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Abstract

Let G be a simple graph with order n and µ1, µ2, . . . , µn be the roots of its matching

polynomial. The matching energy of G is defined to be the sum of the absolute values of

µi (i = 1, 2, . . . , n), which was proposed by Gutman and Wagner. Referring to graphs with

no even cycles as odd-cycle graphs, denote by On the class of odd-cycle graphs of order n,

and On,m the class of graphs in On with m edges. Especially, we call the graphs in On,n as

unicyclic odd-cycle graphs. In this paper, we determine the graphs with the second through

the fourth maximal matching energies in On,n when n is odd, and establish the graphs with

the maximal matching energy in On,n when n is even. It is interesting that the extremal

graphs for matching energy are of the form P ℓ
n for some values of ℓ, which are related to

the extremal graph (i.e., P 6
n) having the maximal energy among unicyclic graphs.

1 Introduction

In theoretical chemistry and biology, molecular structure descriptors are used for

modeling physical-chemical, toxicologic, pharmacologic, biological and other proper-

ties of chemical compounds. These descriptors are mainly divided into three types:

degree–based indices, distance–based indices and spectrum–based indices. Degree–

based indices [16,39] include the (general) Randić index [34,35], the (general) zeroth–
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order Randić index [22, 23], the Zagreb indices [20, 41], the ABC index [19], and so

on. Distance–based indices [44] include the Balaban index [7], the Wiener index [11]

the Wiener polarity index [38], the Harary index [42] and so on. Eigenvalues of

graphs [45, 46], various of graph energies [3, 8, 9], the HOMO–LUMO index [33] be-

long to spectrum–based indices. Actually, there are also some topological indices

defined on both degrees and distances, such as degree distance [13] and graph en-

tropies [4, 10, 29].

In 1977, Gutman [14] proposed the concept of graph energy. The energy of a

simple graph G is defined as the sum of the absolute values of its eigenvalues, namely,

E(G) =

n
∑

i=1

|λi|

where λ1, λ2, . . . , λn denote the eigenvalues of G. The theory of graph energy is well

developed. The graph energy has been rather widely studied by theoretical chemists

and mathematicians. For details, we refer the book on graph energy [36] and some

recent references [24, 25, 37].

Throughout this paper, all graphs under our consideration are finite, connected,

and simple. We first introduce some elementary notations and terminology that will

be used in the sequel. With regard to other notations, the readers are referred to the

book [2].

By convention, denote by Pn, Cn, and Sn the path, cycle, and star of order n. Tn

denotes the set of trees with n vertices. The graph obtained by connecting a vertex

of Cℓ with a leaf of Pn−ℓ is denoted by P ℓ
n. We refer to graphs with no even cycles as

odd-cycle graphs. Let On be the class of odd-cycle graphs of order n, and On,m be the

class of graphs in On with m edges. Especially, we call the graphs in On,n as unicyclic

odd-cycle graphs. It is easy to get the following property of odd-cycle graphs [31].

Proposition 1.1. For any graph G ∈ On,m, since there are no even cycles in it, any

two cycles in G have at most one common vertex. So we have n− 1 ≤ m ≤ 3
2
(n− 1).

Let G be a graph with n vertices andm edges. A matching in G is a set of pairwise

nonadjacent edges. A matching M is called a k-matching if the size of M is k. Let

m(G, k) denote the number of k-matchings of G, where m(G, 1) = m andm(G, k) = 0

for k > ⌊n
2
⌋ or k < 0. In addition, define m(G, 0) = 1. Then the matching polynomial



of the graph G is defined as

α(G) = α(G, µ) =
∑

k≥0

(−1)k m(G, k)µn−2k .

In [21], Gutman and Wagner proposed the concept of matching energy. They

defined the matching energy of a graph G as

ME(G) =

n
∑

i=1

|µi|

where µi (i = 1, 2, . . . , n) are the roots of α(G, µ) = 0. Besides, Gutman and Wagner

also gave the following equivalent definition of matching energy.

