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Abstract

The spanning-tree packing number of a graph G is the maximum number of edge-
disjoint spanning trees contained in G. In this paper, we obtain a sharp lower bound
for the spanning-tree packing number of lexicographic product graphs.
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1 Introduction

All graphs in this paper are undirected, finite and simple. For any graph G of order
n, the spanning-tree packing number of G, denoted by σ(G), is the maximum number of
edge-disjoint spanning trees contained in G. This has been used as measure of reliability
of communication network, and studied by several authors, see the surveys by Palmer
[9] and Ozeki and Yamashita [8]. It is worth pointing out that for a given graph G, the
maximum number of edge-disjoint spanning trees in G can be found in polynomial time;
see [12] (Page 879). Actually, Roskind and Tarjan [11] proposed a O(m2) time algorithm
for finding the maximum number of edge-disjoint spanning trees in a graph, where m is
the number of edges in the graph.

In [10], Peng and Tay determined the spanning-tree packing numbers of Cartesian
products of various combinations of complete graphs, cycles, complete multipartite graphs.
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Later, Ku, Wang and Hung [5] obtained the following result: σ(G¤H) ≥ σ(G)+σ(H)−1
for two connected graphs G and H.

In this paper, we focus our attention on another graph product, called lexicographic
product. The lexicographic product (sometimes known as composition) of two graphs G

and H, written as G ◦H, is defined as follows: The vertex set of G ◦H is V (G)× V (H);
and any two distinct vertices (u, v) and (u′, v′) of G ◦H are adjacent if and only if either
(u, u′) ∈ E(G) or u = u′ and (v, v′) ∈ E(H). Note that, unlike the Cartesian product, the
lexicographic product is a non-commutative product since G◦H is usually not isomorphic
to H ◦G. It is easy to see that |E(G ◦H)| = |E(H)||V (G)|+ |E(G)||V (H)|2.

Theorem 1 Let G and H be two connected nontrivial graphs, and let σ(G) = k, σ(H) = `,
|V (G)| = n1 (n1 ≥ 2), and |V (H)| = n2 (n2 ≥ 2). Then

(1) if kn2 = `n1, then σ(G ◦H) ≥ kn2(= `n1);

(2) if `n1 > kn2, then σ(G ◦H) ≥ kn2 − dkn2−1
n1

e+ `− 1;

(3) if `n1 < kn2, then σ(G ◦H) ≥ kn2 − 2d kn2
n1+1e+ `.

Moreover, the bounds are sharp.

2 Proof of Theorem 1

Throughout this paper, assume that G and H are two connected graphs with V (G) =
{u1, u2, . . . , un1} and V (H) = {v1, v2, . . . , vn2}, respectively. For v ∈ V (H), we use G(v)
to denote the subgraph of G◦H induced by the vertex set {(uj , v) | 1 ≤ j ≤ n1}. Similarly,
for u ∈ V (G), we use H(u) to denote the subgraph of G ◦ H induced by the vertex set
{(u, vi) | 1 ≤ i ≤ n2}. We refer to the book [1] for graph theoretic notation and terminology
not described here. In the sequel, we let σ(G) = k, σ(H) = `, and T1, T2, · · · , Tk be k

edge-disjoint spanning trees in G and T ′1, T
′
2, · · · , T ′` be ` edge-disjoint spanning trees in

H.

The proof consists of two steps: in the first step (presented in Section 2.1), we decom-
pose G◦H into small graphs; in the second step (presented in Section 2.2), we divide these
small graphs into groups and combine the small graphs in each group into a spanning tree
of G ◦ H, thus obtaining the desired number of edge-disjoint spanning trees. After the
second step, we can obtain a lower bound of σ(G ◦H).

The details are given below.

2.1 Graph decomposition

From the definition, the lexicographic product graph G ◦H is a graph obtained by re-
placing each vertex of G by a copy of H and replacing each edge of G by a complete bipar-
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tite graph Kn2,n2 . For an edge e = uiuj ∈ E(G) (1 ≤ i, j ≤ n1), the induced subgraph ob-
tained from the edges between the vertex set V (H(ui)) = {(ui, v1), (ui, v2), · · · , (ui, vn2)}
and the vertex set V (H(uj)) = {(uj , v1), (uj , v2), · · · , (uj , vn2)} in G ◦ H is a complete
equipartition bipartite graph of order 2n2, denoted by Ke or Kui,uj . Obviously, Ke can
be decomposed into n2 perfect matching, denoted by M e

1 ,M e
2 , . . . , M e

n2
.

