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Let G be a connected (molecular) graph with vertex set V (G) = {v1, v2, . . . , vn}. The Harary

matrix RD(G) of G, which is also known as the reciprocal distance matrix, is an n × n matrix

whose (i, j)-entry is equal to 1
di j

if i �= j and 0 otherwise, where dij is the distance of vi and vj

in G. The spectral radius ρ(G) of the Harary matrix RD(G) has been proposed as a structure-

descriptor. In this paper, we characterize graphs with maximum spectral radius of the Harary

matrix in three classes of simple connected graphs with n vertices: graphs with fixed matching

number, bipartite graphs with fixed matching number, and graphs with given number of cut

edges, respectively.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

The physical, chemical, and biological properties of chemical compounds are ultimately determined by the molecular struc-

ture. An efficient way of coding the topology of a molecular structure is represented by topological indices (or structural de-

scriptors), where a topological index is a numerical representation of the molecular structure derived from the corresponding

molecular graph. Since the distance matrix and related matrices, based on graph–theoretical distances [12], are rich sources of

many graph invariants (topological indices) that have found use in structure–property–activity modeling [5,8,15,16,17], it is of

interest to study spectra and polynomials of these matrices [1,9]. As we know, in many instances the distant atoms influence

each other much less than near atoms. The Harary matrix RD(G) of G, which is also known as the reciprocal distance matrix was

introduced by Ivanciuc et al. [10] as an important molecular matrix to research this interaction.

We consider simple (molecular) graphs, that is, graphs without multiple edges and loops. Undefined notation and termi-

nology can be found in [2]. Let G be a simple graph with vertex set V (G) = {v1, v2, . . . , vn} and edge set E(G). Let NG(v) be the

neighborhood of the vertex v of G, and dij be the distance (i.e., the number of edges of a shortest path) between the vertices vi

and vj in G.

We restate the definition of the Harary matrix here. The Harary matrix RD(G) of G is an n × n matrix (RDij) such that

RDi j =
{ 1

di j
if i �= j,

0 otherwise.

Since RD is a real symmetric matrix, its eigenvalues are all real. Let ρ(G) be the spectral radius(the largest eigenvalue) of RD(G),

called the Harary spectral radius. Ivanciuc et al. [11] proposes to use the maximum eigenvalues of distance-based matrices as

structural descriptors. It is shown in [11] that the Harary spectral radius is able to produce fair quantitative structure–property
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relationships (QSPR) models for the boiling points, molar heat capacities, vaporization enthalpies, refractive indices and densities

for C6–C10 alkanes. The maximum eigenvalues of various matrices have recently attracted attention of mathematical chemists.

The lower and upper bounds of the maximum eigenvalues of the Harary matrix, and the Nordhaus–Gaddum-type results

for it were obtained in [4,18]. Cui and Liu [3] proposed some more results about eigenvalues of Harary matrices; also, they got

some bounds of the Harary index and Harary energy by these results. Some lower and upper bounds for the Harary energy of

connected (n, m)-graphs were obtained in [7].

A matching in a graph is a set of pairwise nonadjacent edges. A maximum matching is one which covers as many vertices as

possible. The number of edges in a maximum matching of a graph G is called the matching number of G and is denoted by α′(G).

In this paper we characterize graphs with maximum spectral radius of the Harary matrix in three classes of simple connected

graphs with n vertices: graphs with fixed matching number, bipartite graphs with fixed matching number, and graphs with given

number of cut edges, respectively.

2. Preliminaries

By the Perron–Frobenius theorem, the Harary spectral radius of a connected graph G corresponds to a unique positive unit

eigenvector X = (x1, x2, . . . , xn)T , called principal eigenvector of RD(G). Then

ρ(G)xi =
∑
j �=i

1

di j

x j. (1)

The following lemma is an immediate consequence of Perron–Frobenius theorem.

Lemma 2.1. Let G be a connected graph with u, v ∈ V(G) and uv �∈E(G). Then ρ(G) < ρ(G + uv).

Let G be a connected graph, and H a subgraph of G. We know that H can be obtained from G by deleting edges, and possibly

vertices.

Corollary 2.2. If H is a proper subgraph of a connected graph G, then ρ(H) < ρ(G).

Lemma 2.3. Let G be a connected graph with vr, vs ∈ V(G). If NG(vr) \ {vs} = NG(vs) \ {vr}, then xr = xs.

