Erdős-Gallai-type results for colorful monochromatic connectivity of a graph*

Qingqiong Cai, Xueliang Li, Di Wu
Center for Combinatorics and LPMC-TJKLC
Nankai University, Tianjin 300071, China
cqqnjnu620@163.com; lxl@nankai.edu.cn; wudiol@mail.nankai.edu.cn

Abstract

A path in an edge-colored graph is called a monochromatic path if all the edges on the path are with the same color. An edge-coloring of G is a monochromatic connection coloring (MC-coloring, for short) if there is a monochromatic path joining any two vertices in G. The monochromatic connection number, denoted by $m c(G)$, is defined to be the maximum number of colors used in an MC-coloring of a graph G. These concepts were introduced by Caro and Yuster, and they got some nice results. In this paper, we study two kinds of Erdős-Gallai-type problems for $m c(G)$, and completely solve them.

Keywords: monochromatic path, MC-coloring, monochromatic connection number, Erdős-Gallai-type problem.

AMS subject classification 2010: 05C15, 05C35, 05C38, 05C40.

1 Introduction

All graphs considered in this paper are simple, finite and undirected. We follow the terminology and notation of Bondy and Murty [1]. For a graph G, we use $V(G), E(G)$, $n(G), m(G), \Delta(G), \delta(G), \operatorname{diam}(G)$ and \bar{G} to denote the vertex set, the edge set, the number of vertices, the number of edges, the maximum degree, the minimum degree, the diameter and the complement of G, respectively. For $D \subseteq V(G)$, let $|D|$ be the number of vertices in D, and $G[D]$ be the subgraph of G induced by D.

Let G be a nontrivial connected graph with an edge-coloring $f: E(G) \rightarrow\{1,2, \ldots, \ell\}$, $\ell \in \mathbb{N}$, where adjacent edges may be colored the same. A path of G is a monochromatic

[^0]path if all the edges on the path are with the same colore. An edge-coloring of G is a monochromatic connection coloring (MC-coloring, for short) if there is a monochromatic path joining any two vertices in G. How colorful can an MC-coloring be? This question is the natural opposite of the recently well-studied problem on rainbow connection number $[2,4,6,9,10]$ for which we seek to find an edge-coloring with minimum number of colors so that there is a rainbow path joining any two vertices.

The monochromatic connection number of G, denoted by $m c(G)$, is defined to be the maximum number of colors used in an MC-coloring of a graph G. An MC-coloring of G is called extremal if it uses $m c(G)$ colors.

Observation 1 ([3]). In an extremal MC-coloring f of G, the subgraph of G induced by edges with one same color forms a tree.

For a color i, the color tree T_{i} is the tree consisting of all the edges of G with color i. T_{i} is nontrivial if T_{i} has at least two edges; otherwise, T_{i} is trivial. A nontrivial color tree with t edges is said to waste $t-1$ colors. An extremal MC-coloring is called simple if any two nontrivial color trees T_{i} and T_{j} intersect in at most one vertex.

Observation 2 ([3]). Every connected graph G has a simple extremal MC-coloring.
These concepts were introduced by Caro and Yuster in [3]. A general lower bound for $m c(G)$ is $m(G)-n(G)+2$. Simply color the edges of a spanning tree with one color, and each of the remaining edges with a distinct fresh (namely, unused) color. Caro and Yuster gave some sufficient conditions for graphs attaining this lower bound.

Theorem 1 ([3]). Let G be a connected graph with $n>3$ vertices and m edges. If G satisfies any of the following properties, then $m c(G)=m-n+2$.
(a) \bar{G} is 4-connected.
(b) G is triangle-free.
(c) $\Delta(G)<n-\frac{2 m-3(n-1)}{n-3}$. In particular, this holds if $\Delta(G) \leq(n+1) / 2$ or $\Delta(G) \leq$ $n-2 m / n$.
(d) $\operatorname{Diam}(G) \geq 3$.
(e) G has a cut vertex.

Moreover, the authors proved some nontrivial upper bounds for $m c(G)$ in terms of the chromatic number, the connectivity and the minimum degree. Recall that a graph is called s-perfectly-connected if it can be partitioned into $s+1$ parts $\{v\}, V_{1}, \ldots, V_{s}$, such that each V_{j} induces a connected subgraph, any pair V_{j}, V_{r} induces a corresponding complete bipartite graph, and v has precisely one neighbor in each V_{j}. Notice that such a graph has minimum degree s, and v has degree s.

