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ABSTRACT. In an additively written abelian group, a sequence is called zero-sum free if each of
its nonempty subsequences has sum different from the zero element of the group. In this paper,
we consider the structure of long zero-sum free sequences and n-zero-sum free sequences over finite
cyclic groups Z,,. Among which, we determines the structure of the long zero-sum free sequences
of length between n/3 + 1 and n/2, where n > 50 is an odd integer, and we provide a general
description on the structure of n-zero-sum free sequences of length n + 1, where £ > n/p+p—2 and
p is the smallest prime dividing n.

1. INTRODUCTION AND NOTATION

Throughout this paper, let G be an additive finite abelian group. The cyclic group of order n
is identified with the additive group Z,, = Z/nZ of integers modulo n. Denote by F(G), the free
abelian monoid with basis G and elements of F(G) are called sequences over G. A sequence of
length [ over G can be written in the form S = g; - ... ¢; for some g1,...,9; € G. § is called a
zero-sum sequence if the sum of all elements of S is zero, and a zero-sum free sequence if S does not
contain a nonempty zero-sum subsequence. If S is a zero-sum sequence, but no proper nontrivial
subsequence of S has sum zero, then S is called a minimal zero-sum sequence.

Recall that the index of a sequence S over G is defined as follows.

Definition 1. Let G = Z,, for a sequence S = (nig) - ... - (ng), 1 < ny,...,n; < n, the index of
S is defined by ind(S) = min{||S|\¢4|g € Zpn, with Z, = (g)}, where ||S||q = %"@"l.

Let S7 and S5 be two sequences over Z,. We say that S is equivalent to So and write S ~ Sy if
S can be obtained from S; through multiplication by an integer coprime to n and rearrangement

of terms. Such multiplication is an affine map preserving all zero sums in Z,. Certainly, ind(S;) =
ind(.S2).

The study of long zero-sum free sequences in Z, has attracted considerable attention recently.
There are serval related results on the structure of zero-sum free sequences, and among which W.
Gao [6] characterized the zero-sum free sequences of lengths roughly greater than %” S. Savchev
and F. Chen [18], and P. Yuan [20] independently proved that each zero-sum free sequence S in Z,
with |S| > § has index less than 1, where |S| is the length of the sequence S. In this paper, we
consider the general structure of the zero-sum free sequences S in Zj, of length § + 1 < [S] < 3,
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and our first main result (Theorem 3) shows that by removing at most two elements from S, the
4

index of the remaining sequence is not more than 1 — =.

Similarly, the n-zero-sum free sequences in Z,, play an important role in the investigation of the
structure of zero-sum free sequences. S. Savchev and F. Chen [19] characterized the n-zero-sum
free sequences over Z, of length greater than 37” — 1. In this paper, we investigate n-zero-sum free
sequences of length n + [, where £ > % 4+ p — 2, p is the smallest prime dividing n, and our second
main result (Theorem 8) provides a general description of such sequences.

We next recall a few more standard notations and terminologies (which follow from that in [10]
and [16]).

We denote by o(S) the sum of all terms of S. The maximum multiplicity of a term in S is
denoted as h(S). We denote by > (5) the set of all subsums of S, and )", (S) the set of k-term
subsums of S, where k£ € N. The union of two sequences S; and So, denoted 57.59, is the sequence
formed by appending the terms of Sy to Si.

To study the index problem of minimal zero-sum sequences, we usually first investigate the
structure of unsplittable minimal zero-sum sequences first. Let S be a minimal zero-sum (resp.
zero-sum free) sequence of elements over abelian group G. An element gg in S is called splittable if
there exist two elements x,y € G such that x +y = go and Sg, l2y is a minimal zero-sum (resp.
zero-sum free) sequence as well; otherwise, gg is called unsplittable. S is called splittable if at least
one of the elements of S is splittable; otherwise, it is called unsplittable.

We state this easy observation: if S is a minimal zero-sum sequence and S’ is obtained from S
by splitting some elements of S, then |S| < |S’| and ind(S) < ind(S5").

The paper is organized as follows. In the next section, based on a recent result of Y. Li and P.
Yuan [21](see also [?]), we give a proof for Theorem 3, and obtain a corresponding proposition on
the maximum multiplicities of a term in such zero-sum free sequences. In section 3, we provide
a general description on the structure of n-zero-sum free sequences of length n + [ over a finite
abelian group G of order n, where ¢ > n/p + p — 2 and p is the smallest prime dividing n. In the
last section, we discuss when subsums of a long zero-sum free sequence may form an interval.

