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Abstract

A path in an edge-colored graph is called a monochromatic path if all the edges
on the path are with the same color. An edge-coloring of G is a monochromatic con-
nection coloring (MC-coloring, for short) if there is a monochromatic path joining
any two vertices in G. The monochromatic connection number, denoted by mec(G),
is defined to be the maximum number of colors used in an MC-coloring of a graph
G. These concepts were introduced by Caro and Yuster, and they got some nice
results. In this paper, we study two kinds of Erdés-Gallai-type problems for mc(G),
and completely solve them.
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1 Introduction

All graphs considered in this paper are simple, finite and undirected. We follow the
terminology and notation of Bondy and Murty [1]. For a graph G, we use V(G), E(G),
n(G), m(G), AG), 6(G), diam(G) and G to denote the vertex set, the edge set, the
number of vertices, the number of edges, the maximum degree, the minimum degree, the
diameter and the complement of G, respectively. For D C V(G), let |D| be the number
of vertices in D, and G[D] be the subgraph of G induced by D.

Let G be a nontrivial connected graph with an edge-coloring f : E(G) — {1,2,...,(},
¢ € N, where adjacent edges may be colored the same. A path of G is a monochromatic
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path if all the edges on the path are with the same colore. An edge-coloring of G is a
monochromatic connection coloring (MC-coloring, for short) if there is a monochromatic
path joining any two vertices in G. How colorful can an MC-coloring be? This question is
the natural opposite of the recently well-studied problem on rainbow connection number
2, 4, 6, 9, 10] for which we seek to find an edge-coloring with minimum number of colors
so that there is a rainbow path joining any two vertices.

The monochromatic connection number of G, denoted by mc(G), is defined to be the
maximum number of colors used in an MC-coloring of a graph G. An MC-coloring of G
is called eztremal if it uses mc(G) colors.

Observation 1 ([3]). In an extremal MC-coloring f of G, the subgraph of G induced by
edges with one same color forms a tree.

For a color i, the color tree T; is the tree consisting of all the edges of G with color
1. T; is nontrivial if T; has at least two edges; otherwise, T; is trivial. A nontrivial color
tree with ¢ edges is said to waste t — 1 colors. An extremal MC-coloring is called simple
if any two nontrivial color trees 7; and 7T intersect in at most one vertex.

Observation 2 ([3]). Every connected graph G has a simple extremal MC-coloring.

These concepts were introduced by Caro and Yuster in [3]. A general lower bound
for me(G) is m(G) —n(G) + 2. Simply color the edges of a spanning tree with one color,
and each of the remaining edges with a distinct fresh (namely, unused) color. Caro and
Yuster gave some sufficient conditions for graphs attaining this lower bound.

Theorem 1 ([3]). Let G be a connected graph with n > 3 vertices and m edges. If G
satisfies any of the following properties, then mc(G) = m —n + 2.

(a) G is 4-connected.

(b) G 1is triangle-free.

(c) A(G) < n— %_(g_l) In particular, this holds if A(G) < (n+1)/2 or A(G) <
n—2m/n.

(d) Diam(G) > 3.

(e) G has a cut vertex.

Moreover, the authors proved some nontrivial upper bounds for mc(G) in terms of
the chromatic number, the connectivity and the minimum degree. Recall that a graph
is called s-perfectly-connected if it can be partitioned into s + 1 parts {v},V4,...,V,
such that each V; induces a connected subgraph, any pair Vj, V. induces a corresponding
complete bipartite graph, and v has precisely one neighbor in each V. Notice that such
a graph has minimum degree s, and v has degree s.

Theorem 2 ([3]). (1) Any connected graph G satisfies me(G) < m —n + x(G).
(2) If G is not k-connected, then mc(G) < m —n+ k. This is sharp for any k.
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(3) If 0(G) = s, then me(G) < m —n+ s, unless G is s-perfectly-connected, in which case
me(G) =m —n+s+ 1.

