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Abstract The theory of entanglement-assisted quantum error-correcting codes
(EAQECCs) is a generalization of the standard stabilizer formalism. Any quaternary
(or binary) linear code can be used to construct EAQECCs under the entanglement-
assisted (EA) formalism. We derive an EA-Griesmer bound for linear EAQECCs,
which is a quantum analog of the Griesmer bound for classical codes. This EA-
Griesmer bound is tighter than known bounds for EAQECCs in the literature. For a
given quaternary linear code C, we show that the parameters of the EAQECC that EA-
stabilized by the dual of C can be determined by a zero radical quaternary code induced
from C, and a necessary condition under which a linear EAQECCmay achieve the EA-
Griesmer bound is also presented. We construct four families of optimal EAQECCs
and then show the necessary condition for existence of EAQECCs is also sufficient for
some low-dimensional linear EAQECCs. The four families of optimal EAQECCs are
degenerate codes and go beyond earlier constructions.What ismore, except four codes,
our [[n, k, dea; c]] codes are not equivalent to any [[n+ c, k, d]] standard QECCs and
have better error-correcting ability than any [[n + c, k, d]] QECCs.
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1 Introduction

Quantum error-correcting codes (QECCs) were extensively studied in the past two
decades since the pioneer works of Shor and Steane [1,2], for details please see [3–
10]. Themost widely studied class of quantum codes are binary stabilizer (or additive)
QECCs [6,7], which are also called standard (or regular) QECCs now [11–13]. Binary
stabilizer QECCs can be constructed from classical codes over finite fields F2 or
F4 with certain self-orthogonal properties [6–8], where Fq is the finite field with q
elements. Unfortunately, the need for a self-orthogonal parity check matrix presents
a substantial obstacle to importing the classical error-correcting theory into quantum
error control entirely, especially in the context of modern codes such as low-density
parity check codes [10,12].

In [12], Brun et al. devised the entanglement-assisted (EA) stabilizer formalism,
and this EA-stabilizer formalism includes the standard stabilizer formalism [6,7] as
a special case. They showed that if shared entanglement between the encoder and
decoder is available, classical linear quaternary (and binary) codes that are not self-
orthogonal can be transformed to EAQECCs. Following [12], there are a lot of papers
making further study of EAQECCs [13–28], and [13,19–26] show that entanglement
can improve the performance of EAQECCs.

An [[n, k, dea; c]] EAQECC encodes k information qubits into n channel qubits
with the help of c pairs of maximally entangled Bell states (ebits), and dea is the
minimum distance of the code. The code can correct up to � dea−1

2 � errors acting on
the n channel qubits. If c = 0, then an [[n, k, dea; c]] EAQECC is a standard quantum
code and is usually denoted as [[n, k, d]] where d = dea . Lai et al. constructed many
good EAQECCs of small lengths by encoding optimization procedure and showed that
entanglement can boost error-correcting ability of quantum codes [13,22]. A number
of their EAQECCs are not equivalent to any standard stabilizer code. An [[n, k, dea; c]]
EAQECC is not equivalent to any standard stabilizer code if there is no [[n + c, k,≥
dea]] standard QECC [13]. If there is no [[n + c, k,≥ dea]] standard QECC, then an
[[n, k, dea; c]] EAQECC has better error-correcting ability than standard QECC, and
this EAQECC achieves the maximum boost to error-correcting power from the c ebits;
otherwise, if there is an [[n + c, k,≥ dea]] standard QECC, then an [[n, k, dea; c]]
EAQECC may not be achieving the maximum boost to error-correcting power from
the c ebits.

EAQECCs have some advantages over standard QECCs for correcting errors in
quantum communication scenario. Except that, EAQECCs also have some usages in
quantum cryptography and in fault-tolerant quantum computation [29–32]. In [29],
using Calderbank–Shor–Steane (CSS) EAQECCs, Luo and Devetak demonstrated a
quantum key expansion (QKE) protocol, and this QKE has a potential advantage over
the best known quantum key distribution protocol of Bennett–Brassard 1984 (BB84)
protocol [30]. In [31], using EAQECCs constructed from classical finite geometry
low-density parity check (LDPC) codes, Hsu and Brun presented a QKE protocol with
enhanced performance compared to the original QKE protocol of Luo and Devetak.
In [32], Wilde and Fattal developed a version of the stabilizer formalism for quantum
error correction that is named as the bipartite stabilizer formalism, which extended
the EA-stabilizer formalism. Under this bipartite stabilizer formalism, a stabilizer
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code can be cut into two parts with the help of suitable ebits. They represented the
[[7, 1, 3]] Steane code as a bipartite quantum code and showed how this representation
gave a simplified, local encoding circuit. As a result, the simplified encoding circuit
improved the pseudothreshold for fault-tolerant quantum computation with the Steane
code under certain assumptions.

In [13,22,25,26], Lai et al. discussed the construction of optimal EAQECCs. An
[[n, k, dea; c]] EAQECC is optimal in the sense that dea is the highest achievable
minimum distance for given parameters n, k and c. To judge the optimality of an
[[n, k, dea; c]] EAQECC, people have deduced some bounds for EAQECCs, such as
the EA-Singleton bound [12]; the EA-Hamming bound for nondegenerate EAQECCs
[11]; the EA-linear programming bound; and the EA-Plotkin bound [22].

An [[n, k, dea; c]] is a linear EAQECC if it is constructed from a quaternary linear
code. In [25], two of us strengthen the EA-Plotkin bound of [22] in the case of linear
EAQECCs and construct three families of linear EAQECCswith very good parameters
fromquaternary linear codes of dimensions three and four. Using the linear EA-Plotkin
bound, we can show some of these linear EAQECCs are optimal codes since they
saturate this linear EA-Plotkin bound. Yet there are alsomany linear EAQECCswhose
optimality still cannot be determined by the aforementioned bounds for EAQECCs
[11,12,22,23,25]. Reference [26] shows the EA-quantum Hamming bound does not
hold asymptotically for degenerate EAQECCs. Hence, we need to find tighter bound
for EAQECCs.

In this paper, we will derive a Griesmer bound for linear EAQECCs, which is a
quantumanalog of theGriesmer bound for classical codes [33–36] and a generalization
of the Griesmer bound for linear QECCs [9].We also obtain a relation between a linear
EAQECC and a zero radical quaternary linear code. Combining these two results
allows us to judge optimality of known linear EAQECCs which cannot be judged by
other bounds for EAQECCs. Then, we construct four families of linear EAQECCs
from quaternary linear codes, and all these EAQECCs are optimal codes according to
the EA-Griesmer bound, and some of them attain the EA-Griesmer bound.

This paper is organized as follows. Section 2 reviews some facts on quaternary
codes and linear EAQECCs. In Sect. 3, we present the EA-Griesmer bound, discuss
tightness of our bound and known bounds for EAQECCs, and deduce a necessary
condition on existence of linear EAQECCs. Section 4 gives explicit constructions of
four families of linear EAQECCs, discusses the optimality of these codes, and then
shows the necessary condition on existence of linear EAQECCs is also sufficient for
some kinds of EAQECCs, and equivalence of our EAQECCs with standard stabilizer
codes is also discussed. Section 5 gives discussion and conclusion.

2 Preliminaries

In order to prove the EA-Griesmer bound and present our results on constructing
linear EAQECCs, we briefly review some basic concepts on quaternary codes, linear
EAQECCs. For more details, please see [7,12] and [25].

Let F4 = {0, 1, ω,� } be the field of four elements, where� = 1+ω = ω2, ω3 =
1, and the conjugation of x is defined by x = x2 for x ∈ F4. Let Fn

4 be the n-
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dimensional row vector space over F4. An m-dimensional subspace C of Fn
4 is called

an m-dimensional code of length n and is denoted as C = [n,m]4; if the Hamming
distance of C is d, then it is denoted as C = [n,m, d]4. For u = (u1, u2, . . . , un)
and v = (v1, v2, . . . , vn) ∈ Fn

4, their Hermitian inner product is defined as (u, v)h =∑n
1 u jv j = ∑n

1 u jv
2
j . If C is an [n,m]4 linear code, its Hermitian dual is defined as

C⊥h = {u ∈ Fn
4 | (u, v)h = 0 for all v ∈ C}, and C⊥h is an [n, n − m]4 linear code.