Definition 1.2 ( [21]). Let G be a simple graph, and let m(G, k) be the number of

its k-matchings, k = 0, 1, 2, . . .. The matching energy of G is

ME = ME(G) =
2

π

∫ ∞

0

1

x2
ln

[

∑

k≥0

m(G, k)x2k

]

dx . (1)

Obviously, by the monotonicity of the logarithm function, formula (1) implies

that the matching energy of a graph G is a monotonically increasing function of any

m(G, k). In particular, if G1 and G2 are two graphs for which m(G1, k) ≥ m(G2, k)

holds for all k ≥ 0, then ME(G1) ≥ ME(G2). If, in addition, m(G1, k) > m(G2, k)

for at least one k, then ME(G1) > ME(G2). Thus, we define a quasi-order � as

follows: If G1 and G2 are two graphs, then

G1 � G2 ⇐⇒ m(G1, k) ≥ m(G2, k) for all k. (2)

If G1 � G2, we say that G1 is m-greater than G2 or G2 is m-smaller than G1, which

is also denoted by G2 � G1. If G1 � G2 and G2 � G1, the graphs G1 and G2 are

said to be m-equivalent, denoted by G1 ∼ G2. If G1 � G2, but the graphs G1 and G2

are not m-equivalent (i.e., there exists some k such that m(G1, k) > m(G2, k)), then

we say that G1 is strictly m-greater than G2, and write G1 ≻ G2. If neither G1 � G2

nor G2 � G1, then the two graphs G1 and G2 are said to be m-incomparable and we

denote this by G1#G2.

According to Eqs.(1) and (2), G1 � G2 =⇒ ME(G1) ≥ ME(G2) and G1 ≻
G2 =⇒ ME(G1) > ME(G2).

In [21], Gutman and Wagner pointed out that the matching energy is a quantity

of relevance for chemical applications. They arrived at the simple relation:

TRE(G) = E(G)−ME(G)



where TRE(G) is the so-called “topological resonance energy” of G. On the chemical

applications of matching energy, for more details see [17].

As the research of extremal energy is an amusing work, the study on extremal

matching energy is also interesting. In [21], the authors gave some elementary results

on the matching energy and obtained that ME(S+
n ) ≤ ME(G) ≤ ME(Cn) for any

unicyclic graph G of order n, where S+
n is the graph obtained by adding a new edge

to the star Sn. In [28], Ji et al. characterized the graphs with the extremal matching

energy among all bicyclic graphs, while Chen and Shi [6] proved the same extremal

results for tricyclic graphs. In [5], Chen et al. characterized the graphs with minimal

matching energy among all unicyclic and bicyclic graphs with a given diameter d. For

some more extremal results on matching energy of graphs see [32, 43].

In [31], the authors studied the extremal skew energy of digraphs with no even

cycles. Motivated by this, we investigate the extremal values of matching energy of

unicyclic odd-cycle graphs. In this paper, we determine the graphs with the second

through the fourth maximal matching energies in On,n when n is odd, and give the

graphs with the maximal matching energy in On,n when n is even.

One of the most interesting things is that the extremal graphs for matching energy

in this paper are P ℓ
n for some values of ℓ, which are related to the extremal graph

(i.e., P 6
n) having the maximal energy of unicyclic graphs (see [1] and [26]).

2 Preliminary

In this section, we list some previously known results that will be needed in the next

two sections.

Lemma 2.1 ( [12, 15]). Let G be a simple graph. Then, for any edge e = uv and

N(u) = {v1(= v), v2, . . . , vt}, we have the following two identities:

m(G, k) = m(G− uv, k) +m(G− u− v, k − 1) (3)

m(G, k) = m(G− u, k) +
t
∑

i=1

m(G− u− vi, k − 1) . (4)

According to Eq. (4), we get m(P1 ∪ G, k) = m(G, k) directly, where G is an

arbitrary graph and P1 is an isolated vertex.



Lemma 2.2 ( [5]). Let G be a simple graph and H be a subgraph (resp. proper

subgraph) of G. Then G � H (resp. ≻ H).

Lemma 2.3 ( [30]). Let n, ℓ be positive integers, n > ℓ ≥ 3. Denote by Uℓ,n the set of

unicyclic graphs with n vertices and a cycle of length ℓ. Then for any graph G ∈ Uℓ,n,

ME(P ℓ
n) ≥ ME(G)

with equality if and only if G ∼= P ℓ
n.

In fact, the authors in [30] proved that P ℓ
n ≻ G for any G ∈ Uℓ,n \ {P ℓ

n}.

Lemma 2.4 ( [14,28]). In regard to the quasi-order ≻, we have the following ordering:

Pn ≻ P2 ∪ Pn−2 ≻ P4 ∪ Pn−4 ≻ · · · ≻ P3 ∪ Pn−3 ≻ P1 ∪ Pn−1 .

Lemma 2.5 ( [18]). Let H1 and H2 be two graphs. If H1 ≻ H2, then H1∪G ≻ H2∪G,

where G is an arbitrary graph.

