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Abstract

Let G be a simple graph with no even cycle, called an odd-cycle graph. Cavers et
al. [Linear Algebra Appl. 436(12):4512-1829, 2012] showed that the spectral radius
of Gσ is the same for every orientation σ of G, and equals the maximum matching
root of G. They proposed a conjecture that the graphs which attain the maximum
skew spectral radius among the odd-cycle graphs G of order n are isomorphic to the
odd-cycle graph with one vertex degree n− 1 and size m = ⌊3(n− 1)/2⌋. By using
the Kelmans transformation, we give a proof to the conjecture. Moreover, sharp
upper bounds of the maximum matching roots of the odd-cycle graphs with given
order n and size m are given and extremal graphs are characterized.

Keywords: skew spectral radius, odd-cycle graphs, maximum matching root, Kel-
mans transformation

1 Introduction

Let G be a finite simple graph with vertex set V = {v1, . . . , vn} and edge set E(G). For
more notation and terminology that will be used in the sequel, we refer to [2, 3]. Given
an orientation σ of G which makes any edge uv to be an arc u → v or v → u, we get
an oriented graph Gσ. The skew-adjacency matrix is the square matrix S(Gσ) = [sij]
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of order n, where sij = 1 and sji = −1 if u → v, sij = sji = 0 otherwise. By the
definition, S(Gσ) is a skew symmetric matrix. Let the skew-characteristic polynomial
be φs(G

σ, x) = det(xIn − S(Gσ)), where In is the unit matrix with order n. Thus the
eigenvalues of S(Gσ) are all pure imaginary numbers, which form the skew-spectrum of
Gσ. The spectral radius ρ(Gσ) of an oriented graph Gσ is the maximum norm of its all
eigenvalues. In recent years, there are many results about the skew-spectrum and the
skew-spectral radius, see [1, 5, 6, 17].

For a given graph G, different orientations may lead to different skew-spectra, and
thus different skew-spectral radius. In [5], Cavers et al. introduced the maximum skew-
spectral radius ρs(G) which is defined as ρs(G) = max{ρ(Gσ) : σ is an orientation of G}.
They studied a special class of graphs, called the odd-cycle graphs. A graph is called
an odd-cycle graph if it have no even cycles. In [5], Cavers et al. showed that when
the graph G is an odd-cycle graph, the skew-spectra are independent of the orientation
σ. In fact, the skew-characteristic polynomial φs(G

σ, x) of Gσ can be determined by the
matching polynomial m(G, x) of the graph G. Anuradha and Balakrishnan also got some
skew-spectral properties of the odd-cycle graphs in [1].

Now, we recall the definition of the matching polynomial [11].

Definition 1.1. Let mr(G) denote the number of r independent edges in a graph G.
Define the matching polynomial of G as

m(G, x) =
∑

k=0

(−1)kmk(G)xn−2k.

Note that many results about the roots of the matching polynomial have been ob-
tained; see [9, 10, 11, 14], such as, the matching roots are real-valued, and symmetric.
Denote by t(G) the maximum matching root of G. For the applications of the matching
polynomial in chemistry and statistical physics, we refer the reader to [14, 13].

Given an odd-cycle graph G, the following lemma in [5] implies the relationship be-
tween the skew-characteristic polynomial of an oriented graph Gσ and the matching poly-
nomial of the graph G.

Lemma 1.2. ([5]) Let G be a graph of order n. Then G is an odd-cycle graph if and only
if φs(G

σ, x) = (−i)nm(G, ix) for all orientations σ of G.

From the above lemma, we note that when G is an odd-cycle graph, the skew-spectral
radius ρ(Gσ) under any orientation σ equals the maximum skew-spectral radius ρs(G).
Moreover, the maximum skew-spectral radius of the graph G equals the maximum match-
ing root of the graph G, i.e. ρs(G) = t(G).