2. ON LONG ZERO-SUM FREE SEQUENCES OVER Zj

For a long zero-sum free sequence S over Zj, if |S| > n/2, then ind(S) < 1 [18, 20]. In this
section, we consider long zero-sum free sequences of length between n/3 + 1 and n/2 when n > 50
is an odd integer.

We recall the following lemma, which is essential to approach our main results.

Lemma 2. [?] Let n > 50 be an odd integer, and S be an unsplittable minimal zero-sum sequence
of length |S| > | 5] + 2 over Zy. If ind(S) > 2, then

n-+s
2

n—s

2

S~ g% 9)*(( +1)g),

where g s a generator of Zn, t > 1, s is odd with s > 3 and 2a + 2ts + 2 — s = n. Moreover,
ind(S) = 2.
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Theorem 3. Let n > 50 be an odd integer, and S be a zero-sum free sequence of length 5] +1 <
|S| < [§]) over Zy. Then, by removing at most two elements from S, the remaining sequence is
equivalent to a sequence whose index is not more than 1 —4/n.

Proof. Let S be a zero-sum free sequence over Z, with [ = |S| > |5 |+ 1. Then S; = S(—0o(5)) is
a minimal zero-sum sequence of length |S1| > [ §] + 2. If Sy is splittable, then there exist go € S

and two elements z,y € G such that z +y = go and S2 = S1g, L2y is a minimal zero-sum sequence
as well. Continuing the above process, we eventually obtain an unsplittable minimal zero-sum
sequence S’ from Sj. Then, we have |S;| < |5’| and

(1) ind(S) < ind(S) < ind(S").

We divide the proof into two cases.

Case 1: If ind(S’) < 1, then ind(S) < 1 by (1). Let h be an element of G with ord(h) = n,
such that S ~ (nih) -...- (nh) and ind(S) = [|S||p = “E42 If there are n; and n; such that

ni+n; >4for 1 <izj<lI, then The L < Zhe 1nn’“ 1 < 1— 4 If for any ni,nj, we have
n; +n; < 3. Then there exists at most one ¢ such that n; = 2, and for all other j # 1, n; = 1. So
Zk:l ng < |5]+1(asl < [5]), and thus ind(S) < % < 3421 <1-2. Therefore, by removing
at most two elements from S, the index of the remaining sequence is not more than 1 — %.

Case 2: If ind(S’) > 1, then by Lemma 2,

PP + 1)),

where Z,, = (g), t > 1, s > 3 and 2a + 2ts +2 — s = n. Thus
'~ (29)*(s9)*((n — 5 + 2)g).

S~ g%(

Let T = (29)%(s9)%((n — s + 2)g). It is easy to see that if we remove three elements from 7,
including sg and (n — s+ 2)g, then the remaining sequence has index not more than 1 —4/n. If we
remove two elements from S such that, including the elements sg and (n — s + 2)g, at least three
terms of T' are left out, then the remaining sequence of S has index not more than 1 — 4/n, as
desired. g

We next estimate a lower bound for h(S). Let S be a zero-sum free sequence over Z,. An
extensively used result of Bovey et al [1] on the constant h(S) states that if |S| =1 > n/2, then
h(S) > 2l —n + 1. S. Savchev and F. Chen [18], and P. Yuan [20] gave a more precisely lower
bound on h(S) for zero-sum free sequences of length I > n/2 independently. The following theorem
provides a lower bound for h(S) when the length of a zero-sum free sequence S is between | % | + 1
and |5 ].

Theorem 4. Let n > 50 be an odd integer and | be an integer satisfying | 5] +1 <1 < [5]. Let
S be a zero-sum free sequence of length 1l over Z,, and i be an positive integer such that 1 < i <3
and 4l —4 —n =i( mod 3). If ind(S) > 1, then

(a) h(S) > 3l —2 —n, if 2L <] < |B];
(6) h(S) > [A=5=2] + 1, if 5] +1 <1< 205,

Moreover, these estimates are best possible.
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Proof. By the assumption and Theorem 3, we may assume that S is of the form

