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Abstract

A total-colored graph is a graph G such that both all edges and all vertices
of G are colored. A path in a total-colored graph G is a total rainbow path if its
edges and internal vertices have distinct colors. A total-colored graph G is total-
rainbow connected if any two vertices of G are connected by a total rainbow path
of G. The total rainbow connection number of G, denoted by trc(G), is defined as
the smallest number of colors that are needed to make G total-rainbow connected.
These concepts were introduced by Liu et al. Notice that for a connected graph
G, 2diam(G) − 1 ≤ trc(G) ≤ 2n − 3, where diam(G) denotes the diameter of G

and n is the order of G. In this paper we show, for a connected graph G of order
n with minimum degree δ, that trc(G) ≤ 6n/(δ + 1) + 28 for δ ≥ √

n− 2 − 1 and
n ≥ 291, while trc(G) ≤ 7n/(δ + 1) + 32 for 16 ≤ δ ≤ √

n− 2 − 2 and trc(G) ≤
7n/(δ + 1) + 4C(δ) + 12 for 6 ≤ δ ≤ 15, where C(δ) = e

3 log(δ3+2δ2+3)−3(log 3−1)
δ−3 − 2.

Thus, when δ is in linear with n, the total rainbow number trc(G) is a constant.
We also show that trc(G) ≤ 7n/4− 3 for δ = 3, trc(G) ≤ 8n/5− 13/5 for δ = 4 and
trc(G) ≤ 3n/2− 3 for δ = 5. Furthermore, an example from Caro et al. shows that
our bound can be seen tight up to additive factors when δ ≥ √

n− 2− 1.
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1 Introduction

In this paper, all graphs considered are simple, finite and undirected. We refer to book

[2] for undefined notation and terminology in graph theory. Let G be a connected graph

on n vertices with minimum degree δ. A path in an edge-colored graph G is a rainbow

path if its edges have different colors. An edge-colored graph G is rainbow connected if any

two vertices of G are connected by a rainbow path of G. The rainbow connection number,

denoted by rc(G), is defined as the smallest number of colors required to make G rainbow

connected. Chartrand et al. [6] introduced these concepts. Notice that rc(G) = 1 if and

only if G is a complete graph and that rc(G) = n− 1 if and only if G is a tree. Moreover,

diam(G) ≤ rc(G) ≤ n−1. A lot of results on the rainbow connection have been obtained;

see [13, 14].

From [4] we know that to compute the number rc(G) of a connected graph G is NP-

hard. So, to find good upper bounds is an interesting problem. Krivelevich and Yuster

[11] obtained that rc(G) ≤ 20n/δ. Caro et al. [3] obtained that rc(G) ≤ ln δ
δ

n(1 + oδ(1)).

Finally, Chandran et al. [5] got the following benchmark result.

Theorem 1. [5] For every connected graph G of order n and minimum degree δ, rc(G) ≤
3n/(δ + 1) + 3.

The concept of rainbow vertex-connection was introduced by Krivelevich and Yuster in

[11]. A path in a vertex-colored graph G is a vertex-rainbow path if its internal vertices have

different colors. A vertex-colored graph G is rainbow vertex-connected if any two vertices

of G are connected by a vertex-rainbow path of G. The rainbow vertex-connection number,

denoted by rvc(G), is defined as the smallest number of colors required to make G rainbow

vertex-connected. Observe that diam(G) − 1 ≤ rvc(G) ≤ n − 2 and that rvc(G) = 0 if

and only if G is a complete graph. The problem of determining the number rvc(G) of a

connected graph G is also NP-hard; see [7, 8]. There are a few results about the upper

bounds of the rainbow vertex-connection number. Krivelevich and Yuster [11] proved that

rvc(G) ≤ 11n/δ. Li and Shi [12] improved this bound and showed the following results.

Theorem 2. [12] For a connected graph G of order n and minimum degree δ, rvc(G) ≤
3n/4− 2 for δ = 3, rvc(G) ≤ 3n/5− 8/5 for δ = 4 and rvc(G) ≤ n/2− 2 for δ = 5. For

sufficiently large δ, rvc(G) ≤ (b ln δ)n/δ, where b is any constant exceeding 2.5.

