
Searching for (near) optimal codes⋆

Xueliang Lia, Yaping Maob, Meiqin Weia, and Ruihu Lic

aCenter for Combinatorics and LPMC-TJKLC
Nankai University, Tianjin 300071, China

bDepartment of Mathematics, Qinghai Normal
University, Xining, Qinghai 810008, China

cThe air force engineering University
Institute of science, Xi’an 710051, China

lxl@nankai.edu.cn; maoyaping@ymail.com;

weimeiqin8912@163.com; liruihu@aliyun.com

Abstract. Formally self-dual (FSD) codes are interesting codes and
have received an enormous research effort due to their importance in
mathematics and computer science. Danielsen and Parker proved that
every self-dual additive code over GF (4) is equivalent to a graph codes
in 2006, and hence graph is an important tool for searching (near) opti-
mal codes. In this paper, we introduce a new method of searching (near)
optimal binary (formally self-dual) linear codes and additive codes from
circulant graphs.

Keywords: graph code, FSD code, additive code, optimal code, circu-
lant graph

1 Introduction

Let F2 be the binary field, and let Fn
2 denote the n-dimensional binary vector

space. A k-dimensional linear subspace C of Fn
2 is called an [n, k] linear code

and vectors in C are called codewords. Define GF (4) = {0, 1, ω, ω2}, where ω2 =
1 + ω. An additive code C over GF (4) of length n is an additive subgroup
of GF (4). It is clear that C contains codewords for some 0 ≤ k ≤ 2n, and
can be defined by a k × n generator matrix, with entries from GF (4), whose
rows span C additively. We call C an (n, 2k) additive code. The Hamming weight

of a vector x = (x1, · · · , xn), denoted by wt(x), is the number of its nonzero
coordinates, the Hamming distance between two vectors x, y is equal to the
Hamming weight wt(x− y). The minimum distance d of a code is defined as the
smallest possible distance between pairs of distinct codewords. An [n, k] linear
code with minimum distance d is denoted as an [n, k, d] code and an (n, 2k)
additive code with minimum distance d is denoted as an (n, 2k, d) code. The
weight distribution of a code C is the sequence (A0, A1, · · · , An), where Ai is

⋆ Supported by “973” program No.2013CB834204.

2 X. Li, Y. Mao, M. Wei and R. Li

the number of codewords of weight i in C. The weight enumerator of the code
is the polynomial W (z) =

∑n

i=0 Aiz
i. The inner product of two vectors x, y

∈ Fn
2 is defined as (x, y) =

∑n

i=1 xiyi. The dual code of an [n, k, d] code C is
defined as C⊥ = {x ∈ Fn

2 | (x, y) = 0, for all y ∈ C}. A binary code with the
same weight distribution as its dual code is called formally self-dual (FSD). The
conjugation of x ∈ GF (4) is defined by x̄ = x2, and the trace map is defined
by Tr(x) = x + x̄. The Hermitian trace inner product of u = (u1, · · · , un)
and v = (v1, · · · , vn). where u, v ∈ GF (4), is defined as u ∗ v = Tr(u · v̄) =
∑n

i=1 Tr(uiv̄i) =
∑n

i=1(uiv
2
i + u2

i vi). We define the dual of the additive code C
with respect to the Hermitian trace inner product as C⊥ = {u ∈ GF (4) | u ∗ c =
0 for all c ∈ C}. Then C is self-orthogonal if C ⊆ C⊥, and C is self-dual if C = C⊥.

In 2002, Tonchev [21] set up a relationship between an undirected graph and
a binary linear code. Given a graph Γn on n vertices with adjacency matrix An,
one can define a binary linear code with generator matrix G = (I;An), where
I is the identity matrix. Such a code is called the linear graph code of Γn, and
a linear graph code is a [2n, n] FSD code. In 2006, Danielsen and Parker [10]
proved that every self-dual additive code over GF (4) is equivalent to a graph
code. Among additive codes over GF (4), a graph code is an additive code over
GF (4) that has a generator matrix of form C = Γ+ωI, where Γ is the adjacency
matrix of a simple undirected graph. An [n, k, d] (or (n, 2k, d)) code is optimal

if there is no [n, k, d+ 1] (or (n, 2k, d+ 1)) code, and near optimal if there is no
[n, k, d+ 2] (or (n, 2k, d+ 2)) code. An [n, k, d] (or (n, 2k, d)) code is known best

if d attains the highest known minimum distance for [n, k] (or (n, 2k)) codes. For
parameters of optimal codes, or lower and upper bounds on minimum distances
of optimal codes, see [12].

Formally self-dual codes are important class of codes, they have connections
to other mathematical structures such as block designs, lattices, modular forms,
and sphere packing. Many works have been done on the FSD codes, and opti-
mal FSD codes of length n ≤ 28 have been classified, see [1, 2, 13, 14]. In 2002,
Tonchev [21] set up a relationship between an FSD code and the adjacency
matrix of an undirected graph, and showed that some interesting codes can be
obtained from graphs with high degree of symmetry, such as strongly regular
graphs. In 2006, Danielsen and Parker [10] proved that every self-dual additive
code over GF (4) is equivalent to a graph code. In 2012, Danielsen [6] focused
his attention on additive codes over GF (9) and transformed the problem of code
equivalence into a problem of graph isomorphism. By an extension technique,
they classified all optimal codes of lengths 11 and 12. In fact, computer search-
ing reveals that circulant graph codes usually contain many strong codes, and
some of these codes have highly regular graph representations, see [22]. In [6],
Danielsen obtained some optimal additive codes from circulant graphs in 2005.
Later, Varbanov investigated additive circulant graph codes over GF (4), see
[22]. Recently, finding optimal codes from graphs has received a wide attention
of many researchers, see [6–11, 15, 21, 22]. Inspired by these works, we discuss the
construction of (near) optimal FSD codes and additive codes from undirected
circulant graphs in this paper.