Proof. From Eq. (1), we know that

ρ(G)xr =
∑
j �=r

1

dr j

x j = 1

drs
xs +

∑
j �=s,r

1

dr j

x j

and

ρ(G)xs =
∑
j �=s

1

ds j

x j = 1

dsr
xr +

∑
j �=s,r

1

ds j

x j.

Since NG(vr) \ {vs} = NG(vs) \ {vr}, we have that dr j = ds j for j �= s, r. Then

ρ(G)(xr − xs) = − 1

dsr
(xr − xs),

and thus xr = xs. �

3. Graphs with given matching number

The methods used in this section are a little similar to those for the distance matrix [14]. However, we find out some errors in

the proof of the results for the distance matrix. We modify their techniques here and provide a correct proof for our result.

Let G1 ∪ · · · ∪ Gk be the vertex–disjoint union of the graphs G1, . . . , Gk (k ≥ 2), and G1∨G2 be the graph obtained from G1∪G2

by joining each vertex of G1 to each vertex of G2.

Lemma 3.1. Let G1 = Ks ∨ (Kn1
∪ Kn2

∪ · · · ∪ Knk
) and G2 = Ks ∨ (Kn1−1 ∪ Kn2+1 ∪ · · · ∪ Knk

). If n2 ≥ n1 ≥ 2, then ρ(G1) < ρ(G2).

Proof. Let ρ(G1) be the Harary spectral radius of G1 and X the corresponding principal eigenvector. By Lemma 2.3, X can be

written as

X = (y1, . . . y1︸ ︷︷ ︸
n1

, y2, . . . y2︸ ︷︷ ︸
n2

, . . . , yk, . . . yk︸ ︷︷ ︸
nk

, y0, . . . y0︸ ︷︷ ︸
s

).

From Eq. (1), we have

ρ(G1)y1 = (n1 − 1)y1 + 1

2
n2y2 +

k∑
i=3

1

2
niyi + sy0,
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ρ(G1)y2 = 1

2
n1y1 + (n2 − 1)y2 +

k∑
i=3

1

2
niyi + sy0.

It implies that

ρ(G1)(y1 − y2) = 1

2
n1y1 − y1 − 1

2
n2y2 + y2,

that is,(
ρ(G1) + 1 − 1

2
n1

)
y1 =

(
ρ(G1) + 1 − 1

2
n2

)
y2.

Note that Ks+n2
is a subgraph of G1 and n2 ≥ n1. By Corollary 2.2 we have that

ρ(G1) > ρ(Ks+n2
) = s + n2 − 1 ≥ n2.

Then we have that

y1 ≤ y2.

From the definition of the Harary matrix, we know that

RD(G1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

( J − I)n1×n1

1
2

Jn1×n2
. . . 1

2
Jn1×nk

Jn1×s

1
2

Jn2×n1
( J − I)n2×n2

. . . 1
2

Jn2×nk
Jn2×s

...
...

. . .
...

...

1
2

Jnk×n1
Jnk×n2

. . . ( J − I)nk×nk
Jnk×s

Js×n1
Js×n2

. . . Js×nk
( J − I)s×s

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

RD(G2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

( J − I)(n1−1)×(n1−1)
1
2

J(n1−1)×(n2+1) . . . 1
2

J(n1−1)×nk
J(n1−1)×s

1
2

J(n2+1)×(n1−1) ( J − I)(n2+1)×(n2+1) . . . 1
2

J(n2+1)×nk
Jn2×s

...
...

. . .
...

...

1
2

Jnk×(n1−1) Jnk×(n2+1) . . . ( J − I)nk×nk
Jnk×s

Js×(n1−1) Js×(n2+1) . . . Js×nk
( J − I)s×s

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Thus

RD(G2) − RD(G1) =

⎛
⎜⎜⎜⎜⎝

0(n1−1)×(n1−1) − 1
2

J(n1−1)×1 0(n1−1)×n2
0

− 1
2

J1×(n1−1) 01×1
1
2

J1×n2
0

0n2×(n1−1)
1
2

Jn2×1 0n2×n2
0

0 0 0 0

⎞
⎟⎟⎟⎟⎠.

Hence

ρ(G2) − ρ(G1) ≥ XT RD(G2)X − XT RD(G1))X

= XT (RD(G2) − RD(G1))X = n2y1y2 − (n1 − 1)y2
1

> 0.

We complete the proof. �

We will consider graphs with form G = Ks ∨ (Kk−1 ∪ K2t+1) and characterize extremal graphs in terms of the relation between

t and k.

