ON THE STRUCTURE OF LONG ZERO-SUM FREE SEQUENCES AND n-ZERO-SUM FREE SEQUENCES OVER FINITE CYCLIC GROUPS

WEIDONG GAO, YUANLIN LI*, PINGZHI YUAN, AND JUJUAN ZHUANG

Abstract

In an additively written abelian group, a sequence is called zero-sum free if each of its nonempty subsequences has sum different from the zero element of the group. In this paper, we consider the structure of long zero-sum free sequences and n-zero-sum free sequences over finite cyclic groups \mathbb{Z}_{n}. Among which, we determines the structure of the long zero-sum free sequences of length between $n / 3+1$ and $n / 2$, where $n \geq 50$ is an odd integer, and we provide a general description on the structure of n-zero-sum free sequences of length $n+l$, where $\ell \geq n / p+p-2$ and p is the smallest prime dividing n.

1. Introduction and notation

Throughout this paper, let G be an additive finite abelian group. The cyclic group of order n is identified with the additive group $\mathbb{Z}_{n}=\mathbb{Z} / n \mathbb{Z}$ of integers modulo n. Denote by $\mathcal{F}(G)$, the free abelian monoid with basis G and elements of $\mathcal{F}(G)$ are called sequences over G. A sequence of length l over G can be written in the form $S=g_{1} \cdot \ldots g_{l}$ for some $g_{1}, \ldots, g_{l} \in G$. S is called a zero-sum sequence if the sum of all elements of S is zero, and a zero-sum free sequence if S does not contain a nonempty zero-sum subsequence. If S is a zero-sum sequence, but no proper nontrivial subsequence of S has sum zero, then S is called a minimal zero-sum sequence.

Recall that the index of a sequence S over G is defined as follows.
Definition 1. Let $G=\mathbb{Z}_{n}$, for a sequence $S=\left(n_{1} g\right) \cdot \ldots \cdot\left(n_{l} g\right), 1 \leq n_{1}, \ldots, n_{l} \leq n$, the index of S is defined by $\operatorname{ind}(S)=\min \left\{\|S\|_{g} \mid g \in \mathbb{Z}_{n}\right.$, with $\left.\mathbb{Z}_{n}=\langle g\rangle\right\}$, where $\|S\|_{g}=\frac{n_{1}+\cdots+n_{l}}{\text { ord }(g)}$.

Let S_{1} and S_{2} be two sequences over \mathbb{Z}_{n}. We say that S_{1} is equivalent to S_{2} and write $S_{1} \sim S_{2}$ if S_{2} can be obtained from S_{1} through multiplication by an integer coprime to n and rearrangement of terms. Such multiplication is an affine map preserving all zero sums in \mathbb{Z}_{n}. Certainly, ind $\left(S_{1}\right)=$ $\operatorname{ind}\left(S_{2}\right)$.

The study of long zero-sum free sequences in \mathbb{Z}_{n} has attracted considerable attention recently. There are serval related results on the structure of zero-sum free sequences, and among which W . Gao [6] characterized the zero-sum free sequences of lengths roughly greater than $\frac{2 n}{3}$. S. Savchev and F . Chen [18], and P. Yuan [20] independently proved that each zero-sum free sequence S in \mathbb{Z}_{n} with $|S|>\frac{n}{2}$ has index less than 1 , where $|S|$ is the length of the sequence S. In this paper, we consider the general structure of the zero-sum free sequences S in \mathbb{Z}_{n} of length $\frac{n}{3}+1<|S| \leq \frac{n}{2}$,

[^0]and our first main result (Theorem 3) shows that by removing at most two elements from S, the index of the remaining sequence is not more than $1-\frac{4}{n}$.

Similarly, the n-zero-sum free sequences in \mathbb{Z}_{n} play an important role in the investigation of the structure of zero-sum free sequences. S. Savchev and F. Chen [19] characterized the n-zero-sum free sequences over \mathbb{Z}_{n} of length greater than $\frac{3 n}{2}-1$. In this paper, we investigate n-zero-sum free sequences of length $n+l$, where $\ell \geq \frac{n}{p}+p-2, p$ is the smallest prime dividing n, and our second main result (Theorem 8) provides a general description of such sequences.

We next recall a few more standard notations and terminologies (which follow from that in [10] and [16]).

We denote by $\sigma(S)$ the sum of all terms of S. The maximum multiplicity of a term in S is denoted as $h(S)$. We denote by $\sum(S)$ the set of all subsums of S, and $\sum_{k}(S)$ the set of k-term subsums of S, where $k \in \mathbb{N}$. The union of two sequences S_{1} and S_{2}, denoted $S_{1} S_{2}$, is the sequence formed by appending the terms of S_{2} to S_{1}.