Searching for (near) optimal codes 3

The paper is organized as follows. Section 2 recalls some concepts in graph
theory. In Section 3, we propose a new method to find (near) optimal binary
linear codes from circulant graphs, and construct some (near) optimal or known
best binary linear codes by using this method. In Section 4, we propose a new
method to find additive optimal codes from circulant graphs.

2 Preliminaries

We introduce some concepts of graph theory for latter use in this paper, for
more details please see [5]. An undirected graph Γ = (V,E) is a set V (Γ) =
{v1, v2, · · · , vn} of vertices together with a collection E(Γ) of edges, where each
edge is an unordered pair of vertices. The vertices vi and vj are adjacent if
{vi, vj} is an edge. Then vj is a neighbour of vi. All the neighbours of a vertex
vi in Γ form the neighbourhood of vi, and it is denoted by NΓ (vi). The degree of

a vertex v is the number of vertices adjacent to v. A graph is regular of degree k
if all vertices have the same degree k. For a graph Γ = (V,E), suppose that V ′

is a nonempty subset of V . The subgraph of Γ whose vertex set is V ′ and whose
edge set is the set of those edges of Γ that have both ends in V ′ is called the
subgraph of Γ induced by V ′, denoted by Γ [V ′]. We say that Γ [V ′] is an induced
subgraph of Γ . The adjacency matrix A = (aij) of Γ = (V,E) is a symmetric
(0, 1)-matrix defined as follows: ai,j = 1 if the i-th and j-th vertices are adjacent,
and ai,j = 0 otherwise.

Circulant graphs and their various applications are the objects of intensive
study in computer science and discrete mathematics, see [3, 4, 16, 19]. Recent-
ly, Monakhova published a survey paper on this subject, see [18]. Let S =
{a1, a2, · · · , ak} be a set of integers such that 0 < a1 < · · · < ak < n+1

2 , and
let the vertices of an n-vertex graph be labelled as 0, 1, 2, · · · , n − 1. Then the
ciculant graph C(n, S) has i ± a1, i ± a2, · · · , i ± ak (mod n) adjacent to each
vertex i. A circulant matrix is obtained by taking an arbitrary first row, and
shifting it cyclically one position to the right in order to obtain successive rows.
We say that a circulant matrix is generated by its first row. Formally, if the first
row of an n-by-n circulant matrix is a0, a1, · · · , an−1, then the (i, j)th element
is aj−i, where subscripts are taken modulo n. The term circulant graph arises
from the fact that the adjacency matrix for such a graph is a circulant matrix.

u7

u13

u10

u1

u8

u2

u3

u5

u6

u9

u11

u12

(a)

u4

u17

u16

u15

u14

u7

u13

u10

u1

u8

u2

u3

u5

u6

u9
u11

u12

u4

u17

u16

u15

u14

(b)

Figure 1: (a) The (4, 4)-Ramsey graph Γ ; (b) the edge-induced graph Γ (E1).

4 X. Li, Y. Mao, M. Wei and R. Li

For example, the (4, 4)-Ramsey graph Γ (see Figure 1) is a famous circulant
graph, which can be obtained by regarding the vertices as elements of the field
of integers modulo 17, and joining two vertices if their difference is a quadratic
residue of 17 (either 1, 2, 4, 8, 9, 13, 15 or 16). For the vertex u1, we have E1 =
{u1u2, u1u3, u1u5, u1u9, u1u10, u1u14, u1u16, u1u17} ⊆ E(Γ) and a vector α17 =
(0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1). It is clear that the adjacency matrix A17

of the (4, 4)-Ramsey graph is generated by α17, where

A17 =

01101000110001011

10110100011000101

11011010001100010

................

.

3 New binary linear codes searching from circulant
graphs

In this section, we discuss the construction of binary linear codes from circulant
graphs. Since a circulant graph Γn can be uniquely determined by its adjacency
matrix An, or by the vector αn correponding to E1 (E1 ⊆ E(Γn)), whose ele-
ments are incident with the vertex u1 ∈ V (Γn). We will make no difference of
αn, An or a circulant graph Γn, and simply say a circulant graph Γn with vector
αn or a vector αn of a circulant graph Γn. And in this section, we denote the
binary linear code with generator matrix G = (I, An) by Cn. According to the
relation between a graph code and the adjacency matrix of an undirected graph
introduced by [21], we can get a [34, 17, 8] optimal FSD code from the matrix
(I;A17), where A17 is the adjacency matrix of the (4, 4)-Ramsey graph.

In [6], Danielsen got some optimal additive codes. One of them is the optimal
additive code (30, 230, 12) obtained from the vector
β30 = (ω, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0),
which corresponds to a circulant graph of order 30 with vector
α30 = (0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0).
The graph code C30 with generator matrix G = (I;A30) is a [60, 30, 12] code,
where A30 is the circulant matrix generated by α30. The code C30 is a known
best FSD code. The weight enumerator of C30 is

WC30
(z) = 1 + 4060z12 + 24360z14 + 294930z16 + 1728400z18 + 7758400z20

+26336640z22 + 67403540z24 + 129936240z26+ 192974265z28

+220819632z30+ 192974265z32 + 129936240z34+ 67403540z36

+26336640z38 + 7758660z40 + 1728400z42 + 294930z44 + 24360z46

+4060z48 + z60.

