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Abstract. In this paper, we present a direct bijective proof of the hook-length formula for
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tions. Our proof is along the spirit of Novelli, Pak and Stoyanovskii’s combinatorial proof of the
hook-length formula for standard Young tableaux.

AMS Classification 2010: 05E05

Keywords: composition; hook; hook-length formula; immaculate tableau; standard immaculate
tableau.

1 Introduction

In the study of non-commutative symmetric functions, Berg, Bergeron, Saliola, Serrano and
Zabrocki [1] introduced the notion of immaculate tableaux, which was indexed by compositions
of integers. They obtained an amazingly simple product formula to enumerate standard im-
maculate tableaux, which is analogous to the hook-length formula for standard Young tableaux.
Their proof is by induction on the length of the composition. The objective of this paper is to
give a direct bijective proof of the hook-length formula for standard immaculate tableaux.

The classical hook length formula for standard Young tableaux was first discovered by Frame,
Robinson and Thrall [2]. To explore why hooks appear in this formula, many proofs have been
published based on different methods. The first step towards this direction was given by Hillman
and Grassl [5]. They proved a special case of Stanley’s hook-content formula, from which the
hook-length formula follows. Later, Greene, Nijenhuis and Wilf [4] found a probabilistic proof
using the hook walk which shows clearly the role of hooks. The first bijective proof was given
by Franzblau and Zeilberger [3], though it is not so direct. Even though there were so many
proofs, none of them was considered satisfactory. Novelli, Pak and Stoyanovskii [6] presented an
elegant bijective proof of the hook-length formula, based on the work of Pak and Stoyanovskii
[7].

Motivated by Novelli, Pak and Stoyanovskii’s combinatorial proof of the classical hook-length
formula, it is natural to consider whether a naturally bijective proof exists for the hook-length
formula of standard immaculate tableaux, which could clearly illuminate the role of hooks. In
this paper, we shall present such a proof.

Let us first review some notation and terminology concerning the hook-length formula for
standard immaculate tableaux. A composition α of a positive integer n, denoted by α |= n,
is a tuple α = (α1, α2, . . . , αk) of positive integers such that

∑k
i=1 αi = n. The entries αi

are called the parts of α, and the number of parts is called the length of α, denoted by `(α).
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Each composition is associated to a diagram of left-justified array of cells. Given a composition
α = (α1, α2, . . . , αk), the corresponding diagram has αi cells in the i-th row. Here we number
the rows from top to bottom and the columns from left to right. The cell in the i-th row and
j-th column is denoted by the pair (i, j). For example, the diagram of the composition (4, 1, 2, 3)
is as follows.

Figure 1: The diagram of the composition (4, 1, 2, 3)

Following Berg, Bergeron, Saliola, Serrano and Zabrocki [1], we now introduce the definitions
of hooks and immaculate tableaux. Given a composition α and a cell c = (i, j) in α, the hook
of c, denoted Hc, is defined by

Hc = Hi,j =

{
{(i′, j′) : i ≤ i′ ≤ `(α), 1 ≤ j′ ≤ αi′}, if j = 1;

{(i, j′) : j ≤ j′ ≤ αi}, if j > 1.

Correspondingly, the hook-length of the cell c = (i, j), denoted by hc, is defined as

hc = hi,j = |Hi,j |.

For example, taking the cells (1, 2) and (2, 1) of the composition α = (4, 1, 2, 3), the hooks H1,2

and H2,1 are depicted in Figure 2 as the sets of dotted cells. Clearly, we have h1,2 = 3 and
h2,1 = 6.

• • •

H1,2

•
• •
• • •

H2,1

Figure 2: The hooks of (1, 2) and (2, 1)

We proceed to introduce the concept of immaculate tableaux. Given a composition α |= n,
a tableau of shape α is defined to be an array T = (Tij) obtained by filling the diagram of α
with positive integers. For the convenience, let Tij =∞ if the cell (i, j) does not belong to the
diagram of α. We say that T has content β = (β1, β2, . . .) if, for each i ≥ 1, there are βi entries
equal to i in the array. For any 1 ≤ i ≤ `(α) and 1 ≤ j ≤ αi, the entry Tij is said to be stable
in T if either of the following two conditions holds:

• j > 1 and Tij ≤ Ti,j+1; or

• j = 1 and Tij < Ti+1,j and Tij ≤ Ti,j+1.
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An immaculate tableau of shape α is a tableau T = (Tij) of shape α such that:

(i) all entries Tij are stable; and

(ii) for any m ≥ 2, if m appears in T , so does m− 1.