In [5], Cavers et al. studied the upper bound of the maximum skew-spectral radius
among the odd-cycle graphs with order n, and proposed a conjecture. Let Hn be the
odd-cycle graph of order n with one vertex degree n− 1 and size m = ⌊3(n− 1)/2⌋. It is
easy to check that Hn is unique (up to isomorphism). Moreover, we can find that Hn is
the maximal odd-cycle graph of order n, since the size m of an odd-cycle graph of order
n is no more than ⌊3(n− 1)/2⌋ ([1], Theorem 3.2).
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Conjecture 1.3. ([5]) If G is an odd-cycle graph of order n, then ρs(G) 6 ρs(Hn), and
equality holds if and only if G ∼= Hn.

Based on Lemma 1.2, we can find that Conjecture 1.3 can be equivalently rewritten
as follows.

Conjecture 1.4. If G is an odd-cycle graph of order n, then t(G) 6 t(Hn), and equality
holds if and only if G ∼= Hn.

For convenience, in the remainder of this paper, we just study the maximum matching
root t(G) of an odd-cycle graph. We will prove Conjecture 1.4. In fact, we get an even
stronger result. We characterize the extremal graphs with maximum t(G) among the
odd-cycle graphs with order n and size m.

Theorem 1.5. Let G be an odd-cycle graph with order n and size m, where 1 6 m 6

⌊3(n−1)
2

⌋. Let F (n,m) be an odd-cycle graph with one vertex degree n − 1 and size m,
which is unique up to isomorphism.

(1) If m = 1, then t(G) = 1.

(2) If m = 2, then t(G) 6
√
2, and equality holds if and only if G is the disjoint union of

a star K1,2 and n− 2 isolated vertices.

(3) If m = 3, then t(G) 6
√
3, and equality holds if and only if G is the disjoint union of

a triangle and n − 3 isolated vertices, or the disjoint union of a star graph K1,3 and
n− 4 isolated vertices.

(4) If 4 6 m 6 n− 2, then t(G) 6 t(F (m+ 1,m)), and equality holds if and only if G is
the disjoint union of the graph F (m+ 1,m) and n−m− 1 isolated vertices.

(5) If n − 1 6 m 6 ⌊3(n−1)
2

⌋ and m > 4, then t(G) 6 t(F (n,m)), and equality holds if
and only if G ∼= F (n,m).

We organize the rest of this paper as follows. In Section 2, we study the Kelmans
transformation acting on odd-cycle graphs. In Section 3, we find the monotone property
of the maximum matching roots after an acting of the Kelmans transformation. In Section
4, we give our proofs of Conjecture 1.4 and Theorem 1.5.

2 The Kelmans transformation on odd-cycle graphs

In [5], Cavers et al. suggested that the standard techniques called edge-switching will
be useful to prove Conjecture 1.3. In this paper, we mainly use a graph transformation
called the Kelmans transformation.

We first recall some results about the Kelmans transformation. In[15], Kelmans in-
troduced a graph transformation for the extremal problems related with the synthesis of
reliable networks. In [16], Satyanarayana et al. also introduced a reliability improving
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graph transformation, named the “swing surgery”, which can be thought as the inverse
of the Kelmans transformation. Brown et al. [4] called the Kelmans transformation
as shift operation, and studied many applications in network reliability. Csikvári in [7]
made a breakthrough in solving a conjecture of Nikiforov by the Kelmans transformation.
Moreover, Csikvári in [8] found several applications of the Kelmans transformation in
the extremal problems on graph polynomials, such as, matching polynomial, independent
polynomial, chromatic polynomial, Laplacian polynomial. For more interesting details,
see [8]. Next, we give the definition of the Kelmans transformation.

Definition 2.1. Let u and v be two vertices of a graph G. Let N(v) be the neighbor set
of v in G. For any w ∈ N(v), if w is not u and u and w are nonadjacent, then we delete
the edge vw and add the edge uw. After the above operations, we get a new graph G′.
Then G′ is a graph obtained from G by the Kelmans transformation between u and v; see
Fig. 1.

u v u v

G G′

Figure 1: The Kelmans transformation.

