
ARTICLE IN PRESS

U
N

C
O

R
R

E
C

T
E

D
P

R
O

O
F

Please cite this article in press as: Z.P. Lu, Y.B. Ma, Rainbow 2-Connection Numbers of Cayley Graphs, Inf. Process. Lett. (2014), 
http://dx.doi.org/10.1016/j.ipl.2014.12.007

JID:IPL AID:5226 /SCO [m3G; v1.143-dev; Prn:19/12/2014; 6:30] P.1 (1-6)

Information Processing Letters ••• (••••) •••–•••

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

1 62

2 63

3 64

4 65

5 66

6 67

7 68

8 69

9 70

10 71

11 72

12 73

13 74

14 75

15 76

16 77

17 78

18 79

19 80

20 81

21 82

22 83

23 84

24 85

25 86

26 87

27 88

28 89

29 90

30 91

31 92

32 93

33 94

34 95

35 96

36 97

37 98

38 99

39 100

40 101

41 102

42 103

43 104

44 105

45 106

46 107

47 108

48 109

49 110

50 111

51 112

52 113

53 114

54 115

55 116

56 117

57 118

58 119

59 120

60 121

61 122

Rainbow 2-Connection Numbers of Cayley GraphsI

Zaiping Lu, Yingbin Ma ∗

Center for Combinatorics and LPMC-TJKLC, Nankai University, Tianjin 300071, PR China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 10 June 2014
Received in revised form 5 December 2014
Accepted 13 December 2014
Available online xxxx
Communicated by X. Wu

Keywords:

Edge-coloring

Rainbow path
Rainbow 2-connection number

Cayley graph
Interconnection networks

A path in an edge colored graph is said to be a rainbow path if no two edges on this 
path share the same color. For an l-connected graph Γ and an integer k with 1 ≤ k ≤ l, the 
rainbow k-connection number of Γ is the minimum number of colors required to color 
the edges of Γ such that any two distinct vertices of Γ are connected by k internally 
disjoint rainbow paths. In this paper, a method is provided for bounding the rainbow 
2-connection numbers of graphs with certain structural properties. Using this method, we 
consider the rainbow 2-connection numbers of Cayley graphs, especially, those defined on 
abelian groups and dihedral groups.

 2014 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are simple, finite 
and undirected. We follow the notation and terminology 
of [2] for those not described here.

For a graph Γ , we denote by V (Γ ) and E(Γ ) the ver-
tex set and edge set of Γ , respectively. An edge-coloring
of a graph Γ is a mapping from E(Γ ) to some finite set 
of colors. A path in an edge colored graph is said to be a 
rainbow path if no two edges on this path share the same 
color. Let Γ be an edge colored l-connected graph, where 
l is a positive integer. For 1 ≤ k ≤ l, the graph Γ is rainbow 
k-connected if any two distinct vertices of Γ are connected 
by k internally disjoint rainbow paths, while the coloring is 
called a rainbow k-coloring. The rainbow k-connection num-

ber of Γ , denoted by rck(Γ ), is the minimum number of 
colors required to color the edges of Γ to make the graph 
rainbow k-connected. For simplicity, we write rc(Γ ) for 
rc1(Γ ) and call it rainbow connection number. A well-known 

I This work partially supported by the NSFC (No. 11271267, No. 
11371204 and No. 11171368).
* Corresponding author.

E-mail address: mayingbincw@gmail.com (Y.B. Ma).

theorem of Menger [14] shows that in every l-connected 
graph Γ with l ≥ 1, there exist k internally disjoint paths 
connecting every two distinct vertices u and v for ev-
ery integer k with 1 ≤ k ≤ l. By coloring the edges of Γ
with distinct colors, we know that every two distinct ver-
tices of Γ are connected by k internally disjoint rainbow 
paths, and thus the function rck(Γ ) is well-defined for ev-
ery 1 ≤ k ≤ l. An easy observation is that rck(Γ ) ≤ rck(Σ)

for each l-connected spanning subgraph Σ of the graph Γ . 
We note also the trivial fact that if Cn is a cycle with n ≥ 3, 
then rc2(Cn) = n.

The concept of rainbow k-connection number was first 
introduced by Chartrand et al. ([3] for k = 1, and [4] for 
general k). Since then, a considerable amount of research 
has been carried out towards the function rck(Γ ), see [12]
for a survey on this topic. Chartrand et al. [4] proved that 
for every integer k ≥ 2, there exists an integer f (k) such 
that if n ≥ f (k), then rck(Kn) = 2. With a similar method, 
Li and Sun [11] obtained that for every integer k ≥ 2, there 
exists an integer g(k) = 2k⌈ k

2
⌉ such that rck(Kn,n) = 3 for 

any n ≥ g(k). Fujita et al. [6] and He et al. [8] investigated 
the rainbow k-connection number of random graphs. In 
particular, it was shown in [10] that if Γ is a 2-connected 
graph with n vertices, then rc2(Γ ) ≤ n with equality if and 
only if Γ is a cycle of order n.

http://dx.doi.org/10.1016/j.ipl.2014.12.007

0020-0190/ 2014 Elsevier B.V. All rights reserved.
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Let G be a finite group with identity element 1. Let S
be a subset of G such that 1 /∈ S = S−1 := {s−1 | s ∈ S}. 
The Cayley graph Cay(G, S) is defined on G such that two 
‘vertices’ g and h are adjacent if and only if g−1h ∈ S . 
Hence Cay(G, S) is a well-defined simple regular graph of 
valency |S|. It is well-known that Cay(G, S) is connected if 
and only if S is a generating set of G . In a Cayley graph 
Cay(G, S), an edge {g, h} is called an s-edge if g−1h or 
h−1g equals some s in S .