Theorem 3. [12] A connected graph G of order n with minimum degree δ has rvc(G) ≤
3n/(δ + 1) + 5 for δ ≥ √

n− 1 − 1 and n ≥ 290, while rvc(G) ≤ 4n/(δ + 1) + 5 for

16 ≤ δ ≤ √
n− 1 − 2 and rvc(G) ≤ 4n/(δ + 1) + C(δ) for 6 ≤ δ ≤ 15, where C(δ) =

e
3 log(δ3+2δ2+3)−3(log 3−1)

δ−3 − 2.
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Recently, Liu et al. [16] proposed the concept of total rainbow connection. A total-

colored graph is a graph G such that both all edges and all vertices of G are colored. A

path in a total-colored graph G is a total rainbow path if its edges and internal vertices

have distinct colors. A total-colored graph G is total-rainbow connected if any two vertices

of G are connected by a total rainbow path of G. The total rainbow connection number,

denoted by trc(G), is defined as the smallest number of colors required to make G total-

rainbow connected. It is easy to observe that trc(G) = 1 if and only if G is a complete

graph. Moreover, 2diam(G) − 1 ≤ trc(G) ≤ 2n − 3. The following proposition gives an

upper bound of the total rainbow connection number.

Proposition 1. [16] Let G be a connected graph on n vertices and q vertices having

degree at least 2. Then, trc(G) ≤ n− 1 + q, with equality if and only if G is a tree.

From Theorems 1 and 3, one can see that rc(G) and rvc(G) are bounded by a function

of the minimum degree δ, and that when δ is in linear with n, then both rc(G) and

rvc(G) are some constants. In this paper, we will use the same idea in [12] to obtain

upper bounds for the number trc(G), which are also functions of δ and imply that when

δ is in linear with n, then trc(G) is a constant.

2 Main results

Let G be a connected graph on n vertices with minimum degree δ. Denote by Leaf(G)

the maximum number of leaves among all spanning trees of G. If δ = 3, then Leaf(G) ≥
n/4 + 2, which was proved by Linial and Sturtevant [15]. Griggs and Wu in [9], and

Kleitman and West in [10] showed that Leaf(G) ≥ 2n/5 + 8/5 for δ = 4. Moreover,

Griggs and Wu [9] showed that if δ = 5, then Leaf(G) ≥ n/2+2. For sufficiently large δ,

Kleitman and West in [10] proved that Leaf(G) ≥ (1−b ln δ/δ)n, where b is any constant

exceeding 2.5. From these results, we can get the following results.

Theorem 4. For a connected graph G of order n with minimum degree δ, trc(G) ≤
7n/4− 3 for δ = 3, trc(G) ≤ 8n/5− 13/5 for δ = 4 and trc(G) ≤ 3n/2− 3 for δ = 5. For

sufficiently large δ, trc(G) ≤ (1 + b ln δ/δ)n− 1, where b is any constant exceeding 2.5.

Proof. We can choose a spanning tree T with the maximum number of leaves. Denote `

the maximum number of leaves. Then color all non-leaf vertices and all edges of T with

2n− `− 1 colors, each receiving a distinct color. Hence, trc(G) ≤ 2n− `− 1.

Theorem 5. For a connected graph G of order n with minimum degree δ, trc(G) ≤
6n/(δ + 1) + 28 for δ ≥ √

n− 2 − 1 and n ≥ 291, while trc(G) ≤ 7n/(δ + 1) + 32 for
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16 ≤ δ ≤ √
n− 2 − 2 and trc(G) ≤ 7n/(δ + 1) + 4C(δ) + 12 for 6 ≤ δ ≤ 15, where

C(δ) = e
3 log(δ3+2δ2+3)−3(log 3−1)

δ−3 − 2.

Remark 1. The same example mentioned in [3] can show that our bound is tight up to

additive factors when δ ≥ √
n− 2− 1.

In order to prove Theorem 5, we need some lemmas.

Lemma 1. [11] If G is a connected graph of order n with minimum degree δ, then it has

a connected spanning subgraph with minimum degree δ and with less than n(δ +1/(δ +1))

edges.

Given a graph G, a set D ⊆ V (G) is called a 2-step dominating set of G if every vertex

of G which is not dominated by D has a neighbor that is dominated by D. A 2-step

dominating set S is k-strong if every vertex which is not dominated by S has at least k

neighbors that are dominated by S. If S induces a connected subgraph of G, then S is

called a connected k-strong 2-step dominating set.

Lemma 2. [12] If G is a connected graph of order n with minimum degree δ ≥ 2, then G

has a connected δ/3-strong 2-step dominating set S whose size is at most 3n/(δ + 1)− 2.

Lemma 3. [1] (Lovász Local Lemma) Let A1, A2, ..., An be the events in an arbitrary

probability space. Suppose that each event Ai is mutually independent of a set of all the

other events Aj but at most d, and that P [Ai] ≤ p for all 1 ≤ i ≤ n. If ep(d + 1) < 1,

then Pr[
∧n

i=1 Āi] > 0.

Now we are ready to prove Theorem 5.