For each Ti (1 ≤ i ≤ k) in G, we define a spanning subgraph Ti of G◦H corresponding
to Ti as follows: V (Ti) = V (G ◦H) and E(Ti) = {(up, vs)(uq, vt) |upuq ∈ E(Ti), up, uq ∈
V (G), vs, vt ∈ V (H)}. We call Ti a blow-up graph corresponding to Ti in G; see Figure 1
for an example.
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H(u7)(u1, v2)

(u1, vn2
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Figure 1: The blow-up graph Ti and parallel forest Fi,j in G◦H corresponding to Ti in G.

For each i (1 ≤ i ≤ k) and j (1 ≤ j ≤ n2), we define another spanning subgraph Fi,j of
G◦H corresponding to Ti in G as follows: V (Fi,j) = V (G◦H) and E(Fi,j) =

⋃
e∈E(Ti)

M e
i,j ,

where M e
i,j is a matching of Ke (M e

i,j will be chosen later). We call Fi,j a parallel forest
of G ◦H corresponding to the tree Ti in G; see Figure 1 for an example.

Similarly, for a spanning tree T ′j (1 ≤ j ≤ `) in H, we define a spanning subgraph F ′j of
G◦H as follows: V (F ′j) = V (G◦H) and E(F ′j) = {(u, vs)(u, vt) |u ∈ V (G), vsvt ∈ E(Tj)}.
Clearly, F ′j =

⋃
ui∈V (G) T ′j(ui), where V (T ′j(ui)) = {(ui, v) | v ∈ V (H)} and E(T ′j(ui)) =

{(ui, vs)(ui, vt) |ui ∈ V (G), vsvt ∈ E(T ′j)}. We call each of F ′j (1 ≤ i ≤ `) a vertical forest
of G ◦H corresponding to the tree T ′j in H. The tree T ′j(ui) is called the isomorphic tree
of T ′j (1 ≤ i ≤ `) in H(ui). So, for each tree T ′j of H there are n1 edge-disjoint isomorphic
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trees T ′j(ui) (1 ≤ i ≤ n1) in G ◦H.

The following results are useful for our proof, which were obtained by Dirac [3]; see
Laskar and Auerbach [6].

Proposition 2 [3, 6] (1) For all even r ≥ 2, Kr,r is the union of its 1
2r Hamiltonian

cycles.

(2) For all odd r ≥ 3, Kr,r is the union of its 1
2r Hamiltonian cycles and one perfect

matching.

For r ≥ 2, the complete equipartition bipartite graph Kr,r can be decomposed into b r
2c

Hamiltonian cycles for r even, or b r
2c Hamiltonian cycles and one perfect matching for r

odd. We call each Hamiltonian cycle in the decomposition a good cycle.

We now decompose the above blow-up graph Ti (1 ≤ i ≤ k) in G ◦H corresponding to
Ti in G into our desired n2 parallel forests by Proposition 2.

Lemma 3 The blow-up graph Ti corresponding to the tree Ti in G can be decomposed into
n2 parallel forests corresponding to the tree Ti, say Fi,1,Fi,2, · · · ,Fi,n2, such that there
exist 2x parallel forests Fi,1,Fi,2, · · · ,Fi,2x such that Fi,2j−1 ∪ Fi,2j (1 ≤ j ≤ x ≤ bn2

2 c)
contains exactly n1 − 1 good cycles.

Proof. We decompose G ◦H as follows:

(i) for every i ∈ [k] and e ∈ Ti, by Proposition 2, we decompose Ke into n2 disjoint
perfect matchings M e

i,1, · · · ,M e
i,n2

such that M e
i,2j+1 ∪M e

i,2j+2 is a Hamilton cycle (which
we call a good cycle) for every j ≤ bn2/2c − 1;

(ii) for every i ∈ [k], we have that, for every e = uw ∈ E(Ti), e′ = u′w′ ∈ E(Ti) and
t ∈ [n2], the matchings {vz : {(u, v), (w, z)} ∈ M e

t } and {vz : {(u′, v), (w′, z)} ∈ M e′
t } are

the same.

We give the definition of Fi,j as follows: Fi,j =
⋃

e∈E(Ti)
M e

i,j , where 1 ≤ j ≤ bn2/2c.
For each e ∈ E(Ti), Ke ∩ (Fi,2j−1 ∪ Fi,2j) is a good cycle, where 1 ≤ j ≤ r. Since
|E(Ti)| = n1 − 1, this implies that, for 1 ≤ j ≤ bn2/2c, Fi,2j−1 ∪ Fi,2j contains exactly
n1 − 1 good cycles. So all the edges of Ti ◦H can be decomposed into n2 parallel forests
Fi,1,Fi,2, · · · ,Fi,n2 such that there exist 2x parallel forests Fi,1,Fi,2, · · · ,Fi,2x such that
Fi,2j−1∪Fi,2j (1 ≤ j ≤ x ≤ bn2/2c) contains exactly n1− 1 good cycles. The proof is now
complete.

2.2 Graph combination

Recall that σ(G) = k and T1, · · · , Tk are edge-disjoint spanning trees of G (as defined
in the beginning of Section 2.1) and that Fi,j (1 ≤ i ≤ k, 1 ≤ j ≤ n2) corresponding to
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Ti in H are the parallel forests obtained by Lemma 3. Similarly, σ(H) = ` and T ′1, · · · , T ′`
are edge-disjoint spanning trees of H (as defined in the beginning of Section 2.1) and that
F ′j (1 ≤ j ≤ `) are the vertical forests corresponding to T ′j of H.

After the above preparations, we now give the proof of Theorem 1.

Proof of (1): Since the union of any tree in {T ′j(ui) | 1 ≤ i ≤ n1, 1 ≤ j ≤ `} with any
parallel forest in {Fi,j | 1 ≤ i ≤ k, 1 ≤ j ≤ n2} is a spanning tree of G ◦ H, we can get
kn2 = `n1 edge-disjoint spanning trees in G ◦H. Thus, σ(G ◦H) ≥ kn2 (= `n1).

Proof of (2): Note that {Fi,j | 1 ≤ i ≤ k, 1 ≤ j ≤ n2} \ {Fk,n2} is a set of kn2 − 1
edge-disjoint parallel forests and, for 1 ≤ x ≤ `, {T ′i,j | 1 ≤ i ≤ x, 1 ≤ j ≤ n1} is a set of xn1

edge-disjoint trees. The union of any forest in {Fi,j | 1 ≤ i ≤ k, 1 ≤ j ≤ n2} \ {Fk,n2} with
any tree in {T ′i,j | 1 ≤ i ≤ x, 1 ≤ j ≤ n1} is a spanning tree of G ◦H. We set x = dkn2−1

n1
e

so that xn1 ≥ kn2 − 1. Since `n1 > kn2, it follows that dkn2−1
n1

e ≤ ` and hence x ≤ `.
Thus, we can obtain kn2 − 1 edge-disjoint spanning tree of G ◦H.

Recall that we also have `− x vertical forests F ′x+1,F ′x+2, · · · ,F ′`. We now find some
spanning trees of G ◦ H from the union of Fk,n2 and the above ` − x vertical forests.
By the definition of the vertical forest Fk,n2 , it is the union of n2 vertex-disjoint trees
isomorphic to Tk, say Tk,1, Tk,2, · · · , Tk,n2 . Note that the union of any vertical forest in
{F ′x+1,F ′x+2, · · · ,F ′`} and any tree in {Tk,1, Tk,2, · · · , Tk,n2} is a spanning tree of G ◦ H.
Since `− x ≤ ` ≤ bn2

2 c ≤ n2, we can obtain `− x edge-disjoint spanning trees of G ◦H.

From the above arguments, the total number of the edge-disjoint spanning trees is at
least (kn2 − 1) + (`− x). Thus, σ(G ◦H) ≥ kn2 − 1 + `− x = kn2 − dkn2−1

n1
e+ `− 1.

Proof of (3): Let Fi,j (1 ≤ i ≤ k, 1 ≤ j ≤ n2) be the kn2 parallel forests in
G ◦ H corresponding to Ti (1 ≤ i ≤ k) in Lemma 3. Pick up 2x parallel forests from
{Fi,j | 1 ≤ i ≤ k, 1 ≤ j ≤ n2}, say Fa1,b1 ,Fa1,c1 ,Fa2,b2 ,Fa2,c2 , · · · ,Fax,bx ,Fax,cx where
ai ∈ {1, 2, · · · , k} (1 ≤ i ≤ x) and bi, ci ∈ {1, 2, · · · , n2} (1 ≤ i ≤ x), such that
Fai,bi

∪ Fai,ci (1 ≤ i ≤ x) contains (n1 − 1) good cycles. Note that we have to choose
x ≤ kbn2/2c. Thus we can obtain x(n1−1) good cycles from the above 2x parallel forests.
Now we still have kn2−2x parallel forests. Note that the union of any of these kn2−2x par-
allel forests with any of those x(n1−1) good cycles is a spanning subgraph of G◦H, which
contains a spanning tree of G ◦H. If x(n1 − 1) ≥ kn2 − 2x, then we can obtain kn2 − 2x

edge-disjoint spanning trees of G◦H. We set x = d kn2
n1+1e so that x is the smallest possible

integer satisfying x(n1 − 1) ≥ kn2 − 2x. Since kn2 > `n1, it follows that x = d kn2
n1+1e ≥ 1.

Since x ≤ kbn2/2c, we need to show that d kn2
n1+1e ≤ kbn2

2 c. Therefore, it suffices to prove
that kn2+n1

n1+1 ≤ kn2−1
2 , that is, k(n1 − 1)(n2 − 1) − 2n1 − 2k ≥ 0. Since k ≤ bn1

2 c, we
need to show that k(n1 − 1)(n2 − 1) − 3n1 ≥ 0. Since k ≥ 1 and n1 ≥ 2, it follows that
k(n1−1)(n2−1)−3n1 = (n1−1)(k(n2−1)−3)−3 ≥ k(n2−1−3)−3 ≥ n2−1−3−3 ≥ 0
for n2 ≥ 7. So, the above inequality holds for n2 ≥ 7, as desired. One can check that the
equality d kn2

n1+1e ≤ kbn2
2 c also holds for 2 ≤ n2 ≤ 6. Thus we get kn2 − 2d kn2

n1+1e spanning
tree of G ◦H from the parallel forests.
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From the above arguments we can see that by combining a parallel forest and a good
cycle (Hamiltonian cycle) we form a spanning subgraph of size (n1 + 1)n2, which contains
a spanning tree of G◦H of size n1n2−1. Clearly, some edges of such a spanning subgraph
are not used in the construction of a spanning tree of G ◦H. Our aim is to choose some
of such unused edges and combine them with all the n1 copies H(u1),H(u2), · · · ,H(un1)
of H in G ◦H to form ` edge-disjoint spanning trees of G ◦H. Without loss of generality,
assume that a1 = 1, b1 = 1 and c1 = 2. Then F1,1 ∪ F1,2 contains (n1 − 1) good cycles.
Let Ce

1,1 be a good cycle in F1,1 ∪ F1,2, where e ∈ E(T1). Suppose that Fi,j be a parallel
forest that is not used to construct good cycles. Then we have the following claim.

Claim 1. For each edge e ∈ E(T1), there exists a subset Ee
1,1 of E(Ce

1,1) such that
|Ee

1,1| = n2 − 1 and Fi,j ∪ Ee
1,1 is a spanning tree of G ◦H.

Proof of Claim 1: Let u and w denote the endpoints of e. Recall that the parallel forest
Fi,j consists of n2 vertex-disjoint isomorphic trees, each containing exactly one vertex of
H(u) for every u ∈ V (H). Let R1, · · · , Rn2 be such trees, and let P be the path joining
u and w in Ti and P = {P(u,v)(w,z) : P(u,v)(w,z) is the path joining (u, v) and (w, z) in Ri

for i ∈ [n2]}. Then P consists of n2 isomorphic paths. The connected components of the
graph formed by P ∪M e

1,j consist of a collection of disjoint cycles, say C1, · · · , Cm. For
every i ∈ [m], let fi denote an arbitrary edge in Ci and let Di = Ci \ {fi}. Since the
spanning subgraph of Ke with edge set M e

1,1 ∪M e
1,2 is connected (it is a Hamilton cycle),

there is a set of Se ⊆ M e
1,2 of size m − 1 such that the Se ∪⋃m

i=1 Di is connected. Thus,
by defining Ee

1,1 = (Se ∪M e
1,1 \ {fi : i ∈ [m]}, we have that |Ee

1,1| = n2 − 1 and Ee
1,1 ∪Fi,j

is a spanning tree of G ◦H.

From Claim 1, for each good cycle Ce
1,1 in F1,1 ∪ F1,2, we can find a subset Ee

1,1 of
E(Ce

1,1) such that |Ee
1,1| = n2− 1 and Fi,j ∪Ee

1,1 is a spanning tree of G ◦H, where Fi,j is
a parallel forest that was not used in the construction of good cycles. For the good cycle
Ce

1,1 of F1,1 ∪F1,2 where e ∈ E(T1), we define a set E
e
1,1 of edges as follows: if it was used

in the construction of a spanning tree of G ◦ H, then E
e
1,1 = E(Ce

1,1) \ Ee
1,1; otherwise,

E
e
1,1 = E(Ce

1,1). Then |Ee
1,1| ≥ n2 + 1 ≥ `.