Cayley graphs have been an active topic in algebraic 
graph theory for a long time. Actually, interconnection 
networks are often modeled by highly symmetric Cayley 
graphs [1]. The rainbow connection number of a graph 
can be applied to measure the safety of a network. Thus 
the object of the rainbow connection numbers of Cay-
ley graphs should be meaningful. Li et al. [9], Lu and 
Ma [13] discussed the rainbow connection numbers of 
Cayley graphs. This motivates us to consider the rainbow 
2-connection numbers of Cayley graphs. In this paper, we 
establish a lemma for bounding the rainbow 2-connection 
numbers of graphs satisfying certain structural properties. 
Using this lemma, we consider the rainbow 2-connection 
numbers of Cayley graphs, especially, those defined on 
abelian groups and on dihedral groups.

2. Rainbow 2-connection numbers of Cayley graphs

Let Γ be a graph. For U , V ⊆ V (Γ ), we denote by 
Γ [U , V ] the subgraph on U ∪ V with edge set {{u, v} ∈
E(Γ ) | u ∈ U , v ∈ V }. For a partition B = {U0, U1, · · · ,
Um−1} of V (Γ ), define a graph ΓB with vertex set B such 
that U i, U j ∈ B are adjacent in ΓB if and only if some 
u ∈ U i is adjacent to some v ∈ U j in Γ . The graph ΓB is 
called a quotient graph of Γ . The following technical lemma 
is very important.

Lemma 2.1. Let Γ be a 2-connected graph. Assume that 
V (Γ ) has a partition B = {U0, U1, · · · , Um−1} such that ΓB

is 2-connected, and for each i, the subgraph Γ [U i, U i] is 
2-connected.

(i) Suppose that for each pair of adjacent vertices U i and U j

in ΓB , the subgraph Γ [U i, U j] has no isolate vertices. Then

rc2(Γ ) ≤ max
{

rc2
(

Γ [U i,U i]
) ∣

∣ 0 ≤ i <m
}

+ rc2(ΓB).

(ii) Suppose that E(Γ [U i, U i+1]) 6= ∅ for 0 ≤ i <m, and every 
u ∈ U i is adjacent to some v ∈ U i−1 or some w ∈ U i+1

in Γ , reading the subscripts modulo m. Then

rc2(Γ ) ≤
(

max
{

rc2
(

Γ [U i,U i]
) ∣

∣ 0 ≤ i <m
}

+ 1
)

m.

Proof. Denote Γi = Γ [U i, U i] and c = max{rc2(Γi) | 0 ≤
i <m}.

(i) Let C be a set of c colors and D be a set of rc2(ΓB)

colors with C ∩ D = ∅. For ΓB , we choose a rainbow 
2-coloring θ̄ : E(ΓB) → D . For each graph Γi , assign a rain-
bow 2-coloring θi : E(Γi) → C . Define an edge-coloring θ of 
Γ by

θ(e) =











θi(e) if e ∈ E(Γi) for 0 ≤ i <m;

θ̄ ({U i,U j}) if {U i,U j} ∈ E(ΓB) and

e ∈ E(Γ [U i,U j]).

Let u and v be any two distinct vertices of Γ . If u

and v are contained in some Γi , then there exist two 
internally disjoint rainbow paths by means of the rain-
bow 2-coloring θi . Suppose u ∈ V (Γi) and v ∈ V (Γ j)

satisfying i 6= j. In the quotient graph ΓB , there ex-

ist two internally disjoint rainbow paths connecting U i

and U j . Denote them by U i, U i1 , U i2 , · · · , U is , U j and 
U i, U j1 , U j2 , · · · , U jt , U j . Since U is and U j are adjacent 
in ΓB , by the assumptions, we know that the subgraph 
Γ [U is , U j] has no isolate vertices. Then there exists a ver-
tex v is ∈ U is satisfying v is v ∈ E(Γ ). Similarly, there exist 
some vertices v ir ∈ U ir for 1 ≤ r ≤ s − 1 and v i ∈ U i

such that v is v is−1
, v is−1

v is−2
, · · · , v i2 v i1 , v i1 v i ∈ E(Γ ). Ob-

viously, P′ = u, P1, v i, v i1 , v i2 , · · · , v is , v is a rainbow path 
connecting u and v , where P1 is a rainbow path be-
tween u and v i in Γi . Since U i and U j1 are adjacent 
in ΓB , by the assumptions, we have that the subgraph 
Γ [U i, U j1 ] has no isolate vertices. Thus there exists a ver-
tex v j1 ∈ U j1 satisfying uv j1 ∈ E(Γ ). Similarly, there exist 
some vertices v jr ∈ U jr for 2 ≤ r ≤ t and v j ∈ U j such 
that v j1 v j2 , v j2 v j3 , · · · , v jt−1

v jt , v jt v j ∈ E(Γ ). Obviously, 
P′′ = u, v j1 , v j2 , · · · , v jt , v j, P2, v is also a rainbow path 
connecting u and v , where P2 is a rainbow path between 
v j and v in Γ j . Note that P′ and P′′ are internally disjoint. 
Thus Γ is rainbow 2-connected with the edge-coloring θ , 
and so rc2(Γ ) ≤ max{rc2(Γ [U i, U i]) | 0 ≤ i <m} + rc2(ΓB).