In [12], Brun et al. said that an EAQECC Qea = [[n, 2m − n + c, d; c]] can be
constructed from an [n,m, d]4 linear code C, the EA-stabilizer of Qea is C⊥h , and
Qea is called a linear EAQECC in [25]. This statement was accurately specified as the
following theorem.

Theorem 2.1 [25] If C is an [n,m, d]4 linear code and R(C) = C ∩ C⊥h forms
an [n, r, d ′]4 linear code, then C⊥h EA-stabilizes an EAQECC Qea with parameters
[[n, 2m − n + c, dea; c]] = [[n,m − r, dea; n − m − r ]], where dea = min{wt (α) |
α ∈ C \ R(C)} ≥ d. In particular, if d ′ > d, thenQea = [[n,m − r, d; n −m − r ]] is
a nondegenerate EAQECC.

For the determination of dea and the nondegenerate or degenerate property ofQea ,
please see Section 3 of [25]. To simplify statements in following sections, we give
some definitions and results on quaternary linear codes.

Definition 2.2 Suppose C is an [n,m]4 code, R(C) = C ∩ C⊥h is called radical code
of C (or C⊥h ), and its dimension r = dimR(C) over F4 is called radical dimension of
C. An [n,m]4 code C with radical dimension r is denoted as [n,m](r)4 . An [n,m](0)4
code C is called a zero radical code since R(C) = {0}.
Definition 2.3 Let 0 ≤ r ≤ m ≤ n. An [n,m, d](r)4 code is called optimal with given

radical dimension r if there is no [n,m,≥ d + 1](r)4 code.

In [37], some low-dimensional optimal zero radical codes are determined as follows.

Lemma 2.4 [37]

(1) If n = 5t + i ≥ 2 with 0 ≤ i ≤ 4, then the following codes [5t, 2, 4t −1](0)4 , [5t +
1, 2, 4t](0)4 , [5t + 2, 2, 4t + 1](0)4 , [5t + 3, 2, 4t + 2](0)4 , [5t + 4, 2, 4t + 2](0)4 are
optimal zero radical codes.

(2) If n = 21t + i ≥ 6 with 0 ≤ i ≤ 20, then the following codes are optimal zero
radical codes:
(i) [21t + i, 3, 16t + i − 2](0)4 for t ≥ 1 and 1 ≤ i ≤ 5,

(ii) [21t + i, 3, 16t + i − 3](0)4 for 6 ≤ i ≤ 9,

(iii) [21t + i, 3, 16t + i − 4](0)4 for 10 ≤ i ≤ 13,

(iv) [21t + i, 3, 16t + i − 5](0)4 for 15 ≤ i ≤ 18,

(v) [21t + i, 3, 16t + i − 6](0)4 for 19 ≤ i ≤ 21.

The Griesmer bound is a well-known bound for classical linear codes. It says that
[29–32]: If an [n, k, d]q linear code over Fq exists, then

gq(k, d) =
k−1∑

i=0

⌈
d

qi

⌉

≤ n,
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where 
x� denotes the smallest integer greater than or equal to x . In [38], Sarvepalli
et al. derived a quantum Griesmer bound for CSS quantum codes (a special kind
of stabilizer codes) and pointed out that a similar Griesmer bound for linear standard
QECC can be obtained by their approach. In fact, a Griesmer bound for linear standard
QECC can also be deduced from Lemma 4 of [9] as follows:

An [[n, k, d]] linear QECC satisfies the following bound of Griesmer type [9]:

gQ(k, d) =
k−1∑

i=0

⌈
d

4i

⌉

≤ n + k

2
. (1)

Notation 1 In the following sections, we use [n,m] and [n,m](r) to denote [n,m]4
code and [n,m](r)4 code for short, respectively. In each generatormatrix of a quaternary
linear code, we use 2 and 3 to represent ω and � , respectively. For a matrix P , the
conjugate transpose of P is denoted as P†, and the juxtaposition (P, P, . . . , P) of
s-copies of P is denoted as sP . We judge the optimality of linear EAQECCs only by
the linear EA-Griesmer bound.

Let 1m = (1, 1, · · · , 1) and 0m = (0, 0, · · · , 0) be the all one vector and the all
zero vector of length m, respectively. For k ≥ 2, let Nk = 4k−1

3 . Construct

S2 =
(
0 1 1 1 1
1 0 1 2 3

)

, S3 =
(
S2 02×1 S2 S2 S2
05 1 15 2 · 15 3 · 15

)

,

. . . ,

Sk+1 =
(

Sk 0Tk Sk Sk Sk
0Nk 1 1Nk 2 · 1Nk 3 · 1Nk

)

.

Then S2S
†
2 = 0, S3S

†
3 = 0 and Sk S

†
k = 0. From [36], we know S2 generates the

[2,4,5] Simplex code with weight polynomial 1 + 15y4, S3 generates the [3,16,21]
Simplex code with weight polynomial 1 + 63y16, and Sk generates the [Nk, k, 4k−1]
Simplex code with weight polynomial 1 + (4k − 1)y4

k−1
.

3 The EA-Griesmer bound for linear EAQECCs

In this section, we will prove an EA-Griesmer bound for linear EAQECCs based on
Theorem 2.1, and this result is inspired by the results of [9] for linear standard QECCs
and that of [38] for CSS stabilizer codes. Then, we compare this bound with known
upper bounds for EAQECCs. Using this EA-Griesmer bound, one can determine opti-
mality of some known linear EAQECCs that cannot be judged by previously known
bounds.

Theorem 3.1 (Linear EA-Griesmer bound) Let k ≥ 1 and gea(k, dea) = ∑k−1
i=0 
 dea

4i
�.

If Qea = [[n, k, dea; c]] is a linear EAQECC, then

gea(k, dea) ≤ n + c + k

2
. (2)
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Or equivalently, n ≥ gea(k, dea) + r , where r is the radical dimension of the linear
EA-stabilizer of Qea.

The bound in Theorem 3.1 is called EA-Griesmer bound for linear EAQECCs. An
EAQECC achieving this bound is called a Griesmer EAQECC.

Proof Let C⊥h be linear EA-stabilizer ofQea . Suppose C is an [n,m] linear code over
F4 and R(C) = C ∩ C⊥h forms an [n, r ]4 linear code. According to Theorem 2.1,
Qea = [[n, k, dea; c]] = [[n,m − r, dea; n − (m + r)]], where r = n−c−k

2 .

According to the equivalence of quaternary codes given by [40], without loss of
generality, we can assume R(C) is generated by GR = (Ir X) and C is generated by

G =
(

Ir X
0k×r B1

)

. Let (0k×r B1) generates a codeB and B1 generates a code C1. Then
d(B) = d(C1) = d1 for some d1, and C1 = [n − r, k, d1] = [(n + k + c)/2, k, d1].

Since B ⊆ C \ R(C), one can deduce dea ≤ d(B) = d(C1) = d1. From the
Griesmer bound for quaternary linear codes, one can deduce gea(k, dea) ≤ g4(k, d1) =∑k−1

i=0 
 d1
4i

� ≤ n+c+k
2 = n − r . Hence the theorem holds.

It is not difficult to show that the code C1 = [n − r, k, d1] = [(n + k + c)/2, k, d1]
given in the proof of Theorem 3.1 is a zero radical code, and dea ≤ d1. We call C1
a reduced code of C. From the proof of Theorem 3.1, we can determine the minimal
distance of linear EAQECC and give a necessary condition under which a linear
EAQECC may achieve the EA-Griesmer bound.

Theorem 3.2 Let k ≥ 1. If there is a Qea = [[n, k, dea; c]] linear EAQECC, then
there must be a zero radical [(n + k + c)/2, k,≥ dea] linear code. Especially, if Qea

achieves the EA-Griesmer bound, then there is a zero radical [(n + k + c)/2, k, d] =
[(n + k + c)/2, k, dea] code achieving the classical Griesmer bound.

In next section, we will show the necessary condition in this theorem is also sufficient
for d large enough.