Condition (ii) implies that the content of an immaculate tableau must be a composition β of
the form (β1, . . . , β`(β)) whose components are all positive. Given an immaculate tableau T of
shape α, we say that it is standard if T has content (1n).

Remarkably, Berg, Bergeron, Saliola, Serrano and Zabrocki [1] found that the standard
immaculate tableaux can be enumerated by using the above defined hook-lengths of the cells
of the indexed composition. Given a composition α, denote by fα the number of standard
immaculate tableaux of shape α. The hook-length formula for standard immaculate tableaux
reads as follows.

Theorem 1.1 ([1, Proposition 3.13]). For any composition α |= n, we have

fα =
n!∏

(i,j)∈α hi,j
. (1)

For instance, the composition (2, 1, 2) has hook lengths given by

5 1

3

2 1

From the hook-length formula (1) it follows that the number of standard immaculate tableaux
of shape (2, 1, 2) is

5!

5 · 1 · 3 · 2 · 1
= 4.

In fact, there are exactly 4 standard immaculate tableaux of shape (2, 1, 2) as illustrated below.

1 2

3

4 5

1 3

2

4 5

1 4

2

3 5

1 5

2

3 4

Figure 3: The standard immaculate tableaux of shape (2, 1, 2)

2 A bijective proof of Theorem 1.1

The aim of this section is to present a bijective proof of Theorem 1.1. Towards this end, we first
rewrite (1) as

n! = fα
∏

(i,j)∈α

hi,j . (2)
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Then we need to construct two sets such that their cardinalities are respectively given by the
left-hand side and the right-hand side of (2). Let X be the set of tableaux of shape α and
content (1n), and let Y be the set of {(P, J)}, where P is a standard immaculate tableau of
shape α and J is an array of shape α with Ji,j ∈ {1, . . . , hi,j}. We call J a hook tableau. It is
easy to see that

|X| = n! and |Y | = fα
∏

(i,j)∈α

hi,j .

There remains to show that there exists a bijection between X and Y .

For the construction of our bijection, a total order on the cells of α is needed. Following Nov-
elli, Pak and Stoyanovskii, we totally order the cells of the diagram of α by reverse lexicographic
order on their coordinates. Precisely, we have

(i, j) ≤ (i′, j′) if and only if j > j′; or j = j′ and i ≥ i′.

As will be shown below, this order is critical for the construction of our bijection. Label the
cells of α in the given order c1 < c2 < · · · < cn. For example, Figure 4 displays the total order
for the diagram of shape (4, 1, 4, 2, 1).

c12 c7 c4 c2

c11

c10 c6 c3 c1

c9 c5

c8

Figure 4: The total order

Given a tableau T of shape α and a cell c, let T≤c (resp. T<c) denote the partial tableau
composed of all cells b of T with b ≤ c (resp. b < c). For example,

if T =

11 5 8 9

3

10 2 4 12

1 6

7

, then T≤c8 =

8 5 9

12 2 4

6

7

.

For the convenience, we say that the partial tableau T≤c (resp. T<c) is standard if all the entries
in T≤c (resp. T<c) are stable with respect to the diagram of α.

We now construct a map ψ from Y to X. Given a pair (P, J) ∈ Y , we construct a tableau
T ∈ X in the following way. Without loss of generality, we may assume that n > 1. Begin
with (P1, J1) = (P, J). If (Pk, Jk) are defined for 1 ≤ k < n, then let Jk+1 = Jk except for
(Jk+1)ij = 1 if the cell cn+1−k lies in the i-th row and j-th column. Suppose that the (Jk)ij-th
cell of the hook set Hij , reading from left to right and top to bottom, lies in the i′-th row and
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j′-th column of the diagram of α. The cells (i, j) and (i′, j′) uniquely determine a path L in the
following way.

(a) If i = i′, then let L = {(i, j), (i, j + 1), . . . , (i, j′)};

(b) Suppose that i 6= i′. Then by the definition of the hook function, we must have i < i′ and
j = 1. In this case, let L = {(i, 1), (i+ 1, 1), . . . , (i′, 1), (i′, 2), . . . , (i′, j′)}.

