Erdős-Gallai-type results for colorful monochromatic connectivity of a graph^{*}

Qingqiong Cai, Xueliang Li, Di Wu Center for Combinatorics and LPMC-TJKLC Nankai University, Tianjin 300071, China cqqnjnu620@163.com; lxl@nankai.edu.cn; wudiol@mail.nankai.edu.cn

Abstract

A path in an edge-colored graph is called a *monochromatic path* if all the edges on the path are with the same color. An edge-coloring of G is a *monochromatic connection coloring* (MC-coloring, for short) if there is a monochromatic path joining any two vertices in G. The *monochromatic connection number*, denoted by mc(G), is defined to be the maximum number of colors used in an MC-coloring of a graph G. These concepts were introduced by Caro and Yuster, and they got some nice results. In this paper, we study two kinds of Erdős-Gallai-type problems for mc(G), and completely solve them.

Keywords: monochromatic path, MC-coloring, monochromatic connection number, Erdős-Gallai-type problem.

AMS subject classification 2010: 05C15, 05C35, 05C38, 05C40.

1 Introduction

All graphs considered in this paper are simple, finite and undirected. We follow the terminology and notation of Bondy and Murty [1]. For a graph G, we use V(G), E(G), n(G), m(G), $\Delta(G)$, $\delta(G)$, diam(G) and \overline{G} to denote the vertex set, the edge set, the number of vertices, the number of edges, the maximum degree, the minimum degree, the diameter and the complement of G, respectively. For $D \subseteq V(G)$, let |D| be the number of vertices in D, and G[D] be the subgraph of G induced by D.

Let G be a nontrivial connected graph with an edge-coloring $f : E(G) \to \{1, 2, \dots, \ell\}, \ell \in \mathbb{N}$, where adjacent edges may be colored the same. A path of G is a *monochromatic*

^{*}Supported by NSFC No.11371205, "973" program No.2013CB834204, and PCSIRT.

path if all the edges on the path are with the same colore. An edge-coloring of G is a monochromatic connection coloring (MC-coloring, for short) if there is a monochromatic path joining any two vertices in G. How colorful can an MC-coloring be? This question is the natural opposite of the recently well-studied problem on rainbow connection number [2, 4, 6, 9, 10] for which we seek to find an edge-coloring with minimum number of colors so that there is a rainbow path joining any two vertices.

The monochromatic connection number of G, denoted by mc(G), is defined to be the maximum number of colors used in an MC-coloring of a graph G. An MC-coloring of G is called *extremal* if it uses mc(G) colors.

Observation 1 ([3]). In an extremal MC-coloring f of G, the subgraph of G induced by edges with one same color forms a tree.

For a color *i*, the color tree T_i is the tree consisting of all the edges of *G* with color *i*. T_i is nontrivial if T_i has at least two edges; otherwise, T_i is trivial. A nontrivial color tree with *t* edges is said to waste t - 1 colors. An extremal MC-coloring is called simple if any two nontrivial color trees T_i and T_j intersect in at most one vertex.

Observation 2 ([3]). Every connected graph G has a simple extremal MC-coloring.

These concepts were introduced by Caro and Yuster in [3]. A general lower bound for mc(G) is m(G) - n(G) + 2. Simply color the edges of a spanning tree with one color, and each of the remaining edges with a distinct fresh (namely, unused) color. Caro and Yuster gave some sufficient conditions for graphs attaining this lower bound.

Theorem 1 ([3]). Let G be a connected graph with n > 3 vertices and m edges. If G satisfies any of the following properties, then mc(G) = m - n + 2.

(a) G is 4-connected.
(b) G is triangle-free.
(c) Δ(G) < n - ^{2m-3(n-1)}/_{n-3}. In particular, this holds if Δ(G) ≤ (n + 1)/2 or Δ(G) ≤ n - 2m/n.
(d) Diam(G) ≥ 3.