(ii) Consider the spanning subgraph Σ of Γ with edge 
set

E(Σ) =

(

m−1
⋃

i=0

E(Γi)

)

∪

(

m−1
⋃

i=0

E
(

Γ [U i,U i+1]
)

)

.

Since E(Γ [U i, U i+1]) 6= ∅ for 0 ≤ i <m, we obtain that ΣB

is a cycle of length m. Let C0, C1, · · · , Cm−1 be c-sets of 
colors such that C i ∩ C j = ∅ if 0 ≤ i < j < m. For each 
graph Γi , since rc2(Γi) ≤ c, we assign a rainbow 2-coloring 
ηi : E(Γi) → C i . Choose m colors c1, c2, · · · , cm which are 
not used above. Define an edge-coloring η of Σ as follows:

η(e) =

{

ηi(e) if e ∈ E(Γi) for 0 ≤ i <m;

ci if e ∈ E(Γ [U i−1,U i]) for 1 ≤ i ≤m.

Let u and v be any two distinct vertices of Γ . If u and 
v are contained in some U i for 0 ≤ i ≤ m − 1, then there 
exist two internally disjoint rainbow paths connecting u
and v by means of the rainbow 2-coloring ηi . Without 
loss of generality, we assume that u ∈ U i and v ∈ U j with 
0 ≤ i 6= j ≤m − 1. Then there also exist two internally dis-
joint rainbow paths connecting u and v since ΣB is a cycle 
and the colors c1, c2, · · · , cm are not used in Γi for 0 ≤
i ≤m −1. Hence Γ is rainbow 2-connected, and so part (ii) 
follows from enumerating the number of colors used 
for η. 2

Let G be a group and N a normal subgroup of G . Then 
all (left) cosets of N in G form a group under the product
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(gN)(hN) = ghN,

which is denoted by G/N and called the quotient group of 
G with respect to N .

Theorem 2.2. Let Γ = Cay(G, S) be a connected Cayley graph 
with 1 /∈ S = S−1 . Suppose that X ⊆ S such that N := 〈S \ (X ∪

X−1)〉 6= G satisfying |G/N| ≥ 3 and |N| ≥ 3. Set Y = S \ (X ∪

X−1) and Σ = Cay(N, Y ). If N is normal in G , then

rc2(Γ ) ≤ rc2(Σ) + rc2
(

Cay(Ḡ, X̄)
)

,

where Ḡ = G/N and X̄ = {xN | x ∈ S \ N}.

Proof. Since N is normal in G , we have G = 〈X, Y 〉 ≤
〈X, N〉 = 〈X〉N , and thus G = 〈X〉N . Let m be the index 
of N in G . Then m = |G|

|N|
. Let g0N = N, g1N, · · · , giN, · · · ,

gm−1N be all distinct left cosets of N in G . Denote U i =

giN for 0 ≤ i < m. Then B = {U i | 0 ≤ i < m} is a partition 
of V (Γ ). Define a mapping φi from U0 to U i as follows: 
g 7→ gi g for each g ∈ U0 = N . It is easy to check that 
the mapping φi is an isomorphism between Γ [U0, U0] and 
Γ [U i, U i]. Thus each subgraph Γ [U i, U i] contains a span-
ning subgraph isomorphic to the connected Cayley graph 
Σ = Cay(N, Y ), and so rc2(Γ [U i, U i]) ≤ rc2(Σ).

Note that gNh = ghN for any g, h ∈ G . Suppose that 
E(Γ [U i, U j]) 6= ∅, where i 6= j. Then there exist some 
g, h ∈ N and x ∈ S \ N such that gi gx = g jh. Thus

giNx = gi gNx = gi gx
(

x−1Nx
)

= gi gxN = g jhN = g jN.

It follows that Γ [U i, U j] contains a perfect matching, that 
is, Γ [U i, U j] has no isolate vertices. By Lemma 2.1(i), 
rc2(Γ ) ≤ rc2(Σ) +rc2(ΓB). Consider the quotient graph ΓB . 
Thus U i and U j are adjacent if and only if g jN = giNx =
(giN)(xN) for some x ∈ S \ N . It follows that ΓB =

Cay(Ḡ, X̄), and hence the result follows. 2

A graph is called vertex transitive if for any two vertices 
there is an automorphism of the graph mapping one vertex 
to the other one. By Theorem 2.2, we obtain the following 
result.

Corollary 2.3. Let Γ , G and N be as in Theorem 2.2. Then 
rc2(Γ ) ≤ |N| + |G|

|N|
.