However, using known circulant graphs in the literature, we only get a few
binary linear codes that are optimal, near optimal or known best. So, we need
to study a new method for designing good binary linear codes from circulant
graphs. To achieve this goal, we give some notations first.

Searching for (near) optimal codes 5

Denote by Ln the highest known minimum distance of all [2n, n] codes. For
a graph Γn with vector αn, we let Cn be its graph code and dn be the distance of
Cn. If dn ≥ Ln, then Cn is a good FSD code. If dn < Ln, then Cn is a “poor” code
and αn is a “poor” vector. For a graph Γn with “poor” vector αn, we manage to
find a new vector α′

n that gives a binary linear code C′
n = [2n, n, d′n] such that

C′
n is better than the code Cn. The idea of finding a new vector α′

n from a “poor”
vector αn = (b1, b2, · · · , bn) is introduced as follows:

1) Let An be the circulant matrix generated by αn and denote Gn = (I;An).
Then the j-th row of Gn is

gj = (ej | aj)

= (0, · · · , 0, 1, 0, · · · , 0 | aj,1, aj,2, · · · , aj,j−1, aj,j, aj,j+1, · · · , aj,n)

= (0, · · · , 0, 1, 0, · · · , 0 | bn−j+2, bn−j+3, · · · , bn, b1, b2, · · · , bn−j+1).

2) We call codeword β ∈ Cn “bad” if wt(β) < Ln. Find “bad” codewords
β1, β2, · · · , βm (if exist) such that their weights are dn, dn +1, · · · , dn +(m− 1),
where m = Ln − dn. If there is no codeword with weight dn + i (0 ≤ i ≤ m− 1),
then βi−1 is not under consideration.

3) Let βi = gj1 + gj2 + · · · + gjr = (ui | vi), where ui, vi ∈ Fn
2 and

j1, j2, · · · , jr ∈ {1, 2, · · · , n}.
4) From gjl = (ejl | ajl), one can define a column vector set {Λi : i =

1, 2, · · · , n}, where Λi = (λi,j1 , λi,j2 , · · · , λi,jr) and λi,j1 =
∑r

l=1 ajℓ,j1+(i−1), λi,j2

=
∑r

l=1 ajℓ,j2+(i−1), · · · , λi,jr =
∑r

l=1 ajℓ,jr+(i−1). Note that all the additions
are proceeding modular n.

5) Using these Λi to set up a standard for adjusting a “poor” vector αn =
(b1, b2, · · · , bn) to α′

n.
The above method can be realized by the following Algorithm 1:
Step 1. Give a circulant graph Γn with vector αn = (b1, b2, · · · , bn), and

generate Gn = (I;An).
Step 2. Calculate the distance dn of binary linear code Cn (Algorithm 1-1).

If dn ≥ Ln, then Cn is a good binary linear code, and stop. Or else, go to Step 3.
Step 3. Do adjustments of the elements of the “poor” vector αn as follows.
Step 3.1. Find “bad” codewords β1, β2, · · · , βm such that their weights are

dn, dn + 1, · · · , dn + (m − 1) by Algorithm 1-2, where m = Ln − dn. If there
is no codeword with weight dn + i (0 ≤ i ≤ m − 1), then βi−1 is not under
consideration.

Step 3.2. For each βi (0 ≤ i ≤ m − 1), we can find a combination of βi by
Algorithm 1-2. Suppose βi = gj1 + gj2 + · · · + gjr = (ui | vi), where ui, vi ∈ Fn

2

and j1, j2, · · · , jr ∈ {1, 2, · · · , n} and

gjk = (ejk | ajk)

= (0, · · · , 0, 1, 0, · · · , 0 | ajk,1, ajk,2, · · · , ajk,jk−1, ajk,jk , ajk,jk+1, · · · , ajk,n)

= (0, · · · , 0, 1, 0, · · · , 0 | bn−jk+2, bn−jk+3, · · · , bn, b1, b2, · · · , bn−jk+1).

Step 3.3. Determine whether each element 1 of the generator vertex αn is a
“bad” element in the following way (since b1 = 0, we begin with element b2). If
b2 = 1, then aj1,j1+1 = aj2,j2+1 = · · · = ajr ,jr+1 = b2 = 1. We calculate the exact
value λ2,j1 =

∑r

ℓ=1 ajℓ,j1+1, λ2,j2 =
∑r

ℓ=1 ajℓ,j2+1, · · · , λ2,jr =
∑r

ℓ=1 ajℓ,jr+1.

6 X. Li, Y. Mao, M. Wei and R. Li

Note that λ2,jk = 0 or λ2,jk = 1 (1 ≤ k ≤ r). Consider the set Λ2 = {λ2,j1 , λ2,j2 ,

· · · , λ2,jr}. If the number of elements with value “0” in Λ2 is larger than the
number of elements with value “1”, then the element b2 is called a “bad” element

of the generator vector αn. If b2 is a “bad” element, then we change b2 = 1 into
b′2 = 0 and obtain a new vector α′

n = (b1, b
′
2, · · · , bn). Then we return to Step

1. If b2 is not a “bad” element or b2 = 0, then we consider b3 and continue to
determining whether b3 is a “bad” element. The procedure terminates till bn has
been considered.