(e) G has a cut vertex.

Moreover, the authors proved some nontrivial upper bounds for mc(G) in terms of the chromatic number, the connectivity and the minimum degree. Recall that a graph is called *s-perfectly-connected* if it can be partitioned into s + 1 parts $\{v\}, V_1, \ldots, V_s$, such that each V_j induces a connected subgraph, any pair V_j, V_r induces a corresponding complete bipartite graph, and v has precisely one neighbor in each V_j . Notice that such a graph has minimum degree s, and v has degree s.

Theorem 2 ([3]). (1) Any connected graph G satisfies $mc(G) \le m - n + \chi(G)$. (2) If G is not k-connected, then $mc(G) \le m - n + k$. This is sharp for any k. (3) If $\delta(G) = s$, then $mc(G) \leq m - n + s$, unless G is s-perfectly-connected, in which case mc(G) = m - n + s + 1.

Among many interesting problems in extremal graph theory is the Erdős-Gallai-type problem to determine the maximum or minimum value of a graph parameter with some given properties. In [5, 8], the authors considered the following Erdős-Gallai-type question for rainbow connection number rc(G): given two integers k, n with $1 \le k \le n - 1$, compute and minimize the function h(n, k) with the property: if a connected graph G on n vertices has at least h(n, k) edges, then $rc(G) \le k$. Moreover, the authors in [7, 11, 12] investigated another Erdős-Gallai-type question for rainbow connection number rc(G): given two integers k, n with $1 \le k \le n - 1$, compute the minimum number t(n, k) of edges in a connected graph G on n vertices such that $rc(G) \le k$. Motivated by these, we study two kinds of Erdős-Gallai-type problems for mc(G) in this paper.

Problem A. Given two positive integers n and k with $1 \le k \le {n \choose 2}$, compute the minimum integer f(n,k) such that if a connected graph G on n vertices has at least f(n,k) edges, then $mc(G) \ge k$.

Problem B. Given two positive integers n and k with $1 \leq k \leq {n \choose 2}$, compute the maximum integer g(n,k) such that if a connected graph G on n vertices has at most g(n,k) edges, then $mc(G) \leq k$.

It is worth mentioning that the two parameters f(n,k) and g(n,k) are equivalent to another two parameters. Let $t(n,k) = \min\{|E(G)| : |V(G)| = n, mc(G) \ge k\}$ and $s(n,k) = \max\{|E(G)| : |V(G)| = n, mc(G) \le k\}$. It is easy to see that t(n,k) =g(n,k-1) + 1 and s(n,k) = f(n,k+1) - 1. This paper is devoted to determining the exact values of f(n,k) and g(n,k) for all integers n, k with $1 \le k \le {n \choose 2}$.

Theorem 3. Given two positive integers n and k with $1 \le k \le {n \choose 2}$,

$$\begin{pmatrix}
n+k-2 & \text{if } 1 \le k \le \binom{n}{2} - 2n + 4 \\
(1)$$

$$f(n,k) = \begin{cases} \binom{n}{2} + \left| \frac{k - \binom{n}{2}}{2} \right| & \text{if } \binom{n}{2} - 2n + 5 \le k \le \binom{n}{2} \end{cases}$$
(2)

Theorem 4. Given two positive integers n and k with $1 \le k \le {n \choose 2}$,

$$\begin{pmatrix}
\binom{n}{2} & \text{if } k = \binom{n}{2}
\end{cases}$$
(3)

$$g(n,k) = \begin{cases} k+t-1 & \text{if } \binom{n-t}{2} + t(n-t-1) + 1 \le k \le \binom{n-t}{2} + t(n-t) - 1 & (4) \end{cases}$$

$$\begin{pmatrix} k+t-2 & if \ k = \binom{n-t}{2} + t(n-t) \end{cases}$$
(5)

for $2 \leq t \leq n-1$.

2 Main results

2.1 The result for f(n,k)

We first give some useful lemmas.

Lemma 1. Let H be a connected graph on n vertices, and G be a connected spanning subgraph of H. If mc(H) = m(H) - n + 2, then mc(G) = m(G) - n + 2.

Proof. It suffices to prove that $mc(G) \leq m(G) - n + 2$. At first, color the edges of G with mc(G) colors such that there is a monochromatic path joining any two vertices. Then, give each edge in E(H) - E(G) a different fresh color. Hereto we get an MC-coloring of H using mc(G) + m(H) - m(G) colors, which implies that $mc(G) + m(H) - m(G) \leq mc(H)$. Therefore, $mc(G) \leq mc(H) - m(H) + m(G) = (m(H) - n + 2) - m(H) + m(G) = m(G) - n + 2$.

Lemma 2. Let n and p be two integers with $0 \le p \le \binom{n-1}{2}$. Then every connected graph G with n vertices and $m = \binom{n}{2} - p$ edges satisfies $mc(G) \ge \binom{n}{2} - 2p$.

Proof. Proving that $mc(G) \ge {n \choose 2} - 2p$ amounts to finding an MC-coloring of G which wastes at most p colors. We distinguish the following two cases.

Case 1. $n - 2 \le p \le \binom{n-1}{2}$.

By the general lower bound, we have $mc(G) \ge m - n + 2 \ge m - p = \binom{n}{2} - 2p$.

Case 2. $0 \le p \le n-3$.

Let \widetilde{G} be the graph obtained from \overline{G} by deleting all the isolated vertices. If $n(\widetilde{G}) \leq 1$ $p+1 \leq n-2$, then we can find at least two vertices v_1, v_2 of degree n-1 in G. Take a star S with $E(S) = \{v_1v : v \in V(G)\}$. We give all the edges in S one color, and every other edge in G a different fresh color. Obviously, it is an MC-coloring of G, which wastes at most p colors. If $n(G) \ge p+2$, say n(G) = p+t $(t \ge 2)$, then G has at least t components, since $m(\widetilde{G}) = p$. First assume that \widetilde{G} has exactly two components C_1 and C_2 . Then we get that t = 2, $n(C_j) \ge 2$, and all the missing edges of G lie in C_j for $j \in \{1, 2\}$. Take a double star S' in G as follows: one vertex from C_1 is adjacent to all the vertices in C_2 , and one vertex from C_2 is adjacent to all the vertices in C_1 . Give all the edges in S' one color, and every other edge in G a different fresh color. Clearly, this is an MC-coloring of G, which wastes p colors, since S' has exactly p+1 edges. Now assume that G has $\ell \geq 3$ components C_1, C_2, \ldots, C_ℓ . Then we get that $\ell \ge t$, $n(C_j) \ge 2$, and all the missing edges of G lie in C_j . For each $j \in \{1, 2, \ldots, \ell\}$, select a vertex v_j from C_j , and give the star in G induced by the edges $E_i = \{v_i u : u \in V(C_{i+1})\}$ one fresh color (cyclically, $\ell + 1 = 1$). Each other edge in G receives a different fresh color. Obviously, it is an MC-coloring of G, and the number of wasted colors is $\sum_{j=1}^{\ell} (n(C_j) - 1) = p + t - \ell \leq p$. As an immediate consequence, we obtain the following corollary. Note that the condition $p < \binom{n}{2}/2$ is presented here to ensure that $\binom{n}{2} - 2p > 0$.

Corollary 1. Let n and p be two integers with $0 \le p < \binom{n}{2}/2$. Then $f(n, \binom{n}{2} - 2p) \le \binom{n}{2} - p$.

Lemma 3 ([3]). If G is a complete t-partite graph with n vertices and m edges, then mc(G) = m - n + t.

Given two positive integers n and t with $3 \le t \le n$, let G_n^t be the graph defined as follows: partition the vertex set of the complete graph K_n into t vertex classes V_1, V_2, \ldots, V_t , where $||V_j| - |V_r|| \le 1$ for $1 \le j \ne r \le t$; for each $j \in \{1, \ldots, t\}$, select a vertex v_j^* from V_j , and delete all the edges joining v_j^* to other vertices in V_j . The remaining edges in V_j $(1 \le j \le t)$ are called *internal edges*. Clearly, G_n^t contains a spanning subgraph isomorphic to a complete t-partite graph. It follows from Lemma 3 that $mc(G_n^t) \ge m(G_n^t) - n + t = (\binom{n}{2} - n + t) - n + t = \binom{n}{2} - 2n + 2t$. Next we will show that $mc(G_n^t) = \binom{n}{2} - 2n + 2t$. The proof is similar to that of Lemma 3. We begin with an easy observation.

Observation 3. Let f be an extremal MC-coloring of a connected graph G. Then every nontrivial color tree in f contains at least one pair of nonadjacent vertices.

Proof. Suppose by contradiction that T_i is a nontrivial color tree, in which all the pairs of vertices are adjacent in G. Then we can adjust the coloring of T_i . Color one edge of T_i with color i, and each other edge of T_i with a different fresh color. Obviously, the new coloring is still an MC-coloring, but uses more colors than f, a contradiction.

Lemma 4. Let n and t be two integers with $3 \le t \le n$. Then $mc(G_n^t) = \binom{n}{2} - 2n + 2t$.

Proof. From the arguments above, it suffices to prove that $mc(G_n^t) \leq {n \choose 2} - 2n + 2t$. To see that, we need the following three claims.

Claim 1. In any simple extremal MC-coloring f of G_n^t , each nontrivial color tree intersects exactly two vertex classes.

Proof of Claim 1. Suppose that a nontrivial color tree T_i intersects $s \ge 3$ vertex classes, say V_1, V_2, \ldots, V_s . Let $P_j = V(T_i) \cap V_j$ and $|P_j| = p_j$ for $1 \le j \le s$. Denote by x the number of internal edges in $G_n^t[\bigcup_{j=1}^s P_j]$. Then $G_n^t[\bigcup_{j=1}^s P_j]$ has $\sum_{1\le j < r\le s} p_j p_r + x$ edges in total. Observe that T_i has $\sum_{j=1}^s p_j - 1$ edges, and since the coloring f is simple, each other edge in $G_n^t[\bigcup_{j=1}^s P_j]$ forms a trivial color tree. Thus we get that $G_n^t[\bigcup_{j=1}^s P_j]$ is colored using $\sum_{1\le j < r\le s} p_j p_r - \sum_{j=1}^s p_j + x + 2$ colors. Now we adjust the coloring of $G_n^t[\bigcup_{j=1}^s P_j]$. For each $j \in \{1, 2, \ldots, s\}$, select one vertex $u_j \in P_j$, and color the star induced by the edges $E_j = \{u_j u : u \in P_{j+1}\}$ with one fresh color (cyclically, s + 1 = 1). Each other edge in $G_n^t[\bigcup_{j=1}^s P_j]$ receives a different fresh color. Obviously, the new coloring is still an MC-coloring, but now it uses $\sum_{1 \leq j < r \leq s} p_j p_r - \sum_{j=1}^s p_j + x + s$ colors, contradicting the fact that f is extremal. Now suppose that a nontrivial color tree T_i intersects only one vertex class, say V_1 . Since v_1^* is an isolated vertex in $G_n^t[V_1]$, we get that $v_1^* \notin V(T_i)$. Then T_i contains no pairs of nonadjacent vertices, a contradiction. Thus each nontrivial color tree intersects exactly two vertex classes. \Box

Claim 2. There exists a simple extremal MC-coloring of G_n^t such that each nontrivial color tree is a star or a double star, which does not contain any internal edges.