Proof. Applying [7, Theorem 3.4.2], we know that a con-
nected vertex transitive graph of order no less than three 
must be 2-connected. Thus, by [10, Theorem 1.4], if Γ is 
a connected vertex transitive graph of order no less than 
three, then rc2(Γ ) ≤ |V (Γ )|. Notice that a Cayley graph 
must be vertex transitive. Hence

rc2(Γ ) ≤ rc2(Σ) + rc2
(

Cay(Ḡ, X̄)
)

≤ |N| +
|G|

|N|
. 2

Let G be a finite group. For an element x ∈ G , denote 
by |x| the order of x in G . A subset X of G is a minimal 
generating set if G is generated by X but not by any proper 
subset of X . Now we consider the rainbow 2-connection 
numbers of Cayley graphs on abelian groups.

Theorem 2.4. Let G be a finite abelian group and S a generating 
set of G such that 1 /∈ S = S−1 . Set Γ = Cay(G, S). Then the 
following statements hold.

(i) rc2(Γ ) ≤
∑

x∈X |x|, where X is an arbitrary minimal gen-
erating set of G contained in S .

(ii) Either G is cyclic and S consists of generators of G; or there 
are two proper divisors m and n of |G| such that |G| =mn

and rc2(Γ ) ≤m + n.

Proof. (i) We prove part (i) by induction on the orders of 
groups. Let X be an arbitrary minimal generating set of G
with X ⊆ S . Take x ∈ X , set Y = X \ {x} and N = 〈Y 〉. Thus 
G = 〈X〉 = 〈x〉N , and |G/N| ≤ |x|.

Suppose |G/N| = 2. Denote V0 = N and V1 = xN . Let 
Σ = Cay(G, X ∪ X−1). Then Σ is a connected spanning 
subgraph of Γ . Clearly,

Σ[V0] ∼= Σ[V1] ∼= Cay
(

N, Y ∪ Y−1
)

.

If |N| = 2, then Y ∪ Y−1 only contains an element, 
denoted by y. Thus X = {x, y}, and Σ is a cycle of 
length 4. Hence rc2(Γ ) ≤ rc2(Σ) = 4 = |x| + |y|. Now 
we may assume that |N| ≥ 3. Note that rc2(Γ [V i]) ≤
rc2(Σ[V i]) = rc2(Cay(N, Y ∪ Y−1)) for 0 ≤ i ≤ 1. Let C be 
a set of rc2(Cay(N, Y ∪ Y−1)) colors. We choose a rainbow 
2-coloring θi : E(Σ[V i]) → C for 0 ≤ i ≤ 1 such that for 
any two elements u0, v0 ∈ V0 = N with u0v0 ∈ E(Σ[V0]), 
we have θ0(u0v0) 6= θ1(u1v1), where u1 = xu0 and v1 =

xv0 . In addition, we assign a new color to every edge 
uv ∈ E(Σ[V0, V1]). Let u and v be any two distinct ver-
tices of Σ . If u, v ∈ V i for 0 ≤ i ≤ 1, then there exist two 
internally disjoint rainbow paths connecting u and v in 
Σ[V i] by means of the rainbow 2-coloring θi . Without 
loss of generality, now we assume that u ∈ V0 and v ∈ V1 . 
Suppose u and v are adjacent in Σ . Then v = xu = ux. 
Take an element y ∈ Y . Obviously, uv and u, u′, v ′, v are 
two internally disjoint rainbow paths connecting u and 
v in Σ , where u′ = uy ∈ V0 and v ′ = uyx ∈ V1 . Sup-
pose u and v are not adjacent in Σ . Then u, P1, u1, v and 
u, v1, P2, v are two internally disjoint rainbow paths con-
necting u and v in Σ , where u1 ∈ V0, v1 ∈ V1 , P1 is a 
rainbow path between u and u1 in Σ[V0], and P2 is a 
rainbow path between v1 and v in Σ[V1]. Thus Σ is rain-
bow 2-connected with the above edge-coloring. Since Σ is 
a connected spanning subgraph of Γ , we have that Γ is 
rainbow 2-connected. Part (i) follows by induction.

Suppose |G/N| ≥ 3. Assume that |N| = 2. Then

rc2(Γ ) ≤ rc2
(

Cay
(

G, X ∪ X−1
))

≤ 1+ |x| < 2+ |x|.

Assume that |N| ≥ 3, by Theorem 2.2,

rc2(Γ ) ≤ rc2
(

Cay
(

G, X ∪ X−1
))

≤ rc2
(

Cay
(

N, Y ∪ Y−1
))

+ |x|.

Since |N| < |G|, and Y is also a minimal generating 
set of N , by induction, we have that rc2(Cay(N, Y ∪

Y−1)) ≤
∑

y∈Y |y|, and so rc2(Γ ) ≤ rc2(Cay(G, X ∪ X−1)) ≤
∑

x∈X |x|.

(ii) If 〈x〉 = G for each x ∈ S , then G is cyclic and S
consists of generators of G . Hence we assume that there 
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are x ∈ S and Y ⊆ S such that |Y | ≥ 1 and G = 〈x, Y 〉

but 〈Y 〉 6= G . Denote N = 〈Y 〉. By the proof of part (i) 
and Theorem 2.2, part (ii) follows by setting |N| = m and 
|G/N| = n. 2

For an integer n ≥ 3, the ladder Ln of order 2n is a cu-
bic graph constructed by taking two copies of the cycle Cn

on disjoint vertex sets (u1, u2, · · · , un) and (v1, v2, · · · , vn), 
then joining the corresponding vertices ui v i for 1 ≤ i ≤ n. 
The Möbius ladder Mn of order 2n is obtained from the 
ladder by deleting the edges u1un and v1vn , and then in-
serting edges u1vn and unv1 .