Lemma 3.2. Let G = Ks ∨ (Kk−1 ∪ K2t+1) with t ≥ 1, k ≥ 3, and G′ = Ks+t ∨ Kk+t . If t ≤ k − 2, one has that ρ(G) < ρ(G′).

Proof. Let ρ = ρ(G) be the Harary spectral radius of G and X be the principal eigenvector. By Lemma 2.3, X is positive and can be

written as

X = (x, . . . , x︸ ︷︷ ︸
s

, y, . . . , y︸ ︷︷ ︸
k−1

, z, . . . , z︸ ︷︷ ︸
2t+1

)T .
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From the definition of the Harary matrix, we know that

RD(G) =

⎛
⎜⎜⎝

( J − I)s×s Js×(k−1) Js×(2t+1)

J(k−1)×s
1
2
( J − I)(k−1)×(k−1)

1
2

J(k−1)×(2t+1)

J(2t+1)×s
1
2

J(2t+1)×(k−1) ( J − I)(2t+1)×(2t+1)

⎞
⎟⎟⎠

and

RD(G′) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

( J − I)s×s Js×(k−1) Js×t Js×t Js×1

J(k−1)×s
1
2
( J − I)(k−1)×(k−1) J(k−1)×t

1
2

J(k−1)×t
1
2

J(k−1)×1

Jt×s Jt×(k−1) ( J − I)t×t Jt×t Jt×1

Jt×s
1
2

Jt×(k−1) Jt×t
1
2
( J − I)t×t

1
2

Jt×1

J1×s
1
2

J1×(k−1) J1×t
1
2

J1×t 01×1.

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Thus

ρ(G′) − ρ ≥ XT (RD(G′) − RD(G))X

= t(k − 1)yz −
(

t + 1
2

)
z2

= tz((k − 1)y − t + 1

2
z). (2)

As X is the principal eigenvector corresponding to ρ = ρ(G), from Eq. (1), we have

ρy = sx + k − 2

2
y + 1

2
(2t + 1)z,

ρz = sx + k − 1

2
y + 2tz.

Then

y

z
= 2ρ − 2t + 1

2ρ + 1
. (3)

Hence

(k − 1)y − t + 1

2
z = (k − 1)

2ρ − 2t + 1

2ρ + 1
z − t + 1

2
z

= z

2(2ρ + 1)
(2(2k − t − 3)ρ − 2(k − 1)(2t − 1) − (t + 1)

= (2k − t − 3)z

2ρ + 1

(
ρ − 2(k − 1)(2t − 1) + (t + 1)

2(2k − t − 3)

)
.

We now prove that

ρ − 2(k − 1)(2t − 1) + (t + 1)

2(2k − t − 3)
> 0.

Note that Ks+2t+1 is a subgraph of G. By Corollary 2.2 we have that

ρ > ρ(Ks+2t+1) = s + 2t > 2t.

Hence it is sufficient to prove that

2(k − 1)(2t − 1) + (t + 1)

2(2k − t − 3)
≤ 2t.

In fact, it is equivalent to the inequality that −4t2 + (4k − 9)t + 2k − 3 ≥ 0, which obviously holds when t ≤ k − 2. Consequently,

we have our conclusion. �

Lemma 3.3. Let G = Ks ∨ (Kk−1 ∪ K2t+1) with s ≥ 2, t ≥ 0, and G′ = K1 ∨ (Kk−s ∪ K2t+2s−1). If t ≥ k − 1, one has that ρ(G) < ρ(G′).

Proof. Let ρ = ρ(G) be the Harary spectral radius of G and X be the principal eigenvector. By Lemma 2.3, X is positive and can be

written as
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X = (x, . . . , x︸ ︷︷ ︸
s

, y, . . . , y︸ ︷︷ ︸
k−1

, z, . . . , z︸ ︷︷ ︸
2t+1

)T .

From the definition of the Harary matrix, we know that

XT (RD(G′) − RD(G))X =
(

s − 1

2

)
y2 − (s − 1)x(k − s)y + (s − 1)y(2t + 1)z

> (s − 1)y((2t + 1)z − (k − s)x).

As X is the principal eigenvector corresponding to ρ = ρ(G), from Eq. (1), we have

ρx = (s − 1)x + (k − 1)y + (2t + 1)z,

ρz = sx + k − 1

2
y + 2tz.

Then

x

z
= 2ρ − (2t − 1)

ρ + s + 1
< 2 (4)

Hence

(2t + 1)z − (k − s)x > (2t + 1 − 2(k − s))z = (2t − 2k + 2s − 1)z ≥ (2s − 3)z > 0.