To study the index problem of minimal zero-sum sequences, we usually first investigate the structure of unsplittable minimal zero-sum sequences first. Let S be a minimal zero-sum (resp. zero-sum free) sequence of elements over abelian group G. An element g_{0} in S is called splittable if there exist two elements $x, y \in G$ such that $x+y=g_{0}$ and $S g_{0}^{-1} x y$ is a minimal zero-sum (resp. zero-sum free) sequence as well; otherwise, g_{0} is called unsplittable. S is called splittable if at least one of the elements of S is splittable; otherwise, it is called unsplittable.

We state this easy observation: if S is a minimal zero-sum sequence and S^{\prime} is obtained from S by splitting some elements of S, then $|S| \leq\left|S^{\prime}\right|$ and $\operatorname{ind}(S) \leq \operatorname{ind}\left(S^{\prime}\right)$.

The paper is organized as follows. In the next section, based on a recent result of Y. Li and P. Yuan [21](see also [?]), we give a proof for Theorem 3, and obtain a corresponding proposition on the maximum multiplicities of a term in such zero-sum free sequences. In section 3, we provide a general description on the structure of n-zero-sum free sequences of length $n+l$ over a finite abelian group G of order n, where $\ell \geq n / p+p-2$ and p is the smallest prime dividing n. In the last section, we discuss when subsums of a long zero-sum free sequence may form an interval.

2. On long zero-sum free sequences over \mathbb{Z}_{n}

For a long zero-sum free sequence S over \mathbb{Z}_{n}, if $|S|>n / 2$, then $\operatorname{ind}(S)<1$ [18, 20]. In this section, we consider long zero-sum free sequences of length between $n / 3+1$ and $n / 2$ when $n \geq 50$ is an odd integer.

We recall the following lemma, which is essential to approach our main results.
Lemma 2. [?] Let $n \geq 50$ be an odd integer, and S be an unsplittable minimal zero-sum sequence of length $|S|>\left\lfloor\frac{n}{3}\right\rfloor+2$ over \mathbb{Z}_{n}. If ind $(S) \geq 2$, then

$$
S \sim g^{\alpha}\left(\frac{n+s}{2} g\right)^{2 t}\left(\left(\frac{n-s}{2}+1\right) g\right),
$$

where g is a generator of $\mathbb{Z}_{n}, t \geq 1, s$ is odd with $s \geq 3$ and $2 \alpha+2 t s+2-s=n$. Moreover, $\operatorname{ind}(S)=2$.

Theorem 3. Let $n \geq 50$ be an odd integer, and S be a zero-sum free sequence of length $\left\lfloor\frac{n}{3}\right\rfloor+1<$ $|S| \leq\left\lfloor\frac{n}{2}\right\rfloor$ over \mathbb{Z}_{n}. Then, by removing at most two elements from S, the remaining sequence is equivalent to a sequence whose index is not more than $1-4 / n$.

Proof. Let S be a zero-sum free sequence over \mathbb{Z}_{n} with $l=|S|>\left\lfloor\frac{n}{3}\right\rfloor+1$. Then $S_{1}=S(-\sigma(S))$ is a minimal zero-sum sequence of length $\left|S_{1}\right|>\left\lfloor\frac{n}{3}\right\rfloor+2$. If S_{1} is splittable, then there exist $g_{0} \in S_{1}$ and two elements $x, y \in G$ such that $x+y=g_{0}$ and $S_{2}=S_{1} g_{0}^{-1} x y$ is a minimal zero-sum sequence as well. Continuing the above process, we eventually obtain an unsplittable minimal zero-sum sequence S^{\prime} from S_{1}. Then, we have $\left|S_{1}\right| \leq\left|S^{\prime}\right|$ and

$$
\begin{equation*}
\operatorname{ind}(S)<\operatorname{ind}\left(S_{1}\right) \leq \operatorname{ind}\left(S^{\prime}\right) \tag{1}
\end{equation*}
$$

We divide the proof into two cases.
Case 1: If $\operatorname{ind}\left(S^{\prime}\right) \leq 1$, then $\operatorname{ind}(S)<1$ by (1). Let h be an element of G with $\operatorname{ord}(h)=n$, such that $S \sim\left(n_{1} h\right) \cdot \ldots \cdot\left(n_{l} h\right)$ and $\operatorname{ind}(S)=\|S\|_{h}=\frac{n_{1}+\cdots+n_{l}}{n}$. If there are n_{i} and n_{j} such that $n_{i}+n_{j} \geq 4$ for $1 \leq i \neq j \leq l$, then $\frac{\sum_{k=1}^{l} n_{k}-n_{i}-n_{j}}{n} \leq \frac{\sum_{k=1}^{l} n_{k}-4}{n}<1-\frac{4}{n}$. If for any n_{i}, n_{j}, we have $n_{i}+n_{j} \leq 3$. Then there exists at most one i such that $n_{i}=2$, and for all other $j \neq i, n_{j}=1$. So $\sum_{k=1}^{l} n_{k} \leq\left\lfloor\frac{n}{2}\right\rfloor+1\left(\right.$ as $\left.l \leq\left\lfloor\frac{n}{2}\right\rfloor\right)$, and thus $\operatorname{ind}(S) \leq \frac{\left\lfloor\frac{n}{2}\right\rfloor+1}{n} \leq \frac{1}{2}+\frac{1}{n}<1-\frac{4}{n}$. Therefore, by removing at most two elements from S, the index of the remaining sequence is not more than $1-\frac{4}{n}$.