Proof of Claim 2. Suppose that f is a simple extremal MC-coloring of G_n^t , and T_i is a nontrivial color tree in f. Let P_j , p_j and x be the same as in Claim 1. By Claim 1, we may assume that T_i intersects V_1 and V_2 with $1 \le p_1 \le p_2$. Since f is simple, any edge in $G_n^t[P_1 \bigcup P_2]$ but not in T_i must be a trivial color tree. Thus $G_n^t[P_1 \bigcup P_2]$ is colored using $p_1p_2 - p_1 - p_2 + x + 2$ colors. We distinguish the following two cases (the case $p_1 = p_2 = 1$ is excluded, since then T_i is a trivial color tree, a contradiction).

Case 1. $p_1 = 1$ and $p_2 \ge 2$

If T_i is the star joining the only vertex in P_1 to all the vertices in P_2 , then we are done. Otherwise, we adjust the coloring as follows: color the star with color i, and each other edge in $G_n^t[P_1 \bigcup P_2]$ with a different fresh color. Clearly, the new coloring is still a simple extremal MC-coloring. Moreover, now the nontrivial color tree in $G_n^t[P_1 \bigcup P_2]$ is a star containing no internal edges.

Case 2. $2 \le p_1 \le p_2$.

If T_i is a double star joining a certain vertex $u_i \in P_1$ to all the vertices in P_2 , and joining a certain vertex $v_i \in P_2$ to all the vertices in P_1 , then we are done. Otherwise, we adjust the coloring as follows: select one double star as stated above, and color it with color *i*, and each other edge in $G_n^t[P_1 \bigcup P_2]$ with a different fresh color. Clearly, the new coloring is still a simple extremal MC-coloring. Moreover, now the nontrivial color tree in $G_n^t[P_1 \bigcup P_2]$ is a double star containing no internal edges. \Box

Figure 1: The illustration of Claim 2.

Now we may assume that every nontrivial color tree T_i in f is a star or a double star containing no internal edges. In fact, the stars can be viewed as degenerated double stars, by letting an arbitrary leaf perform the role of the other center of a double star. So we assume that all nontrivial color trees in f are double stars (some are possibly degenerated). For a nontrivial color tree T_i , let u_i and v_i denote the two centers. Orient all the edges of T_i incident with u_i other than u_iv_i (if there are any) as going from u_i toward the leaves. Similarly, orient all the edges of T_i incident with v_i other than u_iv_i (if there are any) as going from v_i toward the leaves. Keep u_iv_i as unoriented. Since T_i contains no internal edges, all the oriented edges incident with u_i (if there are any) are oriented from u_i to the same vertex class (the vertex class of v_i), and all the oriented edges incident with v_i (if there are any) are oriented from v_i to the same vertex class of u_i). It is easily seen that the number of wasted colors of T_i is equal to the number of oriented edges in T_i .

Claim 3. For each $j \in \{1, \ldots, t\}$, the number of oriented edges entering V_j is at least $|V_j| - 1$.

Proof of Claim 3. Assume that there are double stars T_1, T_2, \ldots, T_ℓ (some are possibly degenerated) to monochromatically connect $|V_j| - 1$ pairs of nonadjacent vertices in V_j . Let e_i $(1 \le i \le \ell)$ denote the number of oriented edges entering V_j in T_i . Since T_i is used to monochromatically connect pairs of nonadjacent vertices in V_j , and all the pairs of nonadjacent vertices in V_j contain v_j^* , we get that v_j^* appears in each T_i $(1 \le i \le \ell)$. So T_i $(2 \le i \le \ell)$ covers at most e_i vertices in V_j but not in $\bigcup_{q=1}^{i-1} T_q$. Thus we have $(e_1 + 1) + \sum_{i=2}^{\ell} e_i \ge |V_j|$, that is, $\sum_{i=1}^{\ell} e_i \ge |V_j| - 1$. \Box

Note that the total number of wasted colors in f is equal to the number of oriented edges in G_n^t . It follows from Claim 3 that this number is at least $\sum_{j=1}^t (|V_j| - 1) = n - t$. Thus $mc(G_n^t) \leq m(G_n^t) - (n-t) = \binom{n}{2} - 2n + 2t$. We complete the proof of Lemma 4.

We are now ready to prove Theorem 3.

Proof of Theorem 3. Clearly, f(n, 1) = n - 1, so the assertion holds for k = 1. For $2 \le k \le {n \choose 2} - 2n + 4$, it follows from the general lower bound that if a connected graph G on n vertices satisfies $m(G) \ge n + k - 2$, then $mc(G) \ge k$, implying $f(n, k) \le n + k - 2$. To prove $f(n, k) \ge n + k - 2$, it suffices to find a connected graph G_k on n vertices such that $m(G_k) = n + k - 3$ and $mc(G_k) \le k - 1$. Now we construct a graph H as follows: first take a copy of K_{n-2} , then add two vertices u, v, and join u to some vertices in K_{n-2} , and join v to all the other vertices in K_{n-2} . Obviously, $m(H) = {n \choose 2} - n + 1$ and diam(H) = 3. By Theorem 1(d), we have $mc(H) = m(H) - n + 2 = {n \choose 2} - 2n + 3$. So H is just the graph G_k we want for $k = {n \choose 2} - 2n + 4$. For $2 \le k \le {n \choose 2} - 2n + 3$, we take G_k as a connected spanning subgraph of H with $m(G_k) = n + k - 3$ edges. It follows from Lemma 1 that $mc(G_k) = m(G_k) - n + 2 = k - 1$. This completes the proof of (1).

Proving (2) amounts to showing that if $k = \binom{n}{2} - 2n + 2t + 1$ or $k = \binom{n}{2} - 2n + 2t + 2$ ($2 \le t \le n - 1$), then $f(n,k) = \binom{n}{2} - n + t + 1$. Let $k_1 = \binom{n}{2} - 2n + 2t + 1$, and $k_2 = \binom{n}{2} - 2n + 2t + 2$. It follows from Corollary 1 that $f(n,k_2) \le \binom{n}{2} - n + t + 1$. Since $f(n,k_1) \le f(n,k_2)$, if we prove $f(n,k_1) \ge \binom{n}{2} - n + t + 1$, then $f(n,k_1) = f(n,k_2) = \binom{n}{2} - n + t + 1$, and we are done. So it remains to prove $f(n,k_1) \ge \binom{n}{2} - n + t + 1$, that is to find a connected graph G_t on n vertices such that $m(G_t) = \binom{n}{2} - n + t$ and $mc(G_t) \leq k_1 - 1 = \binom{n}{2} - 2n + 2t$. If $3 \leq t \leq n - 1$, then by Lemma 4 we can take $G_t = G_n^t$. If t = 2 (thus $n \geq 3$), then we can take $G_2 = P_3, C_4$ for n = 3, 4, respectively; for $n \geq 5$, we take G_2 as the graph obtained from a copy of K_{n-2} by adding two adjacent vertices u, v and joining u to exactly one vertex in K_{n-2} and joining v to all the other vertices in K_{n-2} . It is easy to see that $m(G_2) = \binom{n}{2} - n + 2, \ \delta(G_2) = 2$, and u is the only vertex of degree 2. Clearly, G_2 is not 2-perfectly-connected. It follows from Theorem 2(3) that $mc(G) \leq \binom{n}{2} - 2n + 4$. \Box

2.2 The result for g(n,k)

We start with a useful lemma. Recall that $\binom{1}{2} = 0$.

Lemma 5. Let G be a connected graph with n vertices and m edges. If $\binom{n-t}{2} + t(n-t) \leq m \leq \binom{n-t}{2} + t(n-t) + (t-2)$ for some $t \in \{2, \ldots, n-1\}$, then $mc(G) \leq m-t+1$. Moreover, the bound is sharp.

Proof. Let f be a simple extremal MC-coloring of G. Since $2 \leq t \leq n-1$, we have $m \leq \binom{n}{2} - 1$, that is, G is not a complete graph. So there is at least one nontrivial color tree. Suppose that T_1, \ldots, T_ℓ are all the nontrivial color trees in f. Let $t_i = |V(T_i)|$ for $1 \leq i \leq \ell$. As T_i has $t_i - 1$ edges, it wastes $t_i - 2$ colors. To prove $mc(G) \leq m - t + 1$, it suffices to show that f wastes at least t - 1 colors, that is, $\sum_{i=1}^{\ell} (t_i - 2) \geq t - 1$. Since each T_i can monochromatically connect at most $\binom{t_i-1}{2}$ pairs of nonadjacent vertices in G, we have

$$\sum_{i=1}^{\ell} \binom{t_i - 1}{2} \ge \binom{n}{2} - m$$

Assume by contradiction that $\sum_{i=1}^{\ell} (t_i - 2) < t - 1$, namely, $\sum_{i=1}^{\ell} (t_i - 1) < t - 1 + \ell$. As T_i is nontrivial, we have $t_i - 1 \ge 2$. Thus $1 \le \ell \le t - 2$. Since $\binom{x}{2} + \binom{y}{2} \le \binom{x-1}{2} + \binom{y+1}{2}$ for $x \le y + 1$, the expression $\sum_{i=1}^{\ell} \binom{t_i - 1}{2}$, subject to $t_i - 1 \ge 2$, is maximized when $\ell - 1$ of the t'_is are equal to 3, and one of the t'_is , say t_ℓ , is as large as it can be, namely, $t_\ell - 1$ is the largest integer smaller than $(t - 1 + \ell) - 2(\ell - 1) = t - \ell + 1$. Hence $t_\ell - 1 = t - \ell$. So

$$\sum_{i=1}^{\ell} {\binom{t_i - 1}{2}} \le (\ell - 1) + {\binom{t - \ell}{2}}$$
$$= \frac{1}{2} \left[\ell^2 + (3 - 2t)\ell + t^2 - t - 2 \right]$$
$$\le {\binom{t - 1}{2}} \quad \text{(take } \ell = 1)$$
$$< {\binom{t - 1}{2}} + 1.$$

Here we use the fact that the function $g(\ell) = \frac{1}{2} \left[\ell^2 + (3-2t)\ell + t^2 - t - 2\right]$ is decreasing when $1 \leq \ell \leq t-2$, and so is maximized at the point $\ell = 1$. For a contradiction, we just need to show that $\binom{t-1}{2} + 1 \leq \binom{n}{2} - m$. In fact,

$$\binom{t-1}{2} + 1 + m \le \binom{t-1}{2} + 1 + \binom{n-t}{2} + t(n-t) + (t-2)$$
$$= \binom{n}{2}.$$

Next we will show that the bound is sharp. Let G^* be the graph defined as follows: first take a complete (n-t+1)-partite graph with vertex classes V_1, \ldots, V_{n-t+1} such that $|V_j| = 1$ for $1 \le j \le n-t$ and $|V_{n-t+1}| = t$; then add the (at most t-2) remaining edges to V_{n-t+1} randomly. Color all the edges between V_1 and V_{n-t+1} with one color, and every other edge with a distinct fresh color. It is easily checked that this is an *MC*-coloring of G^* using m-t+1 colors, which implies $mc(G^*) \ge m-t+1$. Hence $mc(G^*) = m-t+1$.

With the aid of Lemma 5, we give the proof Theorem 4.

Proof of Theorem 4. If $k = \binom{n}{2}$, then clearly $g(n, k) = \binom{n}{2}$.