Lemma 2.6 ( [21]). If the graph F is a forest, then its matching energy coincides

with its energy.

Lemma 2.7 ( [14, 21]). If F is a forest with n (n ≥ 6) vertices, then F � Pn, with

F ∼ Pn if and only if F ∼= Pn .

3 Odd n

As we know, On,n is the class of connected graphs with n vertices and n edges that

contain an odd cycle, say Cℓ, as a subgraph, where 3 ≤ ℓ ≤ n. It is known [21]

that among all unicyclic graphs on n vertices, Cn has the maximal matching energy.

When n is odd, Cn ∈ On,n, hence the graph having maximal matching energy in On,n

is exactly Cn . In this section, we determine the graphs with the second through the

fourth maximal matching energies in On,n for n being odd. We begin this section

with the following lemma.

Lemma 3.1. Let n ≥ 5 be odd and t be an even integer, where 0 ≤ t ≤ n− 5. Then

P n−t
n ≻ P n−t−2

n .



Proof. When k = 0, then clearly, m(P n−t
n , 0) = m(P n−t−2

n , 0) = 1. When 1 ≤ k ≤ n−1
2
,

then by Eq. (3), we have

m(P n−t
n , k) = m(Pn, k) +m(Pt ∪ Pn−t−2, k − 1)

and

m(P n−t−2
n , k) = m(Pn, k) +m(Pt+2 ∪ Pn−t−4, k − 1) .

Since n is odd, while t is even, then both t and t + 2 are even, both n − t − 2

and n − t − 4 are odd. Thus by Lemma 2.4, Pt ∪ Pn−t−2 ≻ Pt+2 ∪ Pn−t−4, which

implies that m(Pt ∪ Pn−t−2, k − 1) ≥ m(Pt+2 ∪ Pn−t−4, k − 1). Meanwhile, there

exists at least one k0 such that m(Pt ∪ Pn−t−2, k0) > m(Pt+2 ∪ Pn−t−4, k0). Hence

m(P n−t
n , k) ≥ m(P n−t−2

n , k) for all k, especially, m(P n−t
n , k0 + 1) > m(P n−t−2

n , k0 +1).

Accordingly, P n−t
n ≻ P n−t−2

n .

Remark 1. By Lemma 3.1, we easily see that

Cn ≻ P n−2
n ≻ P n−4

n ≻ P n−6
n ≻ . . . ≻ P 5

n ≻ P 3
n .

In fact, when n is odd, then P n−2
n , P n−4

n and P n−6
n are precisely the second, the third,

and the fourth maximal graphs in On,n with respect to matching energy. We state

the following two theorems to prove this fact.

Theorem 3.2. Let n ≥ 7 be odd. Then P n−2
n and P n−4

n are the graphs with the

second maximal matching energy and the third maximal matching energy in On,n ,

respectively.

Proof. For any graph G ∈ On,n with G ≇ Cn, suppose the girth of G is g(G) = ℓ,

where n ≥ 7 is odd and 3 ≤ ℓ ≤ n− 2.

Case 1. If G ≇ P n−2
n , then by Lemma 2.3 and Remark 1, G � P ℓ

n � P n−2
n . With

G ∼ P ℓ
n and P ℓ

n ∼ P n−2
n if and only if G ∼= P n−2

n , a contradiction. Thus G ≺ P n−2
n . In

addition, we have known that Cn ≻ P n−2
n . Therefore, P n−2

n has the second maximal

matching energy in On,n.

Case 2. If G ≇ P n−2
n and G ≇ P n−4

n , then similarly, for 3 ≤ ℓ ≤ n − 4, we

have G � P ℓ
n � P n−4

n . With G ∼ P ℓ
n and P ℓ

n ∼ P n−4
n if and only if G ∼= P n−4

n , a

contradiction. Hence G ≺ P n−4
n .



For ℓ = n− 2, since G ≇ P n−2
n , then obviously G ∼= H1 or H2 in Fig. 3.1.

By direct checking, it’s easy to verify that H1 ≺ P n−4
n as well as H2 ≺ P n−4

n . There-

fore, we can always show that G ≺ P n−4
n . Namely, P n−4

n has the third maximal

matching energy in On,n since we also have Cn ≻ P n−2
n ≻ P n−4

n .

Combining Case 1 with Case 2, we complete the proof.

Now we give a supplementary notation and a lemma associated with it, which are

needed in our proof.

