Note on the spanning-tree packing number of lexicographic product graphs*

Hengzhe Li^{1}, Xueliang Li^{1}, Yaping Mao ${ }^{1,2}$, Jun Yue ${ }^{1}$
${ }^{1}$ Center for Combinatorics and LPMC-TJKLC
Nankai University, Tianjin 300071, China
${ }^{2}$ Department of Mathematics, Qinghai Normal University, Xining, Qinghai 810008, China
E-mails:lhz2010@mail.nankai.edu.cn; lxl@nankai.edu.cn; maoyaping@ymail.com; yuejun06@126.com

Abstract

The spanning-tree packing number of a graph G is the maximum number of edgedisjoint spanning trees contained in G. In this paper, we obtain a sharp lower bound for the spanning-tree packing number of lexicographic product graphs.

Keywords: connectivity; edge-disjoint spanning trees; packing; lexicographic product.

AMS subject classification 2010: 05C40; 05C05; 05C70; 05C76.

1 Introduction

All graphs in this paper are undirected, finite and simple. For any graph G of order n, the spanning-tree packing number of G, denoted by $\sigma(G)$, is the maximum number of edge-disjoint spanning trees contained in G. This has been used as measure of reliability of communication network, and studied by several authors, see the surveys by Palmer [9] and Ozeki and Yamashita [8]. It is worth pointing out that for a given graph G, the maximum number of edge-disjoint spanning trees in G can be found in polynomial time; see [12] (Page 879). Actually, Roskind and Tarjan [11] proposed a $O\left(m^{2}\right)$ time algorithm for finding the maximum number of edge-disjoint spanning trees in a graph, where m is the number of edges in the graph.

In [10], Peng and Tay determined the spanning-tree packing numbers of Cartesian products of various combinations of complete graphs, cycles, complete multipartite graphs.

[^0]Later, Ku, Wang and Hung [5] obtained the following result: $\sigma(G \square H) \geq \sigma(G)+\sigma(H)-1$ for two connected graphs G and H.

In this paper, we focus our attention on another graph product, called lexicographic product. The lexicographic product (sometimes known as composition) of two graphs G and H, written as $G \circ H$, is defined as follows: The vertex set of $G \circ H$ is $V(G) \times V(H)$; and any two distinct vertices (u, v) and $\left(u^{\prime}, v^{\prime}\right)$ of $G \circ H$ are adjacent if and only if either $\left(u, u^{\prime}\right) \in E(G)$ or $u=u^{\prime}$ and $\left(v, v^{\prime}\right) \in E(H)$. Note that, unlike the Cartesian product, the lexicographic product is a non-commutative product since $G \circ H$ is usually not isomorphic to $H \circ G$. It is easy to see that $|E(G \circ H)|=|E(H)||V(G)|+|E(G)||V(H)|^{2}$.

Theorem 1 Let G and H be two connected nontrivial graphs, and let $\sigma(G)=k, \sigma(H)=\ell$, $|V(G)|=n_{1}\left(n_{1} \geq 2\right)$, and $|V(H)|=n_{2}\left(n_{2} \geq 2\right)$. Then
(1) if $k n_{2}=\ell n_{1}$, then $\sigma(G \circ H) \geq k n_{2}\left(=\ell n_{1}\right)$;
(2) if $\ell n_{1}>k n_{2}$, then $\sigma(G \circ H) \geq k n_{2}-\left\lceil\frac{k n_{2}-1}{n_{1}}\right\rceil+\ell-1$;
(3) if $\ell n_{1}<k n_{2}$, then $\sigma(G \circ H) \geq k n_{2}-2\left\lceil\frac{k n_{2}}{n_{1}+1}\right\rceil+\ell$.

Moreover, the bounds are sharp.

2 Proof of Theorem 1

Throughout this paper, assume that G and H are two connected graphs with $V(G)=$ $\left\{u_{1}, u_{2}, \ldots, u_{n_{1}}\right\}$ and $V(H)=\left\{v_{1}, v_{2}, \ldots, v_{n_{2}}\right\}$, respectively. For $v \in V(H)$, we use $G(v)$ to denote the subgraph of $G \circ H$ induced by the vertex set $\left\{\left(u_{j}, v\right) \mid 1 \leq j \leq n_{1}\right\}$. Similarly, for $u \in V(G)$, we use $H(u)$ to denote the subgraph of $G \circ H$ induced by the vertex set $\left\{\left(u, v_{i}\right) \mid 1 \leq i \leq n_{2}\right\}$. We refer to the book [1] for graph theoretic notation and terminology not described here. In the sequel, we let $\sigma(G)=k, \sigma(H)=\ell$, and $T_{1}, T_{2}, \cdots, T_{k}$ be k edge-disjoint spanning trees in G and $T_{1}^{\prime}, T_{2}^{\prime}, \cdots, T_{\ell}^{\prime}$ be ℓ edge-disjoint spanning trees in H.