The tableau Pk+1 is obtained from Pk by a circular right shift of the entries on the path L. If
the process ends at (Pn, Jn), then all entries of Jn are 1, and let T = Pn. The map ψ is defined
by ψ(P, J) = T . Note that P≤cn1 = P is standard. A moment’s thought shows that the partial

tableau P
≤cn+1−k

k is standard for any k.

For example, for α = (4, 1, 4, 2, 1), let

P =

1 5 8 9

2

3 4 11 12

6 10

7

and J =

8 2 1 1

3

6 3 1 1

1 1

1

.

We have a sequence of pairs {(Pi, Ji)}12i=1 as follows, where the entries in the path L are underlined
at each step.

i Pi Ji

1

1 5 8 9
2
3 4 1112
6 10
7

8 2 1 1
3
6 3 1 1
1 1
1

2

11 5 8 9
1
2 3 4 12
6 10
7

1 2 1 1
3
6 3 1 1
1 1
1

3

11 5 8 9
3
1 2 4 12
6 10
7

1 2 1 1
1
6 3 1 1
1 1
1

4

11 5 8 9
3
10 2 4 12
1 6
7

1 2 1 1
1
1 3 1 1
1 1
1

⇒

i Pi Ji

5

11 5 8 9
3
10 2 4 12
1 6
7

1 2 1 1
1
1 3 1 1
1 1
1

6

11 5 8 9
3
10 2 4 12
1 6
7

1 2 1 1
1
1 3 1 1
1 1
1

7

11 8 5 9
3
10 2 4 12
1 6
7

1 1 1 1
1
1 3 1 1
1 1
1

8

11 8 5 9
3
1012 2 4
1 6
7

1 1 1 1
1
1 1 1 1
1 1
1

⇒

i Pi Ji

9

11 8 5 9
3
1012 2 4
1 6
7

1 1 1 1
1
1 1 1 1
1 1
1

10

11 8 5 9
3
1012 2 4
1 6
7

1 1 1 1
1
1 1 1 1
1 1
1

11

11 8 5 9
3
1012 2 4
1 6
7

1 1 1 1
1
1 1 1 1
1 1
1

12

11 8 5 9
3
1012 2 4
1 6
7

1 1 1 1
1
1 1 1 1
1 1
1

Our main result is as follows.

Theorem 2.1. The map ψ is a bijection from Y to X.
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To show that ψ is a bijection, it suffices to construct a map φ from X to Y such that φ = ψ−1.
This map φ is based on a modified jeu de taquin performed on X. Suppose that we are given
a tableau T of shape α in X. For any 1 ≤ e ≤ n, denote by (i, j) the unique cell in T such
that Tij = e. To each e, we will associate a transformation jdte(T ) of T called a modified jeu
de taquin slide of T with respect to e. If e is stable, then we do nothing. If e is not stable, then
there are two cases to consider according to whether e lies in the first column of the diagram of
α.

(a) If Tij = e for some 1 < j ≤ αi, then interchange Tij and Ti,j+1;

(b) If Ti1 = e for some 1 ≤ i ≤ `(α), then interchange Tij and the smaller one of {Ti,j+1, Ti+1,j}.

Then look at the stability of e, and repeat the same procedure. This will eventually terminate
since the entry e, if it moves, will move either downwards or rightwards in T at each step. The
path of e in T is defined as the set of the cells that e passes through when applying jdte(T ). By
convention, we also denote the resulting tableau by jdte(T ).

We use an example to illustrate the modified jeu de taquin algorithm. Taking e = 10 and

T =

11 5 8 9

3

10 2 4 12

1 6

7

,

then the process of jdte(T ) is as follows,

T =

11 5 8 9

3

10 2 4 12

1 6

7

→

11 5 8 9

3

1 2 4 12

10 6

7

→

11 5 8 9

3

1 2 4 12

6 10

7

= jdte(T ),

where the entry e is in boldface and the integers interchanged with e are underlined. Clearly,
the path of 10 in T is {(3, 1), (4, 1), (4, 2)}.

The following result is evident, and we omit the straightforward details.

Lemma 2.2. Given T ∈ X and 1 ≤ e ≤ n, let (i, j) be the unique cell in T such that Tij = e.
If j > 1, then the path of e in T is of the form

{(i, j), (i, j + 1), . . . , (i, j + k)}, for some k ≥ 0.

If j = 1, then the path of e in T is of the form

{(i, 1), (i+ 1, 1), . . . , (i+ k, 1), (i+ k, 2), . . . , (i+ k, l)}, for some k ≥ 0 and l ≥ 1.