Let G be a simple graph, e be an edge of G connecting the vertices vr and vs. By

G(e/j) we denote the graph obtained by inserting j (j ≥ 0) new vertices (of degree

two) on the edge e. Hence if G has n vertices, then G(e/j) has n+ j vertices; if j = 0,

then G(e/j) = G; if j > 0, then the vertices vr and vs are not adjacent in G(e/j).

There is a following result on the number of k-matchings of the graph G(e/j).

Lemma 3.3 ( [18]). For all j ≥ 0,

m(G(e/j + 2), k) = m(G(e/j + 1), k) +m(G(e/j), k − 1) .

Theorem 3.4. Let n ≥ 9 be odd. Then P n−6
n is the graph with the fourth maximal

matching energy in On,n for n ≥ 11, and H6,0 is the graph with the fourth maximal

matching energy in O9,9, where H6,0 is shown in Fig. 3.1.

Proof. For any graph G ∈ On,n with G ≇ Cn, let the girth of G be g(G) = ℓ, where

n ≥ 9 is odd and 3 ≤ ℓ ≤ n− 2. Suppose that G ≇ P n−2
n , G ≇ P n−4

n , and G ≇ P n−6
n .

If 3 ≤ ℓ ≤ n− 6, then similar to Case 1 in Theorem 3.2, we get G ≺ P n−6
n .

If ℓ = n−2, i.e., G ∼= H1 or H2, then by simple calculation, we also get H1 ≺ P n−6
n

and H2 ≺ P n−6
n .

If ℓ = n− 4, then G ∼= Hi (i = 3, 4, . . . , 20) in Fig. 3.1.

Case 1. When G ∼= H3 and n = 9, then

m(H3, k) = m(T1, k) +m(P3 ∪ P3, k − 1) +m(P3, k − 2)

m(P n−6
n , k) = m(P9, k) +m(P3 ∪ P3, k − 1) +m(P2 ∪ P2, k − 2)
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Figure 3.1: The graphs needed in the proof of Theorem 3.2 and Theorem 3.4.

where T1 ∈ T9. Hence m(H3, k) ≤ m(P n−6
n , k) since m(T1, k) ≤ m(P9, k) and

m(P3, k− 2) ≤ m(P2 ∪P2, k− 2). Moreover, m(H3, 4) < m(P n−6
n , 4) since m(P3, 2) <

m(P2 ∪ P2, 2). Therefore, H3 ≺ P n−6
n for n = 9.

Case 2. When G ∼= H3 and n ≥ 11, then

m(H3, k) = m(T2, k) +m(Pn−6 ∪ P3, k − 1) +m(Pn−6, k − 2)

m(P n−6
n , k) = m(Pn, k) +m(Pn−8 ∪ P5, k − 1) +m(Pn−8 ∪ P4, k − 2)

where T2 ∈ Tn. Since n ≥ 11, then m(T2, k) ≤ m(Pn, k), m(Pn−6 ∪ P3, k − 1) ≤
m(Pn−8 ∪ P5, k − 1), m(Pn−6, k − 2) ≤ m(Pn−8 ∪ P4, k − 2). Which imply that

m(H3, k) ≤ m(P n−6
n , k). Furthermore, since T2 ≇ Pn, there exists some k0 such that



m(T2, k0) < m(Pn, k0). Thus m(H3, k0) < m(P n−6
n , k0). It follows that H3 ≺ P n−6

n

for n ≥ 11.

Case 3. If G ∼= H7, similarly, then we can show that G ≺ P n−6
n for n ≥ 9.

Case 4. If G ∼= Hi (i = 8, 9, . . . , 20), then one can check that there always exists

some pendent edge of G, say xy, such that x is in the unique cycle of G (see in the

figure). Take an edge xz of the unique cycle, such that G− xz = T3(∈ Tn) ≺ Pn and

G− x− z � Pn−3. Then

m(G, k) = m(G− xz, k) +m(G− x− z, k − 1)

≤ m(Pn, k) +m(Pn−3, k − 1)

≤ m(Pn, k) +m(Pn−8 ∪ P6, k − 1)

= m(P n−6
n , k).

In addition, since G − xz ≺ Pn, there exists some k0 such that m(G − xz, k0) <

m(Pn, k0). That is, m(G, k0) < m(P n−6
n , k0). Hence G ≺ P n−6

n .