Theorem 2 ([3]). (1) Any connected graph G satisfies $m c(G) \leq m-n+\chi(G)$.
(2) If G is not k-connected, then $m c(G) \leq m-n+k$. This is sharp for any k.
(3) If $\delta(G)=s$, then $m c(G) \leq m-n+s$, unless G is s-perfectly-connected, in which case $m c(G)=m-n+s+1$.

Among many interesting problems in extremal graph theory is the Erdős-Gallai-type problem to determine the maximum or minimum value of a graph parameter with some given properties. In $[5,8]$, the authors considered the following Erdős-Gallai-type question for rainbow connection number $\operatorname{rc}(G)$: given two integers k, n with $1 \leq k \leq n-1$, compute and minimize the function $h(n, k)$ with the property: if a connected graph G on n vertices has at least $h(n, k)$ edges, then $r c(G) \leq k$. Moreover, the authors in [7, 11, 12] investigated another Erdős-Gallai-type question for rainbow connection number $r c(G)$: given two integers k, n with $1 \leq k \leq n-1$, compute the minimum number $t(n, k)$ of edges in a connected graph G on n vertices such that $r c(G) \leq k$. Motivated by these, we study two kinds of Erdős-Gallai-type problems for $m c(G)$ in this paper.
Problem A. Given two positive integers n and k with $1 \leq k \leq\binom{ n}{2}$, compute the minimum integer $f(n, k)$ such that if a connected graph G on n vertices has at least $f(n, k)$ edges, then $m c(G) \geq k$.
Problem B. Given two positive integers n and k with $1 \leq k \leq\binom{ n}{2}$, compute the maximum integer $g(n, k)$ such that if a connected graph G on n vertices has at most $g(n, k)$ edges, then $m c(G) \leq k$.

It is worth mentioning that the two parameters $f(n, k)$ and $g(n, k)$ are equivalent to another two parameters. Let $t(n, k)=\min \{|E(G)|:|V(G)|=n, m c(G) \geq k\}$ and $s(n, k)=\max \{|E(G)|:|V(G)|=n, m c(G) \leq k\}$. It is easy to see that $t(n, k)=$ $g(n, k-1)+1$ and $s(n, k)=f(n, k+1)-1$. This paper is devoted to determining the exact values of $f(n, k)$ and $g(n, k)$ for all integers n, k with $1 \leq k \leq\binom{ n}{2}$.

Theorem 3. Given two positive integers n and k with $1 \leq k \leq\binom{ n}{2}$,

$$
f(n, k)= \begin{cases}n+k-2 & \text { if } 1 \leq k \leq\binom{ n}{2}-2 n+4 \tag{1}\\ \binom{n}{2}+\left\lceil\frac{k-\binom{n}{2}}{}\right\rceil & \text { if }\binom{n}{2}-2 n+5 \leq k \leq\binom{ n}{2}\end{cases}
$$

Theorem 4. Given two positive integers n and k with $1 \leq k \leq\binom{ n}{2}$,

$$
g(n, k)= \begin{cases}\binom{n}{2} & \text { if } k=\binom{n}{2} \tag{3}\\ k+t-1 & \text { if }\binom{n-t}{2}+t(n-t-1)+1 \leq k \leq\binom{ n-t}{2}+t(n-t)-1 \\ k+t-2 & \text { if } k=\binom{n-t}{2}+t(n-t)\end{cases}
$$

for $2 \leq t \leq n-1$.

2 Main results

2.1 The result for $f(n, k)$

We first give some useful lemmas.
Lemma 1. Let H be a connected graph on n vertices, and G be a connected spanning subgraph of H. If $m c(H)=m(H)-n+2$, then $m c(G)=m(G)-n+2$.

