

# Rainbow 2-Connection Numbers of Cayley Graphs ** 

Zaiping Lu, Yingbin Ma*<br>Center for Combinatorics and LPMC-TJKLC, Nankai University, Tianjin 300071, PR China

## A R TICLE I N F O

## Article history:

Received 10 June 2014
Received in revised form 5 December 2014
Accepted 13 December 2014
Available online xxxx
Communicated by X . Wu

## Keywords:

Edge-coloring
Rainbow path
Rainbow 2-connection number
Cayley graph
Interconnection networks


#### Abstract

A path in an edge colored graph is said to be a rainbow path if no two edges on this path share the same color. For an l-connected graph $\Gamma$ and an integer $k$ with $1 \leq k \leq l$, the rainbow $k$-connection number of $\Gamma$ is the minimum number of colors required to color the edges of $\Gamma$ such that any two distinct vertices of $\Gamma$ are connected by $k$ internally disjoint rainbow paths. In this paper, a method is provided for bounding the rainbow 2-connection numbers of graphs with certain structural properties. Using this method, we consider the rainbow 2-connection numbers of Cayley graphs, especially, those defined on abelian groups and dihedral groups.


© 2014 Elsevier B.V. All rights reserved.

## 1. Introduction

All graphs considered in this paper are simple, finite and undirected. We follow the notation and terminology of [2] for those not described here.

For a graph $\Gamma$, we denote by $V(\Gamma)$ and $E(\Gamma)$ the vertex set and edge set of $\Gamma$, respectively. An edge-coloring of a graph $\Gamma$ is a mapping from $E(\Gamma)$ to some finite set of colors. A path in an edge colored graph is said to be a rainbow path if no two edges on this path share the same color. Let $\Gamma$ be an edge colored $l$-connected graph, where $l$ is a positive integer. For $1 \leq k \leq l$, the graph $\Gamma$ is rainbow $k$-connected if any two distinct vertices of $\Gamma$ are connected by $k$ internally disjoint rainbow paths, while the coloring is called a rainbow $k$-coloring. The rainbow $k$-connection number of $\Gamma$, denoted by $r c_{k}(\Gamma)$, is the minimum number of colors required to color the edges of $\Gamma$ to make the graph rainbow $k$-connected. For simplicity, we write $r c(\Gamma)$ for $r c_{1}(\Gamma)$ and call it rainbow connection number. A well-known

[^0]theorem of Menger [14] shows that in every l-connected graph $\Gamma$ with $l \geq 1$, there exist $k$ internally disjoint paths connecting every two distinct vertices $u$ and $v$ for every integer $k$ with $1 \leq k \leq l$. By coloring the edges of $\Gamma$ with distinct colors, we know that every two distinct vertices of $\Gamma$ are connected by $k$ internally disjoint rainbow paths, and thus the function $r c_{k}(\Gamma)$ is well-defined for every $1 \leq k \leq l$. An easy observation is that $r c_{k}(\Gamma) \leq r c_{k}(\Sigma)$ for each $l$-connected spanning subgraph $\Sigma$ of the graph $\Gamma$. We note also the trivial fact that if $C_{n}$ is a cycle with $n \geq 3$, then $r c_{2}\left(\mathrm{C}_{n}\right)=n$.

The concept of rainbow $k$-connection number was first introduced by Chartrand et al. ([3] for $k=1$, and [4] for general $k$ ). Since then, a considerable amount of research has been carried out towards the function $r c_{k}(\Gamma)$, see [12] for a survey on this topic. Chartrand et al. [4] proved that for every integer $k \geq 2$, there exists an integer $f(k)$ such that if $n \geq f(k)$, then $r c_{k}\left(\mathrm{~K}_{n}\right)=2$. With a similar method, Li and Sun [11] obtained that for every integer $k \geq 2$, there exists an integer $g(k)=2 k\left\lceil\frac{k}{2}\right\rceil$ such that $r c_{k}\left(\mathrm{~K}_{n, n}\right)=3$ for any $n \geq g(k)$. Fujita et al. [6] and He et al. [8] investigated the rainbow $k$-connection number of random graphs. In particular, it was shown in [10] that if $\Gamma$ is a 2-connected graph with $n$ vertices, then $r c_{2}(\Gamma) \leq n$ with equality if and only if $\Gamma$ is a cycle of order $n$.

Let $G$ be a finite group with identity element 1 . Let $S$ be a subset of $G$ such that $1 \notin S=S^{-1}:=\left\{s^{-1} \mid s \in S\right\}$. The Cayley graph Cay $(G, S)$ is defined on $G$ such that two 'vertices' $g$ and $h$ are adjacent if and only if $g^{-1} h \in S$. Hence Cay $(G, S)$ is a well-defined simple regular graph of valency $|S|$. It is well-known that $\operatorname{Cay}(G, S)$ is connected if and only if $S$ is a generating set of $G$. In a Cayley graph Cay $(G, S)$, an edge $\{g, h\}$ is called an $s$-edge if $g^{-1} h$ or $h^{-1} g$ equals some $s$ in $S$.

Cayley graphs have been an active topic in algebraic graph theory for a long time. Actually, interconnection networks are often modeled by highly symmetric Cayley graphs [1]. The rainbow connection number of a graph can be applied to measure the safety of a network. Thus the object of the rainbow connection numbers of Cayley graphs should be meaningful. Li et al. [9], Lu and Ma [13] discussed the rainbow connection numbers of Cayley graphs. This motivates us to consider the rainbow 2 -connection numbers of Cayley graphs. In this paper, we establish a lemma for bounding the rainbow 2-connection numbers of graphs satisfying certain structural properties. Using this lemma, we consider the rainbow 2-connection numbers of Cayley graphs, especially, those defined on abelian groups and on dihedral groups.

## 2. Rainbow 2-connection numbers of Cayley graphs

Let $\Gamma$ be a graph. For $U, V \subseteq V(\Gamma)$, we denote by $\Gamma[U, V]$ the subgraph on $U \cup V$ with edge set $\{\{u, v\} \in$ $E(\Gamma) \mid u \in U, v \in V\}$. For a partition $\mathcal{B}=\left\{U_{0}, U_{1}, \cdots\right.$, $\left.U_{m-1}\right\}$ of $V(\Gamma)$, define a graph $\Gamma_{\mathcal{B}}$ with vertex set $\mathcal{B}$ such that $U_{i}, U_{j} \in \mathcal{B}$ are adjacent in $\Gamma_{\mathcal{B}}$ if and only if some $u \in U_{i}$ is adjacent to some $v \in U_{j}$ in $\Gamma$. The graph $\Gamma_{\mathcal{B}}$ is called a quotient graph of $\Gamma$. The following technical lemma is very important.