Case 5. We now only need consider the cases for G ∼= H4, H5 orH6. For the graph

H6, let the two 3-degree vertices be x and y, respectively. Suppose that the number

of vertices in the unique cycle between x and y is t, where 0 ≤ t ≤ ⌊n−6
2
⌋. Then it’s

obviously that H6 arrives at the maximal matching energy if and only if t = 0 (i.e.,

H6 has larger matching energy when t = 0 than that when 1 ≤ t ≤ ⌊n−6
2
⌋). Hence

in the sequel, whenever we mention the graph H6, it implies that t = 0. Accordingly,

it’s easy to check that H6 ≻ H5. Simultaneously, since

m(H6, k) = m(P n−4
n−2 ∪ P2, k) +m(Pn−4, k − 1) +m(Pn−5, k − 2)

whereas

m(H4, k) = m(P n−4
n−2 ∪ P2, k) +m(Pn−4, k − 1) +m(Pn−6, k − 2)

then H6 ≻ H4 as Pn−5 ≻ Pn−6. Consequently, it suffices to compare P n−6
n with H6 .

By the definition of G(e/j), P n−6
n = P 3

9 (e/n− 9) and H6 = H6,0(e/n− 9), where

P 3
9 and H6,0 are depicted in Fig. 3.1. In [6], we have shown that α(G(e/j + 2), x) =

xα(G(e/j + 1), x)− α(G(e/j), x). That is, both α(P n−6
n , x) and α(H6, x) satisfy the

recursive formula

f(n, x) = xf(n− 1, x)− f(n− 2, x) .



The general solution of this linear homogeneous recurrence relation is

f(n, x) = C1(x)(Y1(x))
n + C2(x)(Y2(x))

n

where Y1(x) =
x+

√
x2−4
2

, Y2(x) =
x−

√
x2−4
2

, with Y1(x)+Y2(x) = x and Y1(x)Y2(x) = 1.

We obtain the values of Ci(x) (i = 1, 2) as follows.

By simple calculations, we get:

m(P 3
9 , 0) = 1, m(P 3

9 , 1) = 9, m(P 3
9 , 2) = 26, m(P 3

9 , 3) = 26, m(P 3
9 , 4) = 6, m(P 3

9 , k) =

0 for k ≥ 5;

m(P 4
10, 0) = 1, m(P 4

10, 1) = 10, m(P 4
10, 2) = 34, m(P 4

10, 3) = 46, m(P 4
10, 4) = 22,

m(P 4
10, 5) = 2, m(P 4

10, k) = 0 for k ≥ 6;

m(H6,0, 0) = 1, m(H6,0, 1) = 9, m(H6,0, 2) = 25, m(H6,0, 3) = 25, m(H6,0, 4) = 7,

m(H6,0, k) = 0 for k ≥ 5;

m(H6,0(e/1), 0) = 1, m(H6,0(e/1), 1) = 10, m(H6,0(e/1), 2) = 33, m(H6,0(e/1), 3) =

43, m(H6,0(e/1), 4) = 20, m(H6,0(e/1), 5) = 2, m(H6,0(e/1), k) = 0 for k ≥ 6.

Thus, the initial values are:

α(P 3
9 , x) = x9 − 9x7 + 26x5 − 26x3 + 6x

= C1(x)(Y1(x))
9 + C2(x)(Y2(x))

9

α(P 4
10, x) = x10 − 10x8 + 34x6 − 46x4 + 22x2 − 2

= C1(x)(Y1(x))
10 + C2(x)(Y2(x))

10

α(H6,0, x) = x9 − 9x7 + 25x5 − 25x3 + 7x

= C ′
1(x)(Y1(x))

9 + C ′
2(x)(Y2(x))

9

α(H6,0(e/1), x) = x10 − 10x8 + 33x6 − 43x4 + 20x2 − 2

= C ′
1(x)(Y1(x))

10 + C ′
2(x)(Y2(x))

10 .

By solving the above equalities, we get

C1(x) =
Y1(x)α(P

4
10, x)− α(P 3

9 , x)

(Y1(x))11 − (Y1(x))9

C2(x) =
Y2(x)α(P

4
10, x)− α(P 3

9 , x)

(Y2(x))11 − (Y2(x))9

C ′
1(x) =

Y1(x)α(H6,0(e/1), x)− α(H6,0, x)

(Y1(x))11 − (Y1(x))9



C ′
2(x) =

Y2(x)α(H6,0(e/1), x)− α(H6,0, x)

(Y2(x))11 − (Y2(x))9
.