Proof. It suffices to prove that $m c(G) \leq m(G)-n+2$. At first, color the edges of G with $m c(G)$ colors such that there is a monochromatic path joining any two vertices. Then, give each edge in $E(H)-E(G)$ a different fresh color. Hereto we get an MC-coloring of H using $m c(G)+m(H)-m(G)$ colors, which implies that $m c(G)+m(H)-m(G) \leq m c(H)$. Therefore, $m c(G) \leq m c(H)-m(H)+m(G)=(m(H)-n+2)-m(H)+m(G)=$ $m(G)-n+2$.

Lemma 2. Let n and p be two integers with $0 \leq p \leq\binom{ n-1}{2}$. Then every connected graph G with n vertices and $m=\binom{n}{2}-p$ edges satisfies $m c(G) \geq\binom{ n}{2}-2 p$.

Proof. Proving that $m c(G) \geq\binom{ n}{2}-2 p$ amounts to finding an MC-coloring of G which wastes at most p colors. We distinguish the following two cases.

Case 1. $n-2 \leq p \leq\binom{ n-1}{2}$.
By the general lower bound, we have $m c(G) \geq m-n+2 \geq m-p=\binom{n}{2}-2 p$.
Case 2. $0 \leq p \leq n-3$.
Let \widetilde{G} be the graph obtained from \bar{G} by deleting all the isolated vertices. If $n(\widetilde{G}) \leq$ $p+1(\leq n-2)$, then we can find at least two vertices v_{1}, v_{2} of degree $n-1$ in G. Take a star S with $E(S)=\left\{v_{1} v: v \in V(\widetilde{G})\right\}$. We give all the edges in S one color, and every other edge in G a different fresh color. Obviously, it is an MC-coloring of G, which wastes at most p colors. If $n(\widetilde{G}) \geq p+2$, say $n(\widetilde{G})=p+t(t \geq 2)$, then \widetilde{G} has at least t components, since $m(\widetilde{G})=p$. First assume that \widetilde{G} has exactly two components C_{1} and C_{2}. Then we get that $t=2, n\left(C_{j}\right) \geq 2$, and all the missing edges of G lie in C_{j} for $j \in\{1,2\}$. Take a double star S^{\prime} in G as follows: one vertex from C_{1} is adjacent to all the vertices in C_{2}, and one vertex from C_{2} is adjacent to all the vertices in C_{1}. Give all the edges in $S^{\prime \prime}$ one color, and every other edge in G a different fresh color. Clearly, this is an MC-coloring of G, which wastes p colors, since S^{\prime} has exactly $p+1$ edges. Now assume that \widetilde{G} has $\ell \geq 3$ components $C_{1}, C_{2}, \ldots, C_{\ell}$. Then we get that $\ell \geq t, n\left(C_{j}\right) \geq 2$, and all the missing edges of G lie in C_{j}. For each $j \in\{1,2, \ldots, \ell\}$, select a vertex v_{j} from C_{j}, and give the star in G induced by the edges $E_{j}=\left\{v_{j} u: u \in V\left(C_{j+1}\right)\right\}$ one fresh color (cyclically, $\ell+1=1$). Each other edge in G receives a different fresh color. Obviously, it is an MC-coloring of G, and the number of wasted colors is $\sum_{j=1}^{\ell}\left(n\left(C_{j}\right)-1\right)=p+t-\ell \leq p$.

As an immediate consequence, we obtain the following corollary. Note that the condition $p<\binom{n}{2} / 2$ is presented here to ensure that $\binom{n}{2}-2 p>0$.

Corollary 1. Let n and p be two integers with $0 \leq p<\binom{n}{2} / 2$. Then $f\left(n,\binom{n}{2}-2 p\right) \leq$ $\binom{n}{2}-p$.

Lemma 3 ([3]). If G is a complete t-partite graph with n vertices and m edges, then $m c(G)=m-n+t$.

Given two positive integers n and t with $3 \leq t \leq n$, let G_{n}^{t} be the graph defined as follows: partition the vertex set of the complete graph K_{n} into t vertex classes $V_{1}, V_{2}, \ldots, V_{t}$, where $\| V_{j}\left|-\left|V_{r}\right|\right| \leq 1$ for $1 \leq j \neq r \leq t$; for each $j \in\{1, \ldots t\}$, select a vertex v_{j}^{*} from V_{j}, and delete all the edges joining v_{j}^{*} to other vertices in V_{j}. The remaining edges in $V_{j}(1 \leq j \leq t)$ are called internal edges. Clearly, G_{n}^{t} contains a spanning subgraph isomorphic to a complete t-partite graph. It follows from Lemma 3 that $m c\left(G_{n}^{t}\right) \geq m\left(G_{n}^{t}\right)-n+t=\left(\binom{n}{2}-n+t\right)-n+t=\binom{n}{2}-2 n+2 t$. Next we will show that $\operatorname{mc}\left(G_{n}^{t}\right)=\binom{n}{2}-2 n+2 t$. The proof is similar to that of Lemma 3. We begin with an easy observation.