Lemma 2.1. Let $\Gamma$ be a 2-connected graph. Assume that $V(\Gamma)$ has a partition $\mathcal{B}=\left\{U_{0}, U_{1}, \cdots, U_{m-1}\right\}$ such that $\Gamma_{\mathcal{B}}$ is 2-connected, and for each $i$, the subgraph $\Gamma\left[U_{i}, U_{i}\right]$ is 2-connected.
(i) Suppose that for each pair of adjacent vertices $U_{i}$ and $U_{j}$ in $\Gamma_{\mathcal{B}}$, the subgraph $\Gamma\left[U_{i}, U_{j}\right]$ has no isolate vertices. Then

$$
r c_{2}(\Gamma) \leq \max \left\{r c_{2}\left(\Gamma\left[U_{i}, U_{i}\right]\right) \mid 0 \leq i<m\right\}+r c_{2}\left(\Gamma_{\mathcal{B}}\right) .
$$

(ii) Suppose that $E\left(\Gamma\left[U_{i}, U_{i+1}\right]\right) \neq \emptyset$ for $0 \leq i<m$, and every $u \in U_{i}$ is adjacent to some $v \in U_{i-1}$ or some $w \in U_{i+1}$ in $\Gamma$, reading the subscripts modulo $m$. Then

$$
r c_{2}(\Gamma) \leq\left(\max \left\{r c_{2}\left(\Gamma\left[U_{i}, U_{i}\right]\right) \mid 0 \leq i<m\right\}+1\right) m .
$$

Proof. Denote $\Gamma_{i}=\Gamma\left[U_{i}, U_{i}\right]$ and $c=\max \left\{r c_{2}\left(\Gamma_{i}\right) \mid 0 \leq\right.$ $i<m\}$.
(i) Let $C$ be a set of $c$ colors and $D$ be a set of $r c_{2}\left(\Gamma_{\mathcal{B}}\right)$ colors with $C \cap D=\emptyset$. For $\Gamma_{\mathcal{B}}$, we choose a rainbow 2-coloring $\bar{\theta}: E\left(\Gamma_{\mathcal{B}}\right) \rightarrow D$. For each graph $\Gamma_{i}$, assign a rainbow 2-coloring $\theta_{i}: E\left(\Gamma_{i}\right) \rightarrow C$. Define an edge-coloring $\theta$ of $\Gamma$ by
$\theta(e)= \begin{cases}\theta_{i}(e) & \text { if } e \in E\left(\Gamma_{i}\right) \text { for } 0 \leq i<m ; \\ \bar{\theta}\left(\left\{U_{i}, U_{j}\right\}\right) & \text { if }\left\{U_{i}, U_{j}\right\} \in E\left(\Gamma_{\mathcal{B}}\right) \text { and } \\ & e \in E\left(\Gamma\left[U_{i}, U_{j}\right]\right) .\end{cases}$
Let $u$ and $v$ be any two distinct vertices of $\Gamma$. If $u$ and $v$ are contained in some $\Gamma_{i}$, then there exist two internally disjoint rainbow paths by means of the rainbow 2-coloring $\theta_{i}$. Suppose $u \in V\left(\Gamma_{i}\right)$ and $v \in V\left(\Gamma_{j}\right)$ satisfying $i \neq j$. In the quotient graph $\Gamma_{\mathcal{B}}$, there exist two internally disjoint rainbow paths connecting $U_{i}$ and $U_{j}$. Denote them by $U_{i}, U_{i_{1}}, U_{i_{2}}, \cdots, U_{i_{s}}, U_{j}$ and $U_{i}, U_{j_{1}}, U_{j_{2}}, \cdots, U_{j_{t}}, U_{j}$. Since $U_{i_{s}}$ and $U_{j}$ are adjacent in $\Gamma_{\mathcal{B}}$, by the assumptions, we know that the subgraph $\Gamma\left[U_{i_{s}}, U_{j}\right]$ has no isolate vertices. Then there exists a vertex $v_{i_{s}} \in U_{i_{s}}$ satisfying $v_{i_{s}} v \in E(\Gamma)$. Similarly, there exist some vertices $v_{i_{r}} \in U_{i_{r}}$ for $1 \leq r \leq s-1$ and $v_{i} \in U_{i}$ such that $v_{i_{s}} v_{i_{s-1}}, v_{i_{s-1}} v_{i_{s-2}}, \cdots, v_{i_{2}} v_{i_{1}}, v_{i_{1}} v_{i} \in E(\Gamma)$. Obviously, $\mathrm{P}^{\prime}=u, \mathrm{P}^{1}, v_{i}, v_{i_{1}}, v_{i_{2}}, \cdots, v_{i_{s}}, v$ is a rainbow path connecting $u$ and $v$, where $\mathrm{P}^{1}$ is a rainbow path between $u$ and $v_{i}$ in $\Gamma_{i}$. Since $U_{i}$ and $U_{j_{1}}$ are adjacent in $\Gamma_{\mathcal{B}}$, by the assumptions, we have that the subgraph $\Gamma\left[U_{i}, U_{j_{1}}\right]$ has no isolate vertices. Thus there exists a vertex $v_{j_{1}} \in U_{j_{1}}$ satisfying $u v_{j_{1}} \in E(\Gamma)$. Similarly, there exist some vertices $v_{j_{r}} \in U_{j_{r}}$ for $2 \leq r \leq t$ and $v_{j} \in U_{j}$ such that $v_{j_{1}} v_{j_{2}}, v_{j_{2}} v_{j_{3}}, \cdots, v_{j_{t-1}} v_{j_{t}}, v_{j_{t}} v_{j} \in E(\Gamma)$. Obviously, $\mathrm{P}^{\prime \prime}=u, v_{j_{1}}, v_{j_{2}}, \cdots, v_{j_{t}}, v_{j}, \mathrm{P}^{2}, v$ is also a rainbow path connecting $u$ and $v$, where $\mathrm{P}^{2}$ is a rainbow path between $v_{j}$ and $v$ in $\Gamma_{j}$. Note that $\mathrm{P}^{\prime}$ and $\mathrm{P}^{\prime \prime}$ are internally disjoint. Thus $\Gamma$ is rainbow 2-connected with the edge-coloring $\theta$, and so $r c_{2}(\Gamma) \leq \max \left\{r c_{2}\left(\Gamma\left[U_{i}, U_{i}\right]\right) \mid 0 \leq i<m\right\}+r c_{2}\left(\Gamma_{\mathcal{B}}\right)$.
(ii) Consider the spanning subgraph $\Sigma$ of $\Gamma$ with edge set
$E(\Sigma)=\left(\bigcup_{i=0}^{m-1} E\left(\Gamma_{i}\right)\right) \cup\left(\bigcup_{i=0}^{m-1} E\left(\Gamma\left[U_{i}, U_{i+1}\right]\right)\right)$.
Since $E\left(\Gamma\left[U_{i}, U_{i+1}\right]\right) \neq \emptyset$ for $0 \leq i<m$, we obtain that $\Sigma_{\mathcal{B}}$ is a cycle of length $m$. Let $C_{0}, C_{1}, \cdots, C_{m-1}$ be $c$-sets of colors such that $C_{i} \cap C_{j}=\emptyset$ if $0 \leq i<j<m$. For each graph $\Gamma_{i}$, since $r c_{2}\left(\Gamma_{i}\right) \leq c$, we assign a rainbow 2 -coloring $\eta_{i}: E\left(\Gamma_{i}\right) \rightarrow C_{i}$. Choose $m$ colors $c_{1}, c_{2}, \cdots, c_{m}$ which are not used above. Define an edge-coloring $\eta$ of $\Sigma$ as follows:
$\eta(e)= \begin{cases}\eta_{i}(e) & \text { if } e \in E\left(\Gamma_{i}\right) \text { for } 0 \leq i<m ; \\ c_{i} & \text { if } e \in E\left(\Gamma\left[U_{i-1}, U_{i}\right]\right) \text { for } 1 \leq i \leq m .\end{cases}$
Let $u$ and $v$ be any two distinct vertices of $\Gamma$. If $u$ and $v$ are contained in some $U_{i}$ for $0 \leq i \leq m-1$, then there exist two internally disjoint rainbow paths connecting $u$ and $v$ by means of the rainbow 2 -coloring $\eta_{i}$. Without loss of generality, we assume that $u \in U_{i}$ and $v \in U_{j}$ with $0 \leq i \neq j \leq m-1$. Then there also exist two internally disjoint rainbow paths connecting $u$ and $v$ since $\Sigma_{\mathcal{B}}$ is a cycle and the colors $c_{1}, c_{2}, \cdots, c_{m}$ are not used in $\Gamma_{i}$ for $0 \leq$ $i \leq m-1$. Hence $\Gamma$ is rainbow 2 -connected, and so part (ii) follows from enumerating the number of colors used for $\eta$.