The proof consists of two steps: in the first step (presented in Section 2.1), we decompose $G \circ H$ into small graphs; in the second step (presented in Section 2.2), we divide these small graphs into groups and combine the small graphs in each group into a spanning tree of $G \circ H$, thus obtaining the desired number of edge-disjoint spanning trees. After the second step, we can obtain a lower bound of $\sigma(G \circ H)$.

The details are given below.

2.1 Graph decomposition

From the definition, the lexicographic product graph $G \circ H$ is a graph obtained by replacing each vertex of G by a copy of H and replacing each edge of G by a complete bipar-
tite graph $K_{n_{2}, n_{2}}$. For an edge $e=u_{i} u_{j} \in E(G)\left(1 \leq i, j \leq n_{1}\right)$, the induced subgraph obtained from the edges between the vertex set $V\left(H\left(u_{i}\right)\right)=\left\{\left(u_{i}, v_{1}\right),\left(u_{i}, v_{2}\right), \cdots,\left(u_{i}, v_{n_{2}}\right)\right\}$ and the vertex set $V\left(H\left(u_{j}\right)\right)=\left\{\left(u_{j}, v_{1}\right),\left(u_{j}, v_{2}\right), \cdots,\left(u_{j}, v_{n_{2}}\right)\right\}$ in $G \circ H$ is a complete equipartition bipartite graph of order $2 n_{2}$, denoted by K_{e} or $K_{u_{i}, u_{j}}$. Obviously, K_{e} can be decomposed into n_{2} perfect matching, denoted by $M_{1}^{e}, M_{2}^{e}, \ldots, M_{n_{2}}^{e}$.

For each $T_{i}(1 \leq i \leq k)$ in G, we define a spanning subgraph \mathcal{T}_{i} of $G \circ H$ corresponding to T_{i} as follows: $V\left(\mathcal{T}_{i}\right)=V(G \circ H)$ and $E\left(\mathcal{T}_{i}\right)=\left\{\left(u_{p}, v_{s}\right)\left(u_{q}, v_{t}\right) \mid u_{p} u_{q} \in E\left(T_{i}\right), u_{p}, u_{q} \in\right.$ $\left.V(G), v_{s}, v_{t} \in V(H)\right\}$. We call \mathcal{T}_{i} a blow-up graph corresponding to T_{i} in G; see Figure 1 for an example.

Figure 1: The blow-up graph \mathcal{T}_{i} and parallel forest $\mathcal{F}_{i, j}$ in $G \circ H$ corresponding to T_{i} in G.

For each $i(1 \leq i \leq k)$ and $j\left(1 \leq j \leq n_{2}\right)$, we define another spanning subgraph $\mathcal{F}_{i, j}$ of $G \circ H$ corresponding to T_{i} in G as follows: $V\left(\mathcal{F}_{i, j}\right)=V(G \circ H)$ and $E\left(\mathcal{F}_{i, j}\right)=\bigcup_{e \in E\left(T_{i}\right)} M_{i, j}^{e}$, where $M_{i, j}^{e}$ is a matching of $K_{e}\left(M_{i, j}^{e}\right.$ will be chosen later $)$. We call $\mathcal{F}_{i, j}$ a parallel forest of $G \circ H$ corresponding to the tree T_{i} in G; see Figure 1 for an example.

Similarly, for a spanning tree $T_{j}^{\prime}(1 \leq j \leq \ell)$ in H, we define a spanning subgraph \mathcal{F}_{j}^{\prime} of $G \circ H$ as follows: $V\left(\mathcal{F}_{j}^{\prime}\right)=V(G \circ H)$ and $E\left(\mathcal{F}_{j}^{\prime}\right)=\left\{\left(u, v_{s}\right)\left(u, v_{t}\right) \mid u \in V(G), v_{s} v_{t} \in E\left(T_{j}\right)\right\}$. Clearly, $\mathcal{F}_{j}^{\prime}=\bigcup_{u_{i} \in V(G)} T_{j}^{\prime}\left(u_{i}\right)$, where $V\left(T_{j}^{\prime}\left(u_{i}\right)\right)=\left\{\left(u_{i}, v\right) \mid v \in V(H)\right\}$ and $E\left(T_{j}^{\prime}\left(u_{i}\right)\right)=$ $\left\{\left(u_{i}, v_{s}\right)\left(u_{i}, v_{t}\right) \mid u_{i} \in V(G), v_{s} v_{t} \in E\left(T_{j}^{\prime}\right)\right\}$. We call each of $\mathcal{F}_{j}^{\prime}(1 \leq i \leq \ell)$ a vertical forest of $G \circ H$ corresponding to the tree T_{j}^{\prime} in H. The tree $T_{j}^{\prime}\left(u_{i}\right)$ is called the isomorphic tree of $T_{j}^{\prime}(1 \leq i \leq \ell)$ in $H\left(u_{i}\right)$. So, for each tree T_{j}^{\prime} of H there are n_{1} edge-disjoint isomorphic
trees $T_{j}^{\prime}\left(u_{i}\right)\left(1 \leq i \leq n_{1}\right)$ in $G \circ H$.
The following results are useful for our proof, which were obtained by Dirac [3]; see Laskar and Auerbach [6].

Proposition $2[3,6]$ (1) For all even $r \geq 2, K_{r, r}$ is the union of its $\frac{1}{2} r$ Hamiltonian cycles.
(2) For all odd $r \geq 3, K_{r, r}$ is the union of its $\frac{1}{2} r$ Hamiltonian cycles and one perfect matching.

For $r \geq 2$, the complete equipartition bipartite graph $K_{r, r}$ can be decomposed into $\left\lfloor\frac{r}{2}\right\rfloor$ Hamiltonian cycles for r even, or $\left\lfloor\frac{r}{2}\right\rfloor$ Hamiltonian cycles and one perfect matching for r odd. We call each Hamiltonian cycle in the decomposition a good cycle.

We now decompose the above blow-up graph $\mathcal{T}_{i}(1 \leq i \leq k)$ in $G \circ H$ corresponding to T_{i} in G into our desired n_{2} parallel forests by Proposition 2.

Lemma 3 The blow-up graph \mathcal{T}_{i} corresponding to the tree T_{i} in G can be decomposed into n_{2} parallel forests corresponding to the tree T_{i}, say $\mathcal{F}_{i, 1}, \mathcal{F}_{i, 2}, \cdots, \mathcal{F}_{i, n_{2}}$, such that there exist $2 x$ parallel forests $\mathcal{F}_{i, 1}, \mathcal{F}_{i, 2}, \cdots, \mathcal{F}_{i, 2 x}$ such that $\mathcal{F}_{i, 2 j-1} \cup \mathcal{F}_{i, 2 j}\left(1 \leq j \leq x \leq\left\lfloor\frac{n_{2}}{2}\right\rfloor\right)$ contains exactly $n_{1}-1$ good cycles.

Proof. We decompose $G \circ H$ as follows:
(i) for every $i \in[k]$ and $e \in T_{i}$, by Proposition 2 , we decompose K_{e} into n_{2} disjoint perfect matchings $M_{i, 1}^{e}, \cdots, M_{i, n_{2}}^{e}$ such that $M_{i, 2 j+1}^{e} \cup M_{i, 2 j+2}^{e}$ is a Hamilton cycle (which we call a good cycle) for every $j \leq\left\lfloor n_{2} / 2\right\rfloor-1$;
(ii) for every $i \in[k]$, we have that, for every $e=u w \in E\left(T_{i}\right), e^{\prime}=u^{\prime} w^{\prime} \in E\left(T_{i}\right)$ and $t \in\left[n_{2}\right]$, the matchings $\left\{v z:\{(u, v),(w, z)\} \in M_{t}^{e}\right\}$ and $\left\{v z:\left\{\left(u^{\prime}, v\right),\left(w^{\prime}, z\right)\right\} \in M_{t}^{e^{\prime}}\right\}$ are the same.