For convenience, Csikvári [8] called u and v the beneficiary and the co-beneficiary
of the transformation, respectively. For brevity, we denote by KT (G, u, v) the Kelmans
transformation acting on a graph G with the beneficiary u and the co-beneficiary v. It is
easy to check that the Kelmans transformation does not change the number of edges.

Let G be a connected odd-cycle graph with order n and size m. Then n − 1 6 m 6

n+⌊(n−1)/2⌋−1 ([1], Theorem 3.2). Let F (n,m) be an odd-cycle graph with one vertex
degree n− 1 and size m. It is easy to check that F (n,m) is unique (up to isomorphism).
If m = n+ ⌊(n− 1)/2⌋ − 1, then F (n,m) is the same as Hn.

Theorem 2.2. Let G be a connected odd-cycle graph with order n and size m. Then
F (n,m) can be obtained from G by a number of Kelmans transformations.

Proof. Let G be a connected odd-cycle graph with order n and size m, which implies that
n − 1 6 m 6 n + ⌊(n − 1)/2⌋ − 1. Then G must be a cactus, that is, every block of
G is either a cycle or an edge ([2], EX. 3.2.3). It follows that any two cycles of G are
edge-disjoint. Let C(G) be the set of odd cycles with order larger than 3. Next, we will
prove the theorem by three steps.

Step 1. If C(G) is nonempty, assume that C(G) = {C1, . . . , Ct}. The number of the
edges of C(G) is |E(C(G))| = ∑t

i=1 |Ct| 6 m. Let C ∈ C(G) and u, v be two vertices

the electronic journal of combinatorics 22(1) (2015), #P1.71 4



of C whose distance in C is 2. Then there exists a path uwvw′ in C. By the Kelmans
transformation KT (G, u, v), we get a graph G′. It is easy to find that the degree of the
vertex v in G′ is 1; see Fig. 2.

vu

w

w′

v
u

w

w′

H1 H1

H2

H3

H2

H3

G G′

H4 H4

Figure 2: KT (G, u, v) in step 1.

We first show that G′ is connected. For every vertex u′ in G, there is a path u′Pu in G
connected u′ and u. If the vertex v is in the path P , then the path P can be decomposed
as P1vP2. By the definition of the Kelmans transformation, we can check that u′P1u is in
the graph G′ and u′ is connected to u in G′. If v is not in the path P , then u′ and u are
connected by the path P in G′.

Secondly, we claim that G′ is still an odd-cycle graph. Suppose that there exists an
even cycle C ′ in G′. Then u must be in C ′. Let C ′ = uh1 . . . hsu. If uh1 and uhs both
belong to G, then C ′ is also an even cycle of G, a contradiction. If neither uh1 nor uhs

belongs to G, then vh1 . . . hsv is an even cycle of G, again a contradiction. Therefore,
without loss of generality, suppose that uh1 is in G and uhs is not in G, which implies
that h1 6= hs and vhs is an edge of G. We then obtain a path P = uh1 · · ·hsv with even
length in G. Since G is a cactus and u, v are both in the cycle C, we can deduce that P
is in the cycle C. It follows that P = uwv, contradicting with h1 6= hs.

Finally, we consider the cycle set C(G′). By analyzing the corresponding relationship
between C(G) and C(G′), it can be verified that |C(G′)| = |C(G)| or |C(G)| − 1 and
|E(C(G′))| 6 |E(C(G))|−2. Thus, by less than the number m

2
of Kelmans transformations

as above, we can get a connected odd-cycle graph G′ whose cycles are all triangles. Then,
we turn to Step 3.

Step 2. If C(G) is empty, then G contains no cycles or each cycle of G is a triangle.
Let G′ := G.

Step 3. Assume that a vertex u of G′ has the maximum degree in G′ and its degree
is denoted by dG′(u). If dG′(u) is less than n − 1, then there exists a vertex v such that
the distance of u, v in G′ is 2. Suppose that uwