Bounds on the Matching Energy of Unicyclic Odd-cycle Graphs

Lin Chen, Jinfeng Liu, Yongtang Shi*
Center for Combinatorics and LPMC-TJKLC, Nankai University, Tianjin 300071, P.R. China
chenlin1120120012@126.com , ljinfeng709@163.com , shi@nankai.edu.cn

(Received June 30, 2015)

Abstract

Let G be a simple graph with order n and $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ be the roots of its matching polynomial. The matching energy of G is defined to be the sum of the absolute values of $\mu_{i}(i=1,2, \ldots, n)$, which was proposed by Gutman and Wagner. Referring to graphs with no even cycles as odd-cycle graphs, denote by \mathcal{O}_{n} the class of odd-cycle graphs of order n, and $\mathcal{O}_{n, m}$ the class of graphs in \mathcal{O}_{n} with m edges. Especially, we call the graphs in $\mathcal{O}_{n, n}$ as unicyclic odd-cycle graphs. In this paper, we determine the graphs with the second through the fourth maximal matching energies in $\mathcal{O}_{n, n}$ when n is odd, and establish the graphs with the maximal matching energy in $\mathcal{O}_{n, n}$ when n is even. It is interesting that the extremal graphs for matching energy are of the form P_{n}^{ℓ} for some values of ℓ, which are related to the extremal graph (i.e., P_{n}^{6}) having the maximal energy among unicyclic graphs.

1 Introduction

In theoretical chemistry and biology, molecular structure descriptors are used for modeling physical-chemical, toxicologic, pharmacologic, biological and other properties of chemical compounds. These descriptors are mainly divided into three types: degree-based indices, distance-based indices and spectrum-based indices. Degreebased indices $[16,39]$ include the (general) Randić index [34,35], the (general) zeroth-

[^0]order Randić index [22,23], the Zagreb indices [20, 41], the ABC index [19], and so on. Distance-based indices [44] include the Balaban index [7], the Wiener index [11] the Wiener polarity index [38], the Harary index [42] and so on. Eigenvalues of graphs [45, 46], various of graph energies [3, 8, 9], the HOMO-LUMO index [33] belong to spectrum-based indices. Actually, there are also some topological indices defined on both degrees and distances, such as degree distance [13] and graph entropies [4, 10, 29].

In 1977, Gutman [14] proposed the concept of graph energy. The energy of a simple graph G is defined as the sum of the absolute values of its eigenvalues, namely,

$$
E(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right|
$$

where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ denote the eigenvalues of G. The theory of graph energy is well developed. The graph energy has been rather widely studied by theoretical chemists and mathematicians. For details, we refer the book on graph energy [36] and some recent references [24, 25, 37].

Throughout this paper, all graphs under our consideration are finite, connected, and simple. We first introduce some elementary notations and terminology that will be used in the sequel. With regard to other notations, the readers are referred to the book [2].

By convention, denote by P_{n}, C_{n}, and S_{n} the path, cycle, and star of order $n . \mathcal{T}_{n}$ denotes the set of trees with n vertices. The graph obtained by connecting a vertex of C_{ℓ} with a leaf of $P_{n-\ell}$ is denoted by P_{n}^{ℓ}. We refer to graphs with no even cycles as odd-cycle graphs. Let \mathcal{O}_{n} be the class of odd-cycle graphs of order n, and $\mathcal{O}_{n, m}$ be the class of graphs in \mathcal{O}_{n} with m edges. Especially, we call the graphs in $\mathcal{O}_{n, n}$ as unicyclic odd-cycle graphs. It is easy to get the following property of odd-cycle graphs [31].

Proposition 1.1. For any graph $G \in \mathcal{O}_{n, m}$, since there are no even cycles in it, any two cycles in G have at most one common vertex. So we have $n-1 \leq m \leq \frac{3}{2}(n-1)$.

Let G be a graph with n vertices and m edges. A matching in G is a set of pairwise nonadjacent edges. A matching M is called a k-matching if the size of M is k. Let $m(G, k)$ denote the number of k-matchings of G, where $m(G, 1)=m$ and $m(G, k)=0$ for $k>\left\lfloor\frac{n}{2}\right\rfloor$ or $k<0$. In addition, define $m(G, 0)=1$. Then the matching polynomial
of the graph G is defined as

$$
\alpha(G)=\alpha(G, \mu)=\sum_{k \geq 0}(-1)^{k} m(G, k) \mu^{n-2 k}
$$

In [21], Gutman and Wagner proposed the concept of matching energy. They defined the matching energy of a graph G as

$$
M E(G)=\sum_{i=1}^{n}\left|\mu_{i}\right|
$$

where $\mu_{i}(i=1,2, \ldots, n)$ are the roots of $\alpha(G, \mu)=0$. Besides, Gutman and Wagner also gave the following equivalent definition of matching energy.

Definition 1.2 ([21]). Let G be a simple graph, and let $m(G, k)$ be the number of its k-matchings, $k=0,1,2, \ldots$. The matching energy of G is

$$
\begin{equation*}
M E=M E(G)=\frac{2}{\pi} \int_{0}^{\infty} \frac{1}{x^{2}} \ln \left[\sum_{k \geq 0} m(G, k) x^{2 k}\right] d x \tag{1}
\end{equation*}
$$

Obviously, by the monotonicity of the logarithm function, formula (1) implies that the matching energy of a graph G is a monotonically increasing function of any $m(G, k)$. In particular, if G_{1} and G_{2} are two graphs for which $m\left(G_{1}, k\right) \geq m\left(G_{2}, k\right)$ holds for all $k \geq 0$, then $M E\left(G_{1}\right) \geq M E\left(G_{2}\right)$. If, in addition, $m\left(G_{1}, k\right)>m\left(G_{2}, k\right)$ for at least one k, then $\operatorname{ME}\left(G_{1}\right)>M E\left(G_{2}\right)$. Thus, we define a quasi-order \succeq as follows: If G_{1} and G_{2} are two graphs, then

$$
\begin{equation*}
G_{1} \succeq G_{2} \Longleftrightarrow m\left(G_{1}, k\right) \geq m\left(G_{2}, k\right) \text { for all } k \tag{2}
\end{equation*}
$$

If $G_{1} \succeq G_{2}$, we say that G_{1} is m-greater than G_{2} or G_{2} is m-smaller than G_{1}, which is also denoted by $G_{2} \preceq G_{1}$. If $G_{1} \succeq G_{2}$ and $G_{2} \succeq G_{1}$, the graphs G_{1} and G_{2} are said to be m-equivalent, denoted by $G_{1} \sim G_{2}$. If $G_{1} \succeq G_{2}$, but the graphs G_{1} and G_{2} are not m-equivalent (i.e., there exists some k such that $m\left(G_{1}, k\right)>m\left(G_{2}, k\right)$), then we say that G_{1} is strictly m-greater than G_{2}, and write $G_{1} \succ G_{2}$. If neither $G_{1} \succeq G_{2}$ nor $G_{2} \succeq G_{1}$, then the two graphs G_{1} and G_{2} are said to be m-incomparable and we denote this by $G_{1} \# G_{2}$.