We give the definition of $\mathcal{F}_{i, j}$ as follows: $\mathcal{F}_{i, j}=\bigcup_{e \in E\left(T_{i}\right)} M_{i, j}^{e}$, where $1 \leq j \leq\left\lfloor n_{2} / 2\right\rfloor$. For each $e \in E\left(T_{i}\right), K_{e} \cap\left(\mathcal{F}_{i, 2 j-1} \cup \mathcal{F}_{i, 2 j}\right)$ is a good cycle, where $1 \leq j \leq r$. Since $\left|E\left(T_{i}\right)\right|=n_{1}-1$, this implies that, for $1 \leq j \leq\left\lfloor n_{2} / 2\right\rfloor, \mathcal{F}_{i, 2 j-1} \cup \mathcal{F}_{i, 2 j}$ contains exactly $n_{1}-1$ good cycles. So all the edges of $T_{i} \circ H$ can be decomposed into n_{2} parallel forests $\mathcal{F}_{i, 1}, \mathcal{F}_{i, 2}, \cdots, \mathcal{F}_{i, n_{2}}$ such that there exist $2 x$ parallel forests $\mathcal{F}_{i, 1}, \mathcal{F}_{i, 2}, \cdots, \mathcal{F}_{i, 2 x}$ such that $\mathcal{F}_{i, 2 j-1} \cup \mathcal{F}_{i, 2 j}\left(1 \leq j \leq x \leq\left\lfloor n_{2} / 2\right\rfloor\right)$ contains exactly $n_{1}-1$ good cycles. The proof is now complete.

2.2 Graph combination

Recall that $\sigma(G)=k$ and T_{1}, \cdots, T_{k} are edge-disjoint spanning trees of G (as defined in the beginning of Section 2.1) and that $\mathcal{F}_{i, j}\left(1 \leq i \leq k, 1 \leq j \leq n_{2}\right)$ corresponding to
T_{i} in H are the parallel forests obtained by Lemma 3. Similarly, $\sigma(H)=\ell$ and $T_{1}^{\prime}, \cdots, T_{\ell}^{\prime}$ are edge-disjoint spanning trees of H (as defined in the beginning of Section 2.1) and that $\mathcal{F}_{j}^{\prime}(1 \leq j \leq \ell)$ are the vertical forests corresponding to T_{j}^{\prime} of H.

After the above preparations, we now give the proof of Theorem 1.
Proof of (1): Since the union of any tree in $\left\{T_{j}^{\prime}\left(u_{i}\right) \mid 1 \leq i \leq n_{1}, 1 \leq j \leq \ell\right\}$ with any parallel forest in $\left\{\mathcal{F}_{i, j} \mid 1 \leq i \leq k, 1 \leq j \leq n_{2}\right\}$ is a spanning tree of $G \circ H$, we can get $k n_{2}=\ell n_{1}$ edge-disjoint spanning trees in $G \circ H$. Thus, $\sigma(G \circ H) \geq k n_{2}\left(=\ell n_{1}\right)$.

Proof of (2): Note that $\left\{\mathcal{F}_{i, j} \mid 1 \leq i \leq k, 1 \leq j \leq n_{2}\right\} \backslash\left\{\mathcal{F}_{k, n_{2}}\right\}$ is a set of $k n_{2}-1$ edge-disjoint parallel forests and, for $1 \leq x \leq \ell,\left\{T_{i, j}^{\prime} \mid 1 \leq i \leq x, 1 \leq j \leq n_{1}\right\}$ is a set of $x n_{1}$ edge-disjoint trees. The union of any forest in $\left\{\mathcal{F}_{i, j} \mid 1 \leq i \leq k, 1 \leq j \leq n_{2}\right\} \backslash\left\{\mathcal{F}_{k, n_{2}}\right\}$ with any tree in $\left\{T_{i, j}^{\prime} \mid 1 \leq i \leq x, 1 \leq j \leq n_{1}\right\}$ is a spanning tree of $G \circ H$. We set $x=\left\lceil\frac{k n_{2}-1}{n_{1}}\right\rceil$ so that $x n_{1} \geq k n_{2}-1$. Since $\ell n_{1}>k n_{2}$, it follows that $\left\lceil\frac{k n_{2}-1}{n_{1}}\right\rceil \leq \ell$ and hence $x \leq \ell$. Thus, we can obtain $k n_{2}-1$ edge-disjoint spanning tree of $G \circ H$.