Let $G$ be a group and $N$ a normal subgroup of $G$. Then all (left) cosets of $N$ in $G$ form a group under the product
$(g N)(h N)=g h N$,
which is denoted by $G / N$ and called the quotient group of $G$ with respect to $N$.

Theorem 2.2. Let $\Gamma=\operatorname{Cay}(G, S)$ be a connected Cayley graph with $1 \notin S=S^{-1}$. Suppose that $X \subseteq S$ such that $N:=\langle S \backslash(X \cup$ $\left.\left.X^{-1}\right)\right\rangle \neq G$ satisfying $|G / N| \geq 3$ and $|N| \geq 3$. Set $Y=S \backslash(X \cup$ $X^{-1}$ ) and $\Sigma=\operatorname{Cay}(N, Y)$. If $N$ is normal in $G$, then
$r c_{2}(\Gamma) \leq r c_{2}(\Sigma)+r c_{2}(\operatorname{Cay}(\bar{G}, \bar{X}))$,
where $\bar{G}=G / N$ and $\bar{X}=\{x N \mid x \in S \backslash N\}$.
Proof. Since $N$ is normal in $G$, we have $G=\langle X, Y\rangle \leq$ $\langle X, N\rangle=\langle X\rangle N$, and thus $G=\langle X\rangle N$. Let $m$ be the index of $N$ in $G$. Then $m=\frac{|G|}{|N|}$. Let $g_{0} N=N, g_{1} N, \cdots, g_{i} N, \cdots$, $g_{m-1} N$ be all distinct left cosets of $N$ in $G$. Denote $U_{i}=$ $g_{i} N$ for $0 \leq i<m$. Then $\mathcal{B}=\left\{U_{i} \mid 0 \leq i<m\right\}$ is a partition of $V(\Gamma)$. Define a mapping $\phi_{i}$ from $U_{0}$ to $U_{i}$ as follows: $g \mapsto g_{i} g$ for each $g \in U_{0}=N$. It is easy to check that the mapping $\phi_{i}$ is an isomorphism between $\Gamma\left[U_{0}, U_{0}\right]$ and $\Gamma\left[U_{i}, U_{i}\right]$. Thus each subgraph $\Gamma\left[U_{i}, U_{i}\right]$ contains a spanning subgraph isomorphic to the connected Cayley graph $\Sigma=\operatorname{Cay}(N, Y)$, and so $r c_{2}\left(\Gamma\left[U_{i}, U_{i}\right]\right) \leq r c_{2}(\Sigma)$.

Note that $g N h=g h N$ for any $g, h \in G$. Suppose that $E\left(\Gamma\left[U_{i}, U_{j}\right]\right) \neq \emptyset$, where $i \neq j$. Then there exist some $g, h \in N$ and $x \in S \backslash N$ such that $g_{i} g x=g_{j} h$. Thus
$g_{i} N x=g_{i} g N x=g_{i} g x\left(x^{-1} N x\right)=g_{i} g x N=g_{j} h N=g_{j} N$.
It follows that $\Gamma\left[U_{i}, U_{j}\right]$ contains a perfect matching, that is, $\Gamma\left[U_{i}, U_{j}\right]$ has no isolate vertices. By Lemma 2.1(i), $r c_{2}(\Gamma) \leq r c_{2}(\Sigma)+r c_{2}\left(\Gamma_{\mathcal{B}}\right)$. Consider the quotient graph $\Gamma_{\mathcal{B}}$. Thus $U_{i}$ and $U_{j}$ are adjacent if and only if $g_{j} N=g_{i} N x=$ $\left(g_{i} N\right)(x N)$ for some $x \in S \backslash N$. It follows that $\Gamma_{\mathcal{B}}=$ $\operatorname{Cay}(\bar{G}, \bar{X})$, and hence the result follows.

A graph is called vertex transitive if for any two vertices there is an automorphism of the graph mapping one vertex to the other one. By Theorem 2.2, we obtain the following result.

Corollary 2.3. Let $\Gamma, G$ and $N$ be as in Theorem 2.2. Then $r c_{2}(\Gamma) \leq|N|+\frac{|G|}{|N|}$.

Proof. Applying [7, Theorem 3.4.2], we know that a connected vertex transitive graph of order no less than three must be 2 -connected. Thus, by [10, Theorem 1.4], if $\Gamma$ is a connected vertex transitive graph of order no less than three, then $r c_{2}(\Gamma) \leq|V(\Gamma)|$. Notice that a Cayley graph must be vertex transitive. Hence
$r c_{2}(\Gamma) \leq r c_{2}(\Sigma)+r c_{2}(\operatorname{Cay}(\bar{G}, \bar{X})) \leq|N|+\frac{|G|}{|N|}$.
Let $G$ be a finite group. For an element $x \in G$, denote by $|x|$ the order of $x$ in $G$. A subset $X$ of $G$ is a minimal generating set if $G$ is generated by $X$ but not by any proper subset of $X$. Now we consider the rainbow 2 -connection numbers of Cayley graphs on abelian groups.