According to Eqs.(1) and (2), $G_{1} \succeq G_{2} \Longrightarrow \operatorname{ME}\left(G_{1}\right) \geq M E\left(G_{2}\right)$ and $G_{1} \succ$ $G_{2} \Longrightarrow M E\left(G_{1}\right)>\operatorname{ME}\left(G_{2}\right)$.

In [21], Gutman and Wagner pointed out that the matching energy is a quantity of relevance for chemical applications. They arrived at the simple relation:

$$
T R E(G)=E(G)-M E(G)
$$

where $\operatorname{TRE}(G)$ is the so-called "topological resonance energy" of G. On the chemical applications of matching energy, for more details see [17].

As the research of extremal energy is an amusing work, the study on extremal matching energy is also interesting. In [21], the authors gave some elementary results on the matching energy and obtained that $M E\left(S_{n}^{+}\right) \leq M E(G) \leq M E\left(C_{n}\right)$ for any unicyclic graph G of order n, where S_{n}^{+}is the graph obtained by adding a new edge to the star S_{n}. In [28], Ji et al. characterized the graphs with the extremal matching energy among all bicyclic graphs, while Chen and Shi [6] proved the same extremal results for tricyclic graphs. In [5], Chen et al. characterized the graphs with minimal matching energy among all unicyclic and bicyclic graphs with a given diameter d. For some more extremal results on matching energy of graphs see [32, 43].

In [31], the authors studied the extremal skew energy of digraphs with no even cycles. Motivated by this, we investigate the extremal values of matching energy of unicyclic odd-cycle graphs. In this paper, we determine the graphs with the second through the fourth maximal matching energies in $\mathcal{O}_{n, n}$ when n is odd, and give the graphs with the maximal matching energy in $\mathcal{O}_{n, n}$ when n is even.

One of the most interesting things is that the extremal graphs for matching energy in this paper are P_{n}^{ℓ} for some values of ℓ, which are related to the extremal graph (i.e., P_{n}^{6}) having the maximal energy of unicyclic graphs (see [1] and [26]).

2 Preliminary

In this section, we list some previously known results that will be needed in the next two sections.

Lemma 2.1 ($[12,15])$. Let G be a simple graph. Then, for any edge $e=u v$ and $N(u)=\left\{v_{1}(=v), v_{2}, \ldots, v_{t}\right\}$, we have the following two identities:

$$
\begin{align*}
m(G, k) & =m(G-u v, k)+m(G-u-v, k-1) \tag{3}\\
m(G, k) & =m(G-u, k)+\sum_{i=1}^{t} m\left(G-u-v_{i}, k-1\right) \tag{4}
\end{align*}
$$

According to Eq. (4), we get $m\left(P_{1} \cup G, k\right)=m(G, k)$ directly, where G is an arbitrary graph and P_{1} is an isolated vertex.

Lemma 2.2 ([5]). Let G be a simple graph and H be a subgraph (resp. proper subgraph) of G. Then $G \succeq H$ (resp. $\succ H$).

Lemma 2.3 ([30]). Let n, ℓ be positive integers, $n>\ell \geq 3$. Denote by $\mathcal{U}_{\ell, n}$ the set of unicyclic graphs with n vertices and a cycle of length ℓ. Then for any graph $G \in \mathcal{U}_{\ell, n}$,

$$
M E\left(P_{n}^{\ell}\right) \geq M E(G)
$$

with equality if and only if $G \cong P_{n}^{\ell}$.
In fact, the authors in [30] proved that $P_{n}^{\ell} \succ G$ for any $G \in \mathcal{U}_{\ell, n} \backslash\left\{P_{n}^{\ell}\right\}$.
Lemma 2.4 ([14,28]). In regard to the quasi-order \succ, we have the following ordering:

$$
P_{n} \succ P_{2} \cup P_{n-2} \succ P_{4} \cup P_{n-4} \succ \cdots \succ P_{3} \cup P_{n-3} \succ P_{1} \cup P_{n-1}
$$

Lemma 2.5 ([18]). Let H_{1} and H_{2} be two graphs. If $H_{1} \succ H_{2}$, then $H_{1} \cup G \succ H_{2} \cup G$, where G is an arbitrary graph.

Lemma 2.6 ([21]). If the graph F is a forest, then its matching energy coincides with its energy.

Lemma 2.7 ($[14,21])$. If F is a forest with $n(n \geq 6)$ vertices, then $F \preceq P_{n}$, with $F \sim P_{n}$ if and only if $F \cong P_{n}$.

3 Odd n

As we know, $\mathcal{O}_{n, n}$ is the class of connected graphs with n vertices and n edges that contain an odd cycle, say C_{ℓ}, as a subgraph, where $3 \leq \ell \leq n$. It is known [21] that among all unicyclic graphs on n vertices, C_{n} has the maximal matching energy. When n is odd, $C_{n} \in \mathcal{O}_{n, n}$, hence the graph having maximal matching energy in $\mathcal{O}_{n, n}$ is exactly C_{n}. In this section, we determine the graphs with the second through the fourth maximal matching energies in $\mathcal{O}_{n, n}$ for n being odd. We begin this section with the following lemma.

Lemma 3.1. Let $n \geq 5$ be odd and t be an even integer, where $0 \leq t \leq n-5$. Then $P_{n}^{n-t} \succ P_{n}^{n-t-2}$.

Proof. When $k=0$, then clearly, $m\left(P_{n}^{n-t}, 0\right)=m\left(P_{n}^{n-t-2}, 0\right)=1$. When $1 \leq k \leq \frac{n-1}{2}$, then by Eq. (3), we have

$$
m\left(P_{n}^{n-t}, k\right)=m\left(P_{n}, k\right)+m\left(P_{t} \cup P_{n-t-2}, k-1\right)
$$

and

$$
m\left(P_{n}^{n-t-2}, k\right)=m\left(P_{n}, k\right)+m\left(P_{t+2} \cup P_{n-t-4}, k-1\right)
$$

Since n is odd, while t is even, then both t and $t+2$ are even, both $n-t-2$ and $n-t-4$ are odd. Thus by Lemma 2.4, $P_{t} \cup P_{n-t-2} \succ P_{t+2} \cup P_{n-t-4}$, which implies that $m\left(P_{t} \cup P_{n-t-2}, k-1\right) \geq m\left(P_{t+2} \cup P_{n-t-4}, k-1\right)$. Meanwhile, there exists at least one k_{0} such that $m\left(P_{t} \cup P_{n-t-2}, k_{0}\right)>m\left(P_{t+2} \cup P_{n-t-4}, k_{0}\right)$. Hence $m\left(P_{n}^{n-t}, k\right) \geq m\left(P_{n}^{n-t-2}, k\right)$ for all k, especially, $m\left(P_{n}^{n-t}, k_{0}+1\right)>m\left(P_{n}^{n-t-2}, k_{0}+1\right)$. Accordingly, $P_{n}^{n-t} \succ P_{n}^{n-t-2}$.