Hence we have that

ρ(G′) − ρ ≥ XT (RD(G′) − RD(G))X > 0.
�

A component of a graph G is said to be even (odd) if it has an even (odd) number of vertices. We use o(G) to denote the

number of odd components of G. Let G be a graph on n vertices with α′(G) = p. With these notations, we may now restate the

Tutte–Berge formula,

n − 2p = max{o(G − X ) − |X| : X ⊂ V (G)}.
Theorem 3.4. Let G be a graph on n vertices with α′(G) = p which has the maximum Harary spectral radius. Then we have that

1. if p = � n
2 �, then G = Kn;

2. if 1 ≤ p ≤ � n
3 �, then G = Kp ∨ Kn−p;

3. if � n
3 � < p < � n

2 �, then G = Kp ∨ Kn−p, or G = K1 ∨ (Kn−2p ∪ K2p−1).

Proof. The first assertion is trivial, and so we only need to prove the remaining two assertions. Let X0 be a vertex subset such

that n − 2p = o(G − X0) − |X0|. For convenience, let |X0| = s and o(G − X0) = k. Then n − 2p = k − s. Since 1 ≤ p < � n
2 �, we know

that k − s ≥ 2. Hence k ≥ 3.

If G − X0 has an even component, then by adding an edge to G between a vertex of an even component and a vertex of an odd

component of G − X0, we obtain a graph G′ with matching number p. From Lemma 2.1, we know that ρ(G′) > ρ(G), a contradiction

to the assumption that G has the maximum Harary spectral radius. So we know that all the components of G − X0 are odd. Let

G1, G2, . . . , Gk be the odd components of G − X0. Similarly, G1, G2, . . . , Gk and the subgraph induced by X0 are all complete, and

every vertex of Gi (i = 1, . . . , k) is adjacent to every vertex in X0. Thus G = Ks ∨ (Kn1
∪ Kn2

∪ . . . ∪ Knk
), where ni = |V (Gi)| for

i = 1, 2, . . . , k.

First, we claim that G − X0 has at most one odd component whose number of vertices is more than one. Assume with-

out loss of generality that n2 ≥ n1 ≥ 3. Let G′ = Ks ∨ (Kn1−2 ∪ Kn2+2 ∪ . . . ∪ Knk
). We can easily check that α(G′) = p. From

Lemma 3.1, we know that ρ(G) < ρ(G′), a contradiction. Then G = Ks ∨ (Kk−1 ∪ K2t+1), where s + 2t + k = n. Since k − s = n − 2p,

we know that t + s = p. By Lemmas 3.2 and 3.3, we know that s = 1 or t = 0, i,e., G = Kp ∨ Kn−p, or G = K1 ∨ (Kn−2p ∪ K2p−1).

Note that if 1 ≤ p ≤ � n
3 �, one has that p − 1 ≤ n − 2p − 1. By Lemma 3.2, EE(Kp ∨ Kn−p) > EE(K1 ∨ (Kn−2p ∪ K2p−1)). So we have

our conclusion. �

Remark. Between Kp ∨ Kn−p and K1 ∨ (Kn−2p ∪ K2p−1), we cannot determine which one has larger Harary radius if � n
3 � < p <

� n
2 �. For example, through simple calculations, we have that

ρ(K5 ∨ K8) > ρ(K1 ∨ (K3 ∪ K9))

and

ρ(K5 ∨ K7) < ρ(K1 ∨ (K2 ∪ K9)).
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Fig. 1. Graphs G∗ , G′ and G′ ′ for Lemma 4.4.
4. Bipartite graphs with given matching number

Lemma 4.1 ([3]). Let Kn1,n2
be a completed bipartite graph with n = n1 + n2 vertices. One has that

ρ(Kn1,n2
) = 1

4
(n − 2 +

√
n2 + 12n1n2).

Corollary 4.2.

ρ(K1,n−1) < ρ(K2,n−2) < · · · < ρ(K� n
2 �, n

2 �). (5)

A covering of a graph G is a vertex subset K⊆V(G) such that each edge of G has at least one end in the set K. The number of

vertices in a minimum covering of a graph G is called the covering number of G and denoted by β(G).

Lemma 4.3 (The König–Egerváry theorem, [6,13]). In any bipartite graph, the number of edges in a maximum matching is equal to

the number of vertices in a minimum covering.

