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A path in an edge colored graph is said to be a rainbow path if no two edges on this
path share the same color. For an [-connected graph I" and an integer k with 1 <k <], the
rainbow k-connection number of I" is the minimum number of colors required to color
the edges of I such that any two distinct vertices of I" are connected by k internally
disjoint rainbow paths. In this paper, a method is provided for bounding the rainbow
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consider the rainbow 2-connection numbers of Cayley graphs, especially, those defined on
abelian groups and dihedral groups.
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1. Introduction

All graphs considered in this paper are simple, finite
and undirected. We follow the notation and terminology
of [2] for those not described here.

For a graph I, we denote by V(I") and E(I") the ver-
tex set and edge set of I', respectively. An edge-coloring
of a graph I' is a mapping from E(I") to some finite set
of colors. A path in an edge colored graph is said to be a
rainbow path if no two edges on this path share the same
color. Let I be an edge colored I-connected graph, where
l is a positive integer. For 1 <k </, the graph I' is rainbow
k-connected if any two distinct vertices of I" are connected
by k internally disjoint rainbow paths, while the coloring is
called a rainbow k-coloring. The rainbow k-connection num-
ber of I', denoted by rcy(I"), is the minimum number of
colors required to color the edges of I" to make the graph
rainbow k-connected. For simplicity, we write rc(I") for
rc1(I") and call it rainbow connection number. A well-known
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theorem of Menger [14] shows that in every [-connected
graph I with | > 1, there exist k internally disjoint paths
connecting every two distinct vertices u and v for ev-
ery integer k with 1 <k <. By coloring the edges of I
with distinct colors, we know that every two distinct ver-
tices of I' are connected by k internally disjoint rainbow
paths, and thus the function rc,(I") is well-defined for ev-
ery 1 <k <I. An easy observation is that rcy(I") < reg(X)
for each [-connected spanning subgraph X of the graph I'.
We note also the trivial fact that if C, is a cycle with n > 3,
then rcy(Cp) =n.

The concept of rainbow k-connection number was first
introduced by Chartrand et al. ([3] for k =1, and [4] for
general k). Since then, a considerable amount of research
has been carried out towards the function rc,(I"), see [12]
for a survey on this topic. Chartrand et al. [4] proved that
for every integer k > 2, there exists an integer f(k) such
that if n > f(k), then rc(K,) = 2. With a similar method,
Li and Sun [11] obtained that for every integer k > 2, there
exists an integer g(k) = 2k[§] such that rcg(Kp,n) =3 for
any n > g(k). Fujita et al. [6] and He et al. [8] investigated
the rainbow k-connection number of random graphs. In
particular, it was shown in [10] that if I" is a 2-connected
graph with n vertices, then rcy(I") < n with equality if and
only if I" is a cycle of order n.

http://dx.doi.org/10.1016/j.ipl.2014.12.007
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Let G be a finite group with identity element 1. Let S
be a subset of G such that 1¢ S=S5"1:={s"!|se S}
The Cayley graph Cay(G, S) is defined on G such that two
‘vertices' g and h are adjacent if and only if g~'h € S.
Hence Cay(G, S) is a well-defined simple regular graph of
valency |S|. It is well-known that Cay(G, S) is connected if
and only if S is a generating set of G. In a Cayley graph
Cay(G, S), an edge {g, h} is called an s-edge if g~ 'h or
h~1g equals some s in S.

Cayley graphs have been an active topic in algebraic
graph theory for a long time. Actually, interconnection
networks are often modeled by highly symmetric Cayley
graphs [1]. The rainbow connection number of a graph
can be applied to measure the safety of a network. Thus
the object of the rainbow connection numbers of Cay-
ley graphs should be meaningful. Li et al. [9], Lu and
Ma [13] discussed the rainbow connection numbers of
Cayley graphs. This motivates us to consider the rainbow
2-connection numbers of Cayley graphs. In this paper, we
establish a lemma for bounding the rainbow 2-connection
numbers of graphs satisfying certain structural properties.
Using this lemma, we consider the rainbow 2-connection
numbers of Cayley graphs, especially, those defined on
abelian groups and on dihedral groups.