Theorem 2.4. Let $G$ be a finite abelian group and $S$ a generating set of $G$ such that $1 \notin S=S^{-1}$. Set $\Gamma=\operatorname{Cay}(G, S)$. Then the following statements hold.
(i) $r c_{2}(\Gamma) \leq \sum_{x \in X}|x|$, where $X$ is an arbitrary minimal generating set of $G$ contained in $S$.
(ii) Either $G$ is cyclic and $S$ consists of generators of $G$; or there are two proper divisors $m$ and $n$ of $|G|$ such that $|G|=m n$ and $r c_{2}(\Gamma) \leq m+n$.

Proof. (i) We prove part (i) by induction on the orders of groups. Let $X$ be an arbitrary minimal generating set of $G$ with $X \subseteq S$. Take $x \in X$, set $Y=X \backslash\{x\}$ and $N=\langle Y\rangle$. Thus $G=\langle X\rangle=\langle x\rangle N$, and $|G / N| \leq|x|$.

Suppose $|G / N|=2$. Denote $V_{0}=N$ and $V_{1}=x N$. Let $\Sigma=\operatorname{Cay}\left(G, X \cup X^{-1}\right)$. Then $\Sigma$ is a connected spanning subgraph of $\Gamma$. Clearly,
$\Sigma\left[V_{0}\right] \cong \Sigma\left[V_{1}\right] \cong \operatorname{Cay}\left(N, Y \cup Y^{-1}\right)$.
If $|N|=2$, then $Y \cup Y^{-1}$ only contains an element, denoted by $y$. Thus $X=\{x, y\}$, and $\Sigma$ is a cycle of length 4. Hence $r c_{2}(\Gamma) \leq r c_{2}(\Sigma)=4=|x|+|y|$. Now we may assume that $|N| \geq 3$. Note that $r c_{2}\left(\Gamma\left[V_{i}\right]\right) \leq$ $r c_{2}\left(\Sigma\left[V_{i}\right]\right)=r c_{2}\left(\operatorname{Cay}\left(N, Y \cup Y^{-1}\right)\right)$ for $0 \leq i \leq 1$. Let $C$ be a set of $r c_{2}\left(\operatorname{Cay}\left(N, Y \cup Y^{-1}\right)\right)$ colors. We choose a rainbow 2-coloring $\theta_{i}: E\left(\Sigma\left[V_{i}\right]\right) \rightarrow C$ for $0 \leq i \leq 1$ such that for any two elements $u_{0}, v_{0} \in V_{0}=N$ with $u_{0} v_{0} \in E\left(\Sigma\left[V_{0}\right]\right)$, we have $\theta_{0}\left(u_{0} v_{0}\right) \neq \theta_{1}\left(u_{1} v_{1}\right)$, where $u_{1}=x u_{0}$ and $v_{1}=$ $x v_{0}$. In addition, we assign a new color to every edge $u v \in E\left(\Sigma\left[V_{0}, V_{1}\right]\right)$. Let $u$ and $v$ be any two distinct vertices of $\Sigma$. If $u, v \in V_{i}$ for $0 \leq i \leq 1$, then there exist two internally disjoint rainbow paths connecting $u$ and $v$ in $\Sigma\left[V_{i}\right]$ by means of the rainbow 2-coloring $\theta_{i}$. Without loss of generality, now we assume that $u \in V_{0}$ and $v \in V_{1}$. Suppose $u$ and $v$ are adjacent in $\Sigma$. Then $v=x u=u x$. Take an element $y \in Y$. Obviously, $u v$ and $u, u^{\prime}, v^{\prime}, v$ are two internally disjoint rainbow paths connecting $u$ and $v$ in $\Sigma$, where $u^{\prime}=u y \in V_{0}$ and $v^{\prime}=u y x \in V_{1}$. Suppose $u$ and $v$ are not adjacent in $\Sigma$. Then $u, \mathrm{P}^{1}, u_{1}, v$ and $u, v_{1}, \mathrm{P}^{2}, v$ are two internally disjoint rainbow paths connecting $u$ and $v$ in $\Sigma$, where $u_{1} \in V_{0}, v_{1} \in V_{1}, \mathrm{P}^{1}$ is a rainbow path between $u$ and $u_{1}$ in $\Sigma\left[V_{0}\right]$, and $\mathrm{P}^{2}$ is a rainbow path between $v_{1}$ and $v$ in $\Sigma\left[V_{1}\right]$. Thus $\Sigma$ is rainbow 2 -connected with the above edge-coloring. Since $\Sigma$ is a connected spanning subgraph of $\Gamma$, we have that $\Gamma$ is rainbow 2-connected. Part (i) follows by induction.

Suppose $|G / N| \geq 3$. Assume that $|N|=2$. Then
$r c_{2}(\Gamma) \leq r c_{2}\left(\operatorname{Cay}\left(G, X \cup X^{-1}\right)\right) \leq 1+|x|<2+|x|$.
Assume that $|N| \geq 3$, by Theorem 2.2,

$$
\begin{aligned}
r c_{2}(\Gamma) & \leq r c_{2}\left(\operatorname{Cay}\left(G, X \cup X^{-1}\right)\right) \\
& \leq r c_{2}\left(\operatorname{Cay}\left(N, Y \cup Y^{-1}\right)\right)+|x| .
\end{aligned}
$$

Since $|N|<|G|$, and $Y$ is also a minimal generating set of $N$, by induction, we have that $r c_{2}(\operatorname{Cay}(N, Y \cup$ $\left.\left.Y^{-1}\right)\right) \leq \sum_{y \in Y}|y|$, and so $r c_{2}(\Gamma) \leq r c_{2}\left(\operatorname{Cay}\left(G, X \cup X^{-1}\right)\right) \leq$ $\sum_{x \in X}|x|$.
(ii) If $\langle x\rangle=G$ for each $x \in S$, then $G$ is cyclic and $S$ consists of generators of $G$. Hence we assume that there

[^1]are $x \in S$ and $Y \subseteq S$ such that $|Y| \geq 1$ and $G=\langle x, Y\rangle$ but $\langle Y\rangle \neq G$. Denote $N=\langle Y\rangle$. By the proof of part (i) and Theorem 2.2, part (ii) follows by setting $|N|=m$ and $|G / N|=n$.

For an integer $n \geq 3$, the ladder $L_{n}$ of order $2 n$ is a cubic graph constructed by taking two copies of the cycle $\mathrm{C}_{n}$ on disjoint vertex sets ( $u_{1}, u_{2}, \cdots, u_{n}$ ) and ( $v_{1}, v_{2}, \cdots, v_{n}$ ), then joining the corresponding vertices $u_{i} v_{i}$ for $1 \leq i \leq n$. The Möbius ladder $M_{n}$ of order $2 n$ is obtained from the ladder by deleting the edges $u_{1} u_{n}$ and $v_{1} v_{n}$, and then inserting edges $u_{1} v_{n}$ and $u_{n} v_{1}$.