Case 2: If $\operatorname{ind}\left(S^{\prime}\right)>1$, then by Lemma 2 ,

$$
S^{\prime} \sim g^{\alpha}\left(\frac{n+s}{2} g\right)^{2 t}\left(\left(\frac{n-s}{2}+1\right) g\right)
$$

where $\mathbb{Z}_{n}=\langle g\rangle, t \geq 1, s \geq 3$ and $2 \alpha+2 t s+2-s=n$. Thus

$$
S^{\prime} \sim(2 g)^{\alpha}(s g)^{2 t}((n-s+2) g)
$$

Let $T=(2 g)^{\alpha}(s g)^{2 t}((n-s+2) g)$. It is easy to see that if we remove three elements from T, including $s g$ and $(n-s+2) g$, then the remaining sequence has index not more than $1-4 / n$. If we remove two elements from S such that, including the elements $s g$ and $(n-s+2) g$, at least three terms of T are left out, then the remaining sequence of S has index not more than $1-4 / n$, as desired.

We next estimate a lower bound for $h(S)$. Let S be a zero-sum free sequence over \mathbb{Z}_{n}. An extensively used result of Bovey et al [1] on the constant $h(S)$ states that if $|S|=l>n / 2$, then $h(S) \geq 2 l-n+1$. S. Savchev and F. Chen [18], and P. Yuan [20] gave a more precisely lower bound on $h(S)$ for zero-sum free sequences of length $l>n / 2$ independently. The following theorem provides a lower bound for $h(S)$ when the length of a zero-sum free sequence S is between $\left\lfloor\frac{n}{3}\right\rfloor+1$ and $\left\lfloor\frac{n}{2}\right\rfloor$.

Theorem 4. Let $n \geq 50$ be an odd integer and l be an integer satisfying $\left\lfloor\frac{n}{3}\right\rfloor+1<l \leq\left\lfloor\frac{n}{2}\right\rfloor$. Let S be a zero-sum free sequence of length l over \mathbb{Z}_{n}, and i be an positive integer such that $1 \leq i \leq 3$ and $4 l-4-n \equiv i(\bmod 3)$. If $\operatorname{ind}(S)>1$, then
(a) $h(S) \geq 3 l-2-n$, if $\frac{2 n+5-i}{5} \leq l \leq\left\lfloor\frac{n}{2}\right\rfloor$;
(b) $h(S) \geq\left\lfloor\frac{4 l-4-n}{3}\right\rfloor+1$, if $\left\lfloor\frac{n}{3}\right\rfloor+1<l<\frac{2 n+5-i}{5}$.

Moreover, these estimates are best possible.

Proof. By the assumption and Theorem 3, we may assume that S is of the form

$$
S=(2 g)^{u}(s g)^{v} W g_{1} g_{2},\left\|S\left(g_{1} g_{2}\right)^{-1}\right\|_{g} \leq 1-\frac{4}{n}, \text { and } \operatorname{ind}(S)=\|S\|_{g},
$$

where $s \geq 3, W\left|S, 1 \geq|W| \geq 0\right.$ and $2 g, s g \notin W$. We claim that $g \notin S$. In fact, let S^{\prime} be given as in the proof of Theorem 3. Then $\operatorname{ind}\left(S^{\prime}\right)=\left\|S^{\prime}\right\|_{g}=2$ and $S^{\prime}=(2 g)^{\alpha}(s g)^{2 t}((n-s+2) g)$. If $g \in S$, then since $g \notin S^{\prime} g$ is splittable in S. Thus there exists a subsequence S_{1}^{\prime} of S^{\prime} such that $\sigma\left(S_{1}^{\prime}\right)=g$. Since $\left\|S^{\prime}\right\|_{g}=2$, we must have $n\left\|S_{1}^{\prime}\right\|_{g}=n+1$, so $n\left\|S^{\prime}\left(S_{1}^{\prime}\right)^{-1}\right\|_{g}=(n-1)$. Therefore, $n\|S\|_{g}=n\|g\|_{g}+n\left\|S g^{-1}\right\|_{g} \leq 1+n\left\|S^{\prime}\left(S_{1}^{\prime}\right)^{-1}\right\|_{g}=n$, contradicting $\|S\|_{g}=\operatorname{ind}(S)>1$, and the claim is proved. If $k g \in W$, by the same argument as above we can show that $k>s$. Then

$$
\begin{gather*}
n-4 \geq n| | S\left(g_{1} g_{2}\right)^{-1} \|_{g} \geq 2 u+3(l-2-u)=3 l-6-u . \tag{2}\\
n-4 \geq n\left\|S\left(g_{1} g_{2}\right)^{-1}\right\|_{g} \geq 2 u+3 v+4(l-2-u-v)=4 l-8-2 u-v .
\end{gather*}
$$

The above inequalities yield that $u \geq 3 l-2-n$ and $2 u+v \geq 4 l-4-n$, respectively. Since $h(S) \geq \max \{u, v\}$, it follows that $h(S) \geq \max \left\{3 l-2-n,\left\lceil\frac{4 l-4-n}{3}\right\rceil\right\}$.

We now consider whether we can find some extremal sequences S with $h(S)=3 l-2-n$ and $h(S)=\left\lceil\frac{4 l-4-n}{3}\right\rceil$, respectively.
(a) If $3 l-2-n \geq\left\lceil\frac{4 l-4-n}{3}\right\rceil$, that is, $l \geq \frac{2 n+5-i}{5}$, then we have $h(S) \geq 3 l-2-n$. Suppose there is an extremal sequence S with $h(S)=3 l-2-n$. By $(2), S=(2 g)^{3 l-2-n}(3 g)^{n-2 l} g_{1} g_{2}$. It is easy to check that $S=(2 g)^{3 l-2-n}(3 g)^{n-2 l+1}((n-1) g)$ since S is zero-sum free and $\operatorname{ind}(S)>1$. So S is the only extremal sequence with $h(S)=3 l-2-n$ when $l \geq \frac{2 n+5-i}{5}$.
(b) If $3 l-2-n<\left\lceil\frac{4 l-4-n}{3}\right\rceil$, then $\left\lfloor\frac{n}{3}\right\rfloor+1<l<\frac{2 n+5-i}{5}$. Suppose S is an extremal sequence with $h(S)=\left\lceil\frac{4 l-4-n}{3}\right\rceil$. We consider the following cases:

Case 1. If $i=1$, that is, $\left\lceil\left(\frac{4 l-4-n}{3}\right\rceil=\frac{4 l-2-n}{3}\right.$, then by (3) and the assumption $u=v$, we have $S=(2 g)^{\frac{4 l-2-n}{3}}(3 g)^{\frac{4 l-2-n}{3}}(4 g)^{l-2-2 \frac{4 l-2-n}{3}}\left(g_{1}\right)\left(g_{2}\right)$. Since S is zero-sum free, ind $(S)>1$ and $h(S)=\frac{4 l-2-n}{3}$, we infer that either $S=(2 g)^{\frac{4 l-2-n}{3}}(3 g)^{\frac{4 l-2-n}{3}}(4 g)^{l-1-2 \frac{4 l-2-n}{3}}((n-1) g)$, or $S=$ $(2 g)^{\frac{4 l-2-n}{3}}(3 g)^{\frac{4 l-2-n}{3}}(4 g)^{l-2-2 \frac{4 l-2-n}{3}}(5 g)((n-1) g)$. These are two extremal sequences with $h(S)=$ $\frac{4 l-2-n}{3}=\left\lfloor\frac{4 l-4-n}{3}\right\rfloor+1$.

Case 2. If $i=2$, then $\left\lceil\frac{4 l-4-n}{3}\right\rceil=\frac{4 l-3-n}{3}$. Using the same method as in Case 1, we derive that $S=(2 g)^{\frac{4 l-3-n}{3}}(3 g)^{\frac{4 l-3-n}{3}}(4 g)^{l-1-2 \frac{4 l-3-n}{3}}((n-1) g)$, which is an extremal sequence with $h(S)=$ $\frac{4 l-3-n}{3}=\left\lfloor\frac{4 l-4-n}{3}\right\rfloor+1$.

Case 3. If $i=3$, then $\left\lceil\frac{4 l-4-n}{3}\right\rceil=\frac{4 l-4-n}{3}$, and $S=(2 g)^{\frac{4 l-4-n}{3}}(3 g)^{\frac{4 l-4-n}{3}}(4 g)^{l-2-2 \frac{4 l-4-n}{3}} g_{1} g_{2}$, where $g_{1}, g_{2} \in\{2 g, 3 g,(n-1) g\}$ and at least one of g_{i} is in $\{2 g, 3 g\}$, for $i=1,2$. So, there is no extremal sequence S with $h(S)=\frac{4 l-4-n}{3}$, and thus $h(S) \geq\left\lfloor\frac{4 l-4-n}{3}\right\rfloor+1$. In addition, $S=$ $(2 g)^{\frac{4 l-4-n}{3}+1}(3 g)^{\frac{4 l-4-n}{3}}(4 g)^{l-2-2 \frac{4 l-4-n}{3}}(n-1) g$ and $S=(2 g)^{\frac{4 l-4-n}{3}+1}(3 g)^{\frac{4 l-4-n}{3}+1}(4 g)^{l-2-2 \frac{4 l-4-n}{3}}$ are two extremal sequences with $h(S)=\left\lfloor\frac{4 l-4-n}{3}\right\rfloor+1$.