Remark 1. By Lemma 3.1, we easily see that

$$
C_{n} \succ P_{n}^{n-2} \succ P_{n}^{n-4} \succ P_{n}^{n-6} \succ \ldots \succ P_{n}^{5} \succ P_{n}^{3}
$$

In fact, when n is odd, then P_{n}^{n-2}, P_{n}^{n-4} and P_{n}^{n-6} are precisely the second, the third, and the fourth maximal graphs in $\mathcal{O}_{n, n}$ with respect to matching energy. We state the following two theorems to prove this fact.

Theorem 3.2. Let $n \geq 7$ be odd. Then P_{n}^{n-2} and P_{n}^{n-4} are the graphs with the second maximal matching energy and the third maximal matching energy in $\mathcal{O}_{n, n}$, respectively.

Proof. For any graph $G \in \mathcal{O}_{n, n}$ with $G \not \not C_{n}$, suppose the girth of G is $g(G)=\ell$, where $n \geq 7$ is odd and $3 \leq \ell \leq n-2$.

Case 1. If $G \nsupseteq P_{n}^{n-2}$, then by Lemma 2.3 and Remark $1, G \preceq P_{n}^{\ell} \preceq P_{n}^{n-2}$. With $G \sim P_{n}^{\ell}$ and $P_{n}^{\ell} \sim P_{n}^{n-2}$ if and only if $G \cong P_{n}^{n-2}$, a contradiction. Thus $G \prec P_{n}^{n-2}$. In addition, we have known that $C_{n} \succ P_{n}^{n-2}$. Therefore, P_{n}^{n-2} has the second maximal matching energy in $\mathcal{O}_{n, n}$.

Case 2. If $G \not \equiv P_{n}^{n-2}$ and $G \not \equiv P_{n}^{n-4}$, then similarly, for $3 \leq \ell \leq n-4$, we have $G \preceq P_{n}^{\ell} \preceq P_{n}^{n-4}$. With $G \sim P_{n}^{\ell}$ and $P_{n}^{\ell} \sim P_{n}^{n-4}$ if and only if $G \cong P_{n}^{n-4}$, a contradiction. Hence $G \prec P_{n}^{n-4}$.

For $\ell=n-2$, since $G \nsupseteq P_{n}^{n-2}$, then obviously $G \cong H_{1}$ or H_{2} in Fig. 3.1.
By direct checking, it's easy to verify that $H_{1} \prec P_{n}^{n-4}$ as well as $H_{2} \prec P_{n}^{n-4}$. Therefore, we can always show that $G \prec P_{n}^{n-4}$. Namely, P_{n}^{n-4} has the third maximal matching energy in $\mathcal{O}_{n, n}$ since we also have $C_{n} \succ P_{n}^{n-2} \succ P_{n}^{n-4}$.

Combining Case 1 with Case 2, we complete the proof.
Now we give a supplementary notation and a lemma associated with it, which are needed in our proof.

Let G be a simple graph, e be an edge of G connecting the vertices v_{r} and v_{s}. By $G(e / j)$ we denote the graph obtained by inserting $j(j \geq 0)$ new vertices (of degree two) on the edge e. Hence if G has n vertices, then $G(e / j)$ has $n+j$ vertices; if $j=0$, then $G(e / j)=G$; if $j>0$, then the vertices v_{r} and v_{s} are not adjacent in $G(e / j)$. There is a following result on the number of k-matchings of the graph $G(e / j)$.

Lemma 3.3 ([18]). For all $j \geq 0$,

$$
m(G(e / j+2), k)=m(G(e / j+1), k)+m(G(e / j), k-1)
$$

Theorem 3.4. Let $n \geq 9$ be odd. Then P_{n}^{n-6} is the graph with the fourth maximal matching energy in $\mathcal{O}_{n, n}$ for $n \geq 11$, and $H_{6,0}$ is the graph with the fourth maximal matching energy in $\mathcal{O}_{9,9}$, where $H_{6,0}$ is shown in Fig. 3.1.

Proof. For any graph $G \in \mathcal{O}_{n, n}$ with $G \not \not C_{n}$, let the girth of G be $g(G)=\ell$, where $n \geq 9$ is odd and $3 \leq \ell \leq n-2$. Suppose that $G \nsubseteq P_{n}^{n-2}, G \nsubseteq P_{n}^{n-4}$, and $G \nsubseteq P_{n}^{n-6}$.

If $3 \leq \ell \leq n-6$, then similar to Case 1 in Theorem 3.2, we get $G \prec P_{n}^{n-6}$.
If $\ell=n-2$, i.e., $G \cong H_{1}$ or H_{2}, then by simple calculation, we also get $H_{1} \prec P_{n}^{n-6}$ and $H_{2} \prec P_{n}^{n-6}$.

If $\ell=n-4$, then $G \cong H_{i}(i=3,4, \ldots, 20)$ in Fig. 3.1.
Case 1. When $G \cong H_{3}$ and $n=9$, then

$$
\begin{aligned}
m\left(H_{3}, k\right) & =m\left(T_{1}, k\right)+m\left(P_{3} \cup P_{3}, k-1\right)+m\left(P_{3}, k-2\right) \\
m\left(P_{n}^{n-6}, k\right) & =m\left(P_{9}, k\right)+m\left(P_{3} \cup P_{3}, k-1\right)+m\left(P_{2} \cup P_{2}, k-2\right)
\end{aligned}
$$

H_{17}

H_{18}

H_{19}

P_{9}^{3}

Figure 3.1: The graphs needed in the proof of Theorem 3.2 and Theorem 3.4.
where $T_{1} \in \mathcal{T}_{9}$. Hence $m\left(H_{3}, k\right) \leq m\left(P_{n}^{n-6}, k\right)$ since $m\left(T_{1}, k\right) \leq m\left(P_{9}, k\right)$ and $m\left(P_{3}, k-2\right) \leq m\left(P_{2} \cup P_{2}, k-2\right)$. Moreover, $m\left(H_{3}, 4\right)<m\left(P_{n}^{n-6}, 4\right)$ since $m\left(P_{3}, 2\right)<$ $m\left(P_{2} \cup P_{2}, 2\right)$. Therefore, $H_{3} \prec P_{n}^{n-6}$ for $n=9$.