Remark 1 If R(C) = {0}, then c + k = n and our bound is reduced into the classical
Griesmer bound for quaternary linear codes; if R(C) 
= {0}, then c + k < n and
this linear EA-Griesmer is tighter than the classical Griesmer bound; if c = 0, then
the EA-Griesmer bound is reduced into the Griesmer bound (1) for linear QECCs.
If k = 1, this EA-Griesmer bound is the same as the EA-Singleton bound and the
linear EA-Plotkin bound. For k ≥ 2, this EA-Griesmer bound is tighter than the linear
EA-Plotkin (and the EA-Plotkin) bound [22,25], also tighter than the EA-Singleton
bound and the EA-linear programming bound.

Example 1 If n = 15, an [[n, 2, dea; n − 10]] code should has dea ≤ 10 according to
the EA-Singleton bound, and dea ≤ 9 according to the EA-linear programming bound
and the EA-Hamming bond. Yet dea ≤ 8 according to the EA-Griesmer bound. We
will show dea can achieve 8 in Sect. 4.

Using the EA-Griesmer bound, Theorem 3.2 and Lemma 2.4, one can show that all
the EAQECCs constructed in [25] are optimal codes, and the Theorems 4.1–4.3 in [25]
can be improved and restated as following Corollaries 3.3, 3.4 and 3.5, respectively.
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Corollary 3.3 Let n = 5s + i ≥ 7 and 0 ≤ i ≤ 4. If i = 3, 4, then there are
[[n, 2, dea; n−4]] optimal EAQECCs achieving theEA-Griesmer bound. If i = 0, 1, 2,
then there are optimal [[n, 2, dea; n − 4]] codes with lengths one above the EA-
Griesmer bound, i.e., n = gea(2, dea) + 2.

Corollary 3.4 Let t ≥ 1 and n = 5t + i ≥ 7 for 1 ≤ i ≤ 5. If i = 4, 5, then
there are [[n, 2, dea; n − 6]] optimal EAQECCs achieving the EA-Griesmer bound.
If i = 1, 2, 3, then there are optimal [[n, 2, dea; n − 6]] EAQECCs with lengths one
above the EA-Griesmer bound, i.e., n = gea(2, dea) + 3.

Corollary 3.5 Let n = 21t + i ≥ 8 and 0 ≤ i ≤ 20.

(1) If i = 4, 5, 6, 9, 10, 14, 19, then there are optimal EAQECCs [[n, 3, dea; n − 5]]
achieving the EA-Griesmer bound.

(2) If i = 0, 1, 7, 8, 11, 12, 13, 15, 16, 17, 18, 20, there are optimal [[n, 3, dea; n −
5]] EAQECCs with lengths one above the EA-Griesmer bound.

(3) If i = 2, 3, there are optimal [[n, 3, dea; n−5]]EAQECCswith lengths two above
the EA-Griesmer bound.

Remark 2 For n = 21t + 10 with t ≥ 0, the EAQECC of length n constructed in
Theorem 4.3 of [25] should be [[21t + 10, 3, 16t + 6; 21t + 5]] rather than [[21t +
10, 3, 16t + 5; 21t + 5]].

4 Construction of linear EAQECCs

In this section,wewill construct four families of EAQECCswith parameters [[n, 2; n−
8]], [[n, 2; n − 10]], [[n, 3; n − 7]] and [[n, 3; n − 9]] for each n ≥ 12, all of these
EAQECCs are optimal codes, and some of these EAQECCs attain the linear EA-
Griesmer bound. Combining these four families of EAQECCs and the results of [25]
and [37], we can show the necessary condition of Theorem 3.2 for EA-Griesmer codes
is also sufficient.

Our method of constructing EAQECCs is based on Theorem 2.1 and similar to that
used in [25] and differs from those of [13,23,24]. We will give our constructions in
four cases.
Case A. Construction of [[n, 2; n − 8]] EAQECC

In this case, we discuss construction of [[n, 2, dea; n− 8]] code from [n, 5](3) code
Cn , i.e., Cn with dimR(Cn) = 3. Let G = G5,10 as follows:

G =

⎛

⎜
⎜
⎜
⎜
⎝

1001100001
0100011100
0010001110
0001010111
0000121321

⎞

⎟
⎟
⎟
⎟
⎠

. Then GG† =

⎛

⎜
⎜
⎜
⎜
⎝

00000
00000
00000
00013
00020

⎞

⎟
⎟
⎟
⎟
⎠

.

Hence G5,10 generates a code C10 with dimR(C10) = 3, R(C10) is generated by the
first three rows of G5,10, and its weight polynomial is WR(z) = 1 + 12z4 + 6z6 +
27z8 + 18z10.
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For each given matrix A2,l of size 2 × l, denote A5,l =
(
03×l

A2,l

)

and construct

G5,n = (G5,10 | A5,l) for n = 10 + l. By choosing suitable A2,l , we can make G5,n
generates a code Cn such that R(Cn) be generated by the first three rows of G5,n and
its weight polynomial be WR(z) = 1 + 12z4 + 6z6 + 27z8 + 18z10.

Theorem 4.1 Let t ≥ 2 and n = 5t + i ≥ 10 for 0 ≤ i ≤ 4. If i = 0, 1, then there are
[[n, 2, n − t − 3; n − 8]] EAQECCs achieving the EA-Griesmer bound. If i = 2, 3, 4,
then there are [[n, 2, n − t − 4; n − 8]] EAQECCs with n = 4+ gea(2, d), and these
codes are optimal and have lengths one above the EA-Griesmer bound.

Proof Let A2,1 =
(
1
3

)

, A2,2 =
(
10
31

)

, A2,3 =
(
110
311

)

, A2,4 =
(
1101
3112

)

.

For t ≥ 3, construct A2,5(t−2)+i = (A2,i | (t − 2)S2) for 0 ≤ i ≤ 4,G5,5t+i =
(G5,10 | A5,5(t−2)+i ) for n = 5t + i .

For n = 5t + i ≥ 10 with 0 ≤ i ≤ 4, let Cn be the code generated by G5,n . It is
easy to check that Cn satisfies dimR(Cn) = 3, R(Cn) is generated by the first three
rows of G5,n , and its weight polynomial is WR(z) = 1+ 12z4 + 6z6 + 27z8 + 18z10.
Since the codes with generator matricesG5,10,G5,11,G5,12,G5,13,G5,14 haveweight
polynomials

W5,10(z) = 1 + 12z4 + 60z5 + 198z6 + 168z7 + 363z8 + 156z9 + 66z10,

W5,11(z) = 1 + 12z4 + 114z6 + 144z7 + 339z8 + 192z9 + 174z10 + 48z11,

W5,12(z) = 1 + 12z4 + 30z6 + 84z7 + 267z8 + 216z9 + 282z10

+ 84z11 + 48z12,

W5,13(z) = 1 + 12z4 + 6z6 + 24z7 + 183z8 + 168z9 + 330z10 + 168z11

+ 108z12 + 24z13,

W5,14(z) = 1 + 12z4 + 6z6 + 87z8 + 120z9 + 258z10 + 240z11 + 252z12

+ 24z13 + 24z14,

respectively. Hence, for n = 5t + i ≥ 10 and 0 ≤ i ≤ 4, the code Cn has weight
polynomial W5,n(z) = WR(z) + (W5,10+i (z) − WR(z))z4(t−2) for 0 ≤ i ≤ 4. Thus,
for n = 5t+ i, C⊥h

n EA-stabilizes an [[n, 2, dea(n); n−8]] EAQECC, where dea(n) =
4t−3, 4t−2, 4t−2, 4t−1, 4t , while n = 5t, 5t+1, 5t+2, 5t+3, 5t+4, respectively.

It is easy to check that the [[5t, 2, 4t − 3; 5t − 8]] and [[5t + 1, 2, 4t − 2; 5t − 7]]
codes achieve the EA-Griesmer bound; the [[5t+2, 2, 4t−2; 5t−6]], [[5t+3, 2, 4t−
1; 5t − 5]] and [[5t + 4, 2, 4t; 5t − 4]] codes are optimal EAQECCs and have lengths
one above the EA-Griesmer bound.

Case B. Construction of [[n, 2; n − 10]] EAQECC
In this case, we discuss construction of [[n, 2, dea; n − 10]] code from [n, 6](4)

code Cn with dimR(Cn) = 4. Let G = G6,12 as follows:
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G6,12 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

010100020002
101000200020
100010002020
010001000202
100100202202
010000313133

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. Then GG† =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

000000
000000
000000
000000
000001
000011

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Hence G6,12 generates a code C12 with dimR(C12) = 4, R(C12) is generated by the
first four rows of G6,12, and its weight polynomial is WR(z) = 1 + 18z4 + 12z6 +
81z8 + 108z10 + 36z12.

For each given matrix B2,l of size 2 × l, denote B6,l =
(
04×l

B2,l

)

and construct

G6,n = (G6,12 | B6,l) for n = 12 + l. By choosing suitable B2,l , we can make G6,n
generate a code Cn, R(Cn) is generated by the first four rows of G6,n and with weight
polynomial WR(z) = 1 + 18z4 + 12z6 + 81z8 + 108z10 + 36z12. Thus we have the
following theorem.

Theorem 4.2 Let t ≥ 2 and n = 5t + i ≥ 12 for 0 ≤ i ≤ 4. If i = 1, 2, then there are
[[n, 2, n− t −4; n−10]] EAQECCs achieving the EA-Griesmer bound. If i = 0, 3, 4,
then there are [[n, 2, n− t − 5; n− 10]] EAQECCs with n = 5+ gea(2, d), and these
codes are optimal and have lengths one above the EA-Griesmer bound.

Proof Let B2,1 =
(
0
1

)

, B2,2 =
(
11
02

)

, B2,3 =
(
111
112

)

, B2,4 =
(
0111
1013

)

.

For t ≥ 3, construct B2,5(t−2)+i = (B2,i | (t − 2)S2) for 0 ≤ i ≤ 4,G6,5t+i =
(G6,12 | B6,5(t−2)+i−2) for n = 5t + i .

For n = 5t+ i ≥ 12 with 0 ≤ i ≤ 4, let Cn be the code generated byG6,n . It is easy
to check that Cn satisfies dimR(Cn) = 4, R(Cn) is generated by the first four rows of
G6,n and with weight polynomial 1+18z4+12z6+81z8+108z10 +36z36. Since the
codes with generator matrices G6,12,G6,13,G6,14, G6,15,G6,16,G6,17,G6,18,G6,19
have weight polynomials

W6,12(z) = 1 + 18z4 + 276z6 + 288z7 + 873z8 + · · · + 204z12,

W6,13(z) = 1 + 18z4 + 60z6 + 216z7 + 657z8 + 504z9 + · · · + 168z13,

W6,14(z) = 1 + 18z4 + 12z6 + 108z7 + 381z8 + 396z9 + · · · + 84z14,

W6,15(z) = 1 + 18z4 + 12z6 + 333z8 + 156z9 + 984z10 + · · · + 84z15,

W6,16(z) = 1 + 18z4 + 12z6 + 81z8 + 156z9 + 504z10 + · · · + 84z16,

W6,17(z) = WR(z) + (W5,12(z) − WR(z))z4,

W6,18(z) = WR(z) + (W5,13(z) − WR(z))z4,

W6,19(z) = WR(z) + (W5,14(z) − WR(z))z4,

respectively.
Hence, for n = 5t + i ≥ 15 and 0 ≤ i ≤ 4, the code Cn has weight polynomial

W5,n(z) = WR(z) + (W5,15+i (z) − WR(z))z4(t−3) for 0 ≤ i ≤ 4. Thus, for n =
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5t + i, C⊥h
n EA-stabilizes an [[n, 2, dea(n); n − 10]] EAQECC, where dea(n) = 4t −

4, 4t−3, 4t−2, 4t−2, 4t−1, while n = 5t, 5t+1, 5t+2, 5t+3, 5t+4, respectively.
It is easy to check that the [[12, 2, 6; 2]], [[5t + 1, 2, 4t − 3; 5t − 9]] and

[[5t + 2, 2, 4t − 2; 5t − 8]] codes for t ≥ 3 achieve the EA-Griesmer bound; the
[[13, 2, 6; 3]], [[14, 2, 7; 4]], [[5t, 2, 4t −4; 5t −10]], [[5t +3, 2, 4t −2; 5t −7]] and
[[5t + 4, 2, 4t − 1; 5t − 6]] codes for t ≥ 3 are optimal EAQECCs and have lengths
one above the EA-Griesmer bound.

Case C. Construction of [[n, 3; n − 7]] EAQECC
In this case, we discuss construction of [[n, 3, dea; n− 7]] code from [n, 5](2) code

Cn with dimR(Cn) = 2. Let G = G5,8 as follows:

G =

⎛

⎜
⎜
⎜
⎜
⎝

10111000
01000111
00101123
00231220
00303220

⎞

⎟
⎟
⎟
⎟
⎠

. Then GG† =

⎛

⎜
⎜
⎜
⎜
⎝

00000
00000
00102
00011
00310

⎞

⎟
⎟
⎟
⎟
⎠

.

Hence G5,8 generates a code C8 with dimR(C8) = 2, and R(C8) is generated by the
first two rows of G5,8, and its weight polynomial is WR(z) = 1 + 6z4 + 9z8.

Denote D5,21 =
(
02×21
S3

)

and B5,l =
(
02×l

B3,l

)

for a given matrix B3,l with 0 ≤
l ≤ 20. For each n = 8+ l+21t ≥ 9, we will construct aG5,n = (G5,8 | B5,l | t D5,l)

with suitable B3,l , such that G5,n generate a code Cn, R(Cn) is generated by the first
two rows ofG5,n andwithweight polynomialWR(z) = 1+6z4+9z8, and theminimal
weight dea of Cn \ R(Cn) is as large as possible. Using C⊥h

n as EA-stabilizer, one can
obtain an [[n, 3, dea; n − 7]] EAQECC. Our results are the following Theorem 4.3;
for its proof please see the Appendix A.

Theorem 4.3 Let n = 21s + i ≥ 9 with 0 ≤ i ≤ 20.

(1) If n = 21t+i ≥ 9 and i = 5, 6, 7, 10, 11, 15, 20, then there are [[n, 3, dea; n−7]]
codes achieving the EA-Griesmer bound.

(2) If n = 21t + i ≥ 9 and i = 0, 1, 2, 8, 9, 12, 13, 14, 16, 17, 18, 19, then there are
optimal [[n, 3, dea; n − 7]] EAQECCs, and these codes have lengths one above
the EA-Griesmer bound.

(3) If n = 21t + i ≥ 9 and i = 3, 4, then there are optimal [[n, 3, dea; n − 7]]
EAQECCs, and these codes have lengths two above the EA-Griesmer bound.

Case D. Construction of [[n, 3; n − 9]] EAQECC
In this case, we discuss construction of [[n, 3, dea; n − 9]] code from [n, 6](3) code

Cn with dimR(Cn) = 3. Let G = G6,12 as follows:

G =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

100000000111
010110001000
001001110000
000201322303
000030113022
000232311000

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. Then GG† =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

000000
000000
000000
000103
000001
000210

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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Hence G6,12 generates a code C12 with dimR(C12) = 3, R(C12) is generated by the
first three rows of G6,12, and its weight polynomial is WR(z) = 1+9z4+27z8+27z12.

For each given matrix D3,l of size 3 × l, denote D6,l =
(
03×l

D3,l

)

and construct

G6,n = (G6,12 | D6,l) for n = 12 + l. By choosing suitable D3,l , we will construct a
G6,n such that G6,n generates a code Cn, R(Cn) is generated by the first three rows of
G6,n and with weight polynomial WR(z) = 1+ 9z4 + 27z8 + 27z12, and the minimal
weight dea of Cn \ R(Cn) is as large as possible. Using C⊥h

n as EA- stabilizer, one can
obtain an [[n, 3, dea; n − 9]] EAQECC. Our results are the following Theorem 4.4;
for its proof please see the Appendix B.

Theorem 4.4 Let n = 21t + i ≥ 12 and 0 ≤ i ≤ 20.

(1) If n = 21t+i ≥ 12 and i = 0, 6, 7, 8, 11, 12, 16, then there are [[n, 3, dea; n−9]]
EAQECCs achieving the EA-Griesmer bound.