Observation 3. Let f be an extremal MC-coloring of a connected graph G. Then every nontrivial color tree in f contains at least one pair of nonadjacent vertices.

Proof. Suppose by contradiction that T_{i} is a nontrivial color tree, in which all the pairs of vertices are adjacent in G. Then we can adjust the coloring of T_{i}. Color one edge of T_{i} with color i, and each other edge of T_{i} with a different fresh color. Obviously, the new coloring is still an MC-coloring, but uses more colors than f, a contradiction.

Lemma 4. Let n and t be two integers with $3 \leq t \leq n$. Then $m c\left(G_{n}^{t}\right)=\binom{n}{2}-2 n+2 t$.
Proof. From the arguments above, it suffices to prove that $m c\left(G_{n}^{t}\right) \leq\binom{ n}{2}-2 n+2 t$. To see that, we need the following three claims.
Claim 1. In any simple extremal MC-coloring f of G_{n}^{t}, each nontrivial color tree intersects exactly two vertex classes.

Proof of Claim 1. Suppose that a nontrivial color tree T_{i} intersects $s \geq 3$ vertex classes, say $V_{1}, V_{2}, \ldots, V_{s}$. Let $P_{j}=V\left(T_{i}\right) \cap V_{j}$ and $\left|P_{j}\right|=p_{j}$ for $1 \leq j \leq s$. Denote by x the number of internal edges in $G_{n}^{t}\left[\bigcup_{j=1}^{s} P_{j}\right]$. Then $G_{n}^{t}\left[\bigcup_{j=1}^{s} P_{j}\right]$ has $\sum_{1 \leq j<r \leq s} p_{j} p_{r}+x$ edges in total. Observe that T_{i} has $\sum_{j=1}^{s} p_{j}-1$ edges, and since the coloring f is simple, each other edge in $G_{n}^{t}\left[\bigcup_{j=1}^{s} P_{j}\right]$ forms a trivial color tree. Thus we get that $G_{n}^{t}\left[\bigcup_{j=1}^{s} P_{j}\right]$ is colored using $\sum_{1 \leq j<r \leq s} p_{j} p_{r}-\sum_{j=1}^{s} p_{j}+x+2$ colors. Now we adjust the coloring of $G_{n}^{t}\left[\bigcup_{j=1}^{s} P_{j}\right]$. For each $j \in\{1,2, \ldots, s\}$, select one vertex $u_{j} \in P_{j}$, and color the star induced by the edges $E_{j}=\left\{u_{j} u: u \in P_{j+1}\right\}$ with one fresh color (cyclically, $s+1=1$). Each other edge in $G_{n}^{t}\left[\bigcup_{j=1}^{s} P_{j}\right]$ receives a different fresh color. Obviously, the new coloring is still
an MC-coloring, but now it uses $\sum_{1 \leq j<r \leq s} p_{j} p_{r}-\sum_{j=1}^{s} p_{j}+x+s$ colors, contradicting the fact that f is extremal. Now suppose that a nontrivial color tree T_{i} intersects only one vertex class, say V_{1}. Since v_{1}^{*} is an isolated vertex in $G_{n}^{t}\left[V_{1}\right]$, we get that $v_{1}^{*} \notin V\left(T_{i}\right)$. Then T_{i} contains no pairs of nonadjacent vertices, a contradiction. Thus each nontrivial color tree intersects exactly two vertex classes.
Claim 2. There exists a simple extremal MC-coloring of G_{n}^{t} such that each nontrivial color tree is a star or a double star, which does not contain any internal edges.