Namely, α(P n−6
n , x) = C1(x)(Y1(x))

n+C2(x)(Y2(x))
n and α(H6, x) = C ′

1(x)(Y1(x))
n+

C ′
2(x)(Y2(x))

n.

Similar to the calculation in [6], we have

ME(P n−6
n )−ME(H6) =

2

π

∫ ∞

0

ln
α(P n−6

n , ix)

α(H6, ix)
dx

=
2

π

∫ ∞

0

ln
C1(ix)(Y1(ix))

n + C2(ix)(Y2(ix))
n

C ′
1(ix)(Y1(ix))n + C ′

2(ix)(Y2(ix))n
dx

where i2 = −1, Y1(ix) =
x+

√
x2+4
2

i and Y2(ix) =
x−

√
x2+4
2

i .

We now define Z1(x) = −iY1(x) =
x+

√
x2+4
2

and Z2(x) = −iY2(x) =
x−

√
x2+4
2

, i.e.,

Y1(ix) = iZ1(x) and Y2(ix) = iZ2(x). In addition, we set

f1 = iα(P 3
9 , ix) = −x9 − 9x7 − 26x5 − 26x3 − 6x

f2 = α(P 4
10, ix) = −x10 − 10x8 − 34x6 − 46x4 − 22x2 − 2

g1 = iα(H6,0, ix) = −x9 − 9x7 − 25x5 − 25x3 − 7x

g2 = α(H6,0(e/1), ix) = −x10 − 10x8 − 33x6 − 43x4 − 20x2 − 2 .

It follows that

C1(ix) =
Z1(x)f2 + f1

−(Z1(x))9((Z1(x))2 + 1)

C2(ix) =
Z2(x)f2 + f1

−(Z2(x))9((Z2(x))2 + 1)

C ′
1(ix) =

Z1(x)g2 + g1
−(Z1(x))9((Z1(x))2 + 1)

C ′
2(ix) =

Z2(x)g2 + g1
−(Z2(x))9((Z2(x))2 + 1)

.

When n is odd, since Y1(ix) · Y2(ix) = 1, Z1(x) · Z2(x) = −1, Z1(x) + Z2(x) = x,

and Z1(x)− Z2(x) =
√
x2 + 4,

ln
C1(ix)(Y1(ix))

n+2 + C2(ix)(Y2(ix))
n+2

C ′
1(ix)(Y1(ix))n+2 + C ′

2(ix)(Y2(ix))n+2
− ln

C1(ix)(Y1(ix))
n + C2(ix)(Y2(ix))

n

C ′
1(ix)(Y1(ix))n + C ′

2(ix)(Y2(ix))n

= ln
(

1 + K0(x)
H0(n,x)

)



where

K0(x) =
(

C1(ix)C
′
2(ix)− C2(ix)C

′
1(ix)

)(

(Y1(ix))
2 − (Y2(ix))

2
)

= (f2g1 − f1g2)x

= x14 + 12x12 + 52x10 + 102x8 + 92x6 + 32x4 + 2x2

and

H0(n, x) =
(

C1(ix)(Y1(ix))
n + C2(ix)(Y2(ix))

n
)

·
(

C ′
1(ix)(Y1(ix))

n+2 + C ′
2(ix)(Y2(ix))

n+2
)

= α(P n−6
n , ix) · α(H6(e/2), ix)

=

(

∑

k≥0

(−1)km(P n−6
n , k)(ix)n−2k

)

·
(

∑

k≥0

(−1)km(H6(e/2), k)(ix)
(n+2)−2k

)

=

(

in
∑

k≥0

m(P n−6
n , k)xn−2k

)(

in+2
∑

k≥0

m(H6(e/2), k)x
(n+2)−2k

)

=

(

∑

k≥0

m(P n−6
n , k)xn−2k

)(

∑

k≥0

m(H6(e/2), k)x
(n+2)−2k

)

.

Obviously, K0(x) > 0. Moreover, H0(n, x) > 0 since x > 0, m(P n−6
n , k) ≥ 0 and

m(H6(e/2), k) ≥ 0 for all k. Hence K0(x)
H0(n,x)

> 0, which deduces that ln
(

1+ K0(x)
H0(n,x)

)

>

ln 1 = 0. That is,

ln
C1(ix)(Y1(ix))

n+2 + C2(ix)(Y2(ix))
n+2

C ′
1(ix)(Y1(ix))n+2 + C ′

2(ix)(Y2(ix))n+2
> ln

C1(ix)(Y1(ix))
n + C2(ix)(Y2(ix))

n

C ′
1(ix)(Y1(ix))n + C ′

2(ix)(Y2(ix))n
.