_ 4 .
S = (29)"(s9)"Wgig2, ||S(g192) g <1 — —, and ind(S) = [|S1g,

where s > 3, W|S, 1 > |W| > 0 and 2g,sg ¢ W. We claim that g ¢ S. In fact, let S’ be given
as in the proof of Theorem 3. Then ind(S’) = ||S'||; = 2 and S" = (29)%(s9)* ((n — s + 2)g). If
g € S, then since g ¢ S’ g is splittable in S. Thus there exists a subsequence S} of S” such that

o(S1) = g. Since ||S'||g = 2, we must have n||S]||; = n+ 1, so n|[S"(S]) ||y = (n — 1). Therefore,
n||S|lg = nl|gllg + n||Sg~ ng < 1+n|8(S) 7, = n, contradlctmg [|S]lg = ind(S) > 1, and the

claim is proved. If kg € W, by the same argument as above we can show that & > s. Then

(2) n—4>n||S(g1g2) g > 2u+3(1—2—u) =31 —6—u.

(3) n—4>n|S(g192) Mg > 2u+3v+4(1 -2 —u—v) =4 — 8 —2u —v.

The above inequalities yield that u > 3l — 2 — n and 2u + v > 4]l — 4 — n, respectively. Since
h(S) > max{u,v}, it follows that A(S) > max{3l — 2 — n, [4l_§_”]}.

We now consider whether we can find some extremal sequences S with h(S) = 3] — 2 — n and
h(S) = Vll_%}, respectively.

() If3l—2—n> [‘”‘#L that is, I > 2%45=% then we have h(S) > 3] — 2 — n. Suppose there
is an extremal sequence S with h(S) = 3l — 2 — n. By (2), S = (2¢9)>=27"(39)" 2 g1go. Tt is easy
to check that S = (2¢)3=27"(3g)"2+1((n — 1)g) since S is zero-sum free and ind(S) > 1. So S is
the only extremal sequence with h(S) =3l —2 —n when [ > %

(b) If 31 —2 —n < [H=4=2], then [2] 4+ 1 < I < 25=L Suppose S is an extremal sequence
with h(S) = [41_%] We consider the following cases:

Case 1. If i = 1, that is, [(417;)17”1 =
have S = (29)4173?771 (39)41757 (49)72 2t (gl)(gg). Since S is zero-sum free, ind(S) > 1 and
h(S) = ‘“‘#, we infer that either S = (2 )41737” (39)41737” (4g)l_1_2417§%((n —1)g), or S =
(29) S (39) S (4g)l_2_2417§7" (59)((n — 1)g). These are two extremal sequences with h(S) =

4l—§—n — L4l 4— nJ +1.

4 2=" then by (3) and the assumption v = v, we

Case 2. If 1 = 2, then [4l_§1_ﬂ 4=3-n  Using the same method as in Case 1, we derive that

3
S = (2 )4l_§_n (3g)4l_33_n (4g) —2453= n((n — 1)g), which is an extremal sequence with h(S) =
4l—3—n L4l 4— nJ +1.
3
. A A 4l—4—n 4l—4—n 4l—4—n
Case 3. If ¢ = 3, then [4l § L] = 4 § 2oand S = (29)” 3 (3g)” 3 (4g)l 22275 1o,

where ¢1,¢92 € {2¢,39,(n — 1)g} and at least one of g; is in {2¢g,3¢}, for i = 1,2. So, there is
no extremal sequence S with h(S) = =221 and thus A(S) > [#==2] + 1. In addition, S =

(2) 57 (39) 5 (49)' 5 (0 — g and S = (29)75 7 (3g) T (d4g)! 2
are two extremal sequences with h( ) = 4=+ 1

Therefore, if [2] +1 < I < 25= then we have h(S) > |%=3="] + 1, so the lower bound is
best possible.

0
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3. ON LONG n-ZERO-SUM FREE SEQUENCES OVER Z,

In this section, we consider the structure of a long n-zero-sum free sequence over Z,. Prior
to this, we give some properties on a sequence which contains (or does not contain) a zero-sum
subsequence of length |G| over a finite abelian group G.