Case 2. When $G \cong H_{3}$ and $n \geq 11$, then

$$
\begin{aligned}
m\left(H_{3}, k\right) & =m\left(T_{2}, k\right)+m\left(P_{n-6} \cup P_{3}, k-1\right)+m\left(P_{n-6}, k-2\right) \\
m\left(P_{n}^{n-6}, k\right) & =m\left(P_{n}, k\right)+m\left(P_{n-8} \cup P_{5}, k-1\right)+m\left(P_{n-8} \cup P_{4}, k-2\right)
\end{aligned}
$$

where $T_{2} \in \mathcal{T}_{n}$. Since $n \geq 11$, then $m\left(T_{2}, k\right) \leq m\left(P_{n}, k\right), m\left(P_{n-6} \cup P_{3}, k-1\right) \leq$ $m\left(P_{n-8} \cup P_{5}, k-1\right), m\left(P_{n-6}, k-2\right) \leq m\left(P_{n-8} \cup P_{4}, k-2\right)$. Which imply that $m\left(H_{3}, k\right) \leq m\left(P_{n}^{n-6}, k\right)$. Furthermore, since $T_{2} \nexists P_{n}$, there exists some k_{0} such that
$m\left(T_{2}, k_{0}\right)<m\left(P_{n}, k_{0}\right)$. Thus $m\left(H_{3}, k_{0}\right)<m\left(P_{n}^{n-6}, k_{0}\right)$. It follows that $H_{3} \prec P_{n}^{n-6}$ for $n \geq 11$.

Case 3. If $G \cong H_{7}$, similarly, then we can show that $G \prec P_{n}^{n-6}$ for $n \geq 9$.
Case 4. If $G \cong H_{i}(i=8,9, \ldots, 20)$, then one can check that there always exists some pendent edge of G, say $x y$, such that x is in the unique cycle of G (see in the figure). Take an edge $x z$ of the unique cycle, such that $G-x z=T_{3}\left(\in \mathcal{T}_{n}\right) \prec P_{n}$ and $G-x-z \preceq P_{n-3}$. Then

$$
\begin{aligned}
m(G, k) & =m(G-x z, k)+m(G-x-z, k-1) \\
& \leq m\left(P_{n}, k\right)+m\left(P_{n-3}, k-1\right) \\
& \leq m\left(P_{n}, k\right)+m\left(P_{n-8} \cup P_{6}, k-1\right) \\
& =m\left(P_{n}^{n-6}, k\right) .
\end{aligned}
$$

In addition, since $G-x z \prec P_{n}$, there exists some k_{0} such that $m\left(G-x z, k_{0}\right)<$ $m\left(P_{n}, k_{0}\right)$. That is, $m\left(G, k_{0}\right)<m\left(P_{n}^{n-6}, k_{0}\right)$. Hence $G \prec P_{n}^{n-6}$.

Case 5. We now only need consider the cases for $G \cong H_{4}, H_{5}$ or H_{6}. For the graph H_{6}, let the two 3 -degree vertices be x and y, respectively. Suppose that the number of vertices in the unique cycle between x and y is t, where $0 \leq t \leq\left\lfloor\frac{n-6}{2}\right\rfloor$. Then it's obviously that H_{6} arrives at the maximal matching energy if and only if $t=0$ (i.e., H_{6} has larger matching energy when $t=0$ than that when $\left.1 \leq t \leq\left\lfloor\frac{n-6}{2}\right\rfloor\right)$. Hence in the sequel, whenever we mention the graph H_{6}, it implies that $t=0$. Accordingly, it's easy to check that $H_{6} \succ H_{5}$. Simultaneously, since

$$
m\left(H_{6}, k\right)=m\left(P_{n-2}^{n-4} \cup P_{2}, k\right)+m\left(P_{n-4}, k-1\right)+m\left(P_{n-5}, k-2\right)
$$

whereas

$$
m\left(H_{4}, k\right)=m\left(P_{n-2}^{n-4} \cup P_{2}, k\right)+m\left(P_{n-4}, k-1\right)+m\left(P_{n-6}, k-2\right)
$$

then $H_{6} \succ H_{4}$ as $P_{n-5} \succ P_{n-6}$. Consequently, it suffices to compare P_{n}^{n-6} with H_{6}.
By the definition of $G(e / j), P_{n}^{n-6}=P_{9}^{3}(e / n-9)$ and $H_{6}=H_{6,0}(e / n-9)$, where P_{9}^{3} and $H_{6,0}$ are depicted in Fig. 3.1. In [6], we have shown that $\alpha(G(e / j+2), x)=$ $x \alpha(G(e / j+1), x)-\alpha(G(e / j), x)$. That is, both $\alpha\left(P_{n}^{n-6}, x\right)$ and $\alpha\left(H_{6}, x\right)$ satisfy the recursive formula

$$
f(n, x)=x f(n-1, x)-f(n-2, x) .
$$

The general solution of this linear homogeneous recurrence relation is

$$
f(n, x)=C_{1}(x)\left(Y_{1}(x)\right)^{n}+C_{2}(x)\left(Y_{2}(x)\right)^{n}
$$

where $Y_{1}(x)=\frac{x+\sqrt{x^{2}-4}}{2}, Y_{2}(x)=\frac{x-\sqrt{x^{2}-4}}{2}$, with $Y_{1}(x)+Y_{2}(x)=x$ and $Y_{1}(x) Y_{2}(x)=1$. We obtain the values of $C_{i}(x)(i=1,2)$ as follows.

By simple calculations, we get:
$m\left(P_{9}^{3}, 0\right)=1, m\left(P_{9}^{3}, 1\right)=9, m\left(P_{9}^{3}, 2\right)=26, m\left(P_{9}^{3}, 3\right)=26, m\left(P_{9}^{3}, 4\right)=6, m\left(P_{9}^{3}, k\right)=$ 0 for $k \geq 5$;
$m\left(P_{10}^{4}, 0\right)=1, m\left(P_{10}^{4}, 1\right)=10, m\left(P_{10}^{4}, 2\right)=34, m\left(P_{10}^{4}, 3\right)=46, m\left(P_{10}^{4}, 4\right)=22$, $m\left(P_{10}^{4}, 5\right)=2, m\left(P_{10}^{4}, k\right)=0$ for $k \geq 6$;
$m\left(H_{6,0}, 0\right)=1, m\left(H_{6,0}, 1\right)=9, m\left(H_{6,0}, 2\right)=25, m\left(H_{6,0}, 3\right)=25, m\left(H_{6,0}, 4\right)=7$, $m\left(H_{6,0}, k\right)=0$ for $k \geq 5$;
$m\left(H_{6,0}(e / 1), 0\right)=1, m\left(H_{6,0}(e / 1), 1\right)=10, m\left(H_{6,0}(e / 1), 2\right)=33, m\left(H_{6,0}(e / 1), 3\right)=$ $43, m\left(H_{6,0}(e / 1), 4\right)=20, m\left(H_{6,0}(e / 1), 5\right)=2, m\left(H_{6,0}(e / 1), k\right)=0$ for $k \geq 6$.