Algorithm 1-1 : Minimum distance of a binary linear code

Input: The value of n, the generator vector αn of a binary linear code Cn
Objective: The minimum distance of binary linear code Cn
1. Input the value of n, the generator vector αn = (b1, b2, · · · , bn);
2. Obtain the generator matrix G = (I;An) of the binary linear code Cn;
3. Get the minimum distance of the binary linear code Cn.

For example, let n = 19 and αn = (0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1).
The algorithm details are stated as follows:

Program:
n = 19;
a = [0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1]
m = matrix(GF (2), [[a[(i − k)%n] for i in [0..(n− 1)]] for k in [0..n− 1]]);
f = lambda s : sum(map(lambda x : m[x], s));
s = [];
for k in [1..8]:

t = min([list(i).count(1) for i in Subsets(range(n), k).map(f)]);
s+ = [t];
print k, t;

Output : si : 1 2 3 4 5 6 7 8
s′i : 8 6 4 2 2 4 2 2

Result : The elements of the first row (s1, s2, · · · , s8) are the contribution of
the matrix I for the weight of a codeword. The elements of the second row
(s′1, s

′
2, · · · , s

′
8) are the contribution of the matrix A19 for the weight of a

codeword. The value of min{si + s′i | 1 ≤ i ≤ 8} = 6 is the minimum weight of
the code C19 and then the minimum distance of the code C19 is also 6.

Algorithm 1-2 : “Bad” codewords and their combinations

Input: The value of n, the generator vector αn of a binary linear code Cn
Objective: “Bad” codewords and their combinations
1. Input the value of n, the generator vector αn = (b1, b2, · · · , bn);
2. Obtain the generator matrix G = (I;An) of the binary linear code Cn;
3. Get “bad” codewords β1, β2, · · · , βm and a combination of each βi (1 ≤ i ≤ m).

For example, let n = 19 and αn = (0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1).

Searching for (near) optimal codes 7

The algorithm details are stated as follows:

Program:
n = 19;
a = [0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1]
m = matrix(GF (2), [[a[(i − k)%n] for i in [0..(n− 1)]] for k in [0..n− 1]]);
f = lambda s : sum(map(lambda x : m[x], s));

g = lambda s : str(sorted(map(lambda x : x+ 1, s))).replace(′[′,′ ′).replace(′]′,′′);
s = [];
for k in [1..8]:

t = min([(i, list(f(i)).count(1)) for i in Subsets(range(n), k)],
key = lambda x : x[−1]);
s+ = [t];
print k, t[1], g(t[0]);

Output : si s′i {j1, j2, · · · , jr} (as defined in Step 3.2)
1 8 {1}
2 6 {1, 9}
3 4 {1, 4, 12}
4 2 {1, 2, 6, 16}
5 2 {1, 2, 8, 11, 14}
6 4 {1, 2, 3, 4, 6, 13}
7 2 {1, 2, 4, 6, 7, 10, 17}
8 2 {1, 2, 3, 6, 7, 8, 12, 16}

Now we show how to use our Algorithm 1 for searching [38, 19, 8] codes.

Step 1. Among all graphs with 19 vertices, we consider the graph Γ19, which
can be generated by the edge setE1 = {u1u2, u1u3, u1u5, u1u10, u1u11, u1u16, u1u18,

u1u19}, and then α19 = (0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1). Obviously,
b2 = b3 = b5 = b10 = b11 = b16 = b18 = b19 = 1.

Step 2. From the Code Tables, we know that the lower bound of the min-
imum distance of linear code [38, 19] over GF (2) is 8, that is, L19 = 8. By
Algorithm 1-1, we obtain that the minimum distance d19 of the code (I;A19) is
just 6, that is, d19 = 6. Clearly, 6 = d19 < L19 = 8.

Step 3. Obviously, m = L19 − d19 = 2.

Step 3.1. From Algorithm 1-2, we find two “bad” codewords

β1 = (1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0

| 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0),

β2 = (1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0

| 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0).

such that their weights are 6 and 7, that is, wt(β1) = 6 and wt(β2) = 7.

Step 3.2. For β1, we can find a combination of β1 = α19,1 + α19,2 + α19,6 +
α19,16 by Algorithm 2-2, where

8 X. Li, Y. Mao, M. Wei and R. Li

α19,1 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

| 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1),

α19,2 = (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

| 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1),

α19,6 = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

| 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0),

α19,16 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0

| 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0).

Note that r = 4, j1 = 1, j2 = 2, j3 = 6 and j4 = 16.
For β2, we can find a combination of β2 = α19,1+α19,4+α19,12 by Algorithm

2-2, where

α19,1 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

| 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1),

α19,4 = (0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

| 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1),

α19,12 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0

| 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0).

Note that r = 3, j1 = 1, j2 = 4 and j3 = 12.
Step 3.3. Recall that α19 = (0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1) and

b2 = b3 = b5 = b10 = b11 = b16 = b18 = b19 = 1. Since b2 = 1, we consider
whether b2 is a “bad” element in α19.