Proof of Claim 2. Suppose that f is a simple extremal MC-coloring of G_{n}^{t}, and T_{i} is a nontrivial color tree in f. Let P_{j}, p_{j} and x be the same as in Claim 1. By Claim 1, we may assume that T_{i} intersects V_{1} and V_{2} with $1 \leq p_{1} \leq p_{2}$. Since f is simple, any edge in $G_{n}^{t}\left[P_{1} \bigcup P_{2}\right]$ but not in T_{i} must be a trivial color tree. Thus $G_{n}^{t}\left[P_{1} \bigcup P_{2}\right]$ is colored using $p_{1} p_{2}-p_{1}-p_{2}+x+2$ colors. We distinguish the following two cases (the case $p_{1}=p_{2}=1$ is excluded, since then T_{i} is a trivial color tree, a contradiction).

Case 1. $p_{1}=1$ and $p_{2} \geq 2$
If T_{i} is the star joining the only vertex in P_{1} to all the vertices in P_{2}, then we are done. Otherwise, we adjust the coloring as follows: color the star with color i, and each other edge in $G_{n}^{t}\left[P_{1} \bigcup P_{2}\right]$ with a different fresh color. Clearly, the new coloring is still a simple extremal MC-coloring. Moreover, now the nontrivial color tree in $G_{n}^{t}\left[P_{1} \bigcup P_{2}\right]$ is a star containing no internal edges.

Case 2. $2 \leq p_{1} \leq p_{2}$.
If T_{i} is a double star joining a certain vertex $u_{i} \in P_{1}$ to all the vertices in P_{2}, and joining a certain vertex $v_{i} \in P_{2}$ to all the vertices in P_{1}, then we are done. Otherwise, we adjust the coloring as follows: select one double star as stated above, and color it with color i, and each other edge in $G_{n}^{t}\left[P_{1} \bigcup P_{2}\right]$ with a different fresh color. Clearly, the new coloring is still a simple extremal MC-coloring. Moreover, now the nontrivial color tree in $G_{n}^{t}\left[P_{1} \bigcup P_{2}\right]$ is a double star containing no internal edges.

Figure 1: The illustration of Claim 2.

Now we may assume that every nontrivial color tree T_{i} in f is a star or a double star containing no internal edges. In fact, the stars can be viewed as degenerated double stars, by letting an arbitrary leaf perform the role of the other center of a double star. So we assume that all nontrivial color trees in f are double stars (some are possibly degenerated).

For a nontrivial color tree T_{i}, let u_{i} and v_{i} denote the two centers. Orient all the edges of T_{i} incident with u_{i} other than $u_{i} v_{i}$ (if there are any) as going from u_{i} toward the leaves. Similarly, orient all the edges of T_{i} incident with v_{i} other than $u_{i} v_{i}$ (if there are any) as going from v_{i} toward the leaves. Keep $u_{i} v_{i}$ as unoriented. Since T_{i} contains no internal edges, all the oriented edges incident with u_{i} (if there are any) are oriented from u_{i} to the same vertex class (the vertex class of v_{i}), and all the oriented edges incident with v_{i} (if there are any) are oriented from v_{i} to the same vertex class (the vertex class of u_{i}). It is easily seen that the number of wasted colors of T_{i} is equal to the number of oriented edges in T_{i}.
Claim 3. For each $j \in\{1, \ldots, t\}$, the number of oriented edges entering V_{j} is at least $\left|V_{j}\right|-1$.

Proof of Claim 3. Assume that there are double stars $T_{1}, T_{2}, \ldots, T_{\ell}$ (some are possibly degenerated) to monochromatically connect $\left|V_{j}\right|-1$ pairs of nonadjacent vertices in V_{j}. Let $e_{i}(1 \leq i \leq \ell)$ denote the number of oriented edges entering V_{j} in T_{i}. Since T_{i} is used to monochromatically connect pairs of nonadjacent vertices in V_{j}, and all the pairs of nonadjacent vertices in V_{j} contain v_{j}^{*}, we get that v_{j}^{*} appears in each $T_{i}(1 \leq i \leq \ell)$. So $T_{i}(2 \leq i \leq \ell)$ covers at most e_{i} vertices in V_{j} but not in $\bigcup_{q=1}^{i-1} T_{q}$. Thus we have $\left(e_{1}+1\right)+\sum_{i=2}^{\ell} e_{i} \geq\left|V_{j}\right|$, that is, $\sum_{i=1}^{\ell} e_{i} \geq\left|V_{j}\right|-1$.