2. Rainbow 2-connection numbers of Cayley graphs

Let I be a graph. For U,V C V(I"), we denote by
I'[U, V] the subgraph on U UV with edge set {{u,v} e
E(I') |ue U,v € V}. For a partition B = {Up, Uy, ---,
Umn—1} of V(I'), define a graph I'g with vertex set 3 such
that U;,U; € B are adjacent in I'z if and only if some
u € U; is adjacent to some v € Uj in I". The graph Iz is
called a quotient graph of I'. The following technical lemma
is very important.

Lemma 2.1. Let I" be a 2-connected graph. Assume that
V(I') has a partition B = {Ug, U1, ---,Un—1} such that I'p
is 2-connected, and for each i, the subgraph I'[Uj, U;] is
2-connected.

(i) Suppose that for each pair of adjacent vertices U; and U j
in I'p, the subgraph I'[U;, U] has no isolate vertices. Then

rea(I') < max{re; (C[U;, Uil) | 0 <i <m} + rca(I'g).

(ii) Suppose that E(I'[U;, Uiy+1]) # @ for 0 <i < m, and every
u € U; is adjacent to some v € U;_1 or some w € Ujyq
in I', reading the subscripts modulo m. Then

rea(I') < (max{reo(I'[U;, Uj]) |0 <i <m} + 1)m.

Proof. Denote [ = I'[Uj, U;] and ¢ = max{rc;(I7) | 0 <
i<m}.

(i) Let C be a set of ¢ colors and D be a set of rca(I'g)
colors with C N D = @. For I'p, we choose a rainbow
2-coloring 8 : E(I'g) — D. For each graph I3, assign a rain-
bow 2-coloring 6; : E(I7) — C. Define an edge-coloring 6 of
I’ by

0;(e) ifee E(J7) for0O<i<m;
6({U;,Uj}) if{U;,Uj} € E(B) and
e € E(I'[U;, Uj)).

O(e) =

Let u and v be any two distinct vertices of I'. If u
and v are contained in some Ij, then there exist two
internally disjoint rainbow paths by means of the rain-
bow 2-coloring 6;. Suppose u € V(I7) and v € V(7))
satisfying i # j. In the quotient graph Iz, there ex-
ist two internally disjoint rainbow paths connecting U;
and U;. Denote them by U;, U;,U, --,U;,Uj and
Ui, Uj,,Uj,,---,Uj,,Uj. Since U;; and U; are adjacent
in I'g, by the assumptions, we know that the subgraph
I'[U;,, U] has no isolate vertices. Then there exists a ver-
tex v;, € Uj; satisfying v;,v € E(I"). Similarly, there exist
some vertices v;, € U;, for 1 <r<s—1 and v; € U;
such that vi v _,, Vi, Vi, -, Vi, Vi;, Vi; Vi € E(I"). Ob-
viously, P’ = u, P!, vi, vi,, vi,,---, Vi, v is a rainbow path
connecting u and v, where P! is a rainbow path be-
tween u and v; in Ij. Since U; and Uj, are adjacent
in I'y, by the assumptions, we have that the subgraph
I'[U;, Uj;] has no isolate vertices. Thus there exists a ver-
tex vj, € Uj, satisfying uv;j, € E(I"). Similarly, there exist
some vertices vj € Uj, for 2 <r <t and v; € U; such
that vj,vj,,Vj,Vj, -+, Vj_,Vj., VjVj € EI"). Obviously,
P”=u,vjl,vjz,n-,vjt,vj,Pz,v is also a rainbow path
connecting u and v, where P2 is a rainbow path between
vj and v in I7j. Note that P’ and P” are internally disjoint.
Thus I" is rainbow 2-connected with the edge-coloring 6,
and so rcy (') < max{rc;(I'[U;, Ui]) |0 <i <m} +rcy(I'R).