For β1, since r = 4, j1 = 1, j2 = 2, j3 = 6 and j4 = 16, we have
a1,2 = a2,3 = a6,7 = a16,17 = b2 = 1, and

λ2,j1 =
∑r

ℓ=1 ajℓ,j1+1 = a1,2 + a2,2 + a6,2 + a16,2 = 0,
λ2,j2 =

∑r

ℓ=1 ajℓ,j2+1 = a1,3 + a2,3 + a6,3 + a16,3 = 0,
λ2,j3 =

∑r

ℓ=1 ajℓ,j3+1 = a1,7 + a2,7 + a6,7 + a16,7 = 0,
λ2,j4 =

∑r

ℓ=1 ajℓ,j4+1 = a1,17 + a2,17 + a6,17 + a16,17 = 0.

For β2, since r = 3, j1 = 1, j2 = 4 and j3 = 12, we have a1,2 = a4,5 =
a12,13 = b2 = 1. Then

λ2,j1 =
∑r

ℓ=1 ajℓ,j1+1 = a1,2 + a4,2 + a12,2 = 1,
λ2,j2 =

∑r

ℓ=1 ajℓ,j2+1 = a1,5 + a4,5 + a12,5 = 0,
λ2,j3 =

∑r

ℓ=1 ajℓ,j3+1 = a1,13 + a4,13 + a12,13 = 0.

It is clear that the number of elements with value “0” in Λ2’s is larger than
the number of elements with value “1”, then the element b2 is called a “bad”

element of the generator vector αn. We change b2 = 1 into b′2 = 0 and obtain a
new vector α′

19 = (0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1). Then we return to
Step 1.

Let us now investigate the linear code C′
19 with generator matrixG = (I;A′

19).
By Algorithm 1-1, we get that the minimum distance d′19 of the linear code C′

19

Searching for (near) optimal codes 9

is 8. The code C′
19 is a near optimal and also known best binary linear code over

GF (2). The weight enumerator of the code C′
19 is

WC′

19
(z) = 1 + 133z8 + 2052z10 + 10108z12 + 36575z14 + 85595z16

+127680z18 + 127680z20 + 85595z22 + 36575z24 + 10108z26

+2052z28 + 133z30 + z38.

With the above approach and algorithms, we can also find three other near
optimal binary linear [38, 19, 8] codes by the generator matrices G = (I;A′′

19),
G = (I;A′′′

19) and G = (I;A′′′′
19). The circulant matrices A′′

19, A
′′′
19 and A′′′′

19 are
separately generated by

α′′
19 = (0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1),

α′′′
19 = (0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1),

α′′′′
19 = (0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0).

The weight enumerator of the code C′′
19 is

WC′′

19
(z) = 1 + 190z8 + 1767z10 + 10507z12 + 36860z14 + 84341z16

+128478z18 + 128478z20 + 84341z22 + 36860z24 + 10507z26

+1767z28 + 190z30 + z38.

One can also check that the weight enumerators of the codes C′′′
19 and C′′′′

19 are
equal to the ones of C′′

19 and C′
19, respectively.

At the end of this section, we list some more binary linear codes constructed
from known circulant graphs by applying Algorithm 1.

1. In [6], Danielsen got a (15, 215) additive code from the vector
(ω, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0), which corresponds to a circulant graph of or-
der 15 with vector α15 = (0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0). Its graph code C15
= [30, 15, 6] is a poor code. Applying Algorithm 1, we obtain a new vector
α′
15 = (0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0). The code C′

15 = [30, 15, 8] generated by
α′
15 is an optimal binary linear code. The weight enumerator of this code C′

15 is

WC′

15
(z) = 1 + 450z8 + 1848z10 + 5040z12 + 9045z14 + 9045z16

+5040z18 + 1848z20 + 450z22 + z30.

2. Extending vector α17 = (0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1) of the (4, 4)-
Ramsey graph, one can obtain a vector of length 19. For example, let α19 =
(0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1),which corresponds to a circulant graph
of order 19. It corresponds to the linear graph code C19 = [38, 19, 6], which is a
poor code. By Algorithm 1, we obtain four new vectors as follows:

α′
19 = (0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1),

α′′
19 = (0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0),

α′′′
19 = (0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1),

α′′′′
19 = (0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1).

The codes C′
19 and C′′

19 are [38, 19, 8] codes with the same weight enumerators.
The weight enumerator of the code C′

19 is

10 X. Li, Y. Mao, M. Wei and R. Li

WC′

19
(z) = 1 + 133z8 + 2052z10 + 10108z12 + 36575z14 + 85595z16

+127680z18 + 127680z20 + 85595z22 + 36575z24 + 10108z26

+2052z28 + 133z30 + z38.

The codes C′′′
19 and C′′′′

19 are [38, 19, 8] codes with the same weight enumerators.
The weight enumerator of the code C′′′

19 is

WC′′′

19
(z) = 1 + 190z8 + 1767z10 + 10507z12 + 36860z14 + 84341z16

+128478z18 + 128478z20 + 84341z22 + 36860z24 + 10507z26

+1767z28 + 190z30 + z38.

These four binary linear codes are all near optimal and known best.