Note that the total number of wasted colors in f is equal to the number of oriented edges in G_{n}^{t}. It follows from Claim 3 that this number is at least $\sum_{j=1}^{t}\left(\left|V_{j}\right|-1\right)=n-t$. Thus $m c\left(G_{n}^{t}\right) \leq m\left(G_{n}^{t}\right)-(n-t)=\binom{n}{2}-2 n+2 t$. We complete the proof of Lemma 4.

We are now ready to prove Theorem 3.
Proof of Theorem 3. Clearly, $f(n, 1)=n-1$, so the assertion holds for $k=1$. For $2 \leq k \leq\binom{ n}{2}-2 n+4$, it follows from the general lower bound that if a connected graph G on n vertices satisfies $m(G) \geq n+k-2$, then $m c(G) \geq k$, implying $f(n, k) \leq n+k-2$. To prove $f(n, k) \geq n+k-2$, it suffices to find a connected graph G_{k} on n vertices such that $m\left(G_{k}\right)=n+k-3$ and $m c\left(G_{k}\right) \leq k-1$. Now we construct a graph H as follows: first take a copy of K_{n-2}, then add two vertices u, v, and join u to some vertices in K_{n-2}, and join v to all the other vertices in K_{n-2}. Obviously, $m(H)=\binom{n}{2}-n+1$ and $\operatorname{diam}(H)=3$. By Theorem 1(d), we have $m c(H)=m(H)-n+2=\binom{n}{2}-2 n+3$. So H is just the graph G_{k} we want for $k=\binom{n}{2}-2 n+4$. For $2 \leq k \leq\binom{ n}{2}-2 n+3$, we take G_{k} as a connected spanning subgraph of H with $m\left(G_{k}\right)=n+k-3$ edges. It follows from Lemma 1 that $m c\left(G_{k}\right)=m\left(G_{k}\right)-n+2=k-1$. This completes the proof of (1).

Proving (2) amounts to showing that if $k=\binom{n}{2}-2 n+2 t+1$ or $k=\binom{n}{2}-2 n+2 t+2$ $(2 \leq t \leq n-1)$, then $f(n, k)=\binom{n}{2}-n+t+1$. Let $k_{1}=\binom{n}{2}-2 n+2 t+1$, and $k_{2}=\binom{n}{2}-2 n+2 t+2$. It follows from Corollary 1 that $f\left(n, k_{2}\right) \leq\binom{ n}{2}-n+t+1$. Since $f\left(n, k_{1}\right) \leq f\left(n, k_{2}\right)$, if we prove $f\left(n, k_{1}\right) \geq\binom{ n}{2}-n+t+1$, then $f\left(n, k_{1}\right)=f\left(n, k_{2}\right)=$ $\binom{n}{2}-n+t+1$, and we are done. So it remains to prove $f\left(n, k_{1}\right) \geq\binom{ n}{2}-n+t+1$,
that is to find a connected graph G_{t} on n vertices such that $m\left(G_{t}\right)=\binom{n}{2}-n+t$ and $m c\left(G_{t}\right) \leq k_{1}-1=\binom{n}{2}-2 n+2 t$. If $3 \leq t \leq n-1$, then by Lemma 4 we can take $G_{t}=G_{n}^{t}$. If $t=2$ (thus $n \geq 3$), then we can take $G_{2}=P_{3}, C_{4}$ for $n=3,4$, respectively; for $n \geq 5$, we take G_{2} as the graph obtained from a copy of K_{n-2} by adding two adjacent vertices u, v and joining u to exactly one vertex in K_{n-2} and joining v to all the other vertices in K_{n-2}. It is easy to see that $m\left(G_{2}\right)=\binom{n}{2}-n+2, \delta\left(G_{2}\right)=2$, and u is the only vertex of degree 2. Clearly, G_{2} is not 2-perfectly-connected. It follows from Theorem 2(3) that $m c(G) \leq\binom{ n}{2}-2 n+4$.

2.2 The result for $g(n, k)$

We start with a useful lemma. Recall that $\binom{1}{2}=0$.
Lemma 5. Let G be a connected graph with n vertices and m edges. If $\binom{n-t}{2}+t(n-t) \leq$ $m \leq\binom{ n-t}{2}+t(n-t)+(t-2)$ for some $t \in\{2, \ldots, n-1\}$, then $m c(G) \leq m-t+1$. Moreover, the bound is sharp.

Proof. Let f be a simple extremal MC-coloring of G. Since $2 \leq t \leq n-1$, we have $m \leq\binom{ n}{2}-1$, that is, G is not a complete graph. So there is at least one nontrivial color tree. Suppose that T_{1}, \ldots, T_{ℓ} are all the nontrivial color trees in f. Let $t_{i}=\left|V\left(T_{i}\right)\right|$ for $1 \leq i \leq \ell$. As T_{i} has $t_{i}-1$ edges, it wastes $t_{i}-2$ colors. To prove $m c(G) \leq m-t+1$, it suffices to show that f wastes at least $t-1$ colors, that is, $\sum_{i=1}^{\ell}\left(t_{i}-2\right) \geq t-1$. Since each T_{i} can monochromatically connect at most $\binom{t_{i}-1}{2}$ pairs of nonadjacent vertices in G, we have

$$
\sum_{i=1}^{\ell}\binom{t_{i}-1}{2} \geq\binom{ n}{2}-m
$$

Assume by contradiction that $\sum_{i=1}^{\ell}\left(t_{i}-2\right)<t-1$, namely, $\sum_{i=1}^{\ell}\left(t_{i}-1\right)<t-1+\ell$. As T_{i} is nontrivial, we have $t_{i}-1 \geq 2$. Thus $1 \leq \ell \leq t-2$. Since $\binom{x}{2}+\binom{y}{2} \leq\binom{ x-1}{2}+\binom{y+1}{2}$ for $x \leq y+1$, the expression $\sum_{i=1}^{\ell}\binom{t_{i}-1}{2}$, subject to $t_{i}-1 \geq 2$, is maximized when $\ell-1$ of the $t_{i}^{\prime} s$ are equal to 3 , and one of the $t_{i}^{\prime} s$, say t_{ℓ}, is as large as it can be, namely, $t_{\ell}-1$ is the largest integer smaller than $(t-1+\ell)-2(\ell-1)=t-\ell+1$. Hence $t_{\ell}-1=t-\ell$. So

$$
\begin{aligned}
\sum_{i=1}^{\ell}\binom{t_{i}-1}{2} & \leq(\ell-1)+\binom{t-\ell}{2} \\
& =\frac{1}{2}\left[\ell^{2}+(3-2 t) \ell+t^{2}-t-2\right] \\
& \leq\binom{ t-1}{2} \quad(\text { take } \ell=1) \\
& <\binom{t-1}{2}+1
\end{aligned}
$$

Here we use the fact that the function $g(\ell)=\frac{1}{2}\left[\ell^{2}+(3-2 t) \ell+t^{2}-t-2\right]$ is decreasing when $1 \leq \ell \leq t-2$, and so is maximized at the point $\ell=1$. For a contradiction, we just need to show that $\binom{t-1}{2}+1 \leq\binom{ n}{2}-m$. In fact,

$$
\begin{aligned}
\binom{t-1}{2}+1+m & \leq\binom{ t-1}{2}+1+\binom{n-t}{2}+t(n-t)+(t-2) \\
& =\binom{n}{2}
\end{aligned}
$$

Next we will show that the bound is sharp. Let G^{*} be the graph defined as follows: first take a complete $(n-t+1)$-partite graph with vertex classes V_{1}, \ldots, V_{n-t+1} such that $\left|V_{j}\right|=1$ for $1 \leq j \leq n-t$ and $\left|V_{n-t+1}\right|=t$; then add the (at most $t-2$) remaining edges to V_{n-t+1} randomly. Color all the edges between V_{1} and V_{n-t+1} with one color, and every other edge with a distinct fresh color. It is easily checked that this is an $M C$-coloring of G^{*} using $m-t+1$ colors, which implies $m c\left(G^{*}\right) \geq m-t+1$. Hence $m c\left(G^{*}\right)=m-t+1$.

