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Abstract. In an additively written abelian group, a sequence is called zero-sum free if each of
its nonempty subsequences has sum different from the zero element of the group. In this paper,
we consider the structure of long zero-sum free sequences and n-zero-sum free sequences over finite
cyclic groups Zn. Among which, we determines the structure of the long zero-sum free sequences
of length between n/3 + 1 and n/2, where n ≥ 50 is an odd integer, and we provide a general
description on the structure of n-zero-sum free sequences of length n+ l, where ` ≥ n/p+ p− 2 and
p is the smallest prime dividing n.

1. Introduction and notation

Throughout this paper, let G be an additive finite abelian group. The cyclic group of order n
is identified with the additive group Zn = Z/nZ of integers modulo n. Denote by F(G), the free
abelian monoid with basis G and elements of F(G) are called sequences over G. A sequence of
length l over G can be written in the form S = g1 · . . . · gl for some g1, . . . , gl ∈ G. S is called a
zero-sum sequence if the sum of all elements of S is zero, and a zero-sum free sequence if S does not
contain a nonempty zero-sum subsequence. If S is a zero-sum sequence, but no proper nontrivial
subsequence of S has sum zero, then S is called a minimal zero-sum sequence.

Recall that the index of a sequence S over G is defined as follows.

Definition 1. Let G = Zn, for a sequence S = (n1g) · . . . · (nlg), 1 ≤ n1, . . . , nl ≤ n, the index of
S is defined by ind(S) = min{‖S‖g|g ∈ Zn, with Zn = 〈g〉}, where ‖S‖g = n1+···+nl

ord(g)
.

Let S1 and S2 be two sequences over Zn. We say that S1 is equivalent to S2 and write S1 ∼ S2 if
S2 can be obtained from S1 through multiplication by an integer coprime to n and rearrangement
of terms. Such multiplication is an affine map preserving all zero sums in Zn. Certainly, ind(S1) =
ind(S2).

The study of long zero-sum free sequences in Zn has attracted considerable attention recently.
There are serval related results on the structure of zero-sum free sequences, and among which W.
Gao [6] characterized the zero-sum free sequences of lengths roughly greater than 2n

3 . S. Savchev
and F. Chen [18], and P. Yuan [20] independently proved that each zero-sum free sequence S in Zn
with |S| > n

2 has index less than 1, where |S| is the length of the sequence S. In this paper, we
consider the general structure of the zero-sum free sequences S in Zn of length n

3 + 1 < |S| ≤ n
2 ,
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and our first main result (Theorem 3) shows that by removing at most two elements from S, the
index of the remaining sequence is not more than 1− 4

n .

Similarly, the n-zero-sum free sequences in Zn play an important role in the investigation of the
structure of zero-sum free sequences. S. Savchev and F. Chen [19] characterized the n-zero-sum
free sequences over Zn of length greater than 3n

2 − 1. In this paper, we investigate n-zero-sum free
sequences of length n+ l, where ` ≥ n

p + p− 2, p is the smallest prime dividing n, and our second

main result (Theorem 8) provides a general description of such sequences.

We next recall a few more standard notations and terminologies (which follow from that in [10]
and [16]).

We denote by σ(S) the sum of all terms of S. The maximum multiplicity of a term in S is
denoted as h(S). We denote by

∑
(S) the set of all subsums of S, and

∑
k (S) the set of k-term

subsums of S, where k ∈ N. The union of two sequences S1 and S2, denoted S1S2, is the sequence
formed by appending the terms of S2 to S1.

To study the index problem of minimal zero-sum sequences, we usually first investigate the
structure of unsplittable minimal zero-sum sequences first. Let S be a minimal zero-sum (resp.
zero-sum free) sequence of elements over abelian group G. An element g0 in S is called splittable if
there exist two elements x, y ∈ G such that x + y = g0 and Sg−10 xy is a minimal zero-sum (resp.
zero-sum free) sequence as well; otherwise, g0 is called unsplittable. S is called splittable if at least
one of the elements of S is splittable; otherwise, it is called unsplittable.

We state this easy observation: if S is a minimal zero-sum sequence and S′ is obtained from S
by splitting some elements of S, then |S| ≤ |S′| and ind(S) ≤ ind(S′).

The paper is organized as follows. In the next section, based on a recent result of Y. Li and P.
Yuan [21](see also [?]), we give a proof for Theorem 3, and obtain a corresponding proposition on
the maximum multiplicities of a term in such zero-sum free sequences. In section 3, we provide
a general description on the structure of n-zero-sum free sequences of length n + l over a finite
abelian group G of order n, where ` ≥ n/p + p − 2 and p is the smallest prime dividing n. In the
last section, we discuss when subsums of a long zero-sum free sequence may form an interval.

2. On long zero-sum free sequences over Zn

For a long zero-sum free sequence S over Zn, if |S| > n/2, then ind(S) < 1 [18, 20]. In this
section, we consider long zero-sum free sequences of length between n/3 + 1 and n/2 when n ≥ 50
is an odd integer.

We recall the following lemma, which is essential to approach our main results.

Lemma 2. [?] Let n ≥ 50 be an odd integer, and S be an unsplittable minimal zero-sum sequence
of length |S| > bn3 c+ 2 over Zn. If ind(S) ≥ 2, then

S ∼ gα(
n+ s

2
g)2t((

n− s
2

+ 1)g),

where g is a generator of Zn, t ≥ 1, s is odd with s ≥ 3 and 2α + 2ts + 2 − s = n. Moreover,
ind(S) = 2.
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Theorem 3. Let n ≥ 50 be an odd integer, and S be a zero-sum free sequence of length bn3 c+ 1 <
|S| ≤ bn2 c over Zn. Then, by removing at most two elements from S, the remaining sequence is
equivalent to a sequence whose index is not more than 1− 4/n.

Proof. Let S be a zero-sum free sequence over Zn with l = |S| > bn3 c+ 1. Then S1 = S(−σ(S)) is
a minimal zero-sum sequence of length |S1| > bn3 c+ 2. If S1 is splittable, then there exist g0 ∈ S1
and two elements x, y ∈ G such that x+ y = g0 and S2 = S1g

−1
0 xy is a minimal zero-sum sequence

as well. Continuing the above process, we eventually obtain an unsplittable minimal zero-sum
sequence S′ from S1. Then, we have |S1| ≤ |S′| and

(1) ind(S) < ind(S1) ≤ ind(S′).

We divide the proof into two cases.

Case 1: If ind(S′) ≤ 1, then ind(S) < 1 by (1). Let h be an element of G with ord(h) = n,
such that S ∼ (n1h) · . . . · (nlh) and ind(S) = ‖S‖h = n1+···+nl

n . If there are ni and nj such that

ni + nj ≥ 4 for 1 ≤ i 6= j ≤ l, then
∑l

k=1 nk−ni−nj

n ≤
∑l

k=1 nk−4
n < 1− 4

n . If for any ni, nj , we have
ni + nj ≤ 3. Then there exists at most one i such that ni = 2, and for all other j 6= i, nj = 1. So∑l

k=1 nk ≤ b
n
2 c+1 (as l ≤ bn2 c), and thus ind(S) ≤ b

n
2
c+1

n ≤ 1
2 + 1

n < 1− 4
n . Therefore, by removing

at most two elements from S, the index of the remaining sequence is not more than 1− 4
n .

Case 2: If ind(S′) > 1, then by Lemma 2,

S′ ∼ gα(
n+ s

2
g)2t((

n− s
2

+ 1)g),

where Zn = 〈g〉, t ≥ 1, s ≥ 3 and 2α+ 2ts+ 2− s = n. Thus

S′ ∼ (2g)α(sg)2t((n− s+ 2)g).

Let T = (2g)α(sg)2t((n − s + 2)g). It is easy to see that if we remove three elements from T ,
including sg and (n− s+ 2)g, then the remaining sequence has index not more than 1− 4/n. If we
remove two elements from S such that, including the elements sg and (n − s + 2)g, at least three
terms of T are left out, then the remaining sequence of S has index not more than 1 − 4/n, as
desired. �

We next estimate a lower bound for h(S). Let S be a zero-sum free sequence over Zn. An
extensively used result of Bovey et al [1] on the constant h(S) states that if |S| = l > n/2, then
h(S) ≥ 2l − n + 1. S. Savchev and F. Chen [18], and P. Yuan [20] gave a more precisely lower
bound on h(S) for zero-sum free sequences of length l > n/2 independently. The following theorem
provides a lower bound for h(S) when the length of a zero-sum free sequence S is between bn3 c+ 1
and bn2 c.

Theorem 4. Let n ≥ 50 be an odd integer and l be an integer satisfying bn3 c + 1 < l ≤ bn2 c. Let
S be a zero-sum free sequence of length l over Zn, and i be an positive integer such that 1 ≤ i ≤ 3
and 4l − 4− n ≡ i( mod 3). If ind(S) > 1, then

(a) h(S) ≥ 3l − 2− n, if 2n+5−i
5 ≤ l ≤ bn2 c;

(b) h(S) ≥ b4l−4−n3 c+ 1, if bn3 c+ 1 < l < 2n+5−i
5 .

Moreover, these estimates are best possible.
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Proof. By the assumption and Theorem 3, we may assume that S is of the form

S = (2g)u(sg)vWg1g2, ||S(g1g2)
−1||g ≤ 1− 4

n
, and ind(S) = ‖S‖g,

where s ≥ 3, W |S, 1 ≥ |W | ≥ 0 and 2g, sg /∈ W . We claim that g /∈ S. In fact, let S′ be given
as in the proof of Theorem 3. Then ind(S′) = ||S′||g = 2 and S′ = (2g)α(sg)2t((n − s + 2)g). If
g ∈ S, then since g /∈ S′ g is splittable in S. Thus there exists a subsequence S′1 of S′ such that
σ(S′1) = g. Since ||S′||g = 2, we must have n||S′1||g = n+ 1, so n||S′(S′1)−1||g = (n− 1). Therefore,
n||S||g = n||g||g + n||Sg−1||g ≤ 1 + n||S′(S′1)−1||g = n, contradicting ||S||g = ind(S) > 1, and the
claim is proved. If kg ∈W , by the same argument as above we can show that k > s. Then

(2) n− 4 ≥ n||S(g1g2)
−1||g ≥ 2u+ 3(l − 2− u) = 3l − 6− u.

(3) n− 4 ≥ n||S(g1g2)
−1||g ≥ 2u+ 3v + 4(l − 2− u− v) = 4l − 8− 2u− v.

The above inequalities yield that u ≥ 3l − 2 − n and 2u + v ≥ 4l − 4 − n, respectively. Since
h(S) ≥ max{u, v}, it follows that h(S) ≥ max{3l − 2− n, d4l−4−n3 e}.

We now consider whether we can find some extremal sequences S with h(S) = 3l − 2 − n and
h(S) = d4l−4−n3 e, respectively.

(a) If 3l− 2− n ≥ d4l−4−n3 e, that is, l ≥ 2n+5−i
5 , then we have h(S) ≥ 3l− 2− n. Suppose there

is an extremal sequence S with h(S) = 3l − 2 − n. By (2), S = (2g)3l−2−n(3g)n−2lg1g2. It is easy
to check that S = (2g)3l−2−n(3g)n−2l+1((n− 1)g) since S is zero-sum free and ind(S) > 1. So S is
the only extremal sequence with h(S) = 3l − 2− n when l ≥ 2n+5−i

5 .

(b) If 3l − 2 − n < d4l−4−n3 e, then bn3 c + 1 < l < 2n+5−i
5 . Suppose S is an extremal sequence

with h(S) = d4l−4−n3 e. We consider the following cases:

Case 1. If i = 1, that is, d(4l−4−n3 e = 4l−2−n
3 , then by (3) and the assumption u = v, we

have S = (2g)
4l−2−n

3 (3g)
4l−2−n

3 (4g)l−2−2
4l−2−n

3 (g1)(g2). Since S is zero-sum free, ind(S) > 1 and

h(S) = 4l−2−n
3 , we infer that either S = (2g)

4l−2−n
3 (3g)

4l−2−n
3 (4g)l−1−2

4l−2−n
3 ((n − 1)g), or S =

(2g)
4l−2−n

3 (3g)
4l−2−n

3 (4g)l−2−2
4l−2−n

3 (5g)((n− 1)g). These are two extremal sequences with h(S) =
4l−2−n

3 = b4l−4−n3 c+ 1.

Case 2. If i = 2, then d4l−4−n3 e = 4l−3−n
3 . Using the same method as in Case 1, we derive that

S = (2g)
4l−3−n

3 (3g)
4l−3−n

3 (4g)l−1−2
4l−3−n

3 ((n − 1)g), which is an extremal sequence with h(S) =
4l−3−n

3 = b4l−4−n3 c+ 1.

Case 3. If i = 3, then d4l−4−n3 e = 4l−4−n
3 , and S = (2g)

4l−4−n
3 (3g)

4l−4−n
3 (4g)l−2−2

4l−4−n
3 g1g2,

where g1, g2 ∈ {2g, 3g, (n − 1)g} and at least one of gi is in {2g, 3g}, for i = 1, 2. So, there is
no extremal sequence S with h(S) = 4l−4−n

3 , and thus h(S) ≥ b4l−4−n3 c + 1. In addition, S =

(2g)
4l−4−n

3
+1(3g)

4l−4−n
3 (4g)l−2−2

4l−4−n
3 (n − 1)g and S = (2g)

4l−4−n
3

+1(3g)
4l−4−n

3
+1(4g)l−2−2

4l−4−n
3

are two extremal sequences with h(S) = b4l−4−n3 c+ 1.

Therefore, if bn3 c + 1 < l < 2n+5−i
5 , then we have h(S) ≥ b4l−4−n3 c + 1, so the lower bound is

best possible.

�
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3. On long n-zero-sum free sequences over Zn

In this section, we consider the structure of a long n-zero-sum free sequence over Zn. Prior
to this, we give some properties on a sequence which contains (or does not contain) a zero-sum
subsequence of length |G| over a finite abelian group G.

Let G be a finite abelian group, S = g1 · . . . · gm be a sequence over G and A ⊂ G. Let
vA(S) = |{1 ≤ i ≤ m : gi ∈ A}|. If A = {g}, we simply let vg(S) = v{g}(S). For every subgroup H
of G, let SH denote the subsequence of S consisting of all terms of S in H. We need the following
beautiful result due to DeVos, Goddyn and Mohar [3]:

Lemma 5. Let ` be a positive integer, S be a sequence over a finite abelian group G, and let
H = stab(

∑
`(S)). Then,

|
∑
`

(S)| ≥ |H|

1− `+
∑

Q∈G/H

min{`, vQ(S)}

 .

Lemma 6. Let G be a finite abelian group, and p be the smallest prime dividing |G|. Let ` ≥
|G|/p+ p− 2 be an integer and S be a sequence over G of length |S| = |G|+ `. If h(S) ≤ `, then S
contains a zero-sum subsequence of length |G|.

Proof. Let n = |G|. Assume to the contrary that 0 6∈
∑

n(S). Then, |
∑

n(S)| ≤ n − 1. Since∑
`(S) = σ(S) −

∑
n(S), we have |

∑
`(S)| = |

∑
n(S)| ≤ n − 1. Let H = stab(

∑
`(S). Now by

Lemma 5 we obtain that

(4) |H|

1− `+
∑

Q∈G/H

min{`, vQ(S)}

 ≤ n− 1.

From |
∑

`(S)| ≤ n− 1 we have H 6= G. If H = {0}, then by the hypothesis h(S) ≤ `, we infer that

|H|

1− `+
∑

Q∈G/H

min{`, vQ(S)}

 = 1− `+
∑

Q∈G/H

min{`, vQ(S)} = 1− `+ |S| = n+ 1,

a contradiction to (4). This proves that H 6= {0}. Hence, H is a nontrivial proper subgroup of G.

Let w = |{Q ∈ G/H : vQ(S) ≥ `+ 1}|. Now we distinguish three cases to derive a contradiction.

Case 1. If w = 0, then,

|H|

1− `+
∑

Q∈G/H

min{`, vQ(S)}

 = |H|(1− `+ |S|) > n+ 1,

a contradiction to (4).

Case 2. If w ≥ 2, then 1−`+
∑

Q∈G/H min{`, vQ(S)} ≥ 1−`+2` = `+1. Since ` ≥ n/p+p−2 ≥
n/|H|+ |H| − 2, we infer that

|H|

1− `+
∑

Q∈G/H

min{`, vQ(S)}

 ≥ |H|(`+ 1) > n,

a contradiction to (4).
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Case 3. If w = 1, then let R ∈ G/H be the unique coset such that vR(S) ≥ `+ 1. Thus

1− `+
∑

Q∈G/H

min{`, vQ(S)} = 1− `+ `+ (|S| − vR(S)) = n+ `+ 1− vR(S).

It follows from (4) that |H|(n+ `+ 1− vR(S)) ≤ n− 1. Therefore,

vR(S) ≥ n+ `+ 1− n
|H| + 1

|H| ≥ n+ (n/p+ p− 2) + 1− n
|H| + 1

|H|
≥ n+ ( n

|H| + |H| − 2) + 1− n
|H| + 1

|H| > n+ |H| − 1.

Hence, vR(S) ≥ n+ |H|. Let R = g +H with g ∈ G and T = −g + S. Then,

vH(T ) = vR(S) ≥ n+ |H|.
By using the Erdős-Ginzburg-Ziv theorem on the subsequence TH of T we can find n

|H| disjoint

zero-sum subsequences T1, · · · , T n
|H|

such that |Ti| = |H| for every i ∈ [1, n
|H| ]. Now T1T2 · · ·T n

|H|
is

a zero-sum subsequence of T of length n. Therefore, g+ T1T2 · · ·T n
|H|

is a zero-sum subsequence of

S of length n, a contradiction. �

Lemma 7. [5] Let G be a finite abelian group, and let S = 0hT be a sequence over G with h = h(S).
Then, ∑

|G|

(S) =
∑
≥|G|−h

(S).

Theorem 8. Let G, p, ` be as in Lemma 6. Let S be a sequence over G of length |S| = n + `.
Suppose that 0 6∈

∑
|G|(S). Then, there is an element g ∈ G such that

−g + S = 0hTS′

with h ≥ ` + 1, T is a zero-sum sequence of length |T | ≤ |G| − h − 1, and S′ is zero-sum free of
length |S′| ≥ `+ 1.

Proof. The result follows immediately from Lemma 6 and Lemma 7. �

Corollary 9. Let p be the smallest prime dividing n, and S be an n-zero-sum free sequence over
Zn of length |S| = n+ `, where ` ≥ n/p+ p− 2 is an integer. Then, there exists g ∈ Zn such that

−g + S = 0hTS′

with h ≥ ` + 1, T is a zero-sum sequence of length |T | ≤ n − h − 1, and S′ is zero-sum free with
|S′| ≥ `+ 1.

Proof. The result follows from Theorem 8. �

4. Concluding Remarks

In this section, we discuss the question of whether for each long zero-sum free sequence S, there
exists a sequence T , such that T ∼ S and subsums of T form an interval (such T is referred
as to a smooth sequence). In [18], S. Savchev and F. Chen showed that, for each zero-sum free
sequence S of length |S| > n

2 over Zn, there exists a sequence T , such that T ∼ S and
∑

(T ) =
{1, 2, · · · , σ(T )} = [1, σ(T )] is an interval. Essentially, they proved that if T is a zero-sum free
sequence of length |T | > n

2 over Zn such that σ(T ) < n (as positive integers), then 1 ∈ T and∑
(T ) = [1, σ(T )] is an interval, (i.e., T is smooth). In fact, the same result holds under the weaker

assumption that |T | ≥ (n+2)/3. In what follows, we will show that if S is a zero-sum free sequence
over Zn of length |S| ≥ n+2

3 such that 1 ∈ S and σ(S) < n (as positive integers), then
∑

(S) is
almost an interval except for some special cases.
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Lemma 10. Let S be a sequence with positive integer terms of length |S| ≥ 2 such that
∑

(S) is
an interval. Then, for any positive integer g,

∑
(gS) is an interval if and only if g ≤ σ(S) + 1. In

particular, for any g ∈ S,
∑

(gS) is an interval.