Lemma 2.5. Let n be an integer with n ≥ 3. Then

(i) rc2(Ln) ≤ n.

(ii) rc2(Mn) ≤ n.

Proof. Let U = {ui |1 ≤ i ≤ n} and V = {v i |1 ≤ i ≤ n}. De-
note un+1 = u1 and vn+1 = v1 .

(i) Define an edge-coloring θ of the graph Ln as follows.

θ(e) =











i if e = uiui+1 and e = uiv i for 1 ≤ i ≤ n;

i − 1 if e = v iv i+1 for 2 ≤ i ≤ n;

n if e = v1v2.

Let x and y be any two distinct vertices of Ln . Suppose 
x, y ∈ U or x, y ∈ V , clearly, there exist two internally dis-
joint rainbow paths between x and y contained in the 
cycle C1 = (u1, u2, · · · , un, u1) or C2 = (v1, v2, · · · , vn, v1).

Suppose x = ui ∈ U and y = v j ∈ V . If j = i, then uiv i

and ui, ui+1, v i+1, v i are two internally disjoint rainbow 
paths connecting x and y. If j = i +1, then ui, v i, v i+1 and 
ui, ui+1, v i+1 are two internally disjoint rainbow paths be-
tween x and y. If i + 2 ≤ j ≤ n, then ui, ui+1, · · · , u j, v j

and ui, v i, v i−1, · · · , v1, vn, v j are two internally disjoint 
rainbow paths connecting x and y. If 1 ≤ j ≤ i − 1, then 
ui, ui+1, · · · , un, u1, · · · , u j, v j and ui, v i, v i−1, · · · , v j are 
two internally disjoint rainbow paths between x and y.

Combining the above arguments, Ln is rainbow 2-con-
nected by the edge-coloring θ , and so rc2(Ln) ≤ n.

(ii) Define an edge-coloring η of the graph Mn as fol-
lows.

η(e) =



















i if e = uiui+1 and e = v iv i+1 for

1 ≤ i ≤ n − 1;

n if e = u1vn and e = v1un;

i if e = uiv i for 1 ≤ i ≤ n.

Let ui ∈ U and v j ∈ V . Without loss of generality, as-
sume that i ≤ j. Obviously, ui, ui+1, · · · , u j, v j and ui, ui−1,

· · · , u1, vn, · · · , v j are two internally disjoint rainbow

paths connecting ui and v j . For any distinct vertices 
ui, u j ∈ U with i ≤ j, there exist two internally disjoint 
rainbow paths ui, ui+1, · · · , u j and ui, v i, · · · , v1, un, un−1,

· · · , u j . For any distinct vertices v i, v j ∈ V with i ≤ j, there 
exist two internally disjoint rainbow paths v i, v i+1, · · · , v j

and v i, ui, · · · , u1, vn, vn−1, · · · , v j . Therefore, Mn is rain-
bow 2-connected by the edge-coloring η, that is,

rc2(Mn) ≤ n. 2

Note that L3 ∼= K32K2 and M3
∼= K3,3 . Applying [4, Fig-

ure 2], we have that rc2(L3) = rc2(K32K2) = 3. It was 
proved in [4] that for each integer r ≥ 2, rc2(Kr,r) = 4 if 
r = 2, and rc2(Kr,r) = 3 if r ≥ 3. Thus rc2(M3) =

rc2(K3,3) = 3. In [5], the following results were proved: 
(i) rc2(Q 3) = 4. (ii) rc1(M4) = 2, rc2(M4) = 4 and

rc3(M4) = 5. Note that the 3-dimensional cube Q 3 is iso-
morphic to L4 . Hence rc2(L4) = rc2(M4) = 4.

Let n ≥ 1 be an integer. We use D2n to denote the 
dihedral group generated by two elements, say a and b, 
such that |a| = n, |b| = 2, b−1ab = a−1 . (Note that D2 =

Z2 and D4 = Z2×Z2 .) Then D2n = 〈a〉 ∪ 〈a〉b = {ai | 0 ≤
i < n} ∪ {aib | 0 ≤ i < n}.

Let Cn be a cycle with vertex set U = {u1, u2, · · · , un}, 
reading the subscripts modulo n, and let Pm be a path 
with vertex set V = {v1, v2, · · · , vm}, reading the sub-
scripts modulo m. The brick product of Cn and Pm , denoted 
by C

[m]
n , is the graph defined on U × V such that (ui, v j)

and (ui′ , v j′ ) are adjacent if and only if either

(1) i − i′ ≡ ±1 (mod n) and j = j′ , or
(2) i = i′ , i + j ≡ 0 (mod 2), j′ = j + 1 and j = 1, 2, · · · ,

m − 1.

For convenience, denote by Cn, j the n-cycle in C[m]
n on 

the vertex sets {(ui, v j) : i = 1, 2, · · · , n}.

To prove the following results, we state two useful lem-

mas as follows.

Lemma 2.6. (See [13].)

(i) For 0 ≤ i ≤ n − 1, each aib is an involution.
(ii) If n is odd, then D2n has a unique conjugacy class of invo-

lutions, which is {aib | 0 ≤ i ≤ n − 1}.