Lemma 2.5. Let $n$ be an integer with $n \geq 3$. Then
(i) $r c_{2}\left(L_{n}\right) \leq n$.
(ii) $r c_{2}\left(M_{n}\right) \leq n$.

Proof. Let $U=\left\{u_{i} \mid 1 \leq i \leq n\right\}$ and $V=\left\{v_{i} \mid 1 \leq i \leq n\right\}$. Denote $u_{n+1}=u_{1}$ and $v_{n+1}=v_{1}$.
(i) Define an edge-coloring $\theta$ of the graph $L_{n}$ as follows.
$\theta(e)= \begin{cases}i & \text { if } e=u_{i} u_{i+1} \text { and } e=u_{i} v_{i} \text { for } 1 \leq i \leq n ; \\ i-1 & \text { if } e=v_{i} v_{i+1} \text { for } 2 \leq i \leq n ; \\ n & \text { if } e=v_{1} v_{2} .\end{cases}$ Let $x$ and $y$ be any two distinct vertices of $L_{n}$. Suppose $x, y \in U$ or $x, y \in V$, clearly, there exist two internally disjoint rainbow paths between $x$ and $y$ contained in the cycle $\mathrm{C}^{1}=\left(u_{1}, u_{2}, \cdots, u_{n}, u_{1}\right)$ or $\mathrm{C}^{2}=\left(v_{1}, v_{2}, \cdots, v_{n}, v_{1}\right)$.

Suppose $x=u_{i} \in U$ and $y=v_{j} \in V$. If $j=i$, then $u_{i} v_{i}$ and $u_{i}, u_{i+1}, v_{i+1}, v_{i}$ are two internally disjoint rainbow paths connecting $x$ and $y$. If $j=i+1$, then $u_{i}, v_{i}, v_{i+1}$ and $u_{i}, u_{i+1}, v_{i+1}$ are two internally disjoint rainbow paths between $x$ and $y$. If $i+2 \leq j \leq n$, then $u_{i}, u_{i+1}, \cdots, u_{j}, v_{j}$ and $u_{i}, v_{i}, v_{i-1}, \cdots, v_{1}, v_{n}, v_{j}$ are two internally disjoint rainbow paths connecting $x$ and $y$. If $1 \leq j \leq i-1$, then $u_{i}, u_{i+1}, \cdots, u_{n}, u_{1}, \cdots, u_{j}, v_{j}$ and $u_{i}, v_{i}, v_{i-1}, \cdots, v_{j}$ are two internally disjoint rainbow paths between $x$ and $y$.

Combining the above arguments, $L_{n}$ is rainbow 2-connected by the edge-coloring $\theta$, and so $r c_{2}\left(L_{n}\right) \leq n$.
(ii) Define an edge-coloring $\eta$ of the graph $M_{n}$ as follows.
$\eta(e)= \begin{cases}i & \text { if } e=u_{i} u_{i+1} \text { and } e=v_{i} v_{i+1} \text { for } \\ & 1 \leq i \leq n-1 ; \\ n & \text { if } e=u_{1} v_{n} \text { and } e=v_{1} u_{n} ; \\ i & \text { if } e=u_{i} v_{i} \text { for } 1 \leq i \leq n .\end{cases}$
Let $u_{i} \in U$ and $v_{j} \in V$. Without loss of generality, assume that $i \leq j$. Obviously, $u_{i}, u_{i+1}, \cdots, u_{j}, v_{j}$ and $u_{i}, u_{i-1}$, $\cdots, u_{1}, v_{n}, \cdots, v_{j}$ are two internally disjoint rainbow paths connecting $u_{i}$ and $v_{j}$. For any distinct vertices $u_{i}, u_{j} \in U$ with $i \leq j$, there exist two internally disjoint rainbow paths $u_{i}, u_{i+1}, \cdots, u_{j}$ and $u_{i}, v_{i}, \cdots, v_{1}, u_{n}, u_{n-1}$, $\cdots, u_{j}$. For any distinct vertices $v_{i}, v_{j} \in V$ with $i \leq j$, there exist two internally disjoint rainbow paths $v_{i}, v_{i+1}, \cdots, v_{j}$ and $v_{i}, u_{i}, \cdots, u_{1}, v_{n}, v_{n-1}, \cdots, v_{j}$. Therefore, $M_{n}$ is rainbow 2 -connected by the edge-coloring $\eta$, that is, $r c_{2}\left(M_{n}\right) \leq n$.

Note that $L_{3} \cong \mathrm{~K}_{3} \square \mathrm{~K}_{2}$ and $M_{3} \cong \mathrm{~K}_{3,3}$. Applying [4, Figure 2], we have that $r_{2}\left(L_{3}\right)=r c_{2}\left(\mathrm{~K}_{3} \square \mathrm{~K}_{2}\right)=3$. It was proved in [4] that for each integer $r \geq 2, r c_{2}\left(\mathrm{~K}_{r, r}\right)=4$ if $r=2$, and $r c_{2}\left(\mathrm{~K}_{r, r}\right)=3$ if $r \geq 3$. Thus $r c_{2}\left(M_{3}\right)=$ $r c_{2}\left(\mathrm{~K}_{3,3}\right)=3$. In [5], the following results were proved: (i) $r c_{2}\left(Q_{3}\right)=4$. (ii) $r c_{1}\left(M_{4}\right)=2, r c_{2}\left(M_{4}\right)=4$ and $r c_{3}\left(M_{4}\right)=5$. Note that the 3 -dimensional cube $Q_{3}$ is isomorphic to $L_{4}$. Hence $r c_{2}\left(L_{4}\right)=r c_{2}\left(M_{4}\right)=4$.

Let $n \geq 1$ be an integer. We use $D_{2 n}$ to denote the dihedral group generated by two elements, say $a$ and $b$, such that $|a|=n,|b|=2, b^{-1} a b=a^{-1}$. (Note that $\mathrm{D}_{2}=$ $\mathbb{Z}_{2}$ and $\mathrm{D}_{4}=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.) Then $\mathrm{D}_{2 n}=\langle a\rangle \cup\langle a\rangle b=\left\{a^{i} \mid 0 \leq\right.$ $i<n\} \cup\left\{a^{i} b \mid 0 \leq i<n\right\}$.

Let $\mathrm{C}_{n}$ be a cycle with vertex set $U=\left\{u_{1}, u_{2}, \cdots, u_{n}\right\}$, reading the subscripts modulo $n$, and let $\mathrm{P}_{m}$ be a path with vertex set $V=\left\{v_{1}, v_{2}, \cdots, v_{m}\right\}$, reading the subscripts modulo $m$. The brick product of $\mathrm{C}_{n}$ and $\mathrm{P}_{m}$, denoted by $\mathrm{C}_{n}^{[m]}$, is the graph defined on $U \times V$ such that $\left(u_{i}, v_{j}\right)$ and ( $u_{i^{\prime}}, v_{j^{\prime}}$ ) are adjacent if and only if either
(1) $i-i^{\prime} \equiv \pm 1(\bmod n)$ and $j=j^{\prime}$, or
(2) $i=i^{\prime}, i+j \equiv 0(\bmod 2), j^{\prime}=j+1$ and $j=1,2, \cdots$, $m-1$.