(ii) Consider the spanning subgraph X of I with edge
set

E(X)= (U E(F,-)) U (U E(r'[U;, U,-+1])>.

i=0 i=0

Since E(I'[Uj, Uj4+1]) # @ for 0 <i <m, we obtain that X
is a cycle of length m. Let Co,Cq,---,Cpn—1 be c-sets of
colors such that G;NC; =0 if 0 <i < j <m. For each
graph I3, since rcy(I7) < c, we assign a rainbow 2-coloring
ni : E(I7) — C;. Choose m colors c1, ¢z, -+, which are
not used above. Define an edge-coloring 1 of X' as follows:

© ni(e) ifeeE(}) for0<i<m;
e) =
7 Ci ifee E(I'[Uj—1, Ui for1 <i<m.

Let u and v be any two distinct vertices of I". If u and
v are contained in some U; for 0 <i <m — 1, then there
exist two internally disjoint rainbow paths connecting u
and v by means of the rainbow 2-coloring n;. Without
loss of generality, we assume that u € U; and v € U with
0 <is# j<m—1. Then there also exist two internally dis-
joint rainbow paths connecting u and v since Xz is a cycle
and the colors cq1,cy,---,cy are not used in I for 0 <
i <m-—1. Hence I" is rainbow 2-connected, and so part (ii)
follows from enumerating the number of colors used
forn. O

Let G be a group and N a normal subgroup of G. Then
all (left) cosets of N in G form a group under the product

http://dx.doi.org/10.1016/j.ipl.2014.12.007
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(gN)(hN) = ghN,

which is denoted by G/N and called the quotient group of
G with respect to N.

Theorem 2.2. Let I' = Cay(G, S) be a connected Cayley graph
with1¢ S = S~1. Suppose that X C S such that N := (S\ (XU
X~1)) # G satisfying |G/N| >3 and [N| > 3.Set Y = S\ (X U
X~V and ¥ = Cay(N, Y). If N is normal in G, then

rey(I') < rea(X) + rez(Cay (G, X)),

where G =G/N and X = {xN | x € S\ N}.

Proof. Since N is normal in G, we have G = (X,Y) <
(X,N) = (X)N, and thus G = (X)N. Let m be the index
of N in G. Then m = % Let goN =N, giN,---, giN,---,
gm—1N be all distinct left cosets of N in G. Denote U; =
giN for 0 <i<m. Then B={U;|0<i<mj} is a partition
of V(I'). Define a mapping ¢; from Ug to U; as follows:
g+ gig for each g € Ug = N. It is easy to check that
the mapping ¢; is an isomorphism between I'[Uy, Up] and
I'[Uj, Uj]. Thus each subgraph I'[U;, U;] contains a span-
ning subgraph isomorphic to the connected Cayley graph
X =Cay(N,Y), and so rcp(I'[Uj, Uj]) <rca(X).

Note that gNh = ghN for any g,h € G. Suppose that
E(I'[U;,Uj]) # @, where i # j. Then there exist some
g.heNand xe S\ N such that gigx = gjh. Thus

giNx = gigNx = gigx(x"'Nx) = gigxN = gjhN = g;N.

It follows that I'[U;, U;] contains a perfect matching, that
is, I'[U;,U;] has no isolate vertices. By Lemma 2.1(i),
rca(I7) < rc(X)+rca(I'g). Consider the quotient graph 3.
Thus U; and Uj; are adjacent if and only if g;N = giNx =
(giN)(xN) for some x € S \ N. It follows that I'p =
Cay(G, X), and hence the result follows. O

A graph is called vertex transitive if for any two vertices
there is an automorphism of the graph mapping one vertex
to the other one. By Theorem 2.2, we obtain the following
result.

