right shift of the entries on the path L. If
the process ends at (Pn, Jn), then all entries of Jn are 1, and let T = Pn. The map ψ is defined
by ψ(P, J) = T . Note that P≤cn1 = P is standard. A moment’s thought shows that the partial

tableau P
≤cn+1−k

k is standard for any k.

For example, for α = (4, 1, 4, 2, 1), let

P =

1 5 8 9

2

3 4 11 12

6 10

7

and J =

8 2 1 1

3

6 3 1 1

1 1

1

.

We have a sequence of pairs {(Pi, Ji)}12i=1 as follows, where the entries in the path L are underlined
at each step.

i Pi Ji

1

1 5 8 9
2
3 4 1112
6 10
7

8 2 1 1
3
6 3 1 1
1 1
1

2

11 5 8 9
1
2 3 4 12
6 10
7

1 2 1 1
3
6 3 1 1
1 1
1

3

11 5 8 9
3
1 2 4 12
6 10
7

1 2 1 1
1
6 3 1 1
1 1
1

4

11 5 8 9
3
10 2 4 12
1 6
7

1 2 1 1
1
1 3 1 1
1 1
1

⇒

i Pi Ji

5

11 5 8 9
3
10 2 4 12
1 6
7

1 2 1 1
1
1 3 1 1
1 1
1

6

11 5 8 9
3
10 2 4 12
1 6
7

1 2 1 1
1
1 3 1 1
1 1
1

7

11 8 5 9
3
10 2 4 12
1 6
7

1 1 1 1
1
1 3 1 1
1 1
1

8

11 8 5 9
3
1012 2 4
1 6
7

1 1 1 1
1
1 1 1 1
1 1
1

⇒

i Pi Ji

9

11 8 5 9
3
1012 2 4
1 6
7

1 1 1 1
1
1 1 1 1
1 1
1

10

11 8 5 9
3
1012 2 4
1 6
7

1 1 1 1
1
1 1 1 1
1 1
1

11

11 8 5 9
3
1012 2 4
1 6
7

1 1 1 1
1
1 1 1 1
1 1
1

12

11 8 5 9
3
1012 2 4
1 6
7

1 1 1 1
1
1 1 1 1
1 1
1

Our main result is as follows.

Theorem 2.1. The map ψ is a bijection from Y to X.
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To show that ψ is a bijection, it suffices to construct a map φ from X to Y such that φ = ψ−1.
This map φ is based on a modified jeu de taquin performed on X. Suppose that we are given
a tableau T of shape α in X. For any 1 ≤ e ≤ n, denote by (i, j) the unique cell in T such
that Tij = e. To each e, we will associate a transformation jdte(T ) of T called a modified jeu
de taquin slide of T with respect to e. If e is stable, then we do nothing. If e is not stable, then
there are two cases to consider according to whether e lies in the first column of the diagram of
α.

(a) If Tij = e for some 1 < j ≤ αi, then interchange Tij and Ti,j+1;

(b) If Ti1 = e for some 1 ≤ i ≤ `(α), then interchange Tij and the smaller one of {Ti,j+1, Ti+1,j}.

Then look at the stability of e, and repeat the same procedure. This will eventually terminate
since the entry e, if it moves, will move either downwards or rightwards in T at each step. The
path of e in T is defined as the set of the cells that e passes through when applying jdte(T ). By
convention, we also denote the resulting tableau by jdte(T ).

We use an example to illustrate the modified jeu de taquin algorithm. Taking e = 10 and

T =

11 5 8 9

3

10 2 4 12

1 6

7

,

then the process of jdte(T ) is as follows,

T =

11 5 8 9

3

10 2 4 12

1 6

7

→

11 5 8 9

3

1 2 4 12

10 6

7

→

11 5 8 9

3

1 2 4 12

6 10

7

= jdte(T ),

where the entry e is in boldface and the integers interchanged with e are underlined. Clearly,
the path of 10 in T is {(3, 1), (4, 1), (4, 2)}.

The following result is evident, and we omit the straightforward details.

Lemma 2.2. Given T ∈ X and 1 ≤ e ≤ n, let (i, j) be the unique cell in T such that Tij = e.
If j > 1, then the path of e in T is of the form

{(i, j), (i, j + 1), . . . , (i, j + k)}, for some k ≥ 0.

If j = 1, then the path of e in T is of the form

{(i, 1), (i+ 1, 1), . . . , (i+ k, 1), (i+ k, 2), . . . , (i+ k, l)}, for some k ≥ 0 and l ≥ 1.

Moreover, the tableau jdte(T ) is obtained from T by a circular left shift of the entries on the
path of e.
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The next result shows that the modified jeu de taquin slide preserves the stability of most
entries in the tableau.

Proposition 2.3. Given T ∈ X and 1 ≤ e ≤ n, denote by c the unique cell in T such that
Tc = e. Then if T<c is standard, so is jdte(T )≤c.