Thus, the initial values are:

$$
\begin{aligned}
\alpha\left(P_{9}^{3}, x\right) & =x^{9}-9 x^{7}+26 x^{5}-26 x^{3}+6 x \\
& =C_{1}(x)\left(Y_{1}(x)\right)^{9}+C_{2}(x)\left(Y_{2}(x)\right)^{9} \\
\alpha\left(P_{10}^{4}, x\right) & =x^{10}-10 x^{8}+34 x^{6}-46 x^{4}+22 x^{2}-2 \\
& =C_{1}(x)\left(Y_{1}(x)\right)^{10}+C_{2}(x)\left(Y_{2}(x)\right)^{10} \\
\alpha\left(H_{6,0}, x\right) & =x^{9}-9 x^{7}+25 x^{5}-25 x^{3}+7 x \\
& =C_{1}^{\prime}(x)\left(Y_{1}(x)\right)^{9}+C_{2}^{\prime}(x)\left(Y_{2}(x)\right)^{9} \\
\alpha\left(H_{6,0}(e / 1), x\right) & =x^{10}-10 x^{8}+33 x^{6}-43 x^{4}+20 x^{2}-2 \\
& =C_{1}^{\prime}(x)\left(Y_{1}(x)\right)^{10}+C_{2}^{\prime}(x)\left(Y_{2}(x)\right)^{10} .
\end{aligned}
$$

By solving the above equalities, we get

$$
\begin{aligned}
C_{1}(x) & =\frac{Y_{1}(x) \alpha\left(P_{10}^{4}, x\right)-\alpha\left(P_{9}^{3}, x\right)}{\left(Y_{1}(x)\right)^{11}-\left(Y_{1}(x)\right)^{9}} \\
C_{2}(x) & =\frac{Y_{2}(x) \alpha\left(P_{10}^{4}, x\right)-\alpha\left(P_{9}^{3}, x\right)}{\left(Y_{2}(x)\right)^{11}-\left(Y_{2}(x)\right)^{9}} \\
C_{1}^{\prime}(x) & =\frac{Y_{1}(x) \alpha\left(H_{6,0}(e / 1), x\right)-\alpha\left(H_{6,0}, x\right)}{\left(Y_{1}(x)\right)^{11}-\left(Y_{1}(x)\right)^{9}}
\end{aligned}
$$

$$
C_{2}^{\prime}(x)=\frac{Y_{2}(x) \alpha\left(H_{6,0}(e / 1), x\right)-\alpha\left(H_{6,0}, x\right)}{\left(Y_{2}(x)\right)^{11}-\left(Y_{2}(x)\right)^{9}} .
$$

Namely, $\alpha\left(P_{n}^{n-6}, x\right)=C_{1}(x)\left(Y_{1}(x)\right)^{n}+C_{2}(x)\left(Y_{2}(x)\right)^{n}$ and $\alpha\left(H_{6}, x\right)=C_{1}^{\prime}(x)\left(Y_{1}(x)\right)^{n}+$ $C_{2}^{\prime}(x)\left(Y_{2}(x)\right)^{n}$.

Similar to the calculation in [6], we have

$$
\begin{aligned}
M E\left(P_{n}^{n-6}\right)-M E\left(H_{6}\right) & =\frac{2}{\pi} \int_{0}^{\infty} \ln \frac{\alpha\left(P_{n}^{n-6}, i x\right)}{\alpha\left(H_{6}, i x\right)} d x \\
& =\frac{2}{\pi} \int_{0}^{\infty} \ln \frac{C_{1}(i x)\left(Y_{1}(i x)\right)^{n}+C_{2}(i x)\left(Y_{2}(i x)\right)^{n}}{C_{1}^{\prime}(i x)\left(Y_{1}(i x)\right)^{n}+C_{2}^{\prime}(i x)\left(Y_{2}(i x)\right)^{n}} d x
\end{aligned}
$$

where $i^{2}=-1, Y_{1}(i x)=\frac{x+\sqrt{x^{2}+4}}{2} i$ and $Y_{2}(i x)=\frac{x-\sqrt{x^{2}+4}}{2} i$.
We now define $Z_{1}(x)=-i Y_{1}(x)=\frac{x+\sqrt{x^{2}+4}}{2}$ and $Z_{2}(x)=-i Y_{2}(x)=\frac{x-\sqrt{x^{2}+4}}{2}$, i.e., $Y_{1}(i x)=i Z_{1}(x)$ and $Y_{2}(i x)=i Z_{2}(x)$. In addition, we set

$$
\begin{aligned}
& f_{1}=i \alpha\left(P_{9}^{3}, i x\right)=-x^{9}-9 x^{7}-26 x^{5}-26 x^{3}-6 x \\
& f_{2}=\alpha\left(P_{10}^{4}, i x\right)=-x^{10}-10 x^{8}-34 x^{6}-46 x^{4}-22 x^{2}-2 \\
& g_{1}=i \alpha\left(H_{6,0}, i x\right)=-x^{9}-9 x^{7}-25 x^{5}-25 x^{3}-7 x \\
& g_{2}=\alpha\left(H_{6,0}(e / 1), i x\right)=-x^{10}-10 x^{8}-33 x^{6}-43 x^{4}-20 x^{2}-2 .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
C_{1}(i x) & =\frac{Z_{1}(x) f_{2}+f_{1}}{-\left(Z_{1}(x)\right)^{9}\left(\left(Z_{1}(x)\right)^{2}+1\right)} \\
C_{2}(i x) & =\frac{Z_{2}(x) f_{2}+f_{1}}{-\left(Z_{2}(x)\right)^{9}\left(\left(Z_{2}(x)\right)^{2}+1\right)} \\
C_{1}^{\prime}(i x) & =\frac{Z_{1}(x) g_{2}+g_{1}}{-\left(Z_{1}(x)\right)^{9}\left(\left(Z_{1}(x)\right)^{2}+1\right)} \\
C_{2}^{\prime}(i x) & =\frac{Z_{2}(x) g_{2}+g_{1}}{-\left(Z_{2}(x)\right)^{9}\left(\left(Z_{2}(x)\right)^{2}+1\right)} .
\end{aligned}
$$