Therefore, if $\left\lfloor\frac{n}{3}\right\rfloor+1<l<\frac{2 n+5-i}{5}$, then we have $h(S) \geq\left\lfloor\frac{4 l-4-n}{3}\right\rfloor+1$, so the lower bound is best possible.

3. On LONG n-ZERO-SUM FREE SEQUENCES OVER \mathbb{Z}_{n}

In this section, we consider the structure of a long n-zero-sum free sequence over \mathbb{Z}_{n}. Prior to this, we give some properties on a sequence which contains (or does not contain) a zero-sum subsequence of length $|G|$ over a finite abelian group G.

Let G be a finite abelian group, $S=g_{1} \cdot \ldots \cdot g_{m}$ be a sequence over G and $A \subset G$. Let $v_{A}(S)=\left|\left\{1 \leq i \leq m: g_{i} \in A\right\}\right|$. If $A=\{g\}$, we simply let $v_{g}(S)=v_{\{g\}}(S)$. For every subgroup H of G, let S_{H} denote the subsequence of S consisting of all terms of S in H. We need the following beautiful result due to DeVos, Goddyn and Mohar [3]:

Lemma 5. Let ℓ be a positive integer, S be a sequence over a finite abelian group G, and let $H=\operatorname{stab}\left(\sum_{\ell}(S)\right)$. Then,

$$
\left|\sum_{\ell}(S)\right| \geq|H|\left(1-\ell+\sum_{Q \in G / H} \min \left\{\ell, v_{Q}(S)\right\}\right)
$$

Lemma 6. Let G be a finite abelian group, and p be the smallest prime dividing $|G|$. Let $\ell \geq$ $|G| / p+p-2$ be an integer and S be a sequence over G of length $|S|=|G|+\ell$. If $h(S) \leq \ell$, then S contains a zero-sum subsequence of length $|G|$.

Proof. Let $n=|G|$. Assume to the contrary that $0 \notin \sum_{n}(S)$. Then, $\left|\sum_{n}(S)\right| \leq n-1$. Since $\sum_{\ell}(S)=\sigma(S)-\sum_{n}(S)$, we have $\left|\sum_{\ell}(S)\right|=\left|\sum_{n}(S)\right| \leq n-1$. Let $H=\operatorname{stab}\left(\sum_{\ell}(S)\right.$. Now by Lemma 5 we obtain that

$$
\begin{equation*}
|H|\left(1-\ell+\sum_{Q \in G / H} \min \left\{\ell, v_{Q}(S)\right\}\right) \leq n-1 \tag{4}
\end{equation*}
$$

From $\left|\sum_{\ell}(S)\right| \leq n-1$ we have $H \neq G$. If $H=\{0\}$, then by the hypothesis $h(S) \leq \ell$, we infer that

$$
|H|\left(1-\ell+\sum_{Q \in G / H} \min \left\{\ell, v_{Q}(S)\right\}\right)=1-\ell+\sum_{Q \in G / H} \min \left\{\ell, v_{Q}(S)\right\}=1-\ell+|S|=n+1
$$

a contradiction to (4). This proves that $H \neq\{0\}$. Hence, H is a nontrivial proper subgroup of G.
Let $w=\left|\left\{Q \in G / H: v_{Q}(S) \geq \ell+1\right\}\right|$. Now we distinguish three cases to derive a contradiction.
Case 1. If $w=0$, then,

$$
|H|\left(1-\ell+\sum_{Q \in G / H} \min \left\{\ell, v_{Q}(S)\right\}\right)=|H|(1-\ell+|S|)>n+1
$$

a contradiction to (4).
Case 2. If $w \geq 2$, then $1-\ell+\sum_{Q \in G / H} \min \left\{\ell, v_{Q}(S)\right\} \geq 1-\ell+2 \ell=\ell+1$. Since $\ell \geq n / p+p-2 \geq$ $n /|H|+|H|-2$, we infer that

$$
|H|\left(1-\ell+\sum_{Q \in G / H} \min \left\{\ell, v_{Q}(S)\right\}\right) \geq|H|(\ell+1)>n
$$

a contradiction to (4).

Case 3. If $w=1$, then let $R \in G / H$ be the unique coset such that $v_{R}(S) \geq \ell+1$. Thus

$$
1-\ell+\sum_{Q \in G / H} \min \left\{\ell, v_{Q}(S)\right\}=1-\ell+\ell+\left(|S|-v_{R}(S)\right)=n+\ell+1-v_{R}(S)
$$

It follows from (4) that $|H|\left(n+\ell+1-v_{R}(S)\right) \leq n-1$. Therefore,

$$
\begin{aligned}
v_{R}(S) & \geq n+\ell+1-\frac{n}{|H|}+\frac{1}{|H|} \geq n+(n / p+p-2)+1-\frac{n}{|H|}+\frac{1}{|H|} \\
& \geq n+\left(\frac{n}{|H|}+|H|-2\right)+1-\frac{n}{|H|}+\frac{1}{|H|}>n+|H|-1 .
\end{aligned}
$$

Hence, $v_{R}(S) \geq n+|H|$. Let $R=g+H$ with $g \in G$ and $T=-g+S$. Then,

$$
v_{H}(T)=v_{R}(S) \geq n+|H|
$$

By using the Erdős-Ginzburg-Ziv theorem on the subsequence T_{H} of T we can find $\frac{n}{|H|}$ disjoint zero-sum subsequences $T_{1}, \cdots, T_{\frac{n}{|H|}}^{|H|}$ such that $\left|T_{i}\right|=|H|$ for every $i \in\left[1, \frac{n}{|H|}\right]$. Now $T_{1} T_{2} \cdots T_{\frac{n}{|H|}}$ is a zero-sum subsequence of T of length n. Therefore, $g+T_{1} T_{2} \cdots T_{\frac{n}{|H|}}$ is a zero-sum subsequence of S of length n, a contradiction.
Lemma 7. [5] Let G be a finite abelian group, and let $S=0^{h} T$ be a sequence over G with $h=h(S)$. Then,

$$
\sum_{|G|}(S)=\sum_{\geq|G|-h}(S)
$$

Theorem 8. Let G, p, ℓ be as in Lemma 6. Let S be a sequence over G of length $|S|=n+\ell$. Suppose that $0 \notin \sum_{|G|}(S)$. Then, there is an element $g \in G$ such that

$$
-g+S=0^{h} T S^{\prime}
$$

with $h \geq \ell+1, T$ is a zero-sum sequence of length $|T| \leq|G|-h-1$, and S^{\prime} is zero-sum free of length $\left|S^{\prime}\right| \geq \ell+1$.

Proof. The result follows immediately from Lemma 6 and Lemma 7.
Corollary 9. Let p be the smallest prime dividing n, and S be an n-zero-sum free sequence over \mathbb{Z}_{n} of length $|S|=n+\ell$, where $\ell \geq n / p+p-2$ is an integer. Then, there exists $g \in \mathbb{Z}_{n}$ such that

$$
-g+S=0^{h} T S^{\prime}
$$

with $h \geq \ell+1, T$ is a zero-sum sequence of length $|T| \leq n-h-1$, and S^{\prime} is zero-sum free with $\left|S^{\prime}\right| \geq \ell+1$.

Proof. The result follows from Theorem 8.

4. Concluding Remarks

In this section, we discuss the question of whether for each long zero-sum free sequence S, there exists a sequence T, such that $T \sim S$ and subsums of T form an interval (such T is referred as to a smooth sequence). In [18], S. Savchev and F. Chen showed that, for each zero-sum free sequence S of length $|S|>\frac{n}{2}$ over \mathbb{Z}_{n}, there exists a sequence T, such that $T \sim S$ and $\sum(T)=$ $\{1,2, \cdots, \sigma(T)\}=[1, \sigma(T)]$ is an interval. Essentially, they proved that if T is a zero-sum free sequence of length $|T|>\frac{n}{2}$ over \mathbb{Z}_{n} such that $\sigma(T)<n$ (as positive integers), then $1 \in T$ and $\sum(T)=[1, \sigma(T)]$ is an interval, (i.e., T is smooth). In fact, the same result holds under the weaker assumption that $|T| \geq(n+2) / 3$. In what follows, we will show that if S is a zero-sum free sequence over \mathbb{Z}_{n} of length $|S| \geq \frac{n+2}{3}$ such that $1 \in S$ and $\sigma(S)<n$ (as positive integers), then $\sum(S)$ is almost an interval except for some special cases.

Lemma 10. Let S be a sequence with positive integer terms of length $|S| \geq 2$ such that $\sum(S)$ is an interval. Then, for any positive integer $g, \sum(g S)$ is an interval if and only if $g \leq \sigma(S)+1$. In particular, for any $g \in S, \sum(g S)$ is an interval.

Proof. Since $|S| \geq 2$, we may assume $\sum(S)=[a, \sigma(S)]$ with $a<\sigma(S)$. Since $\sigma(S)-1 \in[a, \sigma(S)]$, $1 \in[a, \sigma(S)]$, forcing $a=1$. For any positive integer $g, \sum(g S)=[1, \sigma(S)] \cup\{g\} \cup[1+g, \sigma(S)+g]$. Thus $\sum(g S)$ is an interval $[1, \sigma(S)+g]$ if and only if $g \leq \sigma(S)+1$. In particular, if $g \in S$, we have $g<\sigma(S)+1$, so $\sum(g S)$ is an interval.