Moreover, the tableau jdte(T ) is obtained from T by a circular left shift of the entries on the
path of e.
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The next result shows that the modified jeu de taquin slide preserves the stability of most
entries in the tableau.

Proposition 2.3. Given T ∈ X and 1 ≤ e ≤ n, denote by c the unique cell in T such that
Tc = e. Then if T<c is standard, so is jdte(T )≤c.

Proof. Note that jdte(T )≤c = T≤c except for the entries of the cells in the path of e in T .
Suppose that c is the (i, j) cell of T . There are two cases to consider.

(a) If j > 1, then jdte(T )≤c has no cell in the first column of the diagram of α. We only need
to show that the entries of jdte(T )≤c are strictly increasing in each row. By Lemma 2.2,
the path of e is of the form

{(i, j), (i, j + 1), . . . , (i, j + k)}.

Therefore, we have

(jdte(T ))rs =


Tr,s+1, for r = i and j ≤ s ≤ j + k − 1,

Ti,j , for r = i and s = j + k,

Trs, otherwise.

The entries of jdte(T )≤c in each row other than the i-th row, are identically the same as
those of T<c, and hence are increasing since T<c is standard. While for the i-th row, the
form of the path of e implies that

Ti,j+1 < Ti,j+2 < · · · < Ti,j+k < Ti,j < Ti,j+k+1,

that is

jdte(T )i,j < jdte(T )i,j+1 < · · · < jdte(T )i,j+k−1 < jdte(T )i,j+k < Ti,j+k+1.

Thus, the entries in the i-th row of jdte(T )≤c are also increasing, as desired.

(b) If j = 1, then jdte(T )≤c must contain a cell in the first column of the diagram of α. By
Lemma 2.2, the path of e is of the form

{(i, 1), (i+ 1, 1), . . . , (i+ k, 1), (i+ k, 2), . . . , (i+ k, l)}.

Our proof will be divided into two subcases:

(b1) The case of l = 1. In this case, we have

(jdte(T ))rs =


Tr+1,1, for s = 1 and i ≤ r ≤ i+ k − 1,

Ti,1, for s = 1 and r = i+ k,

Trs, otherwise.

Since T<c is standard, the form of the path of e implies that

Ti+1,1 < · · · < Ti+k,1 < Ti,1 < Ti+k+1,1 < · · · < T`(α),1,
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that is,

(jdte(T ))i,1 < · · · < (jdte(T ))i+k,1 < (jdte(T ))i+k+1,1 < · · · < (jdte(T ))`(α),1.

This means that the entries of jdte(T )≤c are strictly increasing in the first column.
There remains to show that each row of jdte(T )≤c are strictly increasing. Since all
entries of T in any other than the first column remain fixed when applying jdte(T ),
it suffices to show that, for i ≤ r ≤ i+ k,

(jdte(T ))r,1 < (jdte(T ))r,2.

This is true, since, for i ≤ r ≤ i+ k − 1,

(jdte(T ))r,1 = Tr+1,1 < Tr,2 = (jdte(T ))r,2,

and
(jdte(T ))i+k,1 = Ti,1 < Ti+k,2 = (jdte(T ))i+k,2,

as implied by the form of the path of e. Therefore, the entries of jdte(T )≤c are
increasing along each row.

(b2) The case of l > 1. In this case, we have

(jdte(T ))rs =



Tr+1,1, for s = 1 and i ≤ r ≤ i+ k − 1,

Ti+k,2, for s = 1 and r = i+ k,

Ti+k,s−1, for 1 < s < l − 1 and r = i+ k,

Ti,1, for s = l and r = i+ k,

Trs, otherwise.

The strict increasing property of the (i + k)-th row of jdte(T )≤c can be proved by
using similar arguments for case (a). While similar arguments for case (b1) could be
used to show the strict increasing property of other rows of jdte(T )≤c, as well as that
of the first column of jdte(T )≤c except for the relation jdte(T )i+k,1 < jdte(T )i+k+1,1.
By the form of the path of e, we see that

jdte(T )i+k,1 = Ti+k,2 < Ti+k+1,1 = jdte(T )i+k+1,1.

This completes the proof of the strict increasing property of the first column of
jdte(T )≤c.

Combining (a) and (b), we obtain the desired result.