Corollary 2.3. Let I', G and N be as in Theorem 2.2. Then

rea(I) < IN| + Igt.

Proof. Applying [7, Theorem 3.4.2], we know that a con-
nected vertex transitive graph of order no less than three
must be 2-connected. Thus, by [10, Theorem 14], if I is
a connected vertex transitive graph of order no less than
three, then rcp(I") < |V(I')|. Notice that a Cayley graph
must be vertex transitive. Hence

G|

TCz(F)STCz(ZJ)—i-rcz(Cay(C,)_())§|N|+W, O

Let G be a finite group. For an element x € G, denote
by |x| the order of x in G. A subset X of G is a minimal
generating set if G is generated by X but not by any proper
subset of X. Now we consider the rainbow 2-connection
numbers of Cayley graphs on abelian groups.

Theorem 2.4. Let G be a finite abelian group and S a generating
set of G such that 1 ¢ S = S~1. Set I = Cay(G, S). Then the
following statements hold.

(i) rea(I") < Y yex ||, where X is an arbitrary minimal gen-
erating set of G contained in S.

(ii) Either G is cyclic and S consists of generators of G; or there
are two proper divisors m and n of |G| such that |G| =mn
andrcy (') <m—+n.

Proof. (i) We prove part (i) by induction on the orders of
groups. Let X be an arbitrary minimal generating set of G
with X € S. Take x € X, set Y = X\ {x} and N = (Y). Thus
G = (X)=(x)N, and |G/N| < |x|.

Suppose |G/N| = 2. Denote Vo =N and Vi = xN. Let
¥ =Cay(G,X U X™1). Then ¥ is a connected spanning
subgraph of I'. Clearly,

T[Vol = Z[Vq]=Cay(N, YUY ™).

If IN|=2, then Y UY~! only contains an element,
denoted by y. Thus X = {x,y}, and X is a cycle of
length 4. Hence rcy(I") < rcp(X) = 4 = |x| + |y|. Now
we may assume that |[N| > 3. Note that rca(I"'[V;i]) <
rc2(Z[Vi]) = rea(Cay(N, Y UY~1)) for 0 <i < 1. Let C be
a set of rcp(Cay(N, Y UY~1)) colors. We choose a rainbow
2-coloring 6; : E(X[V;]) > C for 0 <i <1 such that for
any two elements ug, vo € Vo = N with ugvg € E(X[Vp]),
we have 6p(ugvo) # 61(u1v1), where uq = xug and v =
xvp. In addition, we assign a new color to every edge
uv € E(X[Vyp, V1]). Let u and v be any two distinct ver-
tices of X. If u,v € V; for 0 <i <1, then there exist two
internally disjoint rainbow paths connecting u and v in
X'[Vi] by means of the rainbow 2-coloring 6;. Without
loss of generality, now we assume that u € Vo and v € V.
Suppose u and v are adjacent in ¥. Then v = xu = ux.
Take an element y € Y. Obviously, uv and u,u’,v’, v are
two internally disjoint rainbow paths connecting u and
v in X, where u' =uy € Vo and v/ = uyx € Vy. Sup-
pose u and v are not adjacent in X. Then u, P!, uq,v and
u,vq, P2, v are two internally disjoint rainbow paths con-
necting u and v in X, where u; € Vo, vy € Vq, Pl is a
rainbow path between u and u; in X[Vp], and P? is a
rainbow path between v{ and v in ¥[V1]. Thus X is rain-
bow 2-connected with the above edge-coloring. Since X' is
a connected spanning subgraph of I', we have that I' is
rainbow 2-connected. Part (i) follows by induction.
Suppose |G/N| > 3. Assume that [N| = 2. Then

rea(I) <1z (Cay(G, XUX™Y)) <14 x| <2+
Assume that [N| > 3, by Theorem 2.2,

rea(IN) < rez(Cay(G, X U X71))
<rey(Cay(N, Y UY™T)) +[x].