Theorem 11. Let S be a sequence with positive integer terms of length $|S|=t>\frac{n+2}{3}$, and $\sigma(S)<n$. If $1 \in S$, then $\sum(S)$ is an interval except for the case when $S=S_{0} n_{l}$, where $\sum\left(S_{0}\right)$ is an interval and $n_{l}>\sigma\left(S_{0}\right)+1$.

Proof. Suppose $S=\left(n_{1}\right)^{t_{1}} \cdot \cdots \cdot\left(n_{l}\right)^{t_{l}}$, where $1=n_{1}<\cdots<n_{l}, \sum_{i=1}^{l} t_{i}=t>\frac{n}{3}$ and $\sigma(S)=$ $\sum_{i=1}^{l} t_{i} n_{i}<n$. Set $\sum(S)=\left\{m_{1}, \cdots, m_{k}\right\}$ with $1=m_{1}<\cdots<m_{k}$. Then $\sum(S)$ is an interval if and only if $m_{i+1}-m_{i}=1$ for $i=1, \cdots, k-1$. Assume to the contrary that $\sum(S)$ is not an interval. Let v be the smallest positive integer such that $m_{v+1}-m_{v} \geq 2$, and let S_{0} be the subsequence of S with largest length such that $\operatorname{supp}\left(S_{0}\right) \subseteq\left\{m_{1}, \cdots, m_{v}\right\}=\left[1, m_{v}\right] \subseteq \sum\left(S_{0}\right)$. $\operatorname{Set} \operatorname{supp}\left(S_{0}\right)=\left\{n_{i_{1}}, \ldots, n_{i_{r}}\right\}$, where $n_{i_{1}}<\ldots<n_{i_{r}}$, and then $S_{0}=n_{i_{1}}^{t_{i_{1}}} \ldots n_{i_{r}}^{t_{i_{r}}}$. Evidently, $n_{i_{1}}=n_{1}=1$. We consider the following two cases.

Case 1. If $v=1$, then $t_{1}=1$ and $n_{2} \geq 3$; otherwise, $\{1,2\}$ are consecutive integers, which is a contradiction to $v=1$. Thus

$$
n>\sigma(S)=\sum_{i=1}^{l} t_{i} n_{i} \geq 1+3(t-1)=3 t-2 \geq 3\left(\frac{n+2}{3}\right)-2=n,
$$

a contradiction.
Case 2. If $v \geq 2$, we first show the following:

$$
\text { Claim. } \sum\left(S_{0}\right)=\left\{m_{1}, \cdots, m_{v}\right\}
$$

We now find a subsequence S_{1} of S_{0}, such that $n_{1} \in S_{1}$ and $\sum\left(S_{1}\right)\left(\subseteq\left\{m_{1}, \cdots, m_{v}\right\}\right)$ forms an interval. In fact, if $t_{1} \geq 2$, then $\sum\left(1^{t_{1}}\right)$ is a desired interval; if $t_{1}=1$, we have $n_{i_{2}}=2$ since $v \geq 2$, and thus $\sum(\{1,2\})=[1,3]$ is an interval.

By the definition of S_{1} and Lemma $10, \sum\left\{S_{1} \cup\left\{n_{i_{k}}\right\}\right\} \subseteq\left\{m_{1}, \cdots, m_{v}\right\}$ is an interval, where $n_{i_{k}}=\min \left\{n_{i_{j}} \mid n_{i_{j}} \in S_{0}\left(S_{1}\right)^{-1}\right\}$, so by applying Lemma 10 repeatedly, we conclude that $\sum S_{1} \cdot n_{i_{k}}^{t_{i_{k}}}$, and thus $\sum\left(n_{i_{1}}^{t_{i_{1}}} \cdot \ldots \cdot n_{i_{r}}^{t_{i_{r}}}\right)$ forms an interval. Therefore, $\sum\left(S_{0}\right)=\left\{m_{1}, \cdots, m_{v}\right\}$ and the claim is confirmed.

Let $n_{j} \in S S_{0}{ }^{-1}$, and let $\left|S_{0}\right|=u$. Again, by Lemma 10, we derive that $n_{j} \geq \sigma\left(S_{0}\right)+2 \geq u+2$, so $u+(t-u)(u+2) \leq \sigma(S) \leq n-1$. Then $u \geq \frac{2 t-3}{2}$ since $t>\frac{n}{3}$, that is, $u=t-1$ or $u=t$. If $u=t$, then $S=S_{0}$ and $\sum(S)$ is an interval. If $u=t-1$, then we have $S=S_{0} n_{l}$, where $\sum\left(S_{0}\right)$ is an interval and $n_{l}>\sigma\left(S_{0}\right)+1$.