(iii) If n is even, then D2n has exactly three conjugacy classes 
of involutions, which are {a

n
2 }, {a2ib | 0 ≤ i < n

2
} and 

{a2i+1b | 0 ≤ i < n
2
}.

(iv) If m is a divisor of n then 〈a〉 has a unique subgroup of or-
der m, which is 〈a

n
m 〉. If N ≤ 〈a〉, then N is normal in D2n

and the quotient group D2n/N is a dihedral group gener-
ated by {aN, bN}.

(v) If X is a (minimal) generating set of D2n , then X contains 
some involution asb, and (X ∩ 〈a〉) ∪ {xasb | asb 6= x ∈ X \

〈a〉} is a (minimal) generating set of 〈a〉.
(vi) Set n = p

e1
1 p

e2
2 · · · p

er
r for distinct primes pi . If Y is a min-

imal generating set of 〈a〉, then |Y | ≤ r. If X is a minimal 
generating set of D2n , then |X | ≤ r + 1.

Lemma 2.7. (See [13].) Let Γ = Cay(D2n, S) be a connected cu-
bic Cayley graph. Then one of the following cases occurs.

(i) rc(Γ ) = ⌈n+1
2

⌉, and Γ is the ladder graph of order 2n.
(ii) rc(Γ ) = ⌈ n

2
⌉, and Γ is the Möbius ladder of order 2n.

(iii) Γ ∼= Cay(D2n, {b, asb, atb}) for some integers s and t , and 
either

(iii.1) rc(Γ ) ≤ (l +1)⌈m
2
⌉, where l ∈ {|as|, |at |, |as−t |} and 

m = n
l
≥ 2; or

(iii.2) n is odd, and s, t and s − t are coprime to n.
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Similar to Lemma 2.7, we investigate the rainbow 
2-connection numbers of cubic Cayley graphs on dihedral 
groups.

Theorem 2.8. Let Γ = Cay(D2n, S) be a connected cubic Cayley 
graph. Thus one of the following cases occurs.

(i) rc2(Γ ) ≤ n, and Γ is the ladder graph of order 2n.
(ii) rc2(Γ ) ≤ n, and Γ is the Möbius ladder of order 2n.
(iii) Γ ∼= Cay(D2n, {b, asb, atb}) for some integers s and t , and 

either

(iii.1) n is odd, and s, t and s − t are coprime to n; or
(iii.2) rc2(Γ ) ≤ 2l⌈m

2
⌉ + m, where l ∈ {|as|, |at |, |as−t |}

and m = n
l
≥ 2.

Proof. Suppose S ∩ 〈a〉 6= ∅, by Lemma 2.5 and Lemma 2.7, 
one of the case (i) and the case (ii) must occur.

Suppose S ∩ 〈a〉 = ∅. Set S = {x, y, z}. Using Lemma 2.6, 
one of x, y and z is conjugate to b. Without loss of 
generality, we assume that b = g−1zg for some g ∈ D2n . 
Write g−1xg = asb and g−1 yg = atb. Set T = {b, asb, atb}
and Σ = Cay(D2n, T ). It is easily shown that V (Γ ) →
V (Σ), h 7→ g−1hg is an isomorphism from Γ to Σ . Thus 
Γ ∼= Cay(D2n, {b, asb, atb}) for some integers s and t . With-

out loss of generality, we can denote T = {b, asb, atb} =
{x, y, z}. Assume that D2n can be generated by any 2-subset 
of T . Then the case (iii.1) easily follows.

Now we may assume that there exist two elements 
x, y ∈ T such that |xy| < n. Let m = n

|xy|
and l = |xy|. 

The cycle (x, xy, xyx, · · · , (xy)l−1, (xy)l−1x, x) in Γ will 
be called the (x, y)-cycle of Γ . Obviously, there exist 
m vertex-disjoint (x, y)-cycles of length 2l. Since left 
multiplication by the element a of D2n is an automor-

phism of Γ , and Γ is connected, there must exist a 
perfect matching of z-edges from the 〈a〉-vertices of one 
(x, y)-cycle to the b〈a〉-vertices of another (x, y)-cycle. 
Hence there must exist a perfect matching from the 
〈a〉-vertices of the second (x, y)-cycle to the b〈a〉-vertices 
of the first (x, y)-cycle when m = 2 or another (x, y)-cycle 
when m > 2. Continuing this way, we obtain that Γ con-

sists of C
[m]
2l

together with a perfect matching joining the 
vertices of valency 2 in C2l,1 with the vertices of valency 
2 in C2l,m .

Let F denote the perfect matching joining the vertices 
of valency 2 in C2l,1 with the vertices of valency 2 in C2l,m . 
Define an edge-coloring θ of the graph Γ by

θ(e) =























































(i, j) e = (ui, v j)(ui+1, v j) for

1 ≤ i ≤ 2l and 1 ≤ j ≤ ⌈m
2
⌉;

(i, j − ⌈m
2
⌉) e = (ui, v j)(ui+1, v j) for

1 ≤ i ≤ 2l and ⌈m
2
⌉ + 1 ≤ j ≤m;

(0, j) e = (ui, v j)(ui, v j+1) for

1 ≤ j ≤m − 1 and

i + j ≡ 0 (mod 2);

(0,m) e ∈ F .