Since |[N| < |G|, and Y is also a minimal generating
set of N, by induction, we have that rcy(Cay(N,Y U
Y1) < > yey 1¥], and so rea(I") < rea(Cay(G, X U X<
ZXEX Ix].

(ii) If (x) = G for each x € S, then G is cyclic and S
consists of generators of G. Hence we assume that there

http://dx.doi.org/10.1016/j.ipl.2014.12.007
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are x € S and Y € S such that |Y|>1 and G = (x,Y)
but (Y) # G. Denote N = (Y). By the proof of part (i)
and Theorem 2.2, part (ii) follows by setting |N| =m and
IG/N|=n. O

For an integer n > 3, the ladder L, of order 2n is a cu-
bic graph constructed by taking two copies of the cycle C,
on disjoint vertex sets (uq, Uy, -+, uy) and (vy, vy, -+, Vp),
then joining the corresponding vertices u;v; for 1 <i <n.
The Mobius ladder M, of order 2n is obtained from the
ladder by deleting the edges uqiu, and vqv,, and then in-
serting edges uqv, and u,vi.

Lemma 2.5. Let n be an integer with n > 3. Then

(i) rca(Ln) <.
(ii) rco(Mp) <n.

Proof. Let U = {uj|]1 <i <n} and V = {vj|1 <i <n}. De-
note up4q =uq1 and vy = V.
(i) Define an edge-coloring 6 of the graph L, as follows.
i ife=ujuj;qande=u;v;for1 <i<mn;
fle)=13i—-1

n ife=vqvs.

ife=vjvjfor2 <i<m;

Let x and y be any two distinct vertices of L,. Suppose
x,yeU or x,y eV, clearly, there exist two internally dis-
joint rainbow paths between x and y contained in the
cycle C!' = (uq,up, -+, up, u1) or C2 = (vi, v, -+, Vp, V7).

Suppose x=u; €U and y=v; e V. If j=i, then u;v;
and uj, ujy1, Vi+1, Vi are two internally disjoint rainbow
paths connecting x and y. If j =i+ 1, then u;, v;, viy1 and
Ui, Ujy1, Vi+1 are two internally disjoint rainbow paths be-
tween x and y. If i +2 < j <n, then u;, uj41,---,Uj, Vj
and uj, v, Vij_1,---, V1, Vy, vj are two internally disjoint
rainbow paths connecting x and y. If 1 < j <i —1, then
Uj, Ujp1, -+, Up, Ug, -+, U5, vy and ug, Vi, Vi_1,---,V; are
two internally disjoint rainbow paths between x and y.

Combining the above arguments, L, is rainbow 2-con-
nected by the edge-coloring 6, and so rcy (L) <n.

(ii) Define an edge-coloring n of the graph M, as fol-
lows.

i ife=ujujyqande =v;viq for

© 1<i<n-1;
e) = .
1 ife=uqvyand e = viupy;

i ife=ujviforl <i<n.

Let u; e U and v; € V. Without loss of generality, as-
sume that i < j. Obviously, u;, ujq,---,uj, vj and u;, uj_q,
---,U1,Vp,---,vj are two internally disjoint rainbow
paths connecting u; and vj. For any distinct vertices
uj,uj € U with i < j, there exist two internally disjoint
rainbow paths u;, ujqq,---,uj and uj, vj,---, Vi, Up, Up—1,
-+, uj. For any distinct vertices v, vj € V with i < j, there
exist two internally disjoint rainbow paths v;, vitq,---, V;
and vi,uj,---,Uq, Vp, Vn_1,---, Vj. Therefore, My is rain-
bow 2-connected by the edge-coloring n, that is,
rco(Myp) <n. O

Note that L3 = K30OK, and M3 = K3 3. Applying [4, Fig-
ure 2], we have that rcy(L3) = rep(K3OKy) = 3. It was
proved in [4] that for each integer r > 2, rcy(K; ;) =4 if
r=2, and rcy(Kry) = 3 if r > 3. Thus rc(M3) =
rc2(K33) = 3. In [5], the following results were proved:
(i) rea(Q3) = 4. (ii) rci(My) = 2,rco(Mg) = 4 and
rc3(M4) = 5. Note that the 3-dimensional cube Q3 is iso-
morphic to Ls. Hence rca(Lg) =rca(My) = 4.