(2) If n = 21t + i ≥ 12 and i = 1, 2, 3, 9, 10, 13, 14, 15, 17, 18, 19, 20, then there
are optimal [[n, 3, dea; n−9]]EAQECCs, and these codes have lengths one above
the EA-Griesmer bound.

(3) If n = 21t + i ≥ 12 and i = 4, 5, then there are optimal [[n, 3, dea; n − 9]]
EAQECCs, and these codes have lengths two above the EA-Griesmer bound.

Summarizing the above four theorems and the results of [25] and [36], we can show
the conditions given in Theorem 3.2 are also sufficient for some families of EAQECCs.

Theorem 4.5 Let0 ≤ r ≤ 4, 1 ≤ k ≤ 3andr+k ≤ 6. If there is a quaternary [s, k, d]
optimal zero radical code and d is large enough, then there is also an [[n, k, dea; c]] =
[[s + r, k, d; s − k − r ]] EAQECCs. If the classical [s, k, d] achieves the classical
Griesmer bound, then the [[n, k, dea; c]] EAQECCs achieves the EA-Griesmer bound.
Proof We will prove the theorem in four steps.

(1) If r = 0 and 1 ≤ k ≤ 3, from [36] we know that an [n, k, d] zero radical code
gives an [[n, k, dea; c]] = [[n, k, d; n − k]] maximal entanglement EAQECC.
And, if the zero radical code achieves the classical Griesmer bound, then the
[[n, k, d; n − k]] EAQECC achieves the EA-Griesmer bound.

(2) If k = 1 and 1 ≤ r ≤ 4, let d ≥ 13 be odd. Then 1d = (1, 1, · · · , 1) generates
a [d, 1, d] zero radical code and it achieves the classical Griesmer bound, and
Yd+1 = (1, 1, · · · , 1, 0) generates a [d + 1, 1, d] optimal zero radical code.

Construct

G2,d+1 =
(
1123 0d−3
0111 1d−3

)

,G3,d+2 =
⎛

⎝
10000 123 0d−6
01123 000 0d−6
00111 111 1d−6

⎞

⎠ ,

G4,d+3 =

⎛

⎜
⎜
⎝

100000 000 123 0d−9
010000 123 000 0d−9
001123 000 000 0d−9
000111 111 111 1d−9

⎞

⎟
⎟
⎠ ,G5,d+4 =

⎛

⎜
⎜
⎜
⎜
⎝

1000000 000 000 123 0d−12
100000 000 123 000 0d−12
010000 123 000 000 0d−12
001123 000 000 000 0d−12
000111 111 111 111 1d−12

⎞

⎟
⎟
⎟
⎟
⎠

.
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Let Gm,s generates a code Cm,s for 2 ≤ m = r + 1, s = d + r . Then Cm,s has
radical dimension r . It is not difficult to check that Cm,s gives an [[n, k, dea; c]] =
[[d + r, 1, d; d − 1 − r ]] EAQECC achieves the EA-Griesmer bound.

Let Em,s+1 = (Gm,s | 0Tm) and Dm,s+1 be the code generated by Em,s+1 for
2 ≤ m = r + 1, s = d + r . Then Dm,s+1 has radical dimension r . It is not difficult
to check that Cm,s gives an [[n, k, dea; c]] = [[d + r + 1, 1, d; d − r ]] EAQECC, and
this code has length one above the EA-Griesmer bound. Hence, the theorem holds for
k = 1 and 1 ≤ r ≤ 4.

(3) Let k = 2. Theorems 4.1 and 4.2 of [25] have shown the theorem holds for
1 ≤ r ≤ 2 and k = 2. According to Theorems 4.1 and 4.2 of this section, we can
deduce the theorem also holds for 3 ≤ r ≤ 4 and k = 2.

(4) Let k = 3. Theorem 4.3 of [25] has shown the theorem holds for r = 1 and k = 3.
According to Theorems 4.3 and 4.4 of this section, we can deduce the theorem
also holds for 2 ≤ r ≤ 3 and k = 3.

Summarizing the above, the theorem follows.
Almost all the [[n, k, dea; c]] codes given above are not equivalent to any [[n +

c, k, d]] QECCs, and this can be proved by the following propositions.

Proposition 4.6 If n ≥ 14, then all the [[n, 2, dea; c]] EAQECCs constructed in The-
orems 4.1 and 4.2 are not equivalent to any [[n + c, 2, d]] QECCs.
Proof Let dea(n, c) be the minimum distance of the [[n, 2, dea; c]] codes given in
Theorems 4.1 and 4.2, and dmax (n + c) the minimum distance of optimal [[n + c, 2]]
QECC. From Theorem 15 of [8], we know dmax (n + c) ≤ 2� n+c+1

6 � + 2. Thus, we
only need to check dea(n, c) − dmax (n + c) > 0.

(1) For n = 5t + i ≥ 14 and c = n − 8, the EAQECCs [[n, 2, dea; c]] constructed in
Theorem 4.1 have parameters [[5t + i, 2, 4t + dea(i); 5t + i − 8]], where

dea(i) =
{
i − 3, 0 ≤ i ≤ 1,
i − 4, 2 ≤ i ≤ 4.

Since dmax (n + c) ≤ 2� (10t+2i−7)
6 � + 2 ≤ (10t+2i−1)

3 , one can deduce dea(n) −
dmax (n+c) ≥ (2t+1−2i)

3 +dea(i) > 0 for t ≥ 5.Hence the [[n, 2, dea(n); n−8]] =
[[5t+i, 2, 4t+dea(i); 5t+i−8]]EAQECCsare not equivalent to any [[n+c, 2, d]]
QECCs for n = 5t + i with t ≥ 5.

For n = 5t + i ≥ 14 and t ≤ 4, according to the code table of [41], one can check all
our [[n, 2, dea; n − 8]] codes are not equivalent to any [[n + c, 2, d]] QECCs either.
Thus the proposition holds for all [[n, 2, dea; n − 8]] in Theorem 4.1.
(2) For n = 5t + i ≥ 14 and c = n − 10, the EAQECCs [[n, 2, dea; c]] constructed

in Theorem 4.2 have parameters [[5t + i, 2, 4t + dea(i); 5t + i − 10]], where

dea(i) =
{
i − 4, 0 ≤ i ≤ 2,
i − 5, 3 ≤ i ≤ 4.

Since dmax (n+c) ≤ 2� (10t+2i−9)
6 �+2 ≤ (10t+2i−3)

3 , one can deduce dea(n, c)−
dmax (n + c) ≥ (2t+3−2i)

3 + dea(i) > 0 for t ≥ 5. Hence the [[n, 2, dea(n); n −
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10]] = [[5t + i, 2, 4t + dea(i); 5t + i − 10]] EAQECCs are not equivalent to any
[[n + c, 2, d]] QECCs for n = 5t + i with t ≥ 5.

For n = 5t + i ≥ 14 and t ≤ 4, according to the code table of [41], one can check all
our [[n, 2, dea; n − 10]] codes are not equivalent to any [[n + c, 2, d]] QECCs either.
Thus the proposition holds for all [[n, 2, dea; n − 10]] with n ≥ 14.

Summarizing the previous discussions, the proposition follows.

Proposition 4.7 If n ≥ 14, then all the [[n, 3, dea; c]] EAQECCs constructed in The-
orems 4.3 and 4.4 do not equivalent to any [[n + c, 3, d]] QECCs.
Proof Let dea(n, c) be the minimum distance of the [[n, 3, dea; c]] given in Theo-
rems 4.3 and 4.4, dmax (n + c) the minimum distance of optimal [[n + c, 3]] QECCs.
From Theorem 15 of [8], we know dmax (n + c) ≤ 2� n+c+1

6 � + 2.

(1) For n = 21t + i ≥ 10 and c = n − 7, the EAQECCs [[n, 3, dea; c]] constructed
in Theorem 4.3 have parameters [[21t + i, 3, 16t + dea(i); 21t + i − 7]], where

dea(i) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

i − 3, 0 ≤ i ≤ 2,
i − 4, 3 ≤ i ≤ 7,
i − 5, 8 ≤ i ≤ 11,
i − 6, 12 ≤ i ≤ 15,
i − 7, 16 ≤ i ≤ 20.