It is easy to verify that Γ is rainbow 2-connected with 
the above coloring. Then the case (iii.2) follows from enu-
merating the number of colors used for θ . 2

In the end of this section, we discuss the rainbow 
2-connection numbers of Cayley graphs on D2pk or D2pq , 
where k ≥ 1 is an integer, p and q are distinct primes.

Theorem 2.9. Let X be a minimal generating set of D2pk , where 

k ≥ 1 is an integer. Set S = X ∪ X−1 and Γ = Cay(D2pk , S). 
Then one of the following cases holds.

(i) rc2(Γ ) = 2pk , and Γ is a cycle of order 2pk .
(ii) rc2(Γ ) ≤ pk , and Γ is a ladder graph of order 2pk .

Proof. Since X is a minimal generating set of D2pk , by 

Lemma 2.6, we have |X | = 2. Hence X = {aib, a jb} or 
X = {ai, a jb} for some integers i and j. Then S = X or S =

{ai, a−i, a jb}. It is easy to check that Γ is either a cycle or a 
ladder graph. Thus the theorem follows by Lemma 2.5. 2

Theorem 2.10. Let G = D2pq , where p and q are distinct odd 
primes. Let X be a minimal generating set of G . Set S = X ∪ X−1

and Γ = Cay(G, S). Then one of the following statements holds.

(i) |X | = 2 and Γ is either a cycle or a ladder graph.
(ii) |X | = 3 and either

(ii.1) |〈a〉 ∩ X | = 2 and rc2(Γ ) ≤ p + q + 1; or
(ii.2) |〈a〉 ∩ X | = 1 and rc2(Γ ) ≤ 2l + m with {l, m} =

{p, q}.

Proof. Since X is a minimal generating set of D2pk , we ob-
tain 2 ≤ |X | ≤ 3 by Lemma 2.6. Suppose |X | = 2. It follows 
that Γ is either a cycle or a ladder graph by the same 
proof of Theorem 2.9.

Suppose |X | = 3. We claim that 〈a〉 ∩ X 6= ∅. To the con-
trary, assume that X = {arb, atb, asb}. Then

∣

∣ar−t
∣

∣ 6= pq,
∣

∣ar−s
∣

∣ 6= pq and
∣

∣at−s
∣

∣ 6= pq.

Without loss of generality, we may assume r − t = kp and 
r − s = lp, where (k, q) = 1 and (l, q) = 1. Thus 〈ap〉 =
〈ar−s〉 ≤ 〈arb, asb〉, that is ap ∈ 〈arb, asb〉. An easy obser-
vation is that

a−kparb = ar−kpb = atb ∈
〈

arb,asb
〉

.

This contradicts that X is a minimal generating set. Hence 
〈a〉 ∩ X 6= ∅. Thus one of the following cases must occur.

(1) S = {ar, apq−r, atb, asb}, where (r, pq) = q and (t − s,

pq) = p.

(2) S = {ar, apq−r, atb, asb}, where (r, pq) = p and (t − s,

pq) = q.

(3) S = {ar, apq−r, at, apq−t, asb}, where {|ar |, |at |} = {p, q}.

If (1) holds, then we can check that Γ ∼= C2q�Cp , and 
hence rc2(Γ ) ≤ 2q + p by Lemma 2.1. If (2) holds, then 
Γ ∼= C2p�Cq , and so rc2(Γ ) ≤ 2p + q by Lemma 2.1.

Let Γ1 = Γ [〈a〉] and Γ2 = Γ [b〈a〉]. If (3) holds, then 
Γ1

∼= Cay(Zpq, S ∩ 〈a〉). By Theorem 2.4, we have rc2(Γ1) ≤
p + q. Since left multiplication by a group element from 
D2pq is a graph automorphism, we have Γ1

∼= Γ2 . Assign a 
same edge-coloring to Γ1 and Γ2 with p + q colors such 
that Γ1 and Γ2 are rainbow 2-connected. In addition, we 
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give a new color to all asb-edges. Let u and v be any 
two distinct vertices of Γ . If u, v ∈ Γi for 1 ≤ i ≤ 2, then 
there exist two internally disjoint rainbow paths connect-
ing u and v in Γi by means of the rainbow 2-coloring 
of Γi . Without loss of generality, now we assume that 
u ∈ V (Γ1) and v ∈ V (Γ2). Suppose u and v are not ad-
jacent in Γ . Then u, P1, u1, v and u, v1, P2, v are two in-
ternally disjoint rainbow paths connecting u and v in Γ , 
where u1 ∈ V (Γ1), v1 ∈ V (Γ2), P1 is a rainbow path be-
tween u and u1 in Γ1 , and P2 is a rainbow path between 
v1 and v in Γ2 . Suppose u and v are adjacent in Σ . Then 
uv and u, P3, u1, v1, v are two internally disjoint rainbow 
paths connecting u and v in Γ , where u1 ∈ V (Γ1), v1 ∈

V (Γ2), and P3 is a rainbow path between u and u1 in Γ1 . 
Therefore, Γ is rainbow 2-connected with the above edge-
coloring, and so rc2(Γ ) ≤ p + q + 1. 2

Let Γ = Cay(D4p, S) be a connected Cayley graph, 
where S = {ap, atb, asb} with (t− s, 2p) = 2. Then it is easy 
to verify that Γ is isomorphic to the ladder graph L2p . By 
a similar proof of Theorem 2.10, the following result holds.