Proof. Note that jdte(T )≤c = T≤c except for the entries of the cells in the path of e in T .
Suppose that c is the (i, j) cell of T . There are two cases to consider.

(a) If j > 1, then jdte(T )≤c has no cell in the first column of the diagram of α. We only need
to show that the entries of jdte(T )≤c are strictly increasing in each row. By Lemma 2.2,
the path of e is of the form

{(i, j), (i, j + 1), . . . , (i, j + k)}.

Therefore, we have

(jdte(T ))rs =


Tr,s+1, for r = i and j ≤ s ≤ j + k − 1,

Ti,j , for r = i and s = j + k,

Trs, otherwise.

The entries of jdte(T )≤c in each row other than the i-th row, are identically the same as
those of T<c, and hence are increasing since T<c is standard. While for the i-th row, the
form of the path of e implies that

Ti,j+1 < Ti,j+2 < · · · < Ti,j+k < Ti,j < Ti,j+k+1,

that is

jdte(T )i,j < jdte(T )i,j+1 < · · · < jdte(T )i,j+k−1 < jdte(T )i,j+k < Ti,j+k+1.

Thus, the entries in the i-th row of jdte(T )≤c are also increasing, as desired.

(b) If j = 1, then jdte(T )≤c must contain a cell in the first column of the diagram of α. By
Lemma 2.2, the path of e is of the form

{(i, 1), (i+ 1, 1), . . . , (i+ k, 1), (i+ k, 2), . . . , (i+ k, l)}.

Our proof will be divided into two subcases:

(b1) The case of l = 1. In this case, we have

(jdte(T ))rs =


Tr+1,1, for s = 1 and i ≤ r ≤ i+ k − 1,

Ti,1, for s = 1 and r = i+ k,

Trs, otherwise.

Since T<c is standard, the form of the path of e implies that

Ti+1,1 < · · · < Ti+k,1 < Ti,1 < Ti+k+1,1 < · · · < T`(α),1,
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that is,

(jdte(T ))i,1 < · · · < (jdte(T ))i+k,1 < (jdte(T ))i+k+1,1 < · · · < (jdte(T ))`(α),1.

This means that the entries of jdte(T )≤c are strictly increasing in the first column.
There remains to show that each row of jdte(T )≤c are strictly increasing. Since all
entries of T in any other than the first column remain fixed when applying jdte(T ),
it suffices to show that, for i ≤ r ≤ i+ k,

(jdte(T ))r,1 < (jdte(T ))r,2.

This is true, since, for i ≤ r ≤ i+ k − 1,

(jdte(T ))r,1 = Tr+1,1 < Tr,2 = (jdte(T ))r,2,

and
(jdte(T ))i+k,1 = Ti,1 < Ti+k,2 = (jdte(T ))i+k,2,

as implied by the form of the path of e. Therefore, the entries of jdte(T )≤c are
increasing along each row.

(b2) The case of l > 1. In this case, we have

(jdte(T ))rs =



Tr+1,1, for s = 1 and i ≤ r ≤ i+ k − 1,

Ti+k,2, for s = 1 and r = i+ k,

Ti+k,s−1, for 1 < s < l − 1 and r = i+ k,

Ti,1, for s = l and r = i+ k,

Trs, otherwise.

The strict increasing property of the (i + k)-th row of jdte(T )≤c can be proved by
using similar arguments for case (a). While similar arguments for case (b1) could be
used to show the strict increasing property of other rows of jdte(T )≤c, as well as that
of the first column of jdte(T )≤c except for the relation jdte(T )i+k,1 < jdte(T )i+k+1,1.
By the form of the path of e, we see that

jdte(T )i+k,1 = Ti+k,2 < Ti+k+1,1 = jdte(T )i+k+1,1.

This completes the proof of the strict increasing property of the first column of
jdte(T )≤c.

Combining (a) and (b), we obtain the desired result.

We proceed to describe the inverse map φ : X → Y . Suppose that T ∈ X is a tableau of
shape α and the cells of α are ordered as c1 < c2 < · · · < cn. We shall associate with T a pair
(P, J) ∈ Y , as follows. Begin with (T1, S1), where T1 = T and S1 is the array of shape α with
all entries equal to 1. If (Tk, Sk) are defined for 1 ≤ k ≤ n − 1, then let Tk+1 = jdtek+1

(Tk),
where ek+1 is the entry of the cell ck+1 in Tk. Suppose that the path of ek+1 in Tk starts at
ck+1 = (i, j) and ends at (i′, j′). Let Sk+1 = Sk except for the values

(Sk+1)ij =

{
j′ − j + 1, if i′ = i;
αi + · · ·+ αi′−1 + j′, if i′ > i.

(3)
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Suppose that the process ends at (Tn, Sn). We claim that (Tn, Sn) ∈ Y .