Let n > 1 be an integer. We use Dj, to denote the
dihedral group generated by two elements, say a and b,
such that |a| =n, |b| =2, b~lab =a~!. (Note that D, =
Z and D4 = Zpx7Z3.) Then Dy = {(a) U (a)b = {a' | 0 <
i<nju{db|0<i<n).

Let C, be a cycle with vertex set U = {uq, uy,---, up},
reading the subscripts modulo n, and let P, be a path
with vertex set V = {vq,va,---, vy}, reading the sub-
scripts modulo m. The brick product of C, and Py, denoted
by C,[,ml, is the graph defined on U x V such that (u;, v;)
and (uy, vj) are adjacent if and only if either

(1) i—i’==+1 (mod n) and j = j’, or
() i=i i+j=0@mod2), j=j+1and j=1,2,--,
m—1.

For convenience, denote by C, ; the n-cycle in C,[Im] on
the vertex sets {(u;,vj):i=1,2,---,n}.

To prove the following results, we state two useful lem-
mas as follows.

Lemma 2.6. (See [13].)

(i) For 0 <i <n—1, each a'b is an involution.

(ii) If n is odd, then Dy, has a unique conjugacy class of invo-
lutions, which is {a'b |0 <i <n —1}.

(iii) If n is even, then Dy, has exactly three conjugacy classes
of involutions, which are {a%}, @b|0<i< %} and
{@®*bhjo<i<l)

(iv) If m is a divisor of n then (a) has a unique subgroup of or-
der m, which is (a% ). If N < (a), then N is normal in Dy,
and the quotient group Do, /N is a dihedral group gener-
ated by {aN, bN}.

(v) If X is a (minimal) generating set of Dy, then X contains
some involution a*b, and (X N (a)) U {xa’b |ah #x € X \
(a)} is a (minimal) generating set of {(a).

(vi) Set n= p$'p5? - py for distinct primes p;. If Y is a min-
imal generating set of (a), then |Y| <r. If X is a minimal
generating set of Doy, then | X| <r+1.

Lemma 2.7. (See [13].) Let I = Cay (D2, S) be a connected cu-
bic Cayley graph. Then one of the following cases occurs.

(i) re(IN = r%}, and I' is the ladder graph of order 2n.
(i) re(IN) = (%1, and I is the Mobius ladder of order 2n.
(iii) I" = Cay(Dan, {b, a°b, a'b}) for some integers s and t, and
either
(iii.1) re(I) < (+1['T], wherel € {|a°|, |a|, |a*~*|} and
m=1Y4=>20r
(iii.2) nisodd, and s, t and s — t are coprime to n.

http://dx.doi.org/10.1016/j.ipl.2014.12.007
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Similar to Lemma 2.7, we investigate the rainbow
2-connection numbers of cubic Cayley graphs on dihedral
groups.

Theorem 2.8. Let I" = Cay(Day,, S) be a connected cubic Cayley
graph. Thus one of the following cases occurs.

(i) rca(I') <n, and T is the ladder graph of order 2n.
(ii) rc(I") <n, and I is the Mobius ladder of order 2n.
(iii) I" = Cay(Dap, {b, a*b, a'b}) for some integers s and t, and
either
(iii.1) nis odd, and s, t and s —t are coprime to n; or
(iii.2) rep(I') < 2[5 + m, where [ € {|a|, |a"|, |a*~*|}
andm=7>2.