For convenience, denote by $\mathrm{C}_{n, j}$ the $n$-cycle in $\mathrm{C}_{n}^{[m]}$ on the vertex sets $\left\{\left(u_{i}, v_{j}\right): i=1,2, \cdots, n\right\}$.

To prove the following results, we state two useful lemmas as follows.

Lemma 2.6. (See [13].)
(i) For $0 \leq i \leq n-1$, each $a^{i} b$ is an involution.
(ii) If $n$ is odd, then $\mathrm{D}_{2 n}$ has a unique conjugacy class of involutions, which is $\left\{a^{i} b \mid 0 \leq i \leq n-1\right\}$.
(iii) If $n$ is even, then $\mathrm{D}_{2 n}$ has exactly three conjugacy classes of involutions, which are $\left\{a^{\frac{n}{2}}\right\},\left\{a^{2 i} b \left\lvert\, 0 \leq i<\frac{n}{2}\right.\right\}$ and $\left\{a^{2 i+1} b \left\lvert\, 0 \leq i<\frac{n}{2}\right.\right\}$.
(iv) If $m$ is a divisor of $n$ then $\langle a\rangle$ has a unique subgroup of order $m$, which is $\left\langle a^{\frac{n}{m}}\right\rangle$. If $N \leq\langle a\rangle$, then $N$ is normal in $\mathrm{D}_{2 n}$ and the quotient group $\mathrm{D}_{2 n} / N$ is a dihedral group generated by $\{a N, b N\}$.
(v) If $X$ is a (minimal) generating set of $D_{2 n}$, then $X$ contains some involution $a^{s} b$, and $(X \cap\langle a\rangle) \cup\left\{x a^{s} b \mid a^{s} b \neq x \in X \backslash\right.$ $\langle a\rangle\}$ is a (minimal) generating set of $\langle a\rangle$.
(vi) Set $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}}$ for distinct primes $p_{i}$. If $Y$ is a minimal generating set of $\langle a\rangle$, then $|Y| \leq r$. If $X$ is a minimal generating set of $\mathrm{D}_{2 n}$, then $|X| \leq r+1$.

Lemma 2.7. (See [13].) Let $\Gamma=\operatorname{Cay}\left(\mathrm{D}_{2 n}, S\right)$ be a connected cubic Cayley graph. Then one of the following cases occurs.
(i) $r c(\Gamma)=\left\lceil\frac{n+1}{2}\right\rceil$, and $\Gamma$ is the ladder graph of order $2 n$.
(ii) $r c(\Gamma)=\left\lceil\frac{n}{2}\right\rceil$, and $\Gamma$ is the Möbius ladder of order $2 n$.
(iii) $\Gamma \cong \operatorname{Cay}\left(\mathrm{D}_{2 n},\left\{b, a^{s} b, a^{t} b\right\}\right)$ for some integers $s$ and $t$, and either
(iii.1) $r c(\Gamma) \leq(l+1)\left\lceil\frac{m}{2}\right\rceil$, where $l \in\left\{\left|a^{s}\right|,\left|a^{t}\right|,\left|a^{s-t}\right|\right\}$ and $m=\frac{n}{l} \geq 2 ;$ or
(iii.2) $n$ is odd, and $s, t$ and $s-t$ are coprime to $n$.

Similar to Lemma 2.7, we investigate the rainbow 2-connection numbers of cubic Cayley graphs on dihedral groups.

Theorem 2.8. Let $\Gamma=\operatorname{Cay}\left(\mathrm{D}_{2 n}, S\right)$ be a connected cubic Cayley graph. Thus one of the following cases occurs.
(i) $r c_{2}(\Gamma) \leq n$, and $\Gamma$ is the ladder graph of order $2 n$.
(ii) $r c_{2}(\Gamma) \leq n$, and $\Gamma$ is the Möbius ladder of order $2 n$.
(iii) $\Gamma \cong \operatorname{Cay}\left(\mathrm{D}_{2 n},\left\{b, a^{s} b, a^{t} b\right\}\right)$ for some integers $s$ and $t$, and either
(iii.1) $n$ is odd, and $s, t$ and $s-t$ are coprime to $n$; or
(iii.2) $r c_{2}(\Gamma) \leq 2 l\left\lceil\frac{m}{2}\right\rceil+m$, where $l \in\left\{\left|a^{s}\right|,\left|a^{t}\right|,\left|a^{s-t}\right|\right\}$ and $m=\frac{n}{l} \geq 2$.

Proof. Suppose $S \cap\langle a\rangle \neq \emptyset$, by Lemma 2.5 and Lemma 2.7, one of the case (i) and the case (ii) must occur.

Suppose $S \cap\langle a\rangle=\emptyset$. Set $S=\{x, y, z\}$. Using Lemma 2.6, one of $x, y$ and $z$ is conjugate to $b$. Without loss of generality, we assume that $b=g^{-1} z g$ for some $g \in D_{2 n}$. Write $g^{-1} x g=a^{s} b$ and $g^{-1} y g=a^{t} b$. Set $T=\left\{b, a^{s} b, a^{t} b\right\}$ and $\Sigma=\operatorname{Cay}\left(\mathrm{D}_{2 n}, T\right)$. It is easily shown that $V(\Gamma) \rightarrow$ $V(\Sigma), h \mapsto g^{-1} h g$ is an isomorphism from $\Gamma$ to $\Sigma$. Thus $\Gamma \cong \operatorname{Cay}\left(\mathrm{D}_{2 n},\left\{b, a^{s} b, a^{t} b\right\}\right)$ for some integers $s$ and $t$. Without loss of generality, we can denote $T=\left\{b, a^{s} b, a^{t} b\right\}=$ $\{x, y, z\}$. Assume that $\mathrm{D}_{2 n}$ can be generated by any 2 -subset of $T$. Then the case (iii.1) easily follows.