Among many interesting problems in extremal graph theory is the Erdos-Gallai-type
problem to determine the maximum or minimum value of a graph parameter with some
given properties. In [5, 8], the authors considered the following Erdés-Gallai-type question
for rainbow connection number r¢(G): given two integers k, n with 1 < k < n — 1,
compute and minimize the function h(n, k) with the property: if a connected graph G on
n vertices has at least h(n, k) edges, then rc¢(G) < k. Moreover, the authors in [7, 11, 12]
investigated another Erdés-Gallai-type question for rainbow connection number rc(G):
given two integers k, n with 1 < k < n — 1, compute the minimum number ¢(n, k) of
edges in a connected graph G on n vertices such that rc¢(G) < k. Motivated by these, we
study two kinds of Erdds-Gallai-type problems for mc(G) in this paper.

Problem A. Given two positive integers n and k with 1 < k£ < (g), compute the minimum
integer f(n, k) such that if a connected graph G on n vertices has at least f(n, k) edges,
then mc(G) > k.

Problem B. Given two positive integers n and k with 1 < k£ < (g), compute the
maximum integer g(n,k) such that if a connected graph G on n vertices has at most
g(n, k) edges, then mc(G) < k.

It is worth mentioning that the two parameters f(n,k) and g(n,k) are equivalent
to another two parameters. Let t(n,k) = min{|E(G)| : |V(G)| = n,mc¢(G) > k} and
s(n,k) = max{|E(G)| : |[V(G)| = n,me(G) < k}. It is easy to see that t(n,k) =
g(n,k—1)+ 1 and s(n,k) = f(n,k+ 1) — 1. This paper is devoted to determining the
exact values of f(n, k) and g(n, k) for all integers n, k with 1 < k < (Z)

Theorem 3. Given two positive integers n and k with 1 < k < (g),

n+k—2 if1<k<(;)—2n+4 (1)
fn. k) = (@+[E¥4 if () —2n+5 <k < () (2)

Theorem 4. Given two positive integers n and k with 1 < k < (g),

(5) if k= (}) (3)
gn k) = k+t—1 if (") +tn—t-1)+1<k< (") +tlh—t)—1 (4)
k+t—2 if k= ("}") +tn—t) (5)

for2<t<n-—1.



2 Main results

2.1 The result for f(n,k)

We first give some useful lemmas.

Lemma 1. Let H be a connected graph on n wvertices, and G be a connected spanning
subgraph of H. If mc(H) = m(H) —n+ 2, then mc(G) = m(G) — n + 2.

Proof. 1t suffices to prove that mc(G) < m(G) —n+2. At first, color the edges of G with
mec(G) colors such that there is a monochromatic path joining any two vertices. Then,
give each edge in F(H)— E(G) a different fresh color. Hereto we get an MC-coloring of H
using me(G) +m(H) —m(G) colors, which implies that me(G) +m(H)—m(G) < mc(H).
Therefore, me(G) < me(H) — m(H) + m(G) = (m(H) —n+2) —m(H) + m(G) =
m(G) —n+ 2. O

Lemma 2. Let n and p be two integers with 0 < p < ("51) Then every connected graph
G with n vertices and m = () — p edges satisfies me(G) > (3) — 2p.

Proof. Proving that mc(G) > (Z) — 2p amounts to finding an MC-coloring of G which
wastes at most p colors. We distinguish the following two cases.

Case 1. n—2<p< (";1)
By the general lower bound, we have me(G) >m —n+2>m—p = (g) — 2p.
Case 2. 0 <p<n-—3.