Since dmax (n + c) ≤ 2� 2(21t+i−3)
6 � + 2 ≤ 14t + 2i

3 , one can deduce dea(n, c) −
dmax (n + c) ≥ 2t + dea(i) − 2i

3 ≥ 2t − 3 > 0 for t ≥ 2. This implies the
[[21t + i, 3, 16t + dea(i); 21t + i − 7]] EAQECCs are not equivalent to any
[[n + c, 3, d]] QECCs for n = 21t + i with t ≥ 2.

For n = 21t + i ≥ 14 and t ≤ 1, according to the code table of [41], we can derive
all our [[n, 3, dea; n − 7]] codes for n ≥ 14 are not equivalent to any [[n + c, 3, d]]
QECCs either.

(2) For n = 21t + i ≥ 12 and c = n − 9, the EAQECCs [[n, 3, dea; c]] constructed
in Theorem 4.4 have parameters [[21t + i, 3, 16t + dea(i); 21t + i − 9]], where

dea(i) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

i − 4, 1 ≤ i ≤ 3,
i − 5, 4 ≤ i ≤ 8,
i − 6, 9 ≤ i ≤ 12,
i − 7, 13 ≤ i ≤ 16,
i − 8, 17 ≤ i ≤ 21.

Since dmax (n+c) ≤ 2� 2(21t+i−4)
6 �+2 ≤ 14t+ 2i−2

3 , one can deduce dea(n, c)−
dmax (n + c) ≥ 2t + dea(i) − 2i−2

3 ≥ 2t − 3 > 0 for t ≥ 2. Hence the [[21t +
i, 3, 16t +dea(i); 21t + i −9]] EAQECCs are not equivalent to any [[n+c, 3, d]]
QECCs for n = 21t + i with t ≥ 2.
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For n = 21t + i ≥ 14 and t ≤ 1, according to the code table of [41], we can derive
all our [[n, 3, dea; n − 7]] codes for n ≥ 14 are not equivalent to any [[n + c, k, d]]
QECCs either.

Summarizing the previous discussions, the proposition holds.

5 Discussion and concluding remarks

In this paper, we have derived an EA-Griesmer bound for linear EAQECCs and
deduced a necessary condition on existence of EAQECCs. We have also showed that
for some families of zero radical code, the necessary condition is also sufficient.

We constructed four families of optimal EAQECCs. All these codes are degenerate
codes, and some of them achieve the EA-Griesmer bound. What is more, all these
EAQECCs go beyond earlier constructions and almost all of our [[n, k, dea; c]] codes
are not equivalent to any [[n+c, k, d]]QECCs and have better error-correcting ability
than any [[n + c, k, d]] QECCs. In fact, except the [[12, 2, 6; 4]], [[13, 2, 6; 3]], [[12,
3, 6; 5]], [[13, 3, 6; 6]] codes, the other EAQECCs constructed in Theorems 4.1,
4.2, 4.3 and 4.4 are not equivalent to any [[n + c, k, d]] QECCs. Propositions 4.6
and 4.7 have shown that our [[n, k, dea; c]] codes are not equivalent to any
[[n + c, k, d]] QECCs for n ≥ 14. The [[n, k, dea; c]] EAQECCs with parameters
[[10, 2, 5; 2]], [[11, 2, 6; 3]], [[12, 2, 6; 2]], [[9, 3, 4; 2]], [[10, 3, 5; 3]], [[11, 3, 6; 4]]
and [[12, 3, 6; 3]] are not equivalent to any [[n+c, k, d]]QECCs, and this can be seen
from [7,41]. Thus, there are four EAQECCs [[12, 2, 6; 4]], [[13, 2, 6; 3]], [[12, 3, 6;
5]], [[13, 3, 6; 6]] need for checking. According to [7,41], the [[12, 2, 6; 4]] and
[[13, 2, 6; 3]] codes are equivalent to an optimal [[16, 2, 6]] QECC; the [[12, 3, 6; 5]]
and [[13, 3, 6; 4]] codes may be equivalent to a potential optimal [[17, 3, 6]] QECC.

It has been proved that the Griesmer bound for classical linear codes is sharp when
the minimum distance d is sufficiently large [42], i.e., for given k, there exists an
integer D(k) such that if d ≥ D(k), then the Griesmer bound for classical linear codes
can be attained. As for EA-Griesmer bound, the things may be a little complex.

The EAQECCs constructed in [25] and the four families of EAQECCs in this paper
have proved the EA-Griesmer bound is tight for linear [[n, k, dea; c]] with k ≤ 3 and
c ≥ n − 10. Whether this EA-Griesmer bound is also tight for linear EAQECCs with
higher dimension, we cannot give a proof at present. We guess it is tight for EAQECCs
with higher dimension. To support our guess, we present an example as follows. Let

k ≥ 2 be even, Ik be the identity matrix, Nk = 4k−1
3 , X = (1, 1, 1, 0, · · · , 0)1×Nk .

For given r ≥ 1, construct r matrices Ai of size r × Nk and Gk,k+1 as

A1 =

⎛

⎜
⎜
⎝

X
0
· · ·
0

⎞

⎟
⎟
⎠ , A2 =

⎛

⎜
⎜
⎝

0
X
· · ·
0

⎞

⎟
⎟
⎠ , . . . , Ar =

⎛

⎜
⎜
⎝

0
· · ·
0
X

⎞

⎟
⎟
⎠ ,Gk,k+1 =

⎛

⎜
⎜
⎝

110 · · · 00
011 · · · 00

· · ·
000 · · · 11

⎞

⎟
⎟
⎠ .

Construct

Gm,n = Gk+r,r Nk+r+k+1 =
(
Ir A1 A2 · · · Ar 0
0 Sk Sk · · · Sk Gk,k+1

)

.
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It is easy to check that Gm,n generates an [n,m](r) code C, C gives an [[n, k, r4k−1 +
2; n− k−2r ]] = [[n, k, r4k−1 +2; n− k−2r ]] EAQECC with n = r Nk +r + k+1.
This EAQECC achieves the EA-Griesmer bound, and its rate R = r

n is very low.
From Theorem 3.2, we know that: For a linear EAQECCQea that EA-stabilized by

C⊥h of a linear code C = [n,m](r), the dimension k ofQea is determined bym and the
radical dimension r of C, and the distance dea ofQea is no more than the distance d of
C1, where C1 is a reduced code of C. Since C1 is a zero radical code, an optimal zero
radical code may be a near-optimal linear code, and hence, for some kinds of code
length s, an [s, k, d] optimal zero radical code cannot achieve the classical Griesmer
bound no matter how large its distance d is [39,43]. However, if we make some
modification on the condition of [42] and consider impact of r , analogous result of
[42] for linear EAQECCs may also hold. So, we put forward the following conjecture.
Conjecture: Let r ≥ 0 be a given integer. For each k ≥ 1, there exists an integer
D(k, r) such that if d ≥ D(k, r) and there is a zero radical [s, k, d] code, then there is
an [[n, k, dea; c]] = [[s+r, k, d; s−k−r ]]EAQECC. If the zero radical [s, k, d] code
achieves the classical Griesmer bound, then the [[n, k, dea; c]] EAQECC achieves the
EA-Griesmer bound.

Acknowledgments We are indebted to the anonymous reviewers for constructive comments and sugges-
tions on our manuscript, which improve the manuscript significantly. Part of this work was carried out while
R. Li was visiting the Chern Institute of Mathematics (CIM) at Nankai University, Tianjin, China. R. Li
is grateful to the Institute for the kind hospitality. The research is supported by National Natural Science
Foundation of China under Grant No.11471011 and the National Key Basic Research Program of China
(“973” program) under Grant No. 2013CB834204.