Now we may assume that there exist two elements $x, y \in T$ such that $|x y|<n$. Let $m=\frac{n}{|x y|}$ and $l=|x y|$. The cycle $\left(x, x y, x y x, \cdots,(x y)^{l-1},(x y)^{l-1} x, x\right)$ in $\Gamma$ will be called the $(x, y)$-cycle of $\Gamma$. Obviously, there exist $m$ vertex-disjoint $(x, y)$-cycles of length $2 l$. Since left multiplication by the element $a$ of $\mathrm{D}_{2 n}$ is an automorphism of $\Gamma$, and $\Gamma$ is connected, there must exist a perfect matching of $z$-edges from the $\langle a\rangle$-vertices of one $(x, y)$-cycle to the $b\langle a\rangle$-vertices of another $(x, y)$-cycle. Hence there must exist a perfect matching from the $\langle a\rangle$-vertices of the second ( $x, y$ )-cycle to the $b\langle a\rangle$-vertices of the first $(x, y)$-cycle when $m=2$ or another ( $x, y$ )-cycle when $m>2$. Continuing this way, we obtain that $\Gamma$ consists of $\mathrm{C}_{2 l}^{[m]}$ together with a perfect matching joining the vertices of valency 2 in $\mathrm{C}_{2 l, 1}$ with the vertices of valency 2 in $\mathrm{C}_{2 l, m}$.

Let $F$ denote the perfect matching joining the vertices of valency 2 in $\mathrm{C}_{2 l, 1}$ with the vertices of valency 2 in $\mathrm{C}_{2 l, m}$. Define an edge-coloring $\theta$ of the graph $\Gamma$ by
$\theta(e)= \begin{cases}(i, j) & e=\left(u_{i}, v_{j}\right)\left(u_{i+1}, v_{j}\right) \text { for } \\ & 1 \leq i \leq 2 l \text { and } 1 \leq j \leq\left\lceil\frac{m}{2}\right\rceil ; \\ \left(i, j-\left\lceil\frac{m}{2}\right\rceil\right) & e=\left(u_{i}, v_{j}\right)\left(u_{i+1}, v_{j}\right) \text { for } \\ & 1 \leq i \leq 2 l \text { and }\left\lceil\frac{m}{2}\right\rceil+1 \leq j \leq m ; \\ (0, j) & e=\left(u_{i}, v_{j}\right)\left(u_{i}, v_{j+1}\right) \text { for } \\ & 1 \leq j \leq m-1 \text { and } \\ & i+j \equiv 0(\bmod 2) ; \\ (0, m) & e \in F .\end{cases}$
It is easy to verify that $\Gamma$ is rainbow 2 -connected with the above coloring. Then the case (iii.2) follows from enumerating the number of colors used for $\theta$.

In the end of this section, we discuss the rainbow 2-connection numbers of Cayley graphs on $\mathrm{D}_{2 p^{k}}$ or $\mathrm{D}_{2 p q}$, where $k \geq 1$ is an integer, $p$ and $q$ are distinct primes.

Theorem 2.9. Let $X$ be a minimal generating set of $D_{2 p^{k}}$, where $k \geq 1$ is an integer. Set $S=X \cup X^{-1}$ and $\Gamma=\operatorname{Cay}\left(\mathrm{D}_{2 p^{k}}, S\right)$. Then one of the following cases holds.
(i) $r c_{2}(\Gamma)=2 p^{k}$, and $\Gamma$ is a cycle of order $2 p^{k}$.
(ii) $r c_{2}(\Gamma) \leq p^{k}$, and $\Gamma$ is a ladder graph of order $2 p^{k}$.

Proof. Since $X$ is a minimal generating set of $D_{2 p^{k}}$, by Lemma 2.6, we have $|X|=2$. Hence $X=\left\{a^{i} b, a^{j} b\right\}$ or $X=\left\{a^{i}, a^{j} b\right\}$ for some integers $i$ and $j$. Then $S=X$ or $S=$ $\left\{a^{i}, a^{-i}, a^{j} b\right\}$. It is easy to check that $\Gamma$ is either a cycle or a ladder graph. Thus the theorem follows by Lemma 2.5 .

Theorem 2.10. Let $G=\mathrm{D}_{2 p q}$, where $p$ and $q$ are distinct odd primes. Let $X$ be a minimal generating set of $G$. Set $S=X \cup X^{-1}$ and $\Gamma=\operatorname{Cay}(G, S)$. Then one of the following statements holds.
(i) $|X|=2$ and $\Gamma$ is either a cycle or a ladder graph.
(ii) $|X|=3$ and either
(ii.1) $|\langle a\rangle \cap X|=2$ and $r c_{2}(\Gamma) \leq p+q+1$; or
(ii.2) $|\langle a\rangle \cap X|=1$ and $r c_{2}(\Gamma) \leq 2 l+m$ with $\{l, m\}=$ $\{p, q\}$.

Proof. Since $X$ is a minimal generating set of $D_{2 p^{k}}$, we obtain $2 \leq|X| \leq 3$ by Lemma 2.6. Suppose $|X|=2$. It follows that $\Gamma$ is either a cycle or a ladder graph by the same proof of Theorem 2.9.

Suppose $|X|=3$. We claim that $\langle a\rangle \cap X \neq \emptyset$. To the contrary, assume that $X=\left\{a^{r} b, a^{t} b, a^{s} b\right\}$. Then
$\left|a^{r-t}\right| \neq p q, \quad\left|a^{r-s}\right| \neq p q \quad$ and $\quad\left|a^{t-s}\right| \neq p q$.
Without loss of generality, we may assume $r-t=k p$ and $r-s=l p$, where $(k, q)=1$ and $(l, q)=1$. Thus $\left\langle a^{p}\right\rangle=$ $\left\langle a^{r-s}\right\rangle \leq\left\langle a^{r} b, a^{s} b\right\rangle$, that is $a^{p} \in\left\langle a^{r} b, a^{s} b\right\rangle$. An easy observation is that
$a^{-k p} a^{r} b=a^{r-k p} b=a^{t} b \in\left\langle a^{r} b, a^{s} b\right\rangle$.
This contradicts that $X$ is a minimal generating set. Hence $\langle a\rangle \cap X \neq \emptyset$. Thus one of the following cases must occur.
(1) $S=\left\{a^{r}, a^{p q-r}, a^{t} b, a^{s} b\right\}$, where $(r, p q)=q$ and $(t-s$, $p q)=p$.
(2) $S=\left\{a^{r}, a^{p q-r}, a^{t} b, a^{s} b\right\}$, where $(r, p q)=p$ and $(t-s$, $p q)=q$.
(3) $S=\left\{a^{r}, a^{p q-r}, a^{t}, a^{p q-t}, a^{s} b\right\}$, where $\left\{\left|a^{r}\right|,\left|a^{t}\right|\right\}=\{p, q\}$.

If (1) holds, then we can check that $\Gamma \cong \mathrm{C}_{2 q} \square \mathrm{C}_{p}$, and hence $r c_{2}(\Gamma) \leq 2 q+p$ by Lemma 2.1. If (2) holds, then $\Gamma \cong \mathrm{C}_{2 p} \square \mathrm{C}_{q}$, and so $r c_{2}(\Gamma) \leq 2 p+q$ by Lemma 2.1.