Let G = G[X,Y ] �= Kp,n−p be a bipartite graph such that α′(G) = p. From Lemma 4.3, we know that β(G) = p. Let S be a mini-

mum covering of G and X1 = S ∩ X �= ∅, Y1 = S ∩ Y �= ∅. Set X2 = X \ X1,Y2 = Y \ Y1. We have that E(X2,Y2) = ∅ since S is a covering

of G.

Let G∗[X, Y] be a bipartite graph with the same vertex set as G such that E(G∗) = {xy : x ∈ X1, y ∈ Y} ∪ {xy : x ∈ X2, y ∈ Y1}.

Obviously, G is a subgraph of G∗. From Lemma 2.1, we know that

ρ(G) ≤ ρ(G∗), (6)

where the equality holds if and only if G = G∗.

Let

G′ = G∗ − {uv : u ∈ X2, v ∈ Y1} + {uw : u ∈ X2, w ∈ X1}
and

G′′ = G∗ − {uv : u ∈ X1, v ∈ Y2} + {uw : u ∈ Y2, w ∈ Y1}.
Then we have the following conclusion.

Lemma 4.4. Let G∗, G′ and G′ ′ be the graph defined above (see Fig. 1) with X2 �= ∅ and Y2 �= ∅. Then one has

ρ(G∗) < ρ(G′), or ρ(G∗) < ρ(G′′). (7)

Proof. Let ρ = ρ(G∗) be the Harary spectral radius of G∗ and X the principal eigenvector. By Lemma 2.3, X is positive and can be

written as

X = (x1, . . . , x1︸ ︷︷ ︸
a

, x2, . . . , x2︸ ︷︷ ︸
b

, y1, . . . , y1︸ ︷︷ ︸
c

, y2 . . . , y2︸ ︷︷ ︸
d

)T ,

where a = |X1|, b = |X2|, c = |Y1| and d = |Y2|.
As

RD(G∗) = 1

2
( J − I) +

⎛
⎜⎜⎜⎜⎜⎝

0a×a
1
2

Ja×b Ja×c Ja×d

1
2

Jb×a 0b×b Jb×c
1
3

Jb×d

Jc×a Jc×b 0c×c
1
2

Jc×d

Jd×a
1
3

Jd×b
1
2

Jd×c 0d×d

⎞
⎟⎟⎟⎟⎟⎠
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Fig. 2. Graphs G and G′ for Lemma 5.1.
and

RD(G′) = 1

2
( J − I) +

⎛
⎜⎜⎜⎜⎜⎝

0a×a Ja×b Ja×c Ja×d

Jb×a 0b×b
1
2

Jb×c
1
2

Jb×d

Jc×a
1
2

Jc×b 0c×c
1
2

Jc×d

Jd×a
1
2

Jd×b
1
2

Jd×c 0d×d

⎞
⎟⎟⎟⎟⎟⎠,

we have

XT (RD(G′) − RD(G∗))X = XT

⎛
⎜⎜⎜⎜⎜⎝

0a×a
1
2

Ja×b 0a×c 0a×d

1
2

Jb×a 0b×b − 1
2

Jb×c
1
6

Jb×d

0c×a − 1
2

Jc×b 0c×c 0c×d

0d×a
1
6

Jd×b 0d×c 0d×d

⎞
⎟⎟⎟⎟⎟⎠X

= abx1x2 − bcx2y1 + 1

3
bdx2y2

= bx2(ax1 − cy1) + 1

3
bdx2y2. (8)

Similarly, one has that

XT (RD(G′′) − RD(G∗))X = dy2(cy1 − ax1) + 1

3
bdx2y2.

It is easy to see that either XT (RD(G′) − RD(G∗))X > 0 or XT (RD(G′′) − RD(G∗))X > 0, i.e., ρ(G∗) < ρ(G′) or ρ(G∗) < ρ(G′ ′). �

By (6) and (7), together with Corollary 4.2, it is straightforward to see that

Theorem 4.5. For any bipartite graph G with matching number p and G �= Kp,n−p, one has that ρ(G) < ρ(Kp,n−p).

5. Graphs with given number of cut edges

Lemma 5.1. Let G be a graph with a cut edge e = w1w2, and G′ be the graph obtained from G by contracting edge e and adding a

pendent edge attaching at the contracting vertex (see Fig. 2). If dG(wi) ≥ 2 for i = 1, 2, we have that ρ(G′) > ρ(G).