Proof of Theorem 5: The proof goes similarly for the main result of [12]. We are

given a connected graph G of order n with minimum degree δ. Suppose that G has

less than n(δ + 1/(δ + 1)) edges by Lemma 1. Let S denote a connected δ/3-strong

2-step dominating set of G. Then, we have |S| ≤ 3n/(δ + 1) − 2 by Lemma 2. Let

Nk(S) denote the set of all vertices at distance exactly k from S. We give a partition

to N1(S) as follows. First, let H be a new graph constructed on N1(S) with edge set

E(H) = {uv : u, v ∈ N1(S), uv ∈ E(G) or ∃ w ∈ N2(S) such that uwv is a path of

G}. Let Z be the set of all isolated vertices of H. Moreover, there exists a spanning

forest F of V (H)\Z. Finally, choose a bipartition defined by this forest, denoted by X

and Y . Partition N2(S) into three subsets: A = {u ∈ N2(S) : u ∈ N(X) ∩ N(Y )},
B = {u ∈ N2(S) : u ∈ N(X)\N(Y )} and C = {u ∈ N2(S) : u ∈ N(Y )\N(X)}; see

Figure 1(a).

Case 1. δ ≥ √
n− 2− 1.
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Figure 1: Illustration in the proof of Theorem 5

Next we give a coloring to the edges and vertices of G. Let k = 2|S| − 1 and T be a

spanning tree of G[S]. Color the edges and vertices of T with k distinct colors such that

G[S] is total rainbow connected. Assign every [X,S] edge with color k + 1, every [Y, S]

edge with color k + 2 and every edge in N1(S) with color k + 3. Since the minimum

degree δ ≥ 2, every vertex in Z has at least two neighbors in S. Color one edge with k+1

and all others with k + 2. Assign every [A,X] edge with color k + 3, every [A, Y ] edge

with color k + 4 and every vertex of A with color k + 5. We assign seven new colors from

{i1, i2, ..., i7} to the vertices of X such that each vertex of X chooses its color randomly

and independently from all other vertices of X. Similarly, we assign another seven colors

to the vertices of Y . Assign seven colors from {j1, j2, ..., j7} to the edges between B and

X as follows: for every vertex u ∈ B, let NX(u) denote the set of all neighbors of u in X;

for every vertex u′ ∈ NX(u), if we color u′ with it (t ∈ {1, 2, ..., 7}), then color uu′ with

jt. In a similar way, we assign seven new colors to the edges between C and Y . All other

edges and vertices of G are uncolored. Thus, the number of all colors we used is

k + 33 = 2|S| − 1 + 33 ≤ 2

(
3n

δ + 1
− 2

)
− 1 + 33 =

6n

δ + 1
+ 28.

We have the following claim for any u ∈ B (C).

Claim 1. For any u ∈ B (C), we have a coloring for the vertices in X (Y ) with seven

colors such that there exist two neighbors u1 and u2 in NX(u) (NY (u)) that receive

different colors. Hence, the edges uu1 and uu2 are also colored differently.
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Notice that for every vertex v ∈ X, v has two neighbors in S ∪ A ∪ Y . Moreover,

(δ + 1)2 ≥ n− 2. Thus, v has less than (δ + 1)2 neighbors in B. For every vertex u ∈ B,

u has at least δ/3 neighbors in X since S is a connected δ/3-strong 2-step dominating

set of G. Let Au denote the event that NX(u) receives at least two distinct colors. Fix

a set X(u) ⊂ NX(u) with |X(u)| = dδ/3e. Let Bu denote the event that all vertices

of X(u) are colored the same. Hence, Pr[Bu] ≤ 7−dδ/3e+1. Moreover, the event Bu is

independent of all other events Bv for v 6= u but at most ((δ + 1)2 − 1)dδ/3e of them.

Since e · 7−dδ/3e+1(((δ + 1)2 − 1)dδ/3e + 1) < 1, for all δ ≥ √
n− 2 − 1 and n ≥ 291, we

have Pr[
∧

u∈B B̄u] > 0 by Lemma 3. Therefore, Pr[Au] > 0.

We will show that G is total-rainbow connected. Take any two vertices u and w in

V (G). If they are all in S, there is a total rainbow path connecting them in G[S]. If one

of them is in N1(S), say u, then u has a neighbor u′ in S. Thus, uu′Pw is a required path,

where P is a total rainbow path in G[S] connecting u′ and w. If one of them is in X ∪Z,

say u, and the other is in Y ∪Z, say w, then u has a neighbor u′ in S and w has a neighbor

w′ in S. Hence, uu′Pw′w is a required path, where P is a total rainbow path connecting

u′ and w′ in G[S]. If they are all in X, then there exists a u′ ∈ Y such that u and u′ are

connected by a single edge or a total rainbow path of length two. We know that u′ and w

are total-rainbow connected. Therefore, u and w are connected by a total rainbow path.