Let $\Gamma_{1}=\Gamma[\langle a\rangle]$ and $\Gamma_{2}=\Gamma[b\langle a\rangle]$. If (3) holds, then $\Gamma_{1} \cong \operatorname{Cay}\left(\mathbb{Z}_{p q}, S \cap\langle a\rangle\right)$. By Theorem 2.4, we have $r c_{2}\left(\Gamma_{1}\right) \leq$ $p+q$. Since left multiplication by a group element from $\mathrm{D}_{2 p q}$ is a graph automorphism, we have $\Gamma_{1} \cong \Gamma_{2}$. Assign a same edge-coloring to $\Gamma_{1}$ and $\Gamma_{2}$ with $p+q$ colors such that $\Gamma_{1}$ and $\Gamma_{2}$ are rainbow 2 -connected. In addition, we
give a new color to all $a^{s} b$-edges. Let $u$ and $v$ be any two distinct vertices of $\Gamma$. If $u, v \in \Gamma_{i}$ for $1 \leq i \leq 2$, then there exist two internally disjoint rainbow paths connecting $u$ and $v$ in $\Gamma_{i}$ by means of the rainbow 2-coloring of $\Gamma_{i}$. Without loss of generality, now we assume that $u \in V\left(\Gamma_{1}\right)$ and $v \in V\left(\Gamma_{2}\right)$. Suppose $u$ and $v$ are not adjacent in $\Gamma$. Then $u, \mathrm{P}^{1}, u_{1}, v$ and $u, v_{1}, \mathrm{P}^{2}, v$ are two internally disjoint rainbow paths connecting $u$ and $v$ in $\Gamma$, where $u_{1} \in V\left(\Gamma_{1}\right), v_{1} \in V\left(\Gamma_{2}\right), \mathrm{P}^{1}$ is a rainbow path between $u$ and $u_{1}$ in $\Gamma_{1}$, and $\mathrm{P}^{2}$ is a rainbow path between $v_{1}$ and $v$ in $\Gamma_{2}$. Suppose $u$ and $v$ are adjacent in $\Sigma$. Then $u v$ and $u, \mathrm{P}^{3}, u_{1}, v_{1}, v$ are two internally disjoint rainbow paths connecting $u$ and $v$ in $\Gamma$, where $u_{1} \in V\left(\Gamma_{1}\right), v_{1} \in$ $V\left(\Gamma_{2}\right)$, and $\mathrm{P}^{3}$ is a rainbow path between $u$ and $u_{1}$ in $\Gamma_{1}$. Therefore, $\Gamma$ is rainbow 2 -connected with the above edgecoloring, and so $r c_{2}(\Gamma) \leq p+q+1$.

Let $\Gamma=\operatorname{Cay}\left(\mathrm{D}_{4 p}, S\right)$ be a connected Cayley graph, where $S=\left\{a^{p}, a^{t} b, a^{s} b\right\}$ with $(t-s, 2 p)=2$. Then it is easy to verify that $\Gamma$ is isomorphic to the ladder graph $L_{2 p}$. By a similar proof of Theorem 2.10, the following result holds.

Theorem 2.11. Let $G=D_{4 p}$, where $p$ is an odd prime. Let $X$ be a minimal generating set of $G$. Set $S=X \cup X^{-1}$ and $\Gamma=$ $\operatorname{Cay}(G, S)$. Then one of the following statements holds.
(i) $\Gamma$ is either a cycle or a ladder graph.
(ii) $S=\left\{a^{r}, a^{2 p-r}, a^{t} b, a^{S} b\right\}$ with $(r, 2 p)=2$ and $(t-s$, $2 p)=p$, and $r c_{2}(\Gamma) \leq p+4$.
(iii) $S=\left\{a^{p}, a^{r}, a^{2 p-r}, a^{t} b\right\}$ with $(r, 2 p)=2$, and $r c_{2}(\Gamma) \leq$ $p+1$.

## Acknowledgements

The authors are very grateful to the editor and the referees for helpful comments and suggestions.

## References

[1] S.B. Akers, B. Krishnamurthy, A group-theoretic model for symmetric interconnection networks, IEEE Trans. Comput. 38 (1989) 555-566.
[2] J.A. Bondy, U.S.R. Murty, Graph Theory, Springer, Berlin, 2008.
[3] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, Rainbow connection in graphs, Math. Bohem. 133 (2008) 85-98.
[4] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, The rainbow connectivity of a graph, Networks 54 (2009) 75-81.
[5] F. Fujie-Okamoto, G.L. Johns, P. Zhang, The rainbow connectivities of small cubic graphs, Ars Comb. 105 (2012) 129-147.
[6] S. Fujita, H. Liu, C. Magnant, Rainbow $k$-connection in dense graphs (extended abstract), Electron. Notes Discrete Math. 38 (2011) 361-366.
[7] C. Godsil, G. Royle, Algebraic Graph Theory, Springer, New York, 2001.
[8] J. He, H.Y. Liang, On rainbow $k$-connectivity of random graphs, Inf. Process. Lett. 112 (2012) 406-410.
[9] H.Z. Li, X.L. Li, S.J. Liu, The (strong) rainbow connection numbers of Cayley graphs on Abelian groups, Comput. Math. Appl. 62 (2011) 4082-4088.
[10] X.L. Li, S.J. Liu, A sharp upper bound for the rainbow 2-connection number of a 2-connected graph, Discrete Math. 313 (2013) 755-759.
[11] X.L. Li, Y.F. Sun, Note on the rainbow $k$-connectivity of regular complete bipartite graphs, Ars Comb. 101 (2011) 513-518.
[12] X.L. Li, Y.F. Sun, Rainbow Connections of Graphs, Springer, New York, 2012.
[13] Z.P. Lu, Y.B. Ma, Rainbow connection numbers of Cayley graphs, Preprint.
[14] K. Menger, Zur allgemeinen Kurventheorie, Fundam. Math. 10 (1927) 96-115.
Sponsor names ..... 62
Do not correct this page. Please mark corrections to sponsor names and grant numbers in the main text.63
64
NSFC, country=China, grants=11271267, 11371204, 11171368 ..... 66
Highlights ..... 62

- Establish a lemma for bounding the rainbow 2-connection numbers of some special graphs.63
- Provide an upper bound for the rainbow 2-connection numbers of abelian Cayley graphs. ..... 65
- Characterize the rainbow 2-connection numbers of cubic dihedrants. ..... 66


[^0]:    th This work partially supported by the NSFC (No. 11271267, No. 11371204 and No. 11171368).

    * Corresponding author.

    E-mail address: mayingbincw@gmail.com (Y.B. Ma).
    http://dx.doi.org/10.1016/j.ipl.2014.12.007
    0020-0190/© 2014 Elsevier B.V. All rights reserved.

[^1]:    Please cite this article in press as: Z.P. Lu, Y.B. Ma, Rainbow 2-Connection Numbers of Cayley Graphs, Inf. Process. Lett. (2014),
    http://dx.doi.org/10.1016/j.ipl.2014.12.007