Proof. Let ρ(G) be the Harary spectral radius of G and X the corresponding principal eigenvector. Without loss of generality, we

assume that xw1
≥ xw2

. We denote the contracting vertex by w1, and the pendant edge by w1w2. Let Gi be the component of G − e

that contains wi for i = 1, 2. Let V ′
1

= V (G1) \ {w1} and V ′
2

= V (G2) \ {w2}. For any two vertices u and v, we have that

dG′ (u, v) =

⎧⎪⎨
⎪⎩

dG(u, v) − 1, if u ∈ V (G1) and v ∈ V ′
2,

dG(u, v) + 1, if u = w2 and v ∈ V ′
2,

dG(u, v), otherwise.

Let

A =
∑

w1∈V ′
1
,w2∈V ′

2

(
1

dG′ (w1, w2)
− 1

dG(w1, w2)

)
xw1

xw2
> 0.

From the definition of the Harary matrix, we know that

ρ(G′) − ρ(G) ≥ XT RD(G′)X − XT RD(G))X
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=
∑

u,v∈V (G)

(
1

dG′ (u, v)
− 1

dG(u, v)

)
xuxv

= 2A + 2
∑

u=w1,v∈V ′
2

(
1

dG′ (u, v)
− 1

dG(u, v)

)
xuxv + 2

∑
u=w2,v∈V ′

2

(
1

dG′ (u, v)
− 1

dG(u, v)

)
xuxv

= 2A + 2
∑
v∈V ′

2

xv

(
xw1

dG(w1, v)(dG(w1, v) − 1)
− xw2

dG(w2, v)(dG(w2, v) + 1)

)
= 2A + 2(xw1

− xw2
)
∑
v∈V ′

2

1

dG(w1, v)(dG(w1, v) − 1)
xv

≥ 2A > 0.

Note that the last equality holds since dG(w1, v) = dG(w2, v) + 1 for any v ∈ V ′
2. Hence we have our conclusion. �

Assume that r1, r2, . . . , rs are positive integers, and s ≤ t. Let Kt (r1, r2, . . . , rs) be the graph that is obtained from Kt with

V (Kt ) = {v1, v2, . . . , vt} by attaching ri pendant edges to vertex vi for 1 ≤ i ≤ s.

Lemma 5.2. Let G = Kt (r1, r2, . . . , rs) and G′ = Kt (r1 + r2 + · · · + rs). Then ρ(G′) > ρ(G).

Proof. Let ρ(G) be the Harary spectral radius of G and X the corresponding principal eigenvector. Let Ri be set of pendant vertices

that is adjacent to vi in G. From Lemma 2.3, we can suppose that xu = ai for all u ∈ Ri (1 ≤ i ≤ s). Without loss of generality,

assume that xv1
≥ xvi

for 2 ≤ i ≤ s. Let G′′ = G − {v2w : w ∈ R2} + {v1w : w ∈ R2}, that is, G′′ = Kt (r1 + r2, r3, . . . , rs). For any two

vertices u and v, if neither u nor v belongs to R2, we know that dG(u, v) = dG′′ (u, v); If both u and v belong to R2, we can also get

dG(u, v) = dG′′ (u, v). If exactly one of u and v belongs to R2, say u ∈ R2, we have the following equation:

dG′′ (u, v) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dG(u, v) − 1 = 2, if v ∈ R1,

dG(u, v) − 1 = 1, if v = v1

dG(u, v) + 1 = 2, if v = v2,

dG(u, v), otherwise.

From the definition of the Harary matrix, we know that

ρ(G′′) − ρ(G) ≥ XT RD(G′′)X − XT RD(G))X

=
∑

u,v∈V (G)

(
1

dG′′ (u, v)
− 1

dG(u, v)

)
xuxv

= 2
∑

u∈R2,v/∈R2

(
1

dG′′ (u, v)
− 1

dG(u, v)

)
xuxv

= 2r2a2

(∑
v∈R1

(
1

2
− 1

3

)
xv +

(
1 − 1

2

)
xv1

+
(

1

2
− 1

)
xv2

)

= 1

3
r1r2a1a2 + r2a2(xv1

− xv2
)

> 0.

By repeating this process until all the pendant edges have a common end, we can obtain our conclusion. �

From Lemmas 2.1, 5.1 and 5.2, we have the following theorem.

Theorem 5.3. Let G be a graph on n vertices with p cut edges which has the maximum Harary spectral radius, then G = Kn−p(p).

Corollary 5.4. The n-vertex star Sn is the unique tree on n vertices which has the maximum Harary spectral radius.
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