Let G be the graph obtained from G by deleting all the isolated vertices. If n(é) <
p+1(< n—2), then we can find at least two vertices vy, vy of degree n—1 in G. Take a star
S with E(S) = {v1v : v € V(G)}. We give all the edges in S one color, and every other
edge in G a different fresh color. Obviously, it is an MC-coloring of GG, which wastes at
most p colors. If n(é) > p+2, say n(é) = p+t (t > 2), then G has at least ¢ components,
since m(é) = p. First assume that G has exactly two components C; and Cy. Then we
get that ¢ = 2, n(C;) > 2, and all the missing edges of G lie in C; for j € {1,2}. Take
a double star S” in G as follows: one vertex from C; is adjacent to all the vertices in Cs,
and one vertex from Cy is adjacent to all the vertices in C;. Give all the edges in S’ one
color, and every other edge in G a different fresh color. Clearly, this is an MC-coloring of
(G, which wastes p colors, since S’ has exactly p + 1 edges. Now assume that G has (>3
components Cy,Cy, ..., Cp. Then we get that ¢ > ¢, n(C;) > 2, and all the missing edges
of G lie in C;. For each j € {1,2,...,(}, select a vertex v; from C}, and give the star in
G induced by the edges E; = {v;u : u € V(Cj11)} one fresh color (cyclically, £/ +1 = 1).
Each other edge in G receives a different fresh color. Obviously, it is an MC-coloring of
G, and the number of wasted colors is Zﬁzl(n(Cj) —1)=p+t—(<p. O



As an immediate consequence, we obtain the following corollary. Note that the con-
dition p < (g) /2 is presented here to ensure that (72‘) —2p > 0.

Corollary 1. Let n and p be two integers with 0 < p < (Z) /2. Then f(n, (3) —2p) <
() —p.

Lemma 3 ([3]). If G is a complete t-partite graph with n vertices and m edges, then
me(G) =m —n+t.

Given two positive integers n and ¢ with 3 < ¢ < n, let G, be the graph defined as fol-
lows: partition the vertex set of the complete graph K, into t vertex classes Vi, Vs, ..., V;,
where [|[V;| —|V,|]| < 1for 1 < j # r < t; for each j € {1,...t}, select a vertex
vi from Vj, and delete all the edges joining v} to other vertices in V;. The remain-
ing edges in V; (1 < j < t) are called internal edges. Clearly, Gl contains a span-
ning subgraph isomorphic to a complete t-partite graph. It follows from Lemma 3 that
me(GL) > m(GL) —n+t=((;) —n+t) —n+t=(}) —2n+ 2t Next we will show
that mc(Gh) = (5) — 2n + 2t. The proof is similar to that of Lemma 3. We begin with

an easy observation.

Observation 3. Let f be an extremal MC-coloring of a connected graph G. Then every
nontrivial color tree in f contains at least one pair of nonadjacent vertices.

Proof. Suppose by contradiction that 7T; is a nontrivial color tree, in which all the pairs
of vertices are adjacent in G. Then we can adjust the coloring of T;. Color one edge of
T; with color 7, and each other edge of T; with a different fresh color. Obviously, the new
coloring is still an MC-coloring, but uses more colors than f, a contradiction. O

Lemma 4. Let n and t be two integers with 3 <t <n. Then mc(GY) = () — 2n + 2t.

Proof. From the arguments above, it suffices to prove that me(Gh) < (3) — 2n + 2t. To
see that, we need the following three claims.

Claim 1. In any simple extremal MC-coloring f of G, each nontrivial color tree intersects
exactly two vertex classes.