We first use induction to show that Tn is a standard immaculate tableau, namely T≤cnn is
standard. It is clear that T≤c11 is standard. If T≤ckk = T

<ck+1

k is standard, then, by Proposition

2.3, the partial tableau T
≤ck+1

k+1 = jdtek+1
(Tk)

≤ck+1 is standard. By induction, we see that T≤cnn

is standard.

We continue to show that Sn is a hook tableau. For the cell ck+1 = (i, j) of the diagram of α,
we have (Sn)ij = (Sk+1)ij by the construction of Sn. Suppose that the path of ek+1 in Tk starts
at ck+1 = (i, j) and ends at (i′, j′). If i′ > i, then we must have j = 1 by Lemma 2.2. From (3)
and the definition of the hook length it immediately follows that (Sn)ij = (Sk+1)ij ≤ hij .

Let (P, J) = (Tn, Sn). The map φ is defined by φ(T ) = (P, J).

Now we are able to prove our main result.

Proof of Theorem 2.1. To prove that ψ is a bijection, it suffices to show that φ is the inverse
map of ψ.

We first prove that φ is the left inverse of ψ, which implies the injectivity of ψ. Precisely,
if a pair (P, J) ∈ Y is mapped to T ∈ X by ψ, then we must have φ(T ) = (P, J). By the
construction of ψ, there exists a sequence of pairs {(Pi, Ji)}ni=1 such that (P, J) = (P1, J1) and
(Pn, Jn) = (T, Jn), where all entries of Jn are 1. Consider the transformation from (Pk, Jk) to
(Pk+1, Jk+1). Let L denote the path determined by the cell cn+1−k of the diagram of α. Let
en+1−k denote the entry of Pk+1 at the cell cn+1−k. We only need to show that the path of en+1−k
in Pk+1 coincides with the path L. But this is clear since the partial tableaux P

≤cn+1−k

k and

P
<cn+1−k

k+1 are standard, and Pk+1 is obtained from Pk by a circular right shift of the entries on the
path L. Therefore, we have jdten+1−k

Pk+1 = Pk, as the tableau jdten+1−k
Pk+1 is obtained from

Pk+1 by a circular left shift of the entries on the path L. This implies that the pair (Pk+1, Jk+1)
will be mapped to (Pk, Jk) during the construction of φ(T ). Thus, we have φ(T ) = (P, J).

Next, we show that φ is the right inverse of ψ, which implies the surjectivity of ψ. Precisely,
if T ∈ X is mapped to a pair (P, J) ∈ Y by φ, then we must have ψ(P, J) = T . By the
construction of φ, there exists a sequence of pairs {(Ti, Si)}ni=1 such that (T1, S1) = (T, S1) and
(P, J) = (Tn, Sn), where all entries of S1 are 1. Consider the transformation from (Tk, Sk) to
(Tk+1, Sk+1). Let ek+1 denote the entry of Tk at the cell ck+1. Note that Tk+1 = jdtek+1

(Tk). By
Lemma 2.2, Tk+1 is obtained from Tk by a circular left shift of the entries on the path of ek+1

in Tk. Moreover, the entry of ck+1 in Sk+1 is determined by (3), and this entry will uniquely
determine a path L in Tk+1 when encountering the pair (Tk+1, Sk+1) during the construction of
ψ(P, J). According to the construction of the map ψ, the path L must coincide with the path
of ek+1 in Tk. This implies that the pair (Tk+1, Sk+1) will be transformed to (Tk, Sk) during the
construction of ψ(P, J). Therefore, we have ψ(P, J) = T .

Combining the above two aspects, we complete the proof of the bijectivity of ψ.

Acknowledgements. This work was supported by the 973 Project, the PCSIRT Project of
the Ministry of Education and the National Science Foundation of China.

9



References

[1] C. Berg, N. Bergeron, F. Saliola, L. Serrano and M. Zabrocki, A lift of the Schur and Hall-
Littlewood bases to non-commutative symmetric functions. Canadian J. Math. 66 (2014),
525–565.

[2] J. Frame, G. Robinson and R. Thrall, The hook graphs of the symmetric group. Canadian
J. Math. 6 (1954), 316–325.

[3] D. S. Franzblau and D. Zeilberger, A bijective proof of the hook-length formula. J. Algorithms
3 (1982), 317–343.

[4] C. Greene, A. Nijenhuis and H. Wilf. A probabilistic proof of a formula for the number of
Young tableaux of a given shape. Adv. in Math. 31 (1979), 104–109.

[5] A. P. Hillman and R. M. Grassl. Reverse plane partitions and tableau hook numbers. J.
Combin. Theory Ser. A 21 (1976), 216–221.

[6] J. C. Novelli, I. M. Pak and A. V. Stoyanovskǐi, A direct bijective proof of the hook-length
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