Let G be a finite abelian group, S = g1 - ... - gm be a sequence over G and A C G. Let
va(S) =[{1<i<m:g € A}|. If A = {g}, we simply let vy(S) = vy (5). For every subgroup H
of G, let Sy denote the subsequence of S consisting of all terms of S in H. We need the following
beautiful result due to DeVos, Goddyn and Mohar [3]:

Lemma 5. Let ¢ be a positive integer, S be a sequence over a finite abelian group G, and let
H = stab(}_,(S)). Then,

DS = [H[1—e+ Y min{tvg(s)}
L

QeG/H

Lemma 6. Let G be a finite abelian group, and p be the smallest prime dividing |G|. Let £ >
|G|/p+p—2 be an integer and S be a sequence over G of length |S| = |G|+ £. If h(S) < £, then S
contains a zero-sum subsequence of length |G|.

Proof. Let n = |G|. Assume to the contrary that 0 ¢ > (S). Then, |>_ (S)| < n — 1. Since
>u(8) = a(S) = >2,,(5), we have | > ,(S)] = |>,,(S)] < n—1. Let H = stab(}_,(S). Now by

Lemma 5 we obtain that

(4) H| |1—¢+ > min{fug(S)}]| <n-—1.
QeG/H

From | ,(S)] < n—1 we have H # G. If H = {0}, then by the hypothesis h(S) < ¢, we infer that

H| |1+ > min{log(S)} | =1-¢4+ > min{lug(S)}=1-L+]S|=n+1,
QeG/H QeG/H

a contradiction to (4). This proves that H # {0}. Hence, H is a nontrivial proper subgroup of G.
Let w = |{Q € G/H :vg(S) > ¢+ 1}|. Now we distinguish three cases to derive a contradiction.

Case 1. If w = 0, then,

H| 1=+ Y min{t,09(S)} | = H|1—£+]8]) >n+1,
QeG/H

a contradiction to (4).

Case 2. If w > 2, then 1 =04} /g min{l,vQ(S)} = 1-0+20 = {+1. Since £ > n/p+p—2 =
n/|H|+ |H| — 2, we infer that

H| |1—¢+ > min{f,ug(S)} | > |H|(+1) > n,
QeG/H

a contradiction to (4).
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Case 3. If w = 1,then let R € G/H be the unique coset such that vg(S) > ¢ + 1. Thus
L=+ Y min{l,ug(S)} =1L+ 0+ (IS|—vr(S)) =n+L+1—vg(S).
QeG/H
It follows from (4) that |[H|(n + ¢+ 1 —vg(S)) < n — 1. Therefore,
vr(S) Zn+l+ 1= grt g 2nt (n/p+p—2)+1— gr + g

>n+ (g + [Hl = 2) + 1= g+ g >0+ [H| - 1.

Hence, vg(S) > n+ |H|. Let R=g+ H with g € G and T = —g + S. Then,
v (T) =vRr(S) >n+|H|.

By using the Erdés-Ginzburg-Ziv theorem on the subsequence Ty of T' we can find |%‘ disjoint
zero-sum subsequences 17, - - - ’Tﬁ such that |T;| = |H]| for every i € [1, ‘%'] Now 115 - - 'Tlnﬁw is

a zero-sum subsequence of T' of length n. Therefore, g+ T175 - - - Tﬁ is a zero-sum subsequence of
S of length n, a contradiction. O

Lemma 7. [5] Let G be a finite abelian group, and let S = O"T be a sequence over G with h = h(S).

Then,
YIS = > (9.

G| 2|G|=h

Theorem 8. Let G,p,¢ be as in Lemma 6. Let S be a sequence over G of length |S| = n + (.
Suppose that 0 & Z|G‘(S). Then, there is an element g € G such that

—g+8=0"T

with h > 0+ 1, T is a zero-sum sequence of length |T| < |G| —h — 1, and S’ is zero-sum free of
length |S'| > ¢+ 1.

Proof. The result follows immediately from Lemma 6 and Lemma 7. U

Corollary 9. Let p be the smallest prime dividing n, and S be an n-zero-sum free sequence over
Zy, of length |S| = n+ £, where £ > n/p+ p — 2 is an integer. Then, there exists g € Ly, such that

—g+ 8 =078

with h > £+ 1, T is a zero-sum sequence of length |T| < n—h —1, and S’ is zero-sum free with
|S'| > ¢+ 1.