Appendix A: Proof of Theorem 4.3

Proof To prove Theorem 4.3, we give our discussion in three steps. Firstly, we con-
struct B3,i for 1 ≤ i ≤ 20, such that G5,n = (G5,8 | B5,i ) generates a code Cn and
R(Cn) is a two-dimensional code with weight polynomial W1,n(z) = 1 + 6z4 + 9z8.
The matrices B3,i for 1 ≤ i ≤ 20 are as follows:

B3,1 =
⎛

⎝
0
1
3

⎞

⎠ , B3,2 =
⎛

⎝
10
21
02

⎞

⎠ , B3,3 =
⎛

⎝
110
021
103

⎞

⎠ , B3,4 =
⎛

⎝
1001
1110
0212

⎞

⎠ ,

B3,5 =
⎛

⎝
11011
31003
12230

⎞

⎠ , B3,6 =
⎛

⎝
101101
210013
013132

⎞

⎠ ,

B3,20 =
⎛

⎝
11011111111110101111
23120330002211310120
00221312301121231032

⎞

⎠ , B3,7 =
⎛

⎝
0011011
1120101
1303220

⎞

⎠ ,

B3,8 =
⎛

⎝
11100111
03211001
23023130

⎞

⎠ , B3,19 =
⎛

⎝
1011111011111010110
0102233132003011110
2010202113031103231

⎞

⎠ ,
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B3,9 =
⎛

⎝
001111001
101331113
113130230

⎞

⎠ , B3,10 =
⎛

⎝
1001111010
1113330131
0100212312

⎞

⎠ ,

B3,18 =
⎛

⎝
111111111001101111
310032301113200113
302100201321113320

⎞

⎠ , B3,11 =
⎛

⎝
00011110111
11102030323
31221131002

⎞

⎠ ,

B3,12 =
⎛

⎝
001011110111
113023321001
123111203212

⎞

⎠ , B3,13 =
⎛

⎝
1111110110110
2130201121001
0021221313130

⎞

⎠ ,

B3,14 =
⎛

⎝
11111111111111
03032332311122
32200011321012

⎞

⎠ , B3,17 =
⎛

⎝
01011110111011011
10101201130023120
23330311202101011

⎞

⎠ ,

B3,15 =
⎛

⎝
011111001110111
121030103321211
330322113102002

⎞

⎠ , B3,16 =
⎛

⎝
1111011101110001
0100133313301112
3210202110211330

⎞

⎠ .

Secondly, using the matrices B3,i for 1 ≤ i ≤ 20, we construct G5,n for n ≥ 9 as
follows:

(1) If n = 21t + i ≥ 9 and 0 ≤ i ≤ 7, construct G5,n = (G5,8 | B5,13+i |
(t − 1)D5,21).

(2) n = 21t + i ≥ 9 and 8 ≤ i ≤ 20, construct G5,n = (G5,8 | B5,i−8 | t D5,21).

Let Cn be the code generated by G5,n , the weight polynomial of Cn be Wn(z) for
n ≥ 9. Then R(Cn) is a two-dimensional code with weight polynomial WR(z) =
1 + 6z4 + 9z8, and all the weight polynomials of these Wn(z) can be derived from
Wj (z) for 8 ≤ j ≤ 28. It is not difficult to check Wj (z)’ for 8 ≤ j ≤ 28 are as
follows:

W8(z) = 1 + 24z3 + 114z4 + 144z5 + 408z6 + 216z7 + 117z8,

W9(z) = 1 + 54z4 + 132z5 + 192z6 + 360z7 + 201z8 + 84z9,

W10(z) = 1 + 6z4 + 96z5 + 108z6 + 288z7 + 273z8 + 192z9 + 60z10,

W11(z) = 1 + 6z4 + 144z6 + 180z7 + 153z8 + 360z9 + 144z10 + 36z11,

W12(z) = 1 + 6z4 + 12z6 + 204z7 + 117z8 + 264z9 + 276z10 + 108z11 + 36z12,

W13(z) = 1 + 6z4 + 48z7 + 153z8 + 276z9 + 192z10 + 216z11 + 96z12 + 36z13,

W14(z) = 1 + 6z4 + 93z8 + 216z9 + 144z10 + 288z11 + 180z12 + 72z13 + 24z14,

W15(z) = 1 + 6z4 + 9z8 + 144z9 + 168z10 + 252z11 + 192z12 + 168z13

+ 72z14 + 12z15,

W16(z) = 1 + 6z4 + 9z8 + 12z9 + 216z10 + 144z11 + 144z12 + 348z13

+ 72z14 + 72z15,

W17(z) = 1 + 6z4 + 9z8 + 72z10 + · · · + 12z17,

W18(z) = 1 + 6z4 + 9z8 + 132z11 + · · · + 12z18,

W19(z) = 1 + 6z4 + 9z8 + 84z12 + · · · + 24z18,
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W20(z) = 1 + 6z4 + 9z8 + 168z13 + 216z14 + · · · + 12z19,

W21(z) = 1 + 6z4 + 9z8 + 84z13 + 108z14 + · · · + 12z21,

W22(z) = 1 + 6z4 + 9z8 + 120z14 + 192z15 + · · · + 24z21,

W23(z) = 1 + 6z4 + 9z8 + 156z15 + 156z16 + · · · + 24z22,

W24(z) = 1 + 6z4 + 9z8 + 48z15 + 192z16 + · · · + 24z23,

W25(z) = 1 + 6z4 + 9z8 + 48z16 + 180z17 + · · · + 48z23,

W26(z) = 1 + 6z4 + 9z8 + 60z17 + 144z18 + · · · + 24z23,

W27(z) = 1 + 6z4 + 9z8 + 144z18 + 156z19 + · · · + 156z23,

W28(z) = 1 + 6z4 + 9z8 + 192z19 + 168z20 + · · · + 12z26

For n = 21t+i > 28, from the construction ofG5,n , we can deduceweight polynomial
Wn(z) of Cn must be: W21t+i (z) = 1 + 6z4 + 9z8 + (W21+i (z) − WR(z))z16(t−1) for
0 ≤ i ≤ 7, and W21t+i (z) = 1 + 6z4 + 9z8 + (Wi (z) − WR(z))z16t for 8 ≤ i ≤ 20.

Thirdly, from Wn(z) of Cn (n ≥ 9), one can deduce the minimal weight dea(n)’ of
Cn \ R(Cn) for n = 21t + i , where dea(n)’ are as follows:

dea(21t + i) = 16t + i − 3 for t ≥ 1, 0 ≤ i ≤ 2,

dea(21t + i) = 16t + i − 4 for t ≥ 1, 3 ≤ i ≤ 7,

dea(21t + i) = 16t + i − 5 for t ≥ 0, 8 ≤ i ≤ 11,

dea(21t + i) = 16t + i − 6 for t ≥ 0, 12 ≤ i ≤ 15,

dea(21t + i) = 16t + i − 7 for t ≥ 0, 16 ≤ i ≤ 20.

It is trivial to verify the EAQECCs [[21t+5, 3, 16t+1; 21t−2]], [[21t+6, 3, 16t+
2; 21t − 1]] and [[21t + 7, 3, 16t + 3; 21t]] for t ≥ 1, [[21t + 10, 3, 16t + 5; 21t +
3]], [[21t + 11, 3, 16t + 6; 21t + 4]], [[21t + 15, 3, 16t + 9; 21t + 8]] and [[21t +
20, 3, 16t +13; 21t +13]] for t ≥ 0 achieve the EA-Griesmer bound. The EAQECCs
[[21t, 3, 16t−3; 21t−7]], [[21t+1, 3, 16t−2; 21t−6]], [[21t+2, 3, 16t−1; 21t−5]]
and [[21t + 8, 3, 16t + 3; 21t + 1]] for t ≥ 1, [[21t + 9, 3, 16t + 4; 21t + 2]], [[21t +
12, 3, 16t+6; 21t+5]], [[21t+13, 3, 16t+7; 21t+6]], [[21t+14, 3, 16t+8; 21t+
7]], [[21t + 16, 3, 16t + 9; 21t + 9]], [[21t + 17, 3, 16t + 10; 21t + 10]], [[21t +
18, 3, 16t + 11; 21t + 11]] and [[21t + 19, 3, 16t + 12; 21t + 12]] for t ≥ 0 are
optimal codes and have lengths one above the EA-Griesmer bound. The EAQECCs
[[21t + 3, 3, 16t − 1; 21t − 4]] and [[21t + 4, 3, 16t; 21t − 3]] are optimal codes and
have lengths two above the EA-Griesmer bound.

Summarizing the above discussions, the theorem follows.