When n is odd, since $Y_{1}(i x) \cdot Y_{2}(i x)=1, Z_{1}(x) \cdot Z_{2}(x)=-1, Z_{1}(x)+Z_{2}(x)=x$, and $Z_{1}(x)-Z_{2}(x)=\sqrt{x^{2}+4}$,

$$
\begin{aligned}
& \ln \frac{C_{1}(i x)\left(Y_{1}(i x)\right)^{n+2}+C_{2}(i x)\left(Y_{2}(i x)\right)^{n+2}}{C_{1}^{\prime}(i x)\left(Y_{1}(i x)\right)^{n+2}+C_{2}^{\prime}(i x)\left(Y_{2}(i x)\right)^{n+2}}-\ln \frac{C_{1}(i x)\left(Y_{1}(i x)\right)^{n}+C_{2}(i x)\left(Y_{2}(i x)\right)^{n}}{C_{1}^{\prime}(i x)\left(Y_{1}(i x)\right)^{n}+C_{2}^{\prime}(i x)\left(Y_{2}(i x)\right)^{n}} \\
& \quad=\ln \left(1+\frac{K_{0}(x)}{H_{0}(n, x)}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
K_{0}(x) & =\left(C_{1}(i x) C_{2}^{\prime}(i x)-C_{2}(i x) C_{1}^{\prime}(i x)\right)\left(\left(Y_{1}(i x)\right)^{2}-\left(Y_{2}(i x)\right)^{2}\right) \\
& =\left(f_{2} g_{1}-f_{1} g_{2}\right) x \\
& =x^{14}+12 x^{12}+52 x^{10}+102 x^{8}+92 x^{6}+32 x^{4}+2 x^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
H_{0}(n, x)= & \left(C_{1}(i x)\left(Y_{1}(i x)\right)^{n}+C_{2}(i x)\left(Y_{2}(i x)\right)^{n}\right) \\
& \left(C_{1}^{\prime}(i x)\left(Y_{1}(i x)\right)^{n+2}+C_{2}^{\prime}(i x)\left(Y_{2}(i x)\right)^{n+2}\right) \\
= & \alpha\left(P_{n}^{n-6}, i x\right) \cdot \alpha\left(H_{6}(e / 2), i x\right) \\
= & \left(\sum_{k \geq 0}(-1)^{k} m\left(P_{n}^{n-6}, k\right)(i x)^{n-2 k}\right) . \\
& \left(\sum_{k \geq 0}(-1)^{k} m\left(H_{6}(e / 2), k\right)(i x)^{(n+2)-2 k}\right) \\
= & \left(i^{n} \sum_{k \geq 0} m\left(P_{n}^{n-6}, k\right) x^{n-2 k}\right)\left(i^{n+2} \sum_{k \geq 0} m\left(H_{6}(e / 2), k\right) x^{(n+2)-2 k}\right) \\
= & \left(\sum_{k \geq 0} m\left(P_{n}^{n-6}, k\right) x^{n-2 k}\right)\left(\sum_{k \geq 0} m\left(H_{6}(e / 2), k\right) x^{(n+2)-2 k}\right) .
\end{aligned}
$$

Obviously, $K_{0}(x)>0$. Moreover, $H_{0}(n, x)>0$ since $x>0, m\left(P_{n}^{n-6}, k\right) \geq 0$ and $m\left(H_{6}(e / 2), k\right) \geq 0$ for all k. Hence $\frac{K_{0}(x)}{H_{0}(n, x)}>0$, which deduces that $\ln \left(1+\frac{K_{0}(x)}{H_{0}(n, x)}\right)>$ $\ln 1=0$. That is,

$$
\ln \frac{C_{1}(i x)\left(Y_{1}(i x)\right)^{n+2}+C_{2}(i x)\left(Y_{2}(i x)\right)^{n+2}}{C_{1}^{\prime}(i x)\left(Y_{1}(i x)\right)^{n+2}+C_{2}^{\prime}(i x)\left(Y_{2}(i x)\right)^{n+2}}>\ln \frac{C_{1}(i x)\left(Y_{1}(i x)\right)^{n}+C_{2}(i x)\left(Y_{2}(i x)\right)^{n}}{C_{1}^{\prime}(i x)\left(Y_{1}(i x)\right)^{n}+C_{2}^{\prime}(i x)\left(Y_{2}(i x)\right)^{n}} .
$$

Thus, when $n \geq 11$,

$$
\int_{0}^{\infty} \ln \frac{\alpha\left(P_{n}^{n-6}, i x\right)}{\alpha\left(H_{6}, i x\right)} d x \geq \int_{0}^{\infty} \ln \frac{\alpha\left(P_{11}^{5}, i x\right)}{\alpha\left(H_{6,0}(e / 2), i x\right)} d x
$$

By computer-aided calculations, we get $\operatorname{ME}\left(P_{11}^{5}\right)=13.74411$ and $M E\left(H_{6,0}(e / 2)\right)$ $=13.72523$. Then

$$
\int_{0}^{\infty} \ln \frac{\alpha\left(P_{11}^{5}, i x\right)}{\alpha\left(H_{6,0}(e / 2), i x\right)} d x=\frac{\pi}{2}\left[M E\left(P_{11}^{5}\right)-M E\left(H_{6,0}(e / 2)\right)\right]>0
$$

It follows that $\int_{0}^{\infty} \ln \frac{\alpha\left(P_{n}^{n-6}, i x\right)}{\alpha\left(H_{6}, i x\right)} d x>0$. Namely,

$$
\operatorname{ME}\left(P_{n}^{n-6}\right)-M E\left(H_{6}\right)=\frac{2}{\pi} \int_{0}^{\infty} \ln \frac{\alpha\left(P_{n}^{n-6}, i x\right)}{\alpha\left(H_{6}, i x\right)} d x>0 .
$$

Therefore, $M E\left(P_{n}^{n-6}\right)>M E\left(H_{6}\right)$ holds for odd n with $n \geq 11$. Consequently, combining with Remark 1, we prove that the graph P_{n}^{n-6} has the fourth maximal matching energy in $\mathcal{O}_{n, n}$ for odd n with $n \geq 11$.

On the other hand, when $n=9$, by computer-aided calculations, we get $\operatorname{ME}\left(P_{9}^{3}\right)$ $=11.12709, \operatorname{ME}\left(H_{6,0}\right)=11.14211$. Then $\operatorname{ME}\left(P_{9}^{3}\right)<M E\left(H_{6,0}\right)$. Hence, according to Cases 1-5 and Theorem 3.2, when $n=9$, the graph $H_{6,0}$ has the fourth maximal matching energy in $\mathcal{O}_{9,9}$.

By this, the proof of Theorem 3.4 has been completed.

4 Even n

The aim of this section is to discuss the case of even n. The section starts with a result analogous to Lemma 3.1, followed by characterizing the graphs with maximal matching energy in $\mathcal{O}_{n, n}$ when n is even. Moreover, a good property about the ordering in Remark 2 is also obtained.

Lemma 4.1. Let $n \geq 6$ be even and t be an odd integer with $1 \leq t \leq n-5$. Then $P_{n}^{n-t} \prec P_{n}^{n-t-2}$ for $1 \leq t<\frac{n-4}{2} ; P_{n}^{n-t} \sim P_{n}^{n-t-2}$ for $t=\frac{n-4}{2} ; P_{n}^{n-t} \succ P_{n}^{n-t-2}$ for $\frac{n-4}{2}<t \leq n-5$.