Proof. Suppose SN (a) # @, by Lemma 2.5 and Lemma 2.7,
one of the case (i) and the case (ii) must occur.

Suppose SN (a) =0@. Set S ={x, y, z}. Using Lemma 2.6,
one of x, y and z is conjugate to b. Without loss of
generality, we assume that b = g~!zg for some g e Da,.
Write g~ 1xg =a’b and g~ 'yg = a'b. Set T = {b,a’h, a'b}
and X = Cay(Dyn, T). It is easily shown that V(I') —
V(Z),h— g~ 'hg is an isomorphism from I" to X. Thus
I' = Cay(Dyp, {b, a°b, a'b}) for some integers s and t. With-
out loss of generality, we can denote T = {b,a’bh,a'b} =
{x, y, z}. Assume that Dy, can be generated by any 2-subset
of T. Then the case (iii.1) easily follows.

Now we may assume that there exist two elements

x,y € T such that |xy| <n. Let m = IXHT and | = |xy|.

The cycle (x,xy,xyx,---, xy)!=1, xy)!~'x,x) in ' will
be called the (x,y)-cycle of I'. Obviously, there exist
m vertex-disjoint (x, y)-cycles of length 2I. Since left
multiplication by the element a of Dy, is an automor-
phism of I', and I" is connected, there must exist a
perfect matching of z-edges from the (a)-vertices of one
(x, y)-cycle to the b{(a)-vertices of another (x,y)-cycle.
Hence there must exist a perfect matching from the
(a)-vertices of the second (x, y)-cycle to the b{a)-vertices
of the first (x, y)-cycle when m =2 or another (x, y)-cycle
when m > 2. Continuing this way, we obtain that I" con-
sists of C[ZT] together with a perfect matching joining the
vertices of valency 2 in Cy; with the vertices of valency
2 in Cym.

Let F denote the perfect matching joining the vertices
of valency 2 in Cy 1 with the vertices of valency 2 in Cy .
Define an edge-coloring 6 of the graph I" by

a, j) e = (uj, vj)(Ujy1, vj) for
l<i<2and1<j<[%7;

(i,j—T51D e=(ui,vj)(uiz1,vj) for

o(e) = l<i<2land [F1+1<j<m
I (Y) e = (uj, vj)(u;, vjzq) for

1<j<m-—1and
i+ j=0(mod?2);

(0, m) ecF.

It is easy to verify that I" is rainbow 2-connected with
the above coloring. Then the case (iii.2) follows from enu-
merating the number of colors used for . O

In the end of this section, we discuss the rainbow
2-connection numbers of Cayley graphs on Dy, or Dapg,
where k > 1 is an integer, p and g are distinct primes.

Theorem 2.9. Let X be a minimal generating set of D, where
k > 1 is an integer. Set S = X U Xland I = Cay(szk, S).
Then one of the following cases holds.

(i) rea(I") = 2p¥, and I is a cycle of order 2p*.
(ii) rea(I") < pX, and I is a ladder graph of order 2p*.

Proof. Since X is a minimal generating set of Dy pies by
Lemma 2.6, we have |X| =2. Hence X = {a'b,a’b} or
X ={da', a’b} for some integers i and j. Then S=X or S =
{a',a™', a’b}. It is easy to check that I" is either a cycle or a
ladder graph. Thus the theorem follows by Lemma 2.5. O

Theorem 2.10. Let G = Dypq, where p and q are distinct odd
primes. Let X be a minimal generating set of G. Set S = XU X1
and I' = Cay(G, S). Then one of the following statements holds.

(i) |X| =2 and I is either a cycle or a ladder graph.
(ii) |X| =3 and either
(ii.1) a)NX|=2andrc;(I')<p+q+1;o0r
(ii.2) (@) N X| =1 and rep(I') < 2l + m with {I,m} =
{p.q}

Proof. Since X is a minimal generating set of D, we ob-
tain 2 < |X| <3 by Lemma 2.6. Suppose |X| = 2. It follows
that I" is either a cycle or a ladder graph by the same
proof of Theorem 2.9.