Proof. Since |S| ≥ 2, we may assume
∑

(S) = [a, σ(S)] with a < σ(S). Since σ(S)− 1 ∈ [a, σ(S)],
1 ∈ [a, σ(S)], forcing a = 1. For any positive integer g,

∑
(gS) = [1, σ(S)] ∪ {g} ∪ [1 + g, σ(S) + g].

Thus
∑

(gS) is an interval [1, σ(S) + g] if and only if g ≤ σ(S) + 1. In particular, if g ∈ S, we have
g < σ(S) + 1, so

∑
(gS) is an interval. �

Theorem 11. Let S be a sequence with positive integer terms of length |S| = t > n+2
3 , and

σ(S) < n. If 1 ∈ S, then
∑

(S) is an interval except for the case when S = S0nl, where
∑

(S0) is
an interval and nl > σ(S0) + 1.

Proof. Suppose S = (n1)
t1 · . . . · (nl)tl , where 1 = n1 < · · · < nl,

∑l
i=1 ti = t > n

3 and σ(S) =∑l
i=1 tini < n. Set

∑
(S) = {m1, · · · ,mk} with 1 = m1 < · · · < mk. Then

∑
(S) is an interval

if and only if mi+1 − mi = 1 for i = 1, · · · , k − 1. Assume to the contrary that
∑

(S) is not
an interval. Let v be the smallest positive integer such that mv+1 − mv ≥ 2, and let S0 be the
subsequence of S with largest length such that supp(S0) ⊆ {m1, · · · ,mv} = [1,mv] ⊆

∑
(S0).

Set supp(S0) = {ni1 , . . . , nir}, where ni1 < . . . < nir , and then S0 = n
ti1
i1
. . . n

tir
ir

. Evidently,
ni1 = n1 = 1. We consider the following two cases.

Case 1. If v = 1, then t1 = 1 and n2 ≥ 3; otherwise, {1, 2} are consecutive integers, which is a
contradiction to v = 1. Thus

n > σ(S) =

l∑
i=1

tini ≥ 1 + 3(t− 1) = 3t− 2 ≥ 3(
n+ 2

3
)− 2 = n,

a contradiction.

Case 2. If v ≥ 2, we first show the following:

Claim.
∑

(S0) = {m1, · · · ,mv}

We now find a subsequence S1 of S0, such that n1 ∈ S1 and
∑

(S1)(⊆ {m1, · · · ,mv}) forms an
interval. In fact, if t1 ≥ 2, then

∑
(1t1) is a desired interval; if t1 = 1, we have ni2 = 2 since v ≥ 2,

and thus
∑

({1, 2}) = [1, 3] is an interval.

By the definition of S1 and Lemma 10,
∑
{S1 ∪ {nik}} ⊆ {m1, · · · ,mv} is an interval, where

nik = min{nij |nij ∈ S0(S1)−1}, so by applying Lemma 10 repeatedly, we conclude that
∑
S1 ·n

tik
ik

,

and thus
∑

(n
ti1
i1
· . . . · ntirir ) forms an interval. Therefore,

∑
(S0) = {m1, · · · ,mv} and the claim is

confirmed.

Let nj ∈ SS0−1, and let |S0| = u. Again, by Lemma 10, we derive that nj ≥ σ(S0) + 2 ≥ u+ 2,
so u + (t − u)(u + 2) ≤ σ(S) ≤ n − 1. Then u ≥ 2t−3

2 since t > n
3 , that is, u = t − 1 or u = t. If

u = t, then S = S0 and
∑

(S) is an interval. If u = t− 1, then we have S = S0nl, where
∑

(S0) is
an interval and nl > σ(S0) + 1.

�

We remark that the sequence S in the above theorem can be regarded as a zero-sum free sequence
S over Zn of length |S| ≥ n+2

3 such that 1 ∈ S and σ(S) < n (as positive integers). Such S has
ind(S) < 1 and it is almost smooth.
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