Proof of Claim 1. Suppose that a nontrivial color tree T; intersects s > 3 vertex classes,
say Vi,Va, ..., Vs, Let P; = V(T;) NV, and |Pj| = p; for 1 < j < s. Denote by = the
number of internal edges in G}, [J;_, j]. Then G}, [J;_, Pl has > ;.. p;p,+ edges in
total. Observe that T; has Zj.:l p;— 1 edges, and since the coloring f is simple, each other
edge in G}, [J;_, P;] forms a trivial color tree. Thus we get that G} [(J;_, P;] is colored
USing Yoo, PiPr — 25—y Pj + 2 +2 colors. Now we adjust the coloring of G7,[Uj_, Pjl.
For each j € {1,2,...,s}, select one vertex u; € P;, and color the star induced by the
edges E; = {uju : v € Pj11} with one fresh color (cyclically, s +1 = 1). Each other
edge in G;[szl P;] receives a different fresh color. Obviously, the new coloring is still
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an MC-coloring, but now it uses Zlgj <r<s DiPr — Zj’:l pj + x + s colors, contradicting
the fact that f is extremal. Now suppose that a nontrivial color tree T; intersects only
one vertex class, say V;. Since v is an isolated vertex in G%[V1], we get that v] ¢ V(T;).
Then T; contains no pairs of nonadjacent vertices, a contradiction. Thus each nontrivial
color tree intersects exactly two vertex classes. O

Claim 2. There exists a simple extremal MC-coloring of G such that each nontrivial
color tree is a star or a double star, which does not contain any internal edges.

Proof of Claim 2. Suppose that f is a simple extremal MC-coloring of G*, and T; is
a nontrivial color tree in f. Let P;, p; and x be the same as in Claim 1. By Claim 1, we
may assume that 7T; intersects Vi and V5, with 1 < p; < po. Since f is simple, any edge in
G [P, |J P2] but not in T; must be a trivial color tree. Thus G%[P; | P2 is colored using
p1p2 — p1 — P2 +x + 2 colors. We distinguish the following two cases (the case p; = py =1
is excluded, since then T; is a trivial color tree, a contradiction).

Case 1. py =1 and py > 2

If T} is the star joining the only vertex in P; to all the vertices in P, then we are done.
Otherwise, we adjust the coloring as follows: color the star with color ¢ , and each other
edge in Gt [P, | P,] with a different fresh color. Clearly, the new coloring is still a simple
extremal MC-coloring. Moreover, now the nontrivial color tree in G%L[P|J P] is a star
containing no internal edges.

Case 2. 2 < p; < pa.

If T} is a double star joining a certain vertex u; € P; to all the vertices in P,, and
joining a certain vertex v; € P to all the vertices in P;, then we are done. Otherwise, we
adjust the coloring as follows: select one double star as stated above, and color it with
color 4, and each other edge in GL[P; | P with a different fresh color. Clearly, the new
coloring is still a simple extremal MC-coloring. Moreover, now the nontrivial color tree
in G% [P, P,| is a double star containing no internal edges. O

| N

Case 1: a star Case 2 : a double star

Figure 1: The illustration of Claim 2.

Now we may assume that every nontrivial color tree 7} in f is a star or a double star
containing no internal edges. In fact, the stars can be viewed as degenerated double stars,
by letting an arbitrary leaf perform the role of the other center of a double star. So we
assume that all nontrivial color trees in f are double stars (some are possibly degenerated).
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For a nontrivial color tree T;, let u; and v; denote the two centers. Orient all the edges of
T; incident with w; other than wv; (if there are any) as going from w; toward the leaves.
Similarly, orient all the edges of T; incident with v; other than u;v; (if there are any) as
going from v; toward the leaves. Keep w;v; as unoriented. Since T} contains no internal
edges, all the oriented edges incident with w; (if there are any) are oriented from w; to
the same vertex class (the vertex class of v;), and all the oriented edges incident with v;
(if there are any) are oriented from v; to the same vertex class (the vertex class of u;). It
is easily seen that the number of wasted colors of T; is equal to the number of oriented
edges in T;.

Claim 3. For each j € {1,...,t}, the number of oriented edges entering V; is at least
Vil = 1.