Thus, when n ≥ 11,
∫ ∞

0

ln
α(P n−6

n , ix)

α(H6, ix)
dx ≥

∫ ∞

0

ln
α(P 5

11, ix)

α(H6,0(e/2), ix)
dx .

By computer-aided calculations, we get ME(P 5
11) = 13.74411 and ME(H6,0(e/2))

= 13.72523. Then
∫ ∞

0

ln
α(P 5

11, ix)

α(H6,0(e/2), ix)
dx =

π

2

[

ME(P 5
11)−ME(H6,0(e/2))

]

> 0 .

It follows that
∫∞
0

ln α(Pn−6
n ,ix)

α(H6,ix)
dx > 0. Namely,

ME(P n−6
n )−ME(H6) =

2

π

∫ ∞

0

ln
α(P n−6

n , ix)

α(H6, ix)
dx > 0 .



Therefore, ME(P n−6
n ) > ME(H6) holds for odd n with n ≥ 11. Consequently,

combining with Remark 1, we prove that the graph P n−6
n has the fourth maximal

matching energy in On,n for odd n with n ≥ 11.

On the other hand, when n = 9, by computer-aided calculations, we get ME(P 3
9 )

= 11.12709, ME(H6,0) = 11.14211. Then ME(P 3
9 ) < ME(H6,0). Hence, according

to Cases 1-5 and Theorem 3.2, when n = 9, the graph H6,0 has the fourth maximal

matching energy in O9,9.

By this, the proof of Theorem 3.4 has been completed.

4 Even n

The aim of this section is to discuss the case of even n. The section starts with a

result analogous to Lemma 3.1, followed by characterizing the graphs with maximal

matching energy in On,n when n is even. Moreover, a good property about the

ordering in Remark 2 is also obtained.

Lemma 4.1. Let n ≥ 6 be even and t be an odd integer with 1 ≤ t ≤ n − 5. Then

P n−t
n ≺ P n−t−2

n for 1 ≤ t < n−4
2
; P n−t

n ∼ P n−t−2
n for t = n−4

2
; P n−t

n ≻ P n−t−2
n for

n−4
2

< t ≤ n− 5.

Proof. For 0 ≤ k ≤ n
2
, we have

m(P n−t
n , k) = m(Pn, k) +m(Pt ∪ Pn−t−2, k − 1)

and

m(P n−t−2
n , k) = m(Pn, k) +m(Pt+2 ∪ Pn−t−4, k − 1) .

Since n is even but t is odd, then t, t+2, n−t−2, n−t−4 are all odd. If t ≤ n−t−2

and t+2 ≤ n−t−4, namely, t ≤ n−6
2
, then by Lemma 2.4, Pt∪Pn−t−2 ≺ Pt+2∪Pn−t−4 .

If t ≤ n − t − 2, t + 2 > n − t − 4 and t ≤ n − t − 4, namely, n−6
2

< t ≤ n−4
2
, then

Pt∪Pn−t−2 � Pt+2∪Pn−t−4. If t ≤ n−t−2, t+2 > n−t−4 and t > n−t−4, namely,

n−4
2

< t ≤ n−2
2
, then Pt∪Pn−t−2 ≻ Pt+2∪Pn−t−4. If t > n− t−2 and t+2 > n− t−4,

namely, t > n−2
2
, then Pt ∪ Pn−t−2 ≻ Pt+2 ∪ Pn−t−4. In summary, if 1 ≤ t < n−4

2
,

then Pt ∪ Pn−t−2 ≺ Pt+2 ∪ Pn−t−4. If t = n−4
2
, then Pt ∪ Pn−t−2 = Pt+2 ∪ Pn−t−4. If



n−4
2

< t ≤ n− 5, then Pt ∪ Pn−t−2 ≻ Pt+2 ∪ Pn−t−4. This yields P
n−t
n ≺ P n−t−2

n when

1 ≤ t < n−4
2
, P n−t

n ∼ P n−t−2
n when t = n−4

2
, and P n−t

n ≻ P n−t−2
n when n−4

2
< t ≤ n−5.

This completes the proof.