3. In addition, we consider graphs with large number of vertices by similar
approach. Let C25,1 and C25,2 be the two codes generated by vectors
α1
25 = (0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1) and

α2
25 = (0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1), respectively. These

two codes are both poor codes. Then by Algorithm 1, we find
α′
25 = (0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1), and

α′′
25 = (0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1).Both α′

25 and α′′
25

give binary linear codes known best. Let C′
25 and C′′

25 be codes of α′
25 and α′′

25,
respectively. It is easy to check that C′

25 and C′′
25 are [50, 25, 10] codes, and the

weight enumerator of the code C′
25 and C′′

25 is

WC′

25
(z) = 1 + 225z10 + 1250z11 + 3825z12 + 11525z13 + 28050z14 + 64005z15

+147075z16 + 294975z17 + 535075z18 + 9111100z19 + 1409205z20

+1999925z21 + 2642200z22 + 3219675z23 + 3623325z24 + 377243z25

+3621975z26 + 3216050z27 + 2643475z28 + 2009175z29 + 1408010z30

+904475z31 + 535400z32 + 292725z33 + 147525z34 + 68880z35

+27975z36 + 9775z37 + 3500z38 + 1125z39 + 375z40 + 125z41

= WC′′

25
(z).

7

410

1 1

9

8

6

7

5
4

3
2

22

17

16
15

14 13 12
11

10

18

19

21

24

20

232

3

5

6

8

9

11

12

(a) (b)

Figure 2: (a) A 5-valent graph Γ12; (b) Circulant graph Γ24.

Searching for (near) optimal codes 11

4 New additive codes searching from circulant graphs

In fact, Glynn et al. [11] obtained an optimal code from a circulant graph,
called a 5-valent graph. Recall that Γ12 is a circulant graph of order 12; see
Figure 2 (a). Let V (Γ12) = {u1, u2, · · · , u12}. For the vertex u1, we let E1 =
{v1v2, v1v4, v1v7, v1v10, v1v12} ⊆ E(Γ12). For the vertex u2, we just rotate the
above vertices and edges, that is, we only permit the existence of the edge
set E2 = {v2v3, v2v4, v2v6, v2v10, v2u12} ⊆ E(G). For each vertex ui ∈ V (Γ) \
{u1, u2} = {u3, u4, · · · , u12}, we can also obtain an edge set Ei (3 ≤ i ≤ 17).

Observe that E(Γ12) =
⋃12

i=1 Ei. The adjacency matrix of the graph Γ12 is the
following circulant matrix

A12 =

010100100101

101010010010

010101001001

................

.

The above matrix can also be obtained by vector α12 = (0, 1, 0, 1, 0, 0, 1, 0, 0, 1,
0, 1). Observe that this vector just corresponds to the set E1 of edges, which is
an expression of the adjacency relation for the vertex u1. We conclude that a
5-valent graph can be determined by the edge set E1, and the adjacency matrix
of this graph is determined by the above vector α12. Furthermore, the matrix
A′

12 = A12 + ωI is also a circulant matrix, which can be obtained by vector
α′
12 = (ω, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1).From the matrix A12+ωI, we can get a graph

code C12. From the Code Tables, we know that C12 is an optimal (12, 212, 6) ad-
ditive code over GF (4). The above statement suggests the following method for
finding (near) optimal additive codes.

Step 1. Given an even integer n. Denote by Ln the lower bound of the
additive code (n,2n) over GF (4). From the Code Tables, we find the exact value
of Ln for given n. We now construct a circulant graph Γn by a set E1 of edges
as follows.

Step 1.1. Arrange the vertices from V (Γn) = {u1, u2, · · · , un} in a circular
order.

Step 1.2. Determine the set E1 of edges satisfying |E1| = Ln − 1 or |E1| =
Ln + 1, where E1 = {uiu1 |ui ∈ NΓn

(u1)}. If |E1| = Ln + 1, then

E1 = {u1u2, u1u3} ∪ {u1u3+2·1, u1u3+2·2, · · · , u1u3+2·Ln−4

2

, } ∪ {u1un

2
+1}

∪{u1un−1−2·Ln−4

2

, · · · , u1un−1−2·2, u1un−1−2·1} ∪ {u1un, u1un−1}

= {u1u2, u1u3} ∪ {u1u5, u1u7, · · · , u1uLn−1} ∪ {u1un

2
+1}

∪{u1un−Ln+3, · · · , u1un−5, u1un−3} ∪ {u1un, u1un−1}.

If |E1| = Ln − 1, then

E1 = {u1u2, u1u3} ∪ {u1u3+2·1, u1u3+2·2, · · · , u1u3+2·Ln−6

2

, } ∪ {u1un

2
+1}

∪{u1un−1−2·Ln−6

2

, · · · , u1un−1−2·2, u1un−1−2·1} ∪ {u1un, u1un−1}

= {u1u2, u1u3} ∪ {u1u5, u1u7, · · · , u1uLn−3} ∪ {u1un

2
+1}

∪{u1un−Ln+5, · · · , u1un−5, u1un−3} ∪ {u1un, u1un−1}.

12 X. Li, Y. Mao, M. Wei and R. Li

Step 2. By the edge set E1, we write the vector αn corresponding to E1. If
|E1| = Ln + 1, then

u2 u3 u5 uLn−1 un

2
+1 un−Ln+3 un−3 un−1 un

αn = (0 1 1 0 1 · · · 0 1 0 0 · · · 0 1 0 0 · · · 0 1 0 · · · 1 0 1 1).
If |E1| = Ln − 1, then

u2 u3 u5 uLn−3 un

2
+1 un−Ln+5 un−3 un−1 un

αn = (0 1 1 0 1 · · · 0 1 0 0 · · · 0 1 0 0 · · · 0 1 0 · · · 1 0 1 1).
Step 3. Change the first component of the vector αn into ω. Denote by α′

n

the new vector. We generate a circulant matrix A′
n from α′

n,
α′
n = (ω, 1, 1, 0, 1, 0, 1, · · · , 0, 1, 0, 0, · · · , 0, 1, 0, 0, · · · , 0, 1, 0, 1, 0, · · · , 1, 0, 1, 1).
Step 4. By Algorithm 2, we obtain the minimum distance dn of the additive

code Cn and determine whether dn = Ln. If so, the code Cn is a (near) optimal
or at least known best additive code.