Recall that we also have $\ell-x$ vertical forests $\mathcal{F}_{x+1}^{\prime}, \mathcal{F}_{x+2}^{\prime}, \cdots, \mathcal{F}_{\ell}^{\prime}$. We now find some spanning trees of $G \circ H$ from the union of $\mathcal{F}_{k, n_{2}}$ and the above $\ell-x$ vertical forests. By the definition of the vertical forest $\mathcal{F}_{k, n_{2}}$, it is the union of n_{2} vertex-disjoint trees isomorphic to T_{k}, say $T_{k, 1}, T_{k, 2}, \cdots, T_{k, n_{2}}$. Note that the union of any vertical forest in $\left\{\mathcal{F}_{x+1}^{\prime}, \mathcal{F}_{x+2}^{\prime}, \cdots, \mathcal{F}_{\ell}^{\prime}\right\}$ and any tree in $\left\{T_{k, 1}, T_{k, 2}, \cdots, T_{k, n_{2}}\right\}$ is a spanning tree of $G \circ H$. Since $\ell-x \leq \ell \leq\left\lfloor\frac{n_{2}}{2}\right\rfloor \leq n_{2}$, we can obtain $\ell-x$ edge-disjoint spanning trees of $G \circ H$.

From the above arguments, the total number of the edge-disjoint spanning trees is at least $\left(k n_{2}-1\right)+(\ell-x)$. Thus, $\sigma(G \circ H) \geq k n_{2}-1+\ell-x=k n_{2}-\left\lceil\frac{k n_{2}-1}{n_{1}}\right\rceil+\ell-1$.

Proof of (3): Let $\mathcal{F}_{i, j}\left(1 \leq i \leq k, 1 \leq j \leq n_{2}\right)$ be the $k n_{2}$ parallel forests in $G \circ H$ corresponding to $T_{i}(1 \leq i \leq k)$ in Lemma 3. Pick up $2 x$ parallel forests from $\left\{\mathcal{F}_{i, j} \mid 1 \leq i \leq k, 1 \leq j \leq n_{2}\right\}$, say $\mathcal{F}_{a_{1}, b_{1}}, \mathcal{F}_{a_{1}, c_{1}}, \mathcal{F}_{a_{2}, b_{2}}, \mathcal{F}_{a_{2}, c_{2}}, \cdots, \mathcal{F}_{a_{x}, b_{x}}, \mathcal{F}_{a_{x}, c_{x}}$ where $a_{i} \in\{1,2, \cdots, k\}(1 \leq i \leq x)$ and $b_{i}, c_{i} \in\left\{1,2, \cdots, n_{2}\right\}(1 \leq i \leq x)$, such that $\mathcal{F}_{a_{i}, b_{i}} \cup \mathcal{F}_{a_{i}, c_{i}}(1 \leq i \leq x)$ contains $\left(n_{1}-1\right)$ good cycles. Note that we have to choose $x \leq k\left\lfloor n_{2} / 2\right\rfloor$. Thus we can obtain $x\left(n_{1}-1\right)$ good cycles from the above $2 x$ parallel forests. Now we still have $k n_{2}-2 x$ parallel forests. Note that the union of any of these $k n_{2}-2 x$ parallel forests with any of those $x\left(n_{1}-1\right)$ good cycles is a spanning subgraph of $G \circ H$, which contains a spanning tree of $G \circ H$. If $x\left(n_{1}-1\right) \geq k n_{2}-2 x$, then we can obtain $k n_{2}-2 x$ edge-disjoint spanning trees of $G \circ H$. We set $x=\left\lceil\frac{k n_{2}}{n_{1}+1}\right\rceil$ so that x is the smallest possible integer satisfying $x\left(n_{1}-1\right) \geq k n_{2}-2 x$. Since $k n_{2}>\ell n_{1}$, it follows that $x=\left\lceil\frac{k n_{2}}{n_{1}+1}\right\rceil \geq 1$. Since $x \leq k\left\lfloor n_{2} / 2\right\rfloor$, we need to show that $\left\lceil\frac{k n_{2}}{n_{1}+1}\right\rceil \leq k\left\lfloor\frac{n_{2}}{2}\right\rfloor$. Therefore, it suffices to prove that $\frac{k n_{2}+n_{1}}{n_{1}+1} \leq k \frac{n_{2}-1}{2}$, that is, $k\left(n_{1}-1\right)\left(n_{2}-1\right)-2 n_{1}-2 k \geq 0$. Since $k \leq\left\lfloor\frac{n_{1}}{2}\right\rfloor$, we need to show that $k\left(n_{1}-1\right)\left(n_{2}-1\right)-3 n_{1} \geq 0$. Since $k \geq 1$ and $n_{1} \geq 2$, it follows that $k\left(n_{1}-1\right)\left(n_{2}-1\right)-3 n_{1}=\left(n_{1}-1\right)\left(k\left(n_{2}-1\right)-3\right)-3 \geq k\left(n_{2}-1-3\right)-3 \geq n_{2}-1-3-3 \geq 0$ for $n_{2} \geq 7$. So, the above inequality holds for $n_{2} \geq 7$, as desired. One can check that the equality $\left\lceil\frac{k n_{2}}{n_{1}+1}\right\rceil \leq k\left\lfloor\frac{n_{2}}{2}\right\rfloor$ also holds for $2 \leq n_{2} \leq 6$. Thus we get $k n_{2}-2\left\lceil\frac{k n_{2}}{n_{1}+1}\right\rceil$ spanning tree of $G \circ H$ from the parallel forests.