Proof. For $0 \leq k \leq \frac{n}{2}$, we have

$$
m\left(P_{n}^{n-t}, k\right)=m\left(P_{n}, k\right)+m\left(P_{t} \cup P_{n-t-2}, k-1\right)
$$

and

$$
m\left(P_{n}^{n-t-2}, k\right)=m\left(P_{n}, k\right)+m\left(P_{t+2} \cup P_{n-t-4}, k-1\right) .
$$

Since n is even but t is odd, then $t, t+2, n-t-2, n-t-4$ are all odd. If $t \leq n-t-2$ and $t+2 \leq n-t-4$, namely, $t \leq \frac{n-6}{2}$, then by Lemma 2.4, $P_{t} \cup P_{n-t-2} \prec P_{t+2} \cup P_{n-t-4}$. If $t \leq n-t-2, t+2>n-t-4$ and $t \leq n-t-4$, namely, $\frac{n-6}{2}<t \leq \frac{n-4}{2}$, then $P_{t} \cup P_{n-t-2} \preceq P_{t+2} \cup P_{n-t-4}$. If $t \leq n-t-2, t+2>n-t-4$ and $t>n-t-4$, namely, $\frac{n-4}{2}<t \leq \frac{n-2}{2}$, then $P_{t} \cup P_{n-t-2} \succ P_{t+2} \cup P_{n-t-4}$. If $t>n-t-2$ and $t+2>n-t-4$, namely, $t>\frac{n-2}{2}$, then $P_{t} \cup P_{n-t-2} \succ P_{t+2} \cup P_{n-t-4}$. In summary, if $1 \leq t<\frac{n-4}{2}$, then $P_{t} \cup P_{n-t-2} \prec P_{t+2} \cup P_{n-t-4}$. If $t=\frac{n-4}{2}$, then $P_{t} \cup P_{n-t-2}=P_{t+2} \cup P_{n-t-4}$. If
$\frac{n-4}{2}<t \leq n-5$, then $P_{t} \cup P_{n-t-2} \succ P_{t+2} \cup P_{n-t-4}$. This yields $P_{n}^{n-t} \prec P_{n}^{n-t-2}$ when $1 \leq t<\frac{n-4}{2}, P_{n}^{n-t} \sim P_{n}^{n-t-2}$ when $t=\frac{n-4}{2}$, and $P_{n}^{n-t} \succ P_{n}^{n-t-2}$ when $\frac{n-4}{2}<t \leq n-5$. This completes the proof.

Remark 2. According to Lemma 4.1, we know that
$P_{n}^{n-1} \prec P_{n}^{n-3} \prec P_{n}^{n-5} \prec \cdots \prec P_{n}^{\frac{n}{2}+5} \prec P_{n}^{\frac{n}{2}+3} \prec P_{n}^{\frac{n}{2}+1} \succ P_{n}^{\frac{n}{2}-1} \succ P_{n}^{\frac{n}{2}-3} \succ \cdots \succ P_{n}^{7} \succ$ $P_{n}^{5} \succ P_{n}^{3}$ for $n \equiv 0(\bmod 4)$,
and
$P_{n}^{n-1} \prec P_{n}^{n-3} \prec P_{n}^{n-5} \prec \cdots \prec P_{n}^{\frac{n}{2}+6} \prec P_{n}^{\frac{n}{2}+4} \prec P_{n}^{\frac{n}{2}+2} \sim P_{n}^{\frac{n}{2}} \succ P_{n}^{\frac{n}{2}-2} \succ P_{n}^{\frac{n}{2}-4} \succ \cdots \succ$ $P_{n}^{7} \succ P_{n}^{5} \succ P_{n}^{3}$ for $n \equiv 2(\bmod 4)$.

Bearing in mind Lemma 2.3, and making full use of the above remark, the next theorem follows immediately.

Theorem 4.2. If $n \equiv 0(\bmod 4)$, then the graph with maximal matching energy in $\mathcal{O}_{n, n}$ is $P_{n}^{\frac{n}{2}+1}$. If $n \equiv 2(\bmod 4)$, then the graphs with maximal matching energy in $\mathcal{O}_{n, n}$ are $P_{n}^{\frac{n}{2}}$ and $P_{n}^{\frac{n}{2}+2}$.

In addition, in connection with the ordering in Remark 2, we find that $P_{n}^{t} \sim$ P_{n}^{n-t+2}.

Proposition 4.3. Let n be even and t be odd with $3 \leq t \leq n-1$. Then $P_{n}^{t} \sim P_{n}^{n-t+2}$.

Proof. For all $k \geq 0$, on the basis of Eq. (3), one obtains that

$$
\begin{aligned}
m\left(P_{n}^{t}, k\right) & =m\left(P_{n}, k\right)+m\left(P_{t-2} \cup P_{n-t}, k-1\right) \\
m\left(P_{n}^{n-t+2}, k\right) & =m\left(P_{n}, k\right)+m\left(P_{t-2} \cup P_{n-t}, k-1\right) .
\end{aligned}
$$

Apparently, $m\left(P_{n}^{t}, k\right)=m\left(P_{n}^{n-t+2}, k\right)$ holds for all k, which implies $P_{n}^{t} \sim P_{n}^{n-t+2}$.
Similar to the case of n being odd, when n is even, with respect to matching energy, we can apply the same method to consider the second maximal graph, the third maximal graph, and so on.

5 Summary

In this paper, when n is odd, only the first four maximal graphs with regard to matching energy have been taken into account. Actually, we conjecture that the
graphs P_{n}^{ℓ} are the second through the $\left(\left\lfloor\frac{n}{2}\right\rfloor / 2+1\right)$-th maximal graphs when the odd integer ℓ ranges from $n-2$ to $\left\lceil\frac{n}{2}\right\rceil$. Verifying this claim will be one of our tasks in the future.

Acknowledgement. This work was supported by NSFC and PCSIRT.