Appendix B: Proof of Theorem 4.4

Proof To prove Theorem 4.4, we give our discussion in three steps. Firstly, we
construct D3,i for 1 ≤ i ≤ 21, such that G6,n = (G6,12 | D6,i ) generates a
code Cn and R(Cn) is a three-dimensional code with weight polynomial WR(z) =
1+9z4+27z8+27z12. Let D3,21 = S3 and construct the matrices D3,i for 1 ≤ i ≤ 20
as follows:
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D3,1 =
⎛

⎝
1
3
1

⎞

⎠ , D3,2 =
⎛

⎝
10
01
33

⎞

⎠ , D3,3 =
⎛

⎝
011
011
131

⎞

⎠ , D3,4 =
⎛

⎝
1110
1311
3123

⎞

⎠ ,

D3,5 =
⎛

⎝
11111
13213
22010

⎞

⎠ , D3,9 =
⎛

⎝
101011111
011012321
330120223

⎞

⎠ ,

D3,20 =
⎛

⎝
11111001100111111111
02310100211211133021
33311012223200210302

⎞

⎠ , D3,6 =
⎛

⎝
011101
030113
113322

⎞

⎠ ,

D3,8 =
⎛

⎝
10111101
11132001
33112312

⎞

⎠ , D3,19 =
⎛

⎝
1101100111111111111
1311110212311000322
1103231310302023221

⎞

⎠ ,

D3,7 =
⎛

⎝
1001011
1102132
1012223

⎞

⎠ , D3,10 =
⎛

⎝
1110001101
1101111102
1212102010

⎞

⎠ ,

D3,18 =
⎛

⎝
001111101101011011
113112111210120120
322332112113321002

⎞

⎠ , D3,11 =
⎛

⎝
10101101111
11011303122
23313213002

⎞

⎠ ,

D3,12 =
⎛

⎝
101101101011
113102203101
331213012231

⎞

⎠ , D3,13 =
⎛

⎝
1011110111011
3022321000121
3113101102322

⎞

⎠ ,

D3,14 =
⎛

⎝
11111111111111
32313131032020
00311223023213

⎞

⎠ , D3,17 =
⎛

⎝
10101111101111100
31302010111133011
11112203102320032

⎞

⎠ ,

D3,15 =
⎛

⎝
101111011101101
111110111013012
133022203001332

⎞

⎠ , D3,16 =
⎛

⎝
1111111111110110
3031112133100021
2000312211331103

⎞

⎠ .

Secondly, using the matrices D3,i for 1 ≤ i ≤ 21, we construct G6,n for n ≥ 12 as
follows.

(1) If n = 21t + i ≥ 12 and 0 ≤ i ≤ 11, construct G6,n = (G6,12 | D6,9+i |
(t − 1)D6,21).

(2) n = 21t + i ≥ 12 and 12 ≤ i ≤ 20, construct G6,n = (G6,12 | D6,i−12 | t D6,21).

Let Cn be the code generated by G6,n , the weight polynomial of Cn be W6,n(z) for
n ≥ 12. Then R(Cn) is a three-dimensional code with weight polynomial WR(z) =
1+9z4 +27z8 +27z12, and all the weight polynomials of theseWn(z) can be derived
from W6, j (z) for 12 ≤ j ≤ 32. It is not difficult to check W6, j (z)’s for 12 ≤ j ≤ 32
are as follows:

W6,12(z) = 1 + 9z4 + 288z6 + 432z7 + 459z8 + · · · + 171z12,

W6,13(z) = 1 + 9z4 + 24z6 + 408z7 + 387z8 + · · · + 120z13,

W6,14(z) = 1 + 9z4 + 96z7 + 363z8 + 768z9 + · · · + 48z14,
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W6,15(z) = 1 + 9z4 + 147z8 + 648z9 + 504z10 + 840z11 + · · · + 24z15,

W6,16(z) = 1 + 9z4 + 27z8 + 288z9 + 384z10 + · · · + 48z16,

W6,17(z) = 1 + 9z4 + 27z8 + 96z9 + 240z10 + 672z11 + · · · + +48z17,

W6,18(z) = 1 + 9z4 + 27z8 + 96z10 + 384z11 + 651z12 + · · · + 48z18,

W6,19(z) = 1 + 9z4 + 27z8 + 288z11 + 291z12 + · · · + 24z19,

W6,20(z) = 1 + 9z4 + 27z8 + 171z12 + 816z13 + · · · + 576z18,

W6,21(z) = 1 + 9z4 + 27z8 + 27z12 + 360z13 + 672z14 + · · · + 24z21,

W6,22(z) = 1 + 9z4 + 27z8 + 27z12 + 240z13 + 384z14 + · · · + 96z21,

W6,23(z) = 1 + 9z4 + 27z8 + 27z12 + 168z14 + 408z15 + · · · + 24z23,

W6,24(z) = 1 + 9z4 + 27z8 + 27z12 + 264z15 + · · · + 24z23,

W6,25(z) = 1 + 9z4 + 27z8 + 27z12 + 144z15 + 264z16 + · · · + 24z23,

W6,26(z) = 1 + 9z4 + 27z8 + 27z12 + 168z16 + 360z17 + · · · + 48z25,

W6,27(z) = 1 + 9z4 + 27z8 + 27z12 + 384z17 + 504z18 + · · · + 120z25,

W6,28(z) = 1 + 9z4 + 27z8 + 27z12 + 288z18 + 624z19 + · · · + 288z25,

W6,29(z) = 1 + 9z4 + 27z8 + 27z12 + 408z19 + 408z20 + · · · + 120z26,

W6,30(z) = 1 + 9z4 + 27z8 + 27z12 + 288z19 + 168z20 + · · · + 48z28,

W6,31(z) = 1 + 9z4 + 27z8 + 27z12 + 144z20 + · · · + 48z28,

W6,32(z) = 1 + 9z4 + 27z8 + 27z12 + 480z21 + 240z22 + · · · + 48z30.

Thirdly, from the weight polynomial W6,n(z) of Cn with n ≥ 12, one can deduce
the minimal weight dea(n)’ of Cn \ R(Cn) for n = 21t + i is as follows:

dea(21t + i) = 16t + i − 4 for t ≥ 1, 1 ≤ i ≤ 3,

dea(21t + i) = 16t + i − 5 for t ≥ 1, 4 ≤ i ≤ 8,

dea(21t + i) = 16t + i − 6 for t ≥ 1, 9 ≤ i ≤ 11,

dea(21t + 12) = 16t + 6 for t ≥ 0,

dea(21t + i) = 16t + i − 7 for t ≥ 0, 13 ≤ i ≤ 16,

dea(21t + i) = 16t + i − 8 for t ≥ 0, 17 ≤ i ≤ 21.

It is trivial to verify the EAQECCs [[21t, 3, 16(t − 1) + 13; 21t − 3]], [[21t +
6, 3, 16t+1; 21t−3]], [[21t+7, 3, 16t+3; 21t−2]], [[21t+8, 3, 16t+3; 21t−1]]
and [[21t + 11, 3, 16t + 5; 21t + 2]] for t ≥ 1, [[21t + 12, 3, 16t + 6; 21t + 3]]
and [[21t + 16, 3, 16t + 9; 21t + 7]] for t ≥ 0 achieve the EA-Griesmer bound. The
EAQECCs [[21t + 1, 3, 16t − 3; 21t − 8]], [[21t + 2, 3, 16t − 2; 21t − 7]], [[21t +
3, 3, 16t−1; 21t−6]], [[21t+9, 3, 16t+3; 21t]] and [[21t+10, 3, 16t+4; 21t+1]]
for t ≥ 1, and [[21t+13, 3, 16t+6; 21t+4]], [[21t+14, 3, 16t+7; 21t+5]], [[21t+
15, 3, 16t+8; 21t+6]], [[21t+17, 3, 16t+9; 21t+8]], [[21t+18, 3, 16t+10; 21t+
9]], [[21t + 19, 3, 16t + 11; 21t + 10]] and [[21t + 20, 3, 16t + 12; 21t + 11]] for
t ≥ 0 are optimal codes and have lengths one above the EA-Griesmer bound. The
EAQECCs [[21t +4, 3, 16t −1; 21t −5]] and [[21t +5, 3, 16t; 21t −4]] are optimal
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codes and have lengths two above the EA-Griesmer bound. Summarizing the above
discussions, the theorem follows.
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