Below is an algorithm (running in SAGE). For more details, we refer to [20].

Algorithm 2 : Minimum distance of a circulant graph code

Input: The value of n, the generator vector αn of a circulant graph code Cn
Objective: The minimum distance of the circulant graph code Cn
1. Input the value of n, the generator vector αn = (b1, b2, · · · , bn);
2. Obtain the generator matrix G of the circulant graph code Cn;
3. Get the minimum distance of the circulant graph code Cn.
For example, let n = 24 and αn = (ω, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 0, 1, 0, 1, 1). The algorithm details are stated as follows:
Program:

F. < x >= GF (4,′ x′)
n = 24;
a = [x, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1]
m = matrix(F, n, n, [[a[(i − k)%n] for i in [0..(n− 1)]] for k in [0..n− 1]]);
f = lambda s : sum(map(lambda x : m[x], s));
s = [];
for k in [1..8]:

t = min([n− list(i).count(0) for i in Subsets (range(n), k).map(f)]);
s+ = [t];
print s;

Output : [8]
[8, 8]
[8, 8, 10]
[8, 8, 10, 8]
[8, 8, 10, 8, 8]
[8, 8, 10, 8, 8, 8]
[8, 8, 10, 8, 8, 8, 8]
[8, 8, 10, 8, 8, 8, 8, 10]

Result : The minimum element of the last array is the minimum distance d24 of
the code C24, that is, d24 = 8.

Searching for (near) optimal codes 13

Inspired by the graph code C12 which corresponds to the 5-valent graph, we
hope to find out some other optimal additive codes for n = 24.

Step 1. Recall that L24 is the lower bound of the additive code (24, 224) over
GF (4). From the Code Tables, we find that the exact value of L24 is 8, that is,
L24 = 8. We now construct a circulant graph Γ24 by a set E1 of edges as follows.

Step 1.1. Arrange the vertices from V (Γn) = {u1, u2, · · · , u24} in a circular
order.

Step 1.2. Determine the set E1 of edges satisfying |E1| = L24 − 1 = 7 or
|E1| = L24 + 1 = 9, where E1 = {uiu1 |ui ∈ NΓn

(u1)}. If |E1| = 9, then
E1 = {u1u2, u1u3, u1u5, u1u7, u1u13, u1u19, u1u21, u1u23, u1u24}. If |E1| = 7,
then E1 = {u1u2, u1u3, u1u5, u1u13, u1u21, u1u23, u1u24}. In this case, the cir-
culant graph Γ24 can be found out; see Figure 2 (b).

Step 2. By the edge set E1, we write the vector α24 corresponding to E1.
If |E1| = 9, then α24 = (0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1). If
|E1| = 7, then α24 = (0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1).

Step 3. Change the first component of the vector α24 into ω. Denote by α′
24

the new vector. We generate a circulant matrix A′
24 (A′′

24) from α′
24 (α′′

24):

α′
24 = (ω, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1),

α′′
24 = (ω, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1).
Step 4. By Algorithm 2, we obtain the minimum distance d′24 = d′′24 = 8.

Therefore, both C′
24 and C′′

24 are known best additive codes over GF (4). The
weight enumerators of the codes C′

24 and C′′
24 are

WC′

24
(z) = 1 + 528z8 + 13992z10 + 171276z12 + 1118040z14 + 3773517z16

+6218520z18 + 4413948z20 + 1034088z22 + 33306z24,

WC′′

24
(z) = 1 + 648z8 + 13032z10 + 174636z12 + 1111320z14 + 3781917z16

+6211800z18 + 4417308z20 + 1033128z22 + 33426z24.

Applying the above method, we can obtain (near) optimal additive codes
over GF (4) from the first two generator vectors.

n d Ln First row of generator matrix about the code

8 4 4 (ω, 1, 1, 0, 1, 0, 1, 1) optimal
8 4 4 (ω, 1, 0, 0, 1, 0, 0, 1) optimal
10 4 4 (ω, 1, 1, 0, 0, 1, 0, 0, 1, 1) optimal
10 4 4 (ω, 1, 0, 0, 0, 1, 0, 0, 0, 1) optimal
16 6 6 (ω, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1) optimal
22 8 8 (ω, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1) optimal
24 8 8 (ω, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1) known best
24 8 8 (ω, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1) known best

From the above analysis, we see that the circulant graphs under our consider-
ation are all relatively sparse. So one may think that only sparse circulant graphs

14 X. Li, Y. Mao, M. Wei and R. Li

produce optimal graph codes. However, the following fact gives it a negative an-
swer. Danielsen [6] obtained an optimal additive code (30, 230, 12) from the vector
α30 = (ω, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0), which
corresponds to a circulant graph of order 30 such that its adjacency matrix A30

is generated by the first row
α30 = (0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0).
It is clear that the circulant graph is 17-regular. Since the order of this graph
is 30, it follows that the degree of each vertex is relatively large, i.e., it is a
relatively dense graph. Let

αn = (ω, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0,

n−21
︷ ︸︸ ︷

1, 1, . . . , 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0). For n = 32
and n = 34, we have the following vectors:

α32 = (ω, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0),
α34 = (ω, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0).