We remark that the sequence S in the above theorem can be regarded as a zero-sum free sequence S over \mathbb{Z}_{n} of length $|S| \geq \frac{n+2}{3}$ such that $1 \in S$ and $\sigma(S)<n$ (as positive integers). Such S has $\operatorname{ind}(S)<1$ and it is almost smooth.

References

[1] J.D. Bovey, P. Erdős, I. Niven, Conditions for a zero sum modulo n, Canad. Math. Bull. 18 (1) (1975) 27 C 29.
[2] S.T. Chapman, and W.W Smith, A characterization of minimal zero-sequences of index one in finite cyclic groups, Integers 5(1)(2005), Paper A27, 5p.
[3] M. DeVos, L. Goddyn and B. Mohar, A generalization of Kneser's addition theorem, Adv. Math., 220(2009) 1531-1548.
[4] P. Erdős, A. Ginzburg and A. Ziv, Theorem in the additive number theory, Bull. Res. Council Israel 10F (1961) 41-43.
[5] W.D. Gao, A combinatorial problem on finite abelian groups, J. Number Theory 58 (1996) 100-103.
[6] W.D. Gao, Zero sums in finite cyclic groups, Integers(2000), A12, 7 pp.
[7] W.D. Gao and A. Geroldinger, Zero-sum problems in abelian groups : a survey, Expo. Math. 24 (2006) 337-369.
[8] W. Gao and A. Geroldinger, On products of k atoms, Monatsh. Math. 156 (2009), 141-157.
[9] A. Geroldinger, On non-unique factorizations into irreducible elements. II, Number Theory, Vol II Budapest 1987, Colloquia Mathematica Societatis Janos Bolyai, vol. 51, North Holland, 1990, 723-757.
[10] A. Geroldinger, Additive group theory and non-unique factorizations, in Combinatorial number Theory and Additive Group Theory, eds. A. Geroldinger and I. Ruzsa, Advanced Courses in Mathematics CRM Barcelona (Birkha̋user, Basel, 2009), pp. 1-86.
[11] A. Geroldinger and F. Halter-Koch, Non-Unique Factorizations. Algebraic, Combinatorial and Analytic Theory, volume 278 of Pure and Applied Mathematics. Chapman and Hall/CRC, 2006.
[12] B.Girard, On a combinatorial problem of Erdős, Kleitman and Lemke, Advances Math. 231(2012), 1843 C 1857.
[13] P. Lemke and D. Kleitman, An addition theorem on the integers modulo n, J. Number Theory 31(1989), 335-345.
[14] Y. Li and J. Peng, Minimal zero-sum sequences of length four over finite cyclic groups II, Int. J. Number Theory, 9(2013), 845-866.
[15] Y. Li, C. Plyley, P. Yuan and X. Zeng, Minimal zero sum sequences of length four over finite cyclic groups, J. Number Theory. 130 (2010), 2033-2048.
[16] J. Peng, Y. Li, Minimal zero-sum sequences of length five over finite cyclic groups, Ars Combinatoria, 112(2013), 373-384.
[17] V. Ponomarenko, Minimal zero sequences of finite cyclic groups, Integers 4(2004), Paper A24, 6p.
[18] S. Savchev and F. Chen, Long zero-free sequences in finite cyclic groups, Discrete Math. 307(2007), 2671-2679.
[19] S. Savchev and F. Chen, Long n-zero-free sequences in finite cyclic groups, Discrete Math. 308(2008), 1-8.
[20] P. Yuan, On the index of minimal zero-sum sequences over finite cyclic groups, J. Combin. Theory Ser. A 114(2007), no. 8, 1545-1551.
[21] P. Yuan and Y. Li, Long unsplittable zero-sum sequences over a finite cyclic group, manuscript, 2014.
[22] X. Zheng, P. Yuan and Y. Li, On the structure of long unsplittable minimal zero-sum sequences, manuscript, 2015.

Center for Combinatorics, Nankai University, Tianjin 300071, P.R. China

E-mail address: wdgao1963@yahoo.com.cn

Department of Mathematics, Brock University, St. Catharines, Ontario, Canada, L2S 3A1
E-mail address: yli@brocku.ca

School of Mathematics, South China Normal University, Guanzhou, 510631, P.R. China
E-mail address: mcsypz@mail.sysu.edu.cn

Department of Mathematics, Dalian Maritime University, Dalian, 116026, P. R. China
E-mail address: jjzhuang@dlmu.edu.cn

[^0]: 2010 Mathematics Subject Classification. Primary 11B50; Secondary 11B75. Key Words: Finite cyclic groups; Zero-sum free sequences; n-zero-sum free sequences;
 *Corresponding author: Yuanlin Li, Department of Mathematics, Brock University, St. Catharines, Ontario Canada L2S 3A1. E-mail addresses: yli@brocku.ca (Y. Li),
 May 7, 2015.