Proof of Claim 3. Assume that there are double stars Ty, T, ..., T; (some are possibly
degenerated) to monochromatically connect |V;| — 1 pairs of nonadjacent vertices in V.
Let e; (1 < i < /) denote the number of oriented edges entering V; in 7;. Since T; is
used to monochromatically connect pairs of nonadjacent vertices in Vj, and all the pairs
of nonadjacent vertices in V; contain v}, we get that v} appears in each T; (1 <i<).
So T; (2 < i < () covers at most e; Vertlces in V; but not in U’ L T,. Thus we have
(e1 4+ 1)+ Xy e > [V, that is, S, e; > |Vj[ - 1. O

Note that the total number of wasted colors in f is equal to the number of oriented
edges in G!. Tt follows from Claim 3 that this number is at least Z§:1(|V}| —1)=n-—t
Thus mc(Gt) < m(GY) — (n—t) = (5) —2n+2t. We complete the proof of Lemma 4. [

We are now ready to prove Theorem 3.

Proof of Theorem 3. Clearly, f(n,1) =n — 1, so the assertion holds for £k = 1. For
2<k< (g) —2n+4, it follows from the general lower bound that if a connected graph G
on n vertices satisfies m(G) > n + k — 2, then me(G) > k, implying f(n, k) <n+k — 2.
To prove f(n,k) > n+ k — 2, it suffices to find a connected graph Gy on n vertices such
that m(Gg) = n+k—3 and me(Gy) < k—1. Now we construct a graph H as follows: first
take a copy of K,,_», then add two vertices u, v, and join u to some vertices in K,,_5, and
join v to all the other vertices in K,,_». Obviously, m(H) = (}) —n+1 and diam(H) = 3.
By Theorem 1(d), we have mc(H) = m(H) —n+2 = (}) —2n+3. So H is just the graph
G, we want for k& = (g) —2n+4. For 2 <k < (Z) —2n + 3, we take GG}, as a connected
spanning subgraph of H with m(Gy) = n + k — 3 edges. It follows from Lemma 1 that
me(Gr) = m(Gg) —n+ 2 =k — 1. This completes the proof of (1).

B —2n+2t+1lork=(})—2n+2t+2
(2 <t <n-1), then f(n,k) = () —n+t+1 Let k = ()—2n+2t+1, and
ko = (5) — 2n+ 2t + 2. It follows from Corollary 1 that f(n,ks) < (3) —n+¢+ 1. Since
f(n k1) < f(n, ko), if we prove f(n,ki) > (5) —n+t+ 1, then f(n, ki) = f(n, ko) =

2

(3) —n+t+ 1, and we are done. So it remains to prove f(n,k;) > (Z) —n+t+1,

Proving (2) amounts to showing that if k = (



that is to find a connected graph G, on n vertices such that m(G;) = (Z) —n 4+t and
me(Gy) <k —1= (") 2n+2t. If 3 <t < n—1, then by Lemma 4 we can take G, = G,.

If t =2 (thus n > 3), then we can take Gy = P3, Cy for n = 3,4, respectively; for n > 5,
we take GGo as the graph obtained from a copy of K,_5 by adding two adjacent vertices
u, v and joining u to exactly one vertex in K, _» and joining v to all the other vertices in
Ky 5. Tt is easy to see that m(Gs) = (3) —n +2, 6(Gs) = 2, and u is the only vertex
of degree 2. Clearly, G5 is not 2-perfectly-connected. It follows from Theorem 2(3) that
me(G) < (3) —2n+4. O

2.2 The result for g(n, k)

We start with a useful lemma. Recall that (;) = 0.

n—t

Lemma 5. Let G be a connected graph with n vertices and m edges. If( 5
m < (")) +tln —t) + (t —2) for some t € {2,...,n— 1}, then mc(G)
Moreover, the bound is sharp.

)+tn—t) <
<m-—t+1.