Proof. The result follows from Theorem 8. g

4. CONCLUDING REMARKS

In this section, we discuss the question of whether for each long zero-sum free sequence S, there
exists a sequence 7', such that 7' ~ S and subsums of 7' form an interval (such T is referred
as to a smooth sequence). In [18], S. Savchev and F. Chen showed that, for each zero-sum free
sequence S of length |S| > 5 over Z,, there exists a sequence T', such that 7" ~ S and ) (T) =
{1,2,---,0(T)} = [1,0(T)] is an interval. Essentially, they proved that if T is a zero-sum free
sequence of length |T'| > § over Z, such that o(T") < n (as positive integers), then 1 € T and
Y (T) =[1,0(T)] is an interval, (i.e., T'is smooth). In fact, the same result holds under the weaker
assumption that |T'| > (n+2)/3. In what follows, we will show that if S is a zero-sum free sequence
over Z, of length |S| > ™2 such that 1 € S and 0(S) < n (as positive integers), then > (5) is
almost an interval except for some special cases.
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Lemma 10. Let S be a sequence with positive integer terms of length |S| > 2 such that Y (S) is
an interval. Then, for any positive integer g, > (gS) is an interval if and only if g < o(S)+ 1. In
particular, for any g € S, > (g9S) is an interval.

Proof. Since |S| > 2, we may assume »_(S) = [a,0(S5)] with a < ¢(5). Since o(S) — 1 € [a,0(S5)],
1 € [a,0(S)], forcing a = 1. For any positive integer g, Y (¢9S) = [1,0(S)]U{g} U [l +g,0(S) + g].
Thus Y (¢95) is an interval [1,0(S) + ¢] if and only if g < o(S) + 1. In particular, if g € S, we have
g <a(S)+1,s0 > (g5) is an interval. O

Theorem 11. Let S be a sequence with positive integer terms of length |S| = t > ”T“, and

o(S) <n. If1 €S, then > (S) is an interval except for the case when S = Son;, where > (Sp) is
an interval and n; > (Sp) + 1.

Proof. Suppose S = (n1)" - ... ()%, where 1 = ny < -+ < ny, Zi’:l ti =1t > % and o(5) =
Zi:l tini < mn. Set Y (S) = {mq,--- ,m} with 1 = my < --- < myg. Then > (S5) is an interval
if and only if m;y; —m; = 1 for i = 1,--- ,k — 1. Assume to the contrary that > (S) is not
an interval. Let v be the smallest positive integer such that m,+1 — m, > 2, and let Sy be the
subsequence of S with largest length such that supp(So) C {mi, - ,my} = [1,my] C > (50).

; t; .
1 ir
iy ---n" . Evidently,

Set supp(So) = {ni,,...,n;.}, where n;, < ... < n;., and then Sy = n
ni, = ni; = 1. We consider the following two cases.

Case 1. If v = 1, then ¢; = 1 and ny > 3; otherwise, {1,2} are consecutive integers, which is a
contradiction to v = 1. Thus
l
n>o(S) =Y tin;>1+3(t—1)=3t—2>3(
i=1

n+ 2

) —2=mn,

a contradiction.

Case 2. If v > 2, we first show the following:

Claim. » (So) = {ma,-- ,my}

We now find a subsequence S of Sp, such that ny € S and > (S1)(C {mq,---,m,}) forms an
interval. In fact, if t; > 2, then > (1) is a desired interval; if t; = 1, we have n;, = 2 since v > 2,
and thus > ({1,2}) = [1, 3] is an interval.

By the definition of S and Lemma 10, > {S; U {n; }} € {mq,--- ,m,} is an interval, where
nj, = min{n;;|n;; € So S1)~1}, so by applying Lemma 10 repeatedly, we conclude that >~ S n:;’“,

and thus Z(nzl e nf?) forms an interval. Therefore, > (So) = {mi, -+ ,m,} and the claim is
confirmed.

Let n; € SSp~!, and let |Sp| = u. Again, by Lemma 10, we derive that n; > o(Sp) +2 > u + 2,
sou+ (t—u)(u+2) <o(S) <n—1. Then u > 253 since t > %2, that is, u =t — 1 or u =t. If
u=t, then S = Sy and ) (S) is an interval. If u = ¢ — 1, then we have S = Son;, where > (Sp) is

an interval and n; > o(Sp) + 1.
O
We remark that the sequence S in the above theorem can be regarded as a zero-sum free sequence

S over Zy of length |S| > ™2 such that 1 € S and o(S) < n (as positive integers). Such S has
ind(S) < 1 and it is almost smooth.