We proceed to describe the inverse map φ : X → Y . Suppose that T ∈ X is a tableau of
shape α and the cells of α are ordered as c1 < c2 < · · · < cn. We shall associate with T a pair
(P, J) ∈ Y , as follows. Begin with (T1, S1), where T1 = T and S1 is the array of shape α with
all entries equal to 1. If (Tk, Sk) are defined for 1 ≤ k ≤ n − 1, then let Tk+1 = jdtek+1

(Tk),
where ek+1 is the entry of the cell ck+1 in Tk. Suppose that the path of ek+1 in Tk starts at
ck+1 = (i, j) and ends at (i′, j′). Let Sk+1 = Sk except for the values

(Sk+1)ij =

{
j′ − j + 1, if i′ = i;
αi + · · ·+ αi′−1 + j′, if i′ > i.

(3)
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Suppose that the process ends at (Tn, Sn). We claim that (Tn, Sn) ∈ Y .

We first use induction to show that Tn is a standard immaculate tableau, namely T≤cnn is
standard. It is clear that T≤c11 is standard. If T≤ckk = T

<ck+1

k is standard, then, by Proposition

2.3, the partial tableau T
≤ck+1

k+1 = jdtek+1
(Tk)

≤ck+1 is standard. By induction, we see that T≤cnn

is standard.

We continue to show that Sn is a hook tableau. For the cell ck+1 = (i, j) of the diagram of α,
we have (Sn)ij = (Sk+1)ij by the construction of Sn. Suppose that the path of ek+1 in Tk starts
at ck+1 = (i, j) and ends at (i′, j′). If i′ > i, then we must have j = 1 by Lemma 2.2. From (3)
and the definition of the hook length it immediately follows that (Sn)ij = (Sk+1)ij ≤ hij .

Let (P, J) = (Tn, Sn). The map φ is defined by φ(T ) = (P, J).

Now we are able to prove our main result.

Proof of Theorem 2.1. To prove that ψ is a bijection, it suffices to show that φ is the inverse
map of ψ.

We first prove that φ is the left inverse of ψ, which implies the injectivity of ψ. Precisely,
if a pair (P, J) ∈ Y is mapped to T ∈ X by ψ, then we must have φ(T ) = (P, J). By the
construction of ψ, there exists a sequence of pairs {(Pi, Ji)}ni=1 such that (P, J) = (P1, J1) and
(Pn, Jn) = (T, Jn), where all entries of Jn are 1. Consider the transformation from (Pk, Jk) to
(Pk+1, Jk+1). Let L denote the path determined by the cell cn+1−k of the diagram of α. Let
en+1−k denote the entry of Pk+1 at the cell cn+1−k. We only need to show that the path of en+1−k
in Pk+1 coincides with the path L. But this is clear since the partial tableaux P

≤cn+1−k

k and

P
<cn+1−k

k+1 are standard, and Pk+1 is obtained from Pk by a circular right shift of the entries on the
path L. Therefore, we have jdten+1−k

Pk+1 = Pk, as the tableau jdten+1−k
Pk+1 is obtained from

Pk+1 by a circular left shift of the entries on the path L. This implies that the pair (Pk+1, Jk+1)
will be mapped to (Pk, Jk) during the construction of φ(T ). Thus, we have φ(T ) = (P, J).

Next, we show that φ is the right inverse of ψ, which implies the surjectivity of ψ. Precisely,
if T ∈ X is mapped to a pair (P, J) ∈ Y by φ, then we must have ψ(P, J) = T . By the
construction of φ, there exists a sequence of pairs {(Ti, Si)}ni=1 such that (T1, S1) = (T, S1) and
(P, J) = (Tn, Sn), where all entries of S1 are 1. Consider the transformation from (Tk, Sk) to
(Tk+1, Sk+1). Let ek+1 denote the entry of Tk at the cell ck+1. Note that Tk+1 = jdtek+1

(Tk). By
Lemma 2.2, Tk+1 is obtained from Tk by a circular left shift of the entries on the path of ek+1

in Tk. Moreover, the entry of ck+1 in Sk+1 is determined by (3), and this entry will uniquely
determine a path L in Tk+1 when encountering the pair (Tk+1, Sk+1) during the construction of
ψ(P, J). According to the construction of the map ψ, the path L must coincide with the path
of ek+1 in Tk. This implies that the pair (Tk+1, Sk+1) will be transformed to (Tk, Sk) during the
construction of ψ(P, J). Therefore, we have ψ(P, J) = T .

Combining the above two aspects, we complete the proof of the bijectivity of ψ.
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