We are now in a position to combine some edges of the set
⋃

e∈E(T1) E
e
1,1 of edges

with all the n1 copies H(u1),H(u2), · · · ,H(un1) of H in G ◦ H to form ` edge-disjoint
spanning trees of G ◦ H. Since σ(H) = `, there exist ` edge-disjoint spanning trees in
H, say T ′1, T

′
2, · · · , T ′`. Then there exist vertical forests F ′j =

⋃
ui∈V (G) T ′j(ui) (1 ≤ j ≤ `)

in G ◦ H corresponding to T ′j , where T ′j(ui) is the isomorphic tree of T ′j . Recall that
|Ee

1,1| ≥ ` for each edge e ∈ E(T1). Choose ` edges in E
e
1,1, say fe

1 , fe
2 , · · · , fe

` . Let
Ei =

⋃
e∈E(T1) fe

i (1 ≤ i ≤ `). Note that any of the sets {Ei | 1 ≤ i ≤ `} of edges with any
of the vertical forests F ′1,F ′2, · · · ,F ′` is a spanning tree of G ◦H. It is clear that we can
find ` edge-disjoint spanning trees of G ◦ H from the edges of

⋃
e∈E(T1) E

e
1,1 and the n1

copies of H in G ◦H.

From the above arguments, the total number of the edge-disjoint spanning trees of
G ◦H is at least kn2 − 2d kn2

n1+1e+ `. So σ(G ◦H) ≥ kn2 − 2d kn2
n1+1e+ `.
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To show the sharpness of the above lower bounds of Theorem 1, we consider the
following three examples.

Example 1. Let G and H be two connected graphs with |V (G)| = n1 and |V (H)| = n2

which can be decomposed into exactly k and ` edge-disjoint spanning trees of G and H,
respectively, satisfying kn2 = `n1. From (1) of Theorem 1, σ(G ◦H) ≥ kn2 = `n1. Since
|E(G◦H)| = |E(H)|n1+|E(G)|n2

2 = `(n2−1)n1+k(n1−1)n2
2 = kn2(n2−1)+k(n1−1)n2

2 =
kn2(n1n2 − 1), we have σ(G ◦H) ≤ |E(G◦H)|

n1n2−1 = kn2. Then σ(G ◦H) = kn2 = `n1. So the
lower bound of (1) is sharp.

Example 2. Consider the graphs G = P3 and H = K4. Clearly, σ(G) = k = 1, σ(H) =
` = 2, |V (G)| = n1 = 3, |V (H)| = n2 = 4, |E(G)| = 2, |E(H)| = 6 and 6 = `n1 > kn2 = 4.
On one hand, we have σ(G ◦H) ≥ kn2−dkn2−1

n1
e+ `− 1 = 4− 1 + 2−d4−1

3 e = 4 by (2) of

Theorem 1. On the other hand, |E(G◦H)| = 50 and hence σ(G◦H) ≤ |E(G◦H)|
n1n2−1 = b50

11c = 4.
So σ(G ◦H) = 4. So the lower bound of (2) is sharp.

Example 3. Consider the graphs G = P2 and H = P3. Clearly, σ(G) = k = 1,
σ(H) = ` = 1, |V (G)| = n1 = 2, |V (H)| = n2 = 3, |E(G)| = 1, |E(H)| = 2 and
2 = `n1 < kn2 = 3. On one hand, σ(G ◦ H) ≥ kn2 − 2d kn2

n1+1e + ` = 2 by (3)
of Theorem 1. On the other hand, |E(G ◦ H)| = |E(H)|n1 + |E(G)|n2

2 = 13. Then
σ(G ◦H) ≤ |E(G◦H)|

n1n2−1 = b13
5 c = 2. So σ(G ◦H) = 2 and the lower bound of (3) is sharp.

Acknowledgement: The authors are very grateful to the referees and the editor for
their valuable comments and suggestions, which greatly improved the presentation of this
paper.

References

[1] J. A. Bondy, U. S. R. Murty, Graph Theory, GTM 244, Springer, 2008.

[2] P. Catlin, J. Grossman, A. Hobbs, H. Lai, Fractional arboricity, strength, and principal
partitions in graphs and matroids, Discrete Appl. Math. 40 (1992), 285-302.

[3] G. Dirac, On Hamilton circuits and Hamilton paths, Math. Ann. 197 (1972), 57-70.
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