WEIDONG GAO, YUANLIN LI*, PINGZHI YUAN, AND JUJUAN ZHUANG

REFERENCES

[1] J.D. Bovey, P. Erdés, I. Niven, Conditions for a zero sum modulo n, Canad. Math. Bull. 18 (1) (1975) 27C29.
[2] S.T. Chapman, and W.W Smith, A characterization of minimal zero-sequences of index one in finite cyclic

groups, Integers 5(1)(2005), Paper A27, 5p.

[3] M. DeVos, L. Goddyn and B. Mohar, A generalization of Kneser’s addition theorem, Adv. Math., 220(2009)

1531-1548.

[4] P. Erdés, A. Ginzburg and A. Ziv, Theorem in the additive number theory, Bull. Res. Council Israel 10F (1961)

41-43.
W.D. Gao, A combinatorial problem on finite abelian groups, J. Number Theory 58 (1996) 100-103.
W.D. Gao, Zero sums in finite cyclic groups, Integers(2000), A12, 7 pp.

W. Gao and A. Geroldinger, On products of k atoms, Monatsh. Math. 156 (2009), 141-157.
A. Geroldinger, On non-unique factorizations into irreducible elements. II, Number Theory, Vol II Budapest
1987, Colloquia Mathematica Societatis Janos Bolyai, vol. 51, North Holland, 1990, 723- 757.

]
]
] W.D. Gao and A. Geroldinger, Zero-sum problems in abelian groups : a survey, Expo. Math. 24 (2006) 337-369.
|
]

[10] A. Geroldinger, Additive group theory and non-unique factorizations, in Combinatorial number Theory and

Additive Group Theory, eds. A. Geroldinger and I. Ruzsa, Advanced Courses in Mathematics CRM Barcelona
(Birkh&user, Basel, 2009), pp. 1-86.

[11] A. Geroldinger and F. Halter-Koch, Non-Unique Factorizations. Algebraic, Combinatorial and Analytic Theory,

volume 278 of Pure and Applied Mathematics. Chapman and Hall/CRC, 2006.

12] B.Girard, On a combinatorial problem of Erdds, Kleitman and Lemke, Advances Math. 231(2012), 1843C1857.
] P. Lemke and D. Kleitman, An addition theorem on the integers modulo n, J. Number Theory 31(1989), 335-345.

[14] Y. Li and J. Peng, Minimal zero-sum sequences of length four over finite cyclic groups II, Int. J. Number Theory,

9(2013), 845-866.

[15] Y. Li, C. Plyley, P. Yuan and X. Zeng, Minimal zero sum sequences of length four over finite cyclic groups, J.

Number Theory. 130 (2010), 2033-2048.

[16] J. Peng, Y. Li, Minimal zero-sum sequences of length five over finite cyclic groups, Ars Combinatoria, 112(2013),

373-384.

V. Ponomarenko, Minimal zero sequences of finite cyclic groups, Integers 4(2004), Paper A24, 6p.

S. Savchev and F. Chen, Long zero-free sequences in finite cyclic groups, Discrete Math. 307(2007), 2671-2679.
S. Savchev and F. Chen, Long n-zero-free sequences in finite cyclic groups, Discrete Math. 308(2008), 1-8.

P. Yuan, On the index of minimal zero-sum sequences over finite cyclic groups, J. Combin. Theory Ser. A
114(2007), no. 8, 1545-1551.

[21] P. Yuan and Y. Li, Long unsplittable zero-sum sequences over a finite cyclic group, manuscript, 2014.
[22] X. Zheng, P. Yuan and Y. Li, On the structure of long unsplittable minimal zero-sum sequences, manuscript,

2015.

CENTER FOR COMBINATORICS, NANKAI UNIVERSITY, TIANJIN 300071, P.R. CHINA

E-mail address: wdgao1963@yahoo.com.cn

DEPARTMENT OF MATHEMATICS, BROCK UNIVERSITY, ST. CATHARINES, ONTARIO, CANADA, L2S 3A1

E-mail address: yli@brocku.ca

SCHOOL OF MATHEMATICS, SOUTH CHINA NORMAL UNIVERSITY, GUANZHOU, 510631, P.R. CHINA

E-mail address: mcsypz@mail.sysu.edu.cn

DEPARTMENT OF MATHEMATICS, DALIAN MARITIME UNIVERSITY, DALIAN, 116026, P. R. CHINA

E-mail address: jjzhuang@dlmu.edu.cn