With the aid of Lemma 5, we give the proof Theorem 4.
Proof of Theorem 4. If $k=\binom{n}{2}$, then clearly $g(n, k)=\binom{n}{2}$.
If $\binom{n-t}{2}+t(n-t-1)+1 \leq k \leq\binom{ n-t}{2}+t(n-t)-1$ for some $t \in\{2, \ldots, n-1\}$, it follows from Lemma 5 that if a connected graph G on n vertices satisfies $m(G) \leq k+t-$ $1\left(\leq\binom{ n-t}{2}+t(n-t)+t-2\right)$, then $m c(G) \leq m(G)-t+1 \leq k$. Hence, $g(n, k) \geq k+t-1$. To prove $g(n, k) \leq k+t-1$, it suffices to find a connected graph G on n vertices such that $m(G)=k+t$ and $m c(G)>k$. We can take the graph G^{*} described in Lemma 5 with $m\left(G^{*}\right)=k+t$. By Lemma 5, we have $m c\left(G^{*}\right)=m\left(G^{*}\right)-t+1=k+1>k$ for $\binom{n-t}{2}+t(n-t-1)+1 \leq k \leq\binom{ n-t}{2}+t(n-t)-2$, and $m c\left(G^{*}\right)=m\left(G^{*}\right)-(t-1)+1=k+2>k$ for $k=\binom{n-t}{2}+t(n-t)-1$. So $g(n, k) \leq k+t-1$, and thus $g(n, k)=k+t-1$.

If $k=\binom{n-t}{2}+t(n-t)$ for some $t \in\{2, \ldots, n-1\}$, it follows from Lemma 5 that if a connected graph G on n vertices satisfies $m(G) \leq k+t-2\left(=\binom{n-t}{2}+t(n-t)+t-2\right)$, then $m c(G) \leq m(G)-t+1 \leq k-1<k$. Hence, $g(n, k) \geq k+t-2$. To prove $g(n, k) \leq k+t-2$, it suffices to find a connected graph G on n vertices such that $m(G)=k+t-1$ and $m c(G)>k$. We can take the graph G^{*} described in Lemma 5 with $m\left(G^{*}\right)=k+t-1$. By Lemma 5, we have $m c\left(G^{*}\right)=m\left(G^{*}\right)-(t-1)+1=k+1>k$. So $g(n, k) \leq k+t-2$, and thus $g(n, k)=k+t-2$.

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory, GTM 244, Springer, 2008.
[2] Y. Caro, A. Lev, Y. Roditty, Z. Tuza, R. Yuster, On rainbow connection, Electron. J. Combin. 15(1)(2008), R57.
[3] Y. Caro, R. Yuster, Colorful monochromatic connectivity, Discrete Math. 311(2011), 1786-1792.
[4] G. Chartrand, G. Johns, K. McKeon, P. Zhang, Rainbow connection in graphs, Math. Bohem. 133(2008), 85-98.
[5] A. Kemnitz, I. Schiermeyer, Graphs with rainbow connection number two, Discuss. Math. Graph Theory, 31(2011), 313C320.
[6] M. Krivelevich, R. Yuster, The rainbow connection of a graph is (at most) reciprocal to its minimum degree, J. Graph Theory 63(3)(2010), 185-191.
[7] H. Li, X. Li, Y. Sun, Y. Zhao, Note on minimally d-rainbow connected graphs, Graphs \& Combin. 30(4)(2014), 949-955.
[8] X. Li, M. Liu, I. Schiermeyer, Rainbow connection number of dense graphs, Discuss. Math. Graph Theory, 33(2013), 603C611.
[9] X. Li, Y. Shi, Y. Sun, Rainbow connections of graphs: A survey, Graphs \& Combin. 29(2013), 1-38.
[10] X. Li, Y. Sun, Rainbow Connections of Graphs, SpringerBriefs in Math., Springer, New York, 2012.
[11] A. Lo, A note on the minimum size of k-rainbow-connected graphs, Discrete Math. $331(2014), 20 \mathrm{C} 21$.
[12] I. Schiermeyer, On minimally rainbow k-connected graphs, Discrete Appl. Math. 161(2013), 702C705.

[^0]: *Supported by NSFC No.11371205, "973" program No.2013CB834204, and PCSIRT.