From the above arguments we can see that by combining a parallel forest and a good cycle (Hamiltonian cycle) we form a spanning subgraph of size $\left(n_{1}+1\right) n_{2}$, which contains a spanning tree of $G \circ H$ of size $n_{1} n_{2}-1$. Clearly, some edges of such a spanning subgraph are not used in the construction of a spanning tree of $G \circ H$. Our aim is to choose some of such unused edges and combine them with all the n_{1} copies $H\left(u_{1}\right), H\left(u_{2}\right), \cdots, H\left(u_{n_{1}}\right)$ of H in $G \circ H$ to form ℓ edge-disjoint spanning trees of $G \circ H$. Without loss of generality, assume that $a_{1}=1, b_{1}=1$ and $c_{1}=2$. Then $\mathcal{F}_{1,1} \cup \mathcal{F}_{1,2}$ contains ($n_{1}-1$) good cycles. Let $C_{1,1}^{e}$ be a good cycle in $\mathcal{F}_{1,1} \cup \mathcal{F}_{1,2}$, where $e \in E\left(T_{1}\right)$. Suppose that $\mathcal{F}_{i, j}$ be a parallel forest that is not used to construct good cycles. Then we have the following claim.
Claim 1. For each edge $e \in E\left(T_{1}\right)$, there exists a subset $E_{1,1}^{e}$ of $E\left(C_{1,1}^{e}\right)$ such that $\left|E_{1,1}^{e}\right|=n_{2}-1$ and $\mathcal{F}_{i, j} \cup E_{1,1}^{e}$ is a spanning tree of $G \circ H$.
Proof of Claim 1: Let u and w denote the endpoints of e. Recall that the parallel forest $\mathcal{F}_{i, j}$ consists of n_{2} vertex-disjoint isomorphic trees, each containing exactly one vertex of $H(u)$ for every $u \in V(H)$. Let $R_{1}, \cdots, R_{n_{2}}$ be such trees, and let P be the path joining u and w in T_{i} and $\mathcal{P}=\left\{P_{(u, v)(w, z)}: P_{(u, v)(w, z)}\right.$ is the path joining (u, v) and (w, z) in R_{i} for $\left.i \in\left[n_{2}\right]\right\}$. Then \mathcal{P} consists of n_{2} isomorphic paths. The connected components of the graph formed by $\mathcal{P} \cup M_{1, j}^{e}$ consist of a collection of disjoint cycles, say C_{1}, \cdots, C_{m}. For every $i \in[m]$, let f_{i} denote an arbitrary edge in C_{i} and let $D_{i}=C_{i} \backslash\left\{f_{i}\right\}$. Since the spanning subgraph of K_{e} with edge set $M_{1,1}^{e} \cup M_{1,2}^{e}$ is connected (it is a Hamilton cycle), there is a set of $S^{e} \subseteq M_{1,2}^{e}$ of size $m-1$ such that the $S^{e} \cup \bigcup_{i=1}^{m} D_{i}$ is connected. Thus, by defining $E_{1,1}^{e}=\left(S^{e} \cup M_{1,1}^{e} \backslash\left\{f_{i}: i \in[m]\right\}\right.$, we have that $\left|E_{1,1}^{e}\right|=n_{2}-1$ and $E_{1,1}^{e} \cup \mathcal{F}_{i, j}$ is a spanning tree of $G \circ H$.