By Algorithm 2, we know that C32 and C34 are (32, 232, 10) and (34, 234, 10) ad-
ditive codes, respectively, and both are known best additive codes over GF (4).

The weight enumerators of the codes C32 and C34 are

WC32
(z) = 1 + 1325z10 + 41973z12 + 745155z14 + 8030541z16 + 53150370z18

+213875634z20+ 510617670z22 + 691665390z24

+491629473z26+ 159600905z28 + 17838471z30 + 286740z32,

WC34
(z) = 1 + 492z10 + 14373z12 + 291849z14 + 3494061z16 + 26279603z18

+123536402z20+ 357928154z22 + 620714798z24 + 614055698z26

+319190777z28+ 75747789z30 + 6157556z32 + 72095z34.

5 Concluding remarks

In recent years, graphs have been used to construct codes. But, usually they can-
not produce good codes. Proper graphs have to be chosen in order to construct
good codes. Because the structure of a circulant graph is very symmetric, the row
vectors of its adjacency matrix may span a subspace with the property that the
minimum Hamming distance among the vectors of the subspace is comparatively
large. Our paper uses this possibility to develop two algorithms for searching for
good binary linear codes and additive codes. Starting from a circulant graph,
the algorithms modify the generator vector of the circulant graph successively,
and get a good code at some step, or fail when all “1”’s of the generator vector
have been checked. Therefore, sometimes our algorithms can find good codes,
but sometimes they would fail to produce any good code. In general, the running
time of our algorithms is exponential in the order n of the circulant graph, since
we have to generate all the vectors of the subspace spanned by the row vectors
of an n × n or n × 2n generator matrix, and this complexity cannot be lower
down generally. However, as is seen in the above sections, the row vectors of a
circulant are generated by a single vector–its first row vector. This gives us some

Searching for (near) optimal codes 15

reasonable hope to use the property to lower down the complexity of generating
the subspace spanned by the row vectors of a circulant, which will be left for us
to further study.

References

1. K. Betsumiya, M. Harada,Binary optimal odd formally self-dual codes, Des. Codes
Cryptogr. 23(2001), 11-21.

2. K. Betsumiya, M. Harada, Classification of formally self-dual even codes of lengths
up to 16, Des. Codes Cryptogr. 23(2001), 325-332.

3. J.C. Bermond, F. Comellas, D.F. Hsu,Distributed loop computer networks: A survey,
J. Parallel Distributed Comput. 24(1995), 2-10.

4. F.T. Boesch, J.F. Wang, Reliable circulant networks with minimum transmission
delay, IEEE Trans. Circuits Syst. 32(1985), 1286-1291.

5. J.A. Bondy, U.S.R. Murty, Graph Theory, GTM 244, Springer, 2008.
6. L.E. Danielsen, On self-dual quantum codes, In: Graphs and Boolean Functions,

2005.
7. L.E. Danielsen, Graph-based classification of self-dual additive codes over finite field,

Adv. Math. Commun. 3(4)(2009), 329-348.
8. L.E. Danielsen, On the classification of Hermitian self-dual additive codes over

GF(9), IEEE Trans. Inform. Theory 58(8)(2012), 5500-5511.
9. L.E. Danielsen, M.G. Parker, Directed graph representation of half-rate additive

codes over GF(4), Des. Codes Cryptogr. 59(2011), 119-130.
10. L.E. Danielsen, M.G. Parker, On the classification of all self-dual additive codes

over GF (4) of length up to 12, J. Combin. Theory, Series A 113(2006), 1351-1367.
11. D.G. Glynn, T.A. Gulliver, J.G. Marks, M.K. Gupta, The Geometry of Additive

Quantum Codes, Preface, Springer, 2006.
12. M. Grassl, Bounds on the minimum distance of linear codes,

http://www.codetables.de. Accessed 31 Oct 2013
13. T.A. Gulliver, P.R.J. Österg̊ard, Binary optimal linear rate 1/2 codesraphs, Dis-

crete Math. 283(2004), 255-261.
14. Sunghyu Han, Heisook Lee, Yoonjin Lee, Binary formally self-dual odd codes, Des.

Codes Cryptogr. 61(2011), 141-150.
15. W.C. Huffman, V. Pless, Fundamentals of Error-Correcting Codes, Cambridge U-

niversity, 2003.
16. B. Mans, F. Pappalardi, I. Shparlinski, On the spectral Adam property for circulant

graphs, Discrete Math. 254(1-3)(2002), 309-329.
17. P.T. Meijer, Connectivities and Diameters of Circulant Graps, B. Sc. (Honors),

Simon Fraser University, 1987.
18. E.A. Monakhova, A survey on undirected circulant graphs, Discrete Math., Algor.

Appl. 4(1)(2012), 1250002[30pages].
19. M.E. Muzychuk, G. Tinhofer, Recognizing circulant graphs of prime order in poly-

nomial time, Electron. J. Combin. 5(1)(1998), 501-528.
20. W.A. Stein et al., Sage Mathematics Software (Version 6.1.1), The Sage Develop-

ment Team, 2014, http://www.sagemath.org.
21. V. Tonchev, Error-correcting codes from graphs, Disrete Math. (257)(2002), 549-

557.
22. Z. Varbanov, Additive circulent graph codes over GF(4), Math. Maced. 6(2008),

73-79.