If one of them is in A∪B, say u, and the other is in A∪C, say w, then u has a neighbor u′

in X, and w has a neighbor w′ in Y . Thus, they are total-rainbow connected. If they are

all in B, by Claim 1 u has two neighbors u1 and u2 in X such that u1, u2, uu1 and uu2

are colored differently. Similarly, we also have that w has two neighbors w1 and w2 in X

such that w1, w2, ww1 and ww2 are colored differently. Hence, u and w are total-rainbow

connected. We can check that u and w are total-rainbow connected in all other cases.

Case 2. 6 ≤ δ ≤ √
n− 2− 2.

We partition X into two subsets X1 and X2. For any u ∈ X, if u has at least (δ + 1)2

neighbors in B, then u ∈ X1; otherwise, u ∈ X2. Similarly, we partition Y onto two

subsets Y1 and Y2. Note that |X1 ∪ Y1| ≤ n/(δ + 1) since G has less than n(1 + 1/(δ + 1))

edges. Partition B into two subsets B1 and B2. For any u ∈ B, if u has at least one

neighbor in X1, then u ∈ B1; otherwise, u ∈ B2. In a similar way, we partition C into

two subsets C1 and C2; see Figure 1(b).

For 16 ≤ δ ≤ √
n− 2 − 2, assume that C(δ) = 5; for 6 ≤ δ ≤ 15, assume that

C(δ) = e
3 log(δ3+2δ2+3)−3(log 3−1)

δ−3 − 2. Now we give a coloring to the edges and vertices of G.

Let k = 2|S| − 1 and T be a spanning tree of G[S]. Color the edges and vertices of T

with k distinct colors. Assign every [X,S] edge with color k + 1, every [Y, S] edge with

color k +2 and every edge in N1(S) with color k +3. Since every vertex in Z has at least

two neighbors in S, color one edge with k + 1 and all others with k + 2. Assign every
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[A,X] edge with color k + 3, every [A, Y ] edge with color k + 4 and every vertex of A

with color k + 5. Assign distinct colors to each vertex of X1 ∪ Y1 and C(δ) + 2 new colors

from {i1, i2, ..., iC(δ)+2} to the vertices of X2 such that each vertex of X2 chooses its color

randomly and independently from all other vertices of X2. Similarly, we assign C(δ) + 2

new colors to the vertices of Y2. For every vertex v ∈ B1, if v has at least two neighbors in

X1, color one edge with k + 6 and all others with k + 7; if v has only one neighbor in X1,

then it has another neighbor in X2 since S is a connected δ/3-strong 2-step dominating

set. Thus, color the edge incident with X1 with k +6 and all edges incident with X2 with

k +7. We assign C(δ)+2 colors from {j1, j2, ..., jC(δ)+2} to the edges between B2 and X2.

For every vertex u ∈ B2, let NX2(u) denote all the neighbors of u in X2. For every vertex

u′ ∈ NX2(u), if we color u′ with it (t ∈ {1, 2, ..., C(δ) + 2}), then color uu′ with jt. In a

similar way, we assign another C(δ) + 4 colors to the edges between C and Y . All other

edges and vertices of G are uncolored. Hence, the number of all colors we used is

k+ |X1∪Y1|+4C(δ)+17 ≤ 2

(
3n

δ + 1
− 2

)
−1+

n

δ + 1
+4C(δ)+17 =

7n

δ + 1
+4C(δ)+12.

We have the following claim for any u ∈ B2 (C2).

Claim 2. For any u ∈ B2 (C2), we have a coloring for the vertices in X2 (Y2) with

C(δ) + 2 colors such that there exist two neighbors u1 and u2 in NX2(u) (NY2(u)) that

receive different colors. Thus, the edges uu1 and uu2 are also colored differently.

Notice that every vertex u of B2 has at least δ/3 neighbors in X2 since S is a connected

δ/3-strong 2-step dominating set of G. Let Au denote the event that NX2(u) receives at

least two distinct colors. Fix a set X2(u) ⊂ NX2(u) with |X2(u)| = dδ/3e. Let Bu denote

the event that all vertices of X2(u) are colored the same. Therefore, Pr[Bu] ≤ (C(δ) +

2)−dδ/3e+1. Moreover, the event Bu is independent of all other events Bv for v 6= u but at

most ((δ +1)2− 1)dδ/3e of them. Since e · (C(δ)+ 2)−dδ/3e+1(((δ +1)2− 1)dδ/3e+1) < 1,

we have Pr[
∧

u∈B2
B̄u] > 0 by Lemma 3. Hence, we have Pr[Au] > 0.

Similarly, we can check that G is also total-rainbow connected.

The proof is now complete.
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