From Claim 1, for each good cycle $C_{1,1}^{e}$ in $\mathcal{F}_{1,1} \cup \mathcal{F}_{1,2}$, we can find a subset $E_{1,1}^{e}$ of $E\left(C_{1,1}^{e}\right)$ such that $\left|E_{1,1}^{e}\right|=n_{2}-1$ and $\mathcal{F}_{i, j} \cup E_{1,1}^{e}$ is a spanning tree of $G \circ H$, where $\mathcal{F}_{i, j}$ is a parallel forest that was not used in the construction of good cycles. For the good cycle $C_{1,1}^{e}$ of $\mathcal{F}_{1,1} \cup \mathcal{F}_{1,2}$ where $e \in E\left(T_{1}\right)$, we define a set $\bar{E}_{1,1}^{e}$ of edges as follows: if it was used in the construction of a spanning tree of $G \circ H$, then $\bar{E}_{1,1}^{e}=E\left(C_{1,1}^{e}\right) \backslash E_{1,1}^{e}$; otherwise, $\bar{E}_{1,1}^{e}=E\left(C_{1,1}^{e}\right)$. Then $\left|\bar{E}_{1,1}^{e}\right| \geq n_{2}+1 \geq \ell$.

We are now in a position to combine some edges of the set $\bigcup_{e \in E\left(T_{1}\right)} \bar{E}_{1,1}^{e}$ of edges with all the n_{1} copies $H\left(u_{1}\right), H\left(u_{2}\right), \cdots, H\left(u_{n_{1}}\right)$ of H in $G \circ H$ to form ℓ edge-disjoint spanning trees of $G \circ H$. Since $\sigma(H)=\ell$, there exist ℓ edge-disjoint spanning trees in H, say $T_{1}^{\prime}, T_{2}^{\prime}, \cdots, T_{\ell}^{\prime}$. Then there exist vertical forests $\mathcal{F}_{j}^{\prime}=\bigcup_{u_{i} \in V(G)} T_{j}^{\prime}\left(u_{i}\right)(1 \leq j \leq \ell)$ in $G \circ H$ corresponding to T_{j}^{\prime}, where $T_{j}^{\prime}\left(u_{i}\right)$ is the isomorphic tree of T_{j}^{\prime}. Recall that $\left|\bar{E}_{1,1}^{e}\right| \geq \ell$ for each edge $e \in E\left(T_{1}\right)$. Choose ℓ edges in $\bar{E}_{1,1}^{e}$, say $f_{1}^{e}, f_{2}^{e}, \cdots, f_{\ell}^{e}$. Let $E_{i}=\bigcup_{e \in E\left(T_{1}\right)} f_{i}^{e}(1 \leq i \leq \ell)$. Note that any of the sets $\left\{E_{i} \mid 1 \leq i \leq \ell\right\}$ of edges with any of the vertical forests $\mathcal{F}_{1}^{\prime}, \mathcal{F}_{2}^{\prime}, \cdots, \mathcal{F}_{\ell}^{\prime}$ is a spanning tree of $G \circ H$. It is clear that we can find ℓ edge-disjoint spanning trees of $G \circ H$ from the edges of $\bigcup_{e \in E\left(T_{1}\right)} \bar{E}_{1,1}^{e}$ and the n_{1} copies of H in $G \circ H$.

From the above arguments, the total number of the edge-disjoint spanning trees of $G \circ H$ is at least $k n_{2}-2\left\lceil\frac{k n_{2}}{n_{1}+1}\right\rceil+\ell$. So $\sigma(G \circ H) \geq k n_{2}-2\left\lceil\frac{k n_{2}}{n_{1}+1}\right\rceil+\ell$.

To show the sharpness of the above lower bounds of Theorem 1, we consider the following three examples.

Example 1. Let G and H be two connected graphs with $|V(G)|=n_{1}$ and $|V(H)|=n_{2}$ which can be decomposed into exactly k and ℓ edge-disjoint spanning trees of G and H, respectively, satisfying $k n_{2}=\ell n_{1}$. From (1) of Theorem $1, \sigma(G \circ H) \geq k n_{2}=\ell n_{1}$. Since $|E(G \circ H)|=|E(H)| n_{1}+|E(G)| n_{2}^{2}=\ell\left(n_{2}-1\right) n_{1}+k\left(n_{1}-1\right) n_{2}^{2}=k n_{2}\left(n_{2}-1\right)+k\left(n_{1}-1\right) n_{2}^{2}=$ $k n_{2}\left(n_{1} n_{2}-1\right)$, we have $\sigma(G \circ H) \leq \frac{|E(G \circ H)|}{n_{1} n_{2}-1}=k n_{2}$. Then $\sigma(G \circ H)=k n_{2}=\ell n_{1}$. So the lower bound of (1) is sharp.

Example 2. Consider the graphs $G=P_{3}$ and $H=K_{4}$. Clearly, $\sigma(G)=k=1, \sigma(H)=$ $\ell=2,|V(G)|=n_{1}=3,|V(H)|=n_{2}=4,|E(G)|=2,|E(H)|=6$ and $6=\ell n_{1}>k n_{2}=4$. On one hand, we have $\sigma(G \circ H) \geq k n_{2}-\left\lceil\frac{k n_{2}-1}{n_{1}}\right\rceil+\ell-1=4-1+2-\left\lceil\frac{4-1}{3}\right\rceil=4$ by (2) of Theorem 1. On the other hand, $|E(G \circ H)|=50$ and hence $\sigma(G \circ H) \leq \frac{|E(G \circ H)|}{n_{1} n_{2}-1}=\left\lfloor\frac{50}{11}\right\rfloor=4$. So $\sigma(G \circ H)=4$. So the lower bound of (2) is sharp.
Example 3. Consider the graphs $G=P_{2}$ and $H=P_{3}$. Clearly, $\sigma(G)=k=1$, $\sigma(H)=\ell=1,|V(G)|=n_{1}=2,|V(H)|=n_{2}=3,|E(G)|=1,|E(H)|=2$ and $2=\ell n_{1}<k n_{2}=3$. On one hand, $\sigma(G \circ H) \geq k n_{2}-2\left\lceil\frac{k n_{2}}{n_{1}+1}\right\rceil+\ell=2$ by (3) of Theorem 1. On the other hand, $|E(G \circ H)|=|E(H)| n_{1}+|E(G)| n_{2}^{2}=13$. Then $\sigma(G \circ H) \leq \frac{|E(G \circ H)|}{n_{1} n_{2}-1}=\left\lfloor\frac{13}{5}\right\rfloor=2$. So $\sigma(G \circ H)=2$ and the lower bound of (3) is sharp.

Acknowledgement: The authors are very grateful to the referees and the editor for their valuable comments and suggestions, which greatly improved the presentation of this paper.

References

[1] J. A. Bondy, U. S. R. Murty, Graph Theory, GTM 244, Springer, 2008.
[2] P. Catlin, J. Grossman, A. Hobbs, H. Lai, Fractional arboricity, strength, and principal partitions in graphs and matroids, Discrete Appl. Math. 40 (1992), 285-302.
[3] G. Dirac, On Hamilton circuits and Hamilton paths, Math. Ann. 197 (1972), 57-70.
[4] W. Imrich, S. Klavžar, Product Graphs: Structure and Recongnition, John Wiley and Sons, New York, USA, 2000.
[5] S. Ku, B. Wang, T. Hung, Constructing edge-disjoint spanning trees in product networks, Parallel and Distributed Systems, IEEE Transactions on parallel and disjointed systems 14(3) (2003), 213-221.
[6] R. Laskar, B. Auerbach, On decomposition of r-partite graphs into edge-disjoint Hamilton circuits, Discrete Math. 14 (1976), 265-268.
[7] C. St. J. A. Nash-Williams, Edge-disjoint spanning trees of finite graphs, J. London Math. Soc. 36 (1961), 445-450.
[8] K. Ozeki, T. Yamashita, Spanning trees: A survey, Graphs Combin. 27(1) (2011), 1-26.
[9] E. Palmer, On the spanning tree packing number of a graph: a survey, Discrete Math. 230 (2001), 13-21.
[10] Y. Peng, T. Tay, On edge-toughness of a graph II, J. Graph Theory 17 (1993), 233246.
[11] J. Roskind, R. Tarjan, A Note on Finding Maximum-Cost Edge-Disjoint Spanning Trees, Math. Operations Research, 10(2) (1985), 701-708.
[12] A. Schrijver, Combinatorial optimization. Polyhedra and efficiency. Vol. B, volume 24 of Algorithms and Combinatorics, Springer-Verlag, Berlin, 2003.
[13] W. T. Tutte, On the problem of decomposing a graph into n connected factors, J. London Math. Soc. 36 (1961), 221-230.

[^0]: *Supported by NSFC No. 11371205 and PCSIRT.