Suppose |X| = 3. We claim that (a) N X # . To the con-
trary, assume that X = {a’b, a’b, a*b}. Then

|| #pq. |a"°|#pq and |a""*| # pg.

Without loss of generality, we may assume r —t = kp and
r—s=Ip, where (k,q) =1 and (I,q) = 1. Thus (aP) =
(a"%) < (a"b, a®b), that is aP € (a"b,a’b). An easy obser-
vation is that

a*a'h=a"*p=da'be (a"b,a’b).

This contradicts that X is a minimal generating set. Hence
(@) N X # (. Thus one of the following cases must occur.

(1) S ={a",aP?~", a'b, a’h}, where (r, pq) =q and (t — s,
pq) =p.

(2) S ={da",aP?" a‘'b,a’b}, where (r,pq) =p and (t —s,
pq) =q.

(3) S={a",aP?",a",aP?7", a°b}, where {|a"|, |a"|} = {p, q}.

If (1) holds, then we can check that I' = Cy[JCp, and
hence rcy(I") < 2q + p by Lemma 2.1. If (2) holds, then
I' = Cy,0Cy, and so rcp(I") < 2p 4+ q by Lemma 2.1.

Let It = I'[{a)] and I, = I'[b{a)]. If (3) holds, then
I't = Cay(Zpq. S N (a)). By Theorem 2.4, we have rcp(I7) <
p + q. Since left multiplication by a group element from
Dpq is a graph automorphism, we have I'7 = I';. Assign a
same edge-coloring to I'7 and I'; with p 4+ q colors such
that /7 and I are rainbow 2-connected. In addition, we

http://dx.doi.org/10.1016/j.ipl.2014.12.007
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give a new color to all a’h-edges. Let u and v be any
two distinct vertices of I'. If u,v € I3 for 1 <i <2, then
there exist two internally disjoint rainbow paths connect-
ing u and v in I} by means of the rainbow 2-coloring
of Ii. Without loss of generality, now we assume that
ue V() and v € V(I}). Suppose u and v are not ad-
jacent in I'. Then u,P',uq,v and u, vi, P2, v are two in-
ternally disjoint rainbow paths connecting u and v in I,
where uq € V(I), vy € V(I2), P! is a rainbow path be-
tween u and u; in I3, and P2 is a rainbow path between
vy and v in I5. Suppose u and v are adjacent in X. Then
uv and u, P3,uq, vy, v are two internally disjoint rainbow
paths connecting u and v in I, where uy € V(I'y), v €
V(I), and P2 is a rainbow path between u and u; in I7.
Therefore, I" is rainbow 2-connected with the above edge-
coloring, and so rc;(I') <p+q+1. O

Let I" = Cay(D4p,S) be a connected Cayley graph,
where S = {aP, a'b, a*b} with (t —s, 2p) = 2. Then it is easy
to verify that I" is isomorphic to the ladder graph Ljj. By
a similar proof of Theorem 2.10, the following result holds.

Theorem 2.11. Let G = Dy, where p is an odd prime. Let X
be a minimal generating set of G. Set S=XU X ' and I' =
Cay(G, S). Then one of the following statements holds.

(i) I is either a cycle or a ladder graph.
(i) S = {a",a®P~",a'b,a’h} with (r,2p) =2 and (t — s,
2p)=p,andrc;(I') < p + 4.
(iii) S = {aP,a",a®P~",atb} with (r,2p) = 2, and rcy(I) <
p+1
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Highlights

e Establish a lemma for bounding the rainbow 2-connection numbers of some special graphs.
e Provide an upper bound for the rainbow 2-connection numbers of abelian Cayley graphs.
e Characterize the rainbow 2-connection numbers of cubic dihedrants.
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