Remark 2. According to Lemma 4.1, we know that

P n−1
n ≺ P n−3

n ≺ P n−5
n ≺ · · · ≺ P

n

2
+5

n ≺ P
n

2
+3

n ≺ P
n

2
+1

n ≻ P
n

2
−1

n ≻ P
n

2
−3

n ≻ · · · ≻ P 7
n ≻

P 5
n ≻ P 3

n for n ≡ 0 (mod 4),

and

P n−1
n ≺ P n−3

n ≺ P n−5
n ≺ · · · ≺ P

n

2
+6

n ≺ P
n

2
+4

n ≺ P
n

2
+2

n ∼ P
n

2

n ≻ P
n

2
−2

n ≻ P
n

2
−4

n ≻ · · · ≻
P 7
n ≻ P 5

n ≻ P 3
n for n ≡ 2 (mod 4).

Bearing in mind Lemma 2.3, and making full use of the above remark, the next

theorem follows immediately.

Theorem 4.2. If n ≡ 0 (mod 4), then the graph with maximal matching energy in

On,n is P
n

2
+1

n . If n ≡ 2 (mod 4), then the graphs with maximal matching energy in

On,n are P
n

2

n and P
n

2
+2

n .

In addition, in connection with the ordering in Remark 2, we find that P t
n ∼

P n−t+2
n .

Proposition 4.3. Let n be even and t be odd with 3 ≤ t ≤ n−1. Then P t
n ∼ P n−t+2

n .

Proof. For all k ≥ 0, on the basis of Eq. (3), one obtains that

m(P t
n, k) = m(Pn, k) +m(Pt−2 ∪ Pn−t, k − 1)

m(P n−t+2
n , k) = m(Pn, k) +m(Pt−2 ∪ Pn−t, k − 1) .

Apparently, m(P t
n, k) = m(P n−t+2

n , k) holds for all k, which implies P t
n ∼ P n−t+2

n .

Similar to the case of n being odd, when n is even, with respect to matching

energy, we can apply the same method to consider the second maximal graph, the

third maximal graph, and so on.

5 Summary

In this paper, when n is odd, only the first four maximal graphs with regard to

matching energy have been taken into account. Actually, we conjecture that the



graphs P ℓ
n are the second through the (

⌊

n
2

⌋

/2 + 1)-th maximal graphs when the odd

integer ℓ ranges from n − 2 to
⌈

n
2

⌉

. Verifying this claim will be one of our tasks in

the future.
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[8] K. C. Das, I. Gutman, A. S. Çevik, B. Zhou, On Laplacian energy, MATCH

Commun. Math. Comput. Chem. 70 (2013) 689–696.
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greatest zeroth–order general Randić index, MATCH Commun. Math. Comput.

Chem. 54 (2005) 425–434.

[24] B. Huo, S. Ji, X. Li, Y. Shi, Complete solution to a conjecture on the fourth

maximal energy tree, MATCH Commun. Math. Comput. Chem. 66 (2011) 903–

912.

[25] B. Huo, S. Ji, X. Li, Y. Shi, Complete solution to a problem on the maximal

energy of bicyclic bipartite graphs, Lin. Algebra Appl. 435 (2011) 804–810.



[26] B. Huo, X. Li, Y. Shi, Complete solution to a conjecture on the maximal energy

of unicyclic graphs, Eur. J. Comb. 32 (2011) 662–673.

[27] B. Huo, X. Li, Y. Shi, Complete solution to a problem on the maximal energy

of unicyclic bipartite graphs, Lin. Algebra Appl. 434 (2011) 1370–1377.

[28] S. Ji, X. Li, Y. Shi, Extremal matching energy of bicyclic graphs, MATCH

Commun. Math. Comput. Chem. 70 (2013) 697–706.

[29] V. Kraus, M. Dehmer, F. Emmert–Streib, Probabilistic inequalities for evaluat-

ing structural network measures, Inform. Sci. 288 (2014) 220–245.

[30] H. Li, Y. Zhou, L. Su, Graphs with extremal matching energies and prescribed

paramaters, MATCH Commun. Math. Comput. Chem. 72 (2014) 239–248.

[31] J. Li, X. Li, H. Lian, Extremal skew energy of

[32] S. Li, W. Yan, The matching energy of graphs with given parameters, Discr.

Appl. Math. 162 (2014) 415–420.

[33] X. Li, Y. Li, Y. Shi, I. Gutman, Note on the HOMO–LUMO index of graphs,

MATCH Commun. Math. Comput. Chem. 70 (2013) 85–96.

[34] X. Li, Y. Shi, A survey on the Randić index, MATCH Commun. Math. Comput.

Chem. 59 (2008) 127–156.

[35] X. Li, Y. Shi, On a relation between the Randić index and the chromatic number,
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