Theorem 2.11. Let G = D4p , where p is an odd prime. Let X
be a minimal generating set of G . Set S = X ∪ X−1 and Γ =

Cay(G, S). Then one of the following statements holds.

(i) Γ is either a cycle or a ladder graph.
(ii) S = {ar, a2p−r, atb, asb} with (r, 2p) = 2 and (t − s,

2p) = p, and rc2(Γ ) ≤ p + 4.

(iii) S = {ap, ar, a2p−r, atb} with (r, 2p) = 2, and rc2(Γ ) ≤
p + 1.

Acknowledgements

The authors are very grateful to the editor and the ref-
erees for helpful comments and suggestions.

References

[1] S.B. Akers, B. Krishnamurthy, A group-theoretic model for symmetric 
interconnection networks, IEEE Trans. Comput. 38 (1989) 555–566.

[2] J.A. Bondy, U.S.R. Murty, Graph Theory, Springer, Berlin, 2008.
[3] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, Rainbow connection 

in graphs, Math. Bohem. 133 (2008) 85–98.
[4] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, The rainbow connec-

tivity of a graph, Networks 54 (2009) 75–81.
[5] F. Fujie-Okamoto, G.L. Johns, P. Zhang, The rainbow connectivities of 

small cubic graphs, Ars Comb. 105 (2012) 129–147.
[6] S. Fujita, H. Liu, C. Magnant, Rainbow k-connection in dense 

graphs (extended abstract), Electron. Notes Discrete Math. 38 (2011) 
361–366.

[7] C. Godsil, G. Royle, Algebraic Graph Theory, Springer, New York, 2001.
[8] J. He, H.Y. Liang, On rainbow k-connectivity of random graphs, Inf. 

Process. Lett. 112 (2012) 406–410.
[9] H.Z. Li, X.L. Li, S.J. Liu, The (strong) rainbow connection numbers 

of Cayley graphs on Abelian groups, Comput. Math. Appl. 62 (2011) 
4082–4088.

[10] X.L. Li, S.J. Liu, A sharp upper bound for the rainbow 2-connection 
number of a 2-connected graph, Discrete Math. 313 (2013) 755–759.

[11] X.L. Li, Y.F. Sun, Note on the rainbow k-connectivity of regular com-

plete bipartite graphs, Ars Comb. 101 (2011) 513–518.
[12] X.L. Li, Y.F. Sun, Rainbow Connections of Graphs, Springer, New York, 

2012.

[13] Z.P. Lu, Y.B. Ma, Rainbow connection numbers of Cayley graphs, 
Preprint.

[14] K. Menger, Zur allgemeinen Kurventheorie, Fundam. Math. 10 (1927) 
96–115.



ARTICLE IN PRESS

U
N

C
O

R
R

E
C

T
E

D
P

R
O

O
F

Please cite this article in press as: Z.P. Lu, Y.B. Ma, Rainbow 2-Connection Numbers of Cayley Graphs, Inf. Process. Lett. (2014), 
http://dx.doi.org/10.1016/j.ipl.2014.12.007

JID:IPL AID:5226 /SCO [m3G; v1.143-dev; Prn:19/12/2014; 6:30] P.7 (1-6)

1 62

2 63

3 64

4 65

5 66

6 67

7 68

8 69

9 70

10 71

11 72

12 73

13 74

14 75

15 76

16 77

17 78

18 79

19 80

20 81

21 82

22 83

23 84

24 85

25 86

26 87

27 88

28 89

29 90

30 91

31 92

32 93

33 94

34 95

35 96

36 97

37 98

38 99

39 100

40 101

41 102

42 103

43 104

44 105

45 106

46 107

47 108

48 109

49 110

50 111

51 112

52 113

53 114

54 115

55 116

56 117

57 118

58 119

59 120

60 121

61 122

Sponsor names

Do not correct this page. Please mark corrections to sponsor names and grant numbers in the main text.

NSFC, country=China, grants=11271267, 11371204, 11171368



ARTICLE IN PRESS

U
N

C
O

R
R

E
C

T
E

D
P

R
O

O
F

Please cite this article in press as: Z.P. Lu, Y.B. Ma, Rainbow 2-Connection Numbers of Cayley Graphs, Inf. Process. Lett. (2014), 
http://dx.doi.org/10.1016/j.ipl.2014.12.007

JID:IPL AID:5226 /SCO [m3G; v1.143-dev; Prn:19/12/2014; 6:30] P.8 (1-6)

1 62

2 63

3 64

4 65

5 66

6 67

7 68

8 69

9 70

10 71

11 72

12 73

13 74

14 75

15 76

16 77

17 78

18 79

19 80

20 81

21 82

22 83

23 84

24 85

25 86

26 87

27 88

28 89

29 90

30 91

31 92

32 93

33 94

34 95

35 96

36 97

37 98

38 99

39 100

40 101

41 102

42 103

43 104

44 105

45 106

46 107

47 108

48 109

49 110

50 111

51 112

52 113

53 114

54 115

55 116

56 117

57 118

58 119

59 120

60 121

61 122

Highlights

• Establish a lemma for bounding the rainbow 2-connection numbers of some special graphs.
• Provide an upper bound for the rainbow 2-connection numbers of abelian Cayley graphs.
• Characterize the rainbow 2-connection numbers of cubic dihedrants.