If $\binom{n-t}{2} + t(n-t-1) + 1 \le k \le \binom{n-t}{2} + t(n-t) - 1$ for some $t \in \{2, \ldots, n-1\}$, it follows from Lemma 5 that if a connected graph G on n vertices satisfies $m(G) \le k+t-1$. $1 (\le \binom{n-t}{2} + t(n-t) + t - 2)$, then $mc(G) \le m(G) - t + 1 \le k$. Hence, $g(n,k) \ge k+t-1$. To prove $g(n,k) \le k+t-1$, it suffices to find a connected graph G on n vertices such that m(G) = k + t and mc(G) > k. We can take the graph G^* described in Lemma 5 with $m(G^*) = k + t$. By Lemma 5, we have $mc(G^*) = m(G^*) - t + 1 = k + 1 > k$ for $\binom{n-t}{2} + t(n-t-1) + 1 \le k \le \binom{n-t}{2} + t(n-t) - 2$, and $mc(G^*) = m(G^*) - (t-1) + 1 = k+2 > k$ for $k = \binom{n-t}{2} + t(n-t) - 1$. So $g(n,k) \le k+t-1$, and thus g(n,k) = k+t-1.

If $k = \binom{n-t}{2} + t(n-t)$ for some $t \in \{2, \ldots, n-1\}$, it follows from Lemma 5 that if a connected graph G on n vertices satisfies $m(G) \leq k + t - 2 \left(= \binom{n-t}{2} + t(n-t) + t - 2 \right)$, then $mc(G) \leq m(G) - t + 1 \leq k - 1 < k$. Hence, $g(n,k) \geq k + t - 2$. To prove $g(n,k) \leq k + t - 2$, it suffices to find a connected graph G on n vertices such that m(G) = k + t - 1 and mc(G) > k. We can take the graph G^* described in Lemma 5 with $m(G^*) = k + t - 1$. By Lemma 5, we have $mc(G^*) = m(G^*) - (t-1) + 1 = k + 1 > k$. So $g(n,k) \leq k + t - 2$, and thus g(n,k) = k + t - 2. \Box

References

- [1] J.A. Bondy, U.S.R. Murty, *Graph Theory*, GTM 244, Springer, 2008.
- Y. Caro, A. Lev, Y. Roditty, Z. Tuza, R. Yuster, On rainbow connection, Electron. J. Combin. 15(1)(2008), R57.

- [3] Y. Caro, R. Yuster, Colorful monochromatic connectivity, Discrete Math. 311(2011), 1786-1792.
- [4] G. Chartrand, G. Johns, K. McKeon, P. Zhang, *Rainbow connection in graphs*, Math. Bohem. 133(2008), 85-98.
- [5] A. Kemnitz, I. Schiermeyer, Graphs with rainbow connection number two, Discuss. Math. Graph Theory, 31(2011), 313C320.
- [6] M. Krivelevich, R. Yuster, *The rainbow connection of a graph is (at most) reciprocal* to its minimum degree, J. Graph Theory 63(3)(2010), 185-191.
- H. Li, X. Li, Y. Sun, Y. Zhao, Note on minimally d-rainbow connected graphs, Graphs & Combin. 30(4)(2014), 949-955.
- [8] X. Li, M. Liu, I. Schiermeyer, Rainbow connection number of dense graphs, Discuss. Math. Graph Theory, 33(2013), 603C611.
- [9] X. Li, Y. Shi, Y. Sun, Rainbow connections of graphs: A survey, Graphs & Combin. 29(2013), 1-38.
- [10] X. Li, Y. Sun, Rainbow Connections of Graphs, SpringerBriefs in Math., Springer, New York, 2012.
- [11] A. Lo, A note on the minimum size of k-rainbow-connected graphs, Discrete Math. 331(2014), 20C21.
- [12] I. Schiermeyer, On minimally rainbow k-connected graphs, Discrete Appl. Math. 161(2013), 702C705.