Proof. Let f be a simple extremal MC-coloring of GG. Since 2 < t < n — 1, we have
m < (Z) — 1, that is, G is not a complete graph. So there is at least one nontrivial color
tree. Suppose that T1,...,T; are all the nontrivial color trees in f. Let t; = |V(T;)] for
1 <i</{ AsT, has t; — 1 edges, it wastes t; — 2 colors. To prove mc(G) < m —1t+ 1,
it suffices to show that f wastes at least t — 1 colors, that is, SIt_, (t; —2) >t — 1. Since
each T; can monochromatically connect at most ( ) pairs of nonadjacent vertices in G,

(22 ()

Assume by contradiction that Zle (t; — 2) < t—1, namely, Zle (t; —1) <t—1+/(. As
T; is nontrivial, we have t; —1 > 2. Thus 1 < ¢ <t — 2. Since (92”) + (g) < (“;1) + (y;rl)
for z <y + 1, the expression Zle (tl 1) subject to t; — 1 > 2, is maximized when ¢ — 1

we have

of the t.s are equal to 3, and one of the ts, say t,, is as large as it can be, namely, ¢, — 1
is the largest integer smaller than (t —1+¢) —2(/—1)=t—/¢+ 1. Hence t,— 1 =t — (.

So
é(t;) §(€—1)+(t;£)

+@B-20)0+ 1t —t—2]

) (take £ = 1)

L)

A\

[\
/‘\/‘\N’ =
~
)

[\)



Here we use the fact that the function g(¢) = 1 [(* 4 (3 — 2t)( + ¢ — t — 2] is decreasing
when 1 < ¢ <t — 2, and so is maximized at the point £ = 1. For a contradiction, we just
need to show that (tgl) +1< (g) — m. In fact,

(t_l) +1+4m< (t_l) +1+ (n_t) Ftn—t)+ (t—2)
2 2 2

_(n

()

Next we will show that the bound is sharp. Let G* be the graph defined as follows:
first take a complete (n —t+ 1)-partite graph with vertex classes Vi, ..., V,,_;11 such that
|V;| =1for 1 <j<n-—tand |V,_441| =t; then add the (at most ¢t — 2) remaining edges
to V,,_sy1 randomly. Color all the edges between V; and V,,_;,; with one color, and every

other edge with a distinct fresh color. It is easily checked that this is an M C-coloring of
G* using m—t-+1 colors, which implies me(G*) > m—t+1. Hence me(G*) = m—t+1. O

With the aid of Lemma 5, we give the proof Theorem 4.

Proof of Theorem 4. If k = (72‘), then clearly g(n, k) = (g)

IF (") +tn—t—=1)+1<k< (")) +tn—1t)—1forsomet € {2,...,n— 1}, it
follows from Lemma 5 that if a connected graph G on n vertices satisfies m(G) < k+1t —
1(< (")) +t(n—1t) +t —2), then me(G) < m(G)—t+1 < k. Hence, g(n, k) > k+t—1.
To prove g(n, k) < k +t — 1, it suffices to find a connected graph G on n vertices such
that m(G) = k +t and mc(G) > k. We can take the graph G* described in Lemma 5
with m(G*) = k 4+ t. By Lemma 5, we have mc(G*) = m(G*) —t+1 =k+ 1 > k for
(") +t(n—t—=1)+1 < k < (") +t(n—t)—2, and mc(G*) = m(G*)—(t—1)+1 = k+2 > k
for k= ("}") +t(n —t) — 1. So g(n,k) < k+t—1, and thus g(n,k) =k + ¢ — 1.

If k= (";") + t(n—t) for some t € {2,...,n — 1}, it follows from Lemma 5 that if a
connected graph G on n vertices satisfies m(G) < k+t —2 (= ("}") +t(n —t) +t —2),
then mc(G) < m(G) —t+1 < k—1 < k. Hence, g(n,k) > k+t—2. To prove
g(n,k) < k+t — 2, it suffices to find a connected graph G on n vertices such that
m(G) = k+t—1and me(G) > k. We can take the graph G* described in Lemma 5 with
m(G*) = k+t—1. By Lemma 5, we have me¢(G*) = m(G*) —(t—1)+1=k+1> k.
So g(n, k) < k+t—2, and thus g(n, k) =k+t—2. O
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