References

[1] E. O. D. Andriantiana, S. Wagner, Unicyclic graphs with large energy, Lin. Algebra Appl. 435 (2011) 1399-1414.
[2] J. A. Bondy, U. S. R. Murty, Graph Theory, Springer, Berlin, 2008.
[3] Ş. B. Bozkurt, D. Bozkurt, On incidence energy, MATCH Commun. Math. Comput. Chem. 72 (2014) 215-225.
[4] S. Cao, M. Dehmer, Y. Shi, Extremality of degree-based graph entropies, Inform. Sci. 278 (2014) 22-33.
[5] L. Chen, J. Liu, Y. Shi, Matching energy of unicyclic and bicyclic graphs with a given diameter, Complexity, in press.
[6] L. Chen, Y. Shi, The maximal matching energy of tricyclic graphs, MATCH Commun. Math. Comput. Chem. 73 (2015) 105-119.
[7] Z. Chen, M. Dehmer, Y. Shi, H. Yang, Sharp upper bounds for the Balaban index of bicyclic graphs, MATCH Commun. Math. Comput. Chem., in press.
[8] K. C. Das, I. Gutman, A. S. Çevik, B. Zhou, On Laplacian energy, MATCH Commun. Math. Comput. Chem. 70 (2013) 689-696.
[9] K. C. Das, S. Sorgun, On Randić energy of graphs, MATCH Commun. Math. Comput. Chem. 72 (2014) 227-238.
[10] M. Dehmer, F. Emmert-Streib, M. Grabner, A computational approach to construct a multivariate complete graph invariant, Inform. Sci. 260 (2014) 200-208.
[11] A. A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: theory and applications, Acta Appl. Math. 66 (2001) 211-249.
[12] E. J. Farrell, An introduction to matching polynomials, J. Comb. Theory B 27 (1979) 75-86.
[13] L. Feng, W. Liu, A. Ilić, G. Yu, The degree distance of unicyclic graphs with given matching number, Graphs Comb. 29 (2013) 449-462.
[14] I. Gutman, Acylclic systems with extremal Hückel π-electron energy, Theor. Chim. Acta 45 (1977) 79-87.
[15] I. Gutman, The matching polynomial, MATCH Commun. Math. Comput. Chem. 6 (1979) 75-91.
[16] I. Gutman, Degree-based topological indices, Croat. Chem. Acta 86 (2013) 351361.
[17] I. Gutman, Topological resonance energy 40 years later, Int. J. Chem. Model. 6 (2014) 177-189.
[18] I. Gutman, D. Cvetković, Finding tricyclic graphs with a maximal number of matchings - another example of computer aided research in graph theory, Publ. Inst. Math. (Beograd) 35 (1984) 33-40.
[19] I. Gutman, B. Furtula, M. B. Ahmadi, S. A. Hosseini, P. Salehi Nowbandegani, M. Zarrinderakht, The ABC index conundrum, Filomat 27 (2013) 1075-1083.
[20] I. Gutman, B. Furtula, Ž. Kovijanić Vukićević, G. Popivoda, On Zagreb indices and coindices, MATCH Commun. Math. Comput. Chem. 74 (2015) 5-16.
[21] I. Gutman, S. Wagner, The matching energy of a graph, Discr. Appl. Math. 160 (2012) 2177-2187.
[22] Y. Hu, X. Li, Y. Shi, T. Xu, Connected (n, m)-graphs with minimum and maximum zeroth-order general Randić index, Discr. Appl. Math. 155 (2007) 10441054.
[23] Y. Hu, X. Li, Y. Shi, T. Xu, I. Gutman, On molecular graphs with smallest and greatest zeroth-order general Randić index, MATCH Commun. Math. Comput. Chem. 54 (2005) 425-434.
[24] B. Huo, S. Ji, X. Li, Y. Shi, Complete solution to a conjecture on the fourth maximal energy tree, MATCH Commun. Math. Comput. Chem. 66 (2011) 903912.
[25] B. Huo, S. Ji, X. Li, Y. Shi, Complete solution to a problem on the maximal energy of bicyclic bipartite graphs, Lin. Algebra Appl. 435 (2011) 804-810.
[26] B. Huo, X. Li, Y. Shi, Complete solution to a conjecture on the maximal energy of unicyclic graphs, Eur. J. Comb. 32 (2011) 662-673.
[27] B. Huo, X. Li, Y. Shi, Complete solution to a problem on the maximal energy of unicyclic bipartite graphs, Lin. Algebra Appl. 434 (2011) 1370-1377.
[28] S. Ji, X. Li, Y. Shi, Extremal matching energy of bicyclic graphs, MATCH Commun. Math. Comput. Chem. 70 (2013) 697-706.
[29] V. Kraus, M. Dehmer, F. Emmert-Streib, Probabilistic inequalities for evaluating structural network measures, Inform. Sci. 288 (2014) 220-245.
[30] H. Li, Y. Zhou, L. Su, Graphs with extremal matching energies and prescribed paramaters, MATCH Commun. Math. Comput. Chem. 72 (2014) 239-248.
[31] J. Li, X. Li, H. Lian, Extremal skew energy of
[32] S. Li, W. Yan, The matching energy of graphs with given parameters, Discr. Appl. Math. 162 (2014) 415-420.
[33] X. Li, Y. Li, Y. Shi, I. Gutman, Note on the HOMO-LUMO index of graphs, MATCH Commun. Math. Comput. Chem. 70 (2013) 85-96.
[34] X. Li, Y. Shi, A survey on the Randić index, MATCH Commun. Math. Comput. Chem. 59 (2008) 127-156.
[35] X. Li, Y. Shi, On a relation between the Randić index and the chromatic number, Discr. Math. 310 (2010) 2448-2451.
[36] X. Li, Y. Shi, I. Gutman, Graph Energy, Springer, New York, 2012.
[37] X. Li, Y. Shi, M. Wei, J. Li, On a conjecture about tricyclic graphs with maximal energy, MATCH Commun. Math. Comput. Chem. 72 (2014) 183-214.
[38] J. Ma, Y. Shi, J. Yue, The Wiener polarity index of graph products, Ars Comb. 116 (2014) 235-244.
[39] J. Rada, R. Cruz, I. Gutman, Benzenoid systems with extremal vertex-degreebased topological indices, MATCH Commun. Math. Comput. Chem. 72 (2014) 125-136.
[40] Z. Shao, M. Liang, C. Yin, X. Xu, P. Pavlič, J. Žerovnik, On rainbow domination numbers of graphs, Inform. Sci. 254 (2014) 225-234.
[41] K. Xu, K. C. Das, S. Balachandran, Maximizing the Zagreb indices of (n, m)graphs, MATCH Commun. Math. Comput. Chem. 72 (2014) 641-654.
[42] K. Xu, K. C. Das, N. Trinajstić, The Harary Index of a Graph, Springer, Heidelberg, 2015.
[43] K. Xu, K. C. Das, Z. Zheng, The minimal matching energy of (n, m)-graphs with a given matching number, MATCH Commun. Math. Comput. Chem. 73 (2015) 93-104.
[44] K. Xu, M. Liu, K. C. Das, I. Gutman, B. Furtula, A survey on graphs extremal with respect to distance-based topological indices, MATCH Commun. Math. Comput. Chem. 71 (2014) 461-508.
[45] G. Yu, L. Feng, Q. Wang, Bicyclic graphs with small positive index of inertia, Lin. Algebra Appl. 438 (2013) 2036-2045.
[46] G. Yu, X. Zhang, L. Feng, The inertia of weighted unicyclic graphs, Lin. Algebra Appl. 448 (2014) 130-152.

[^0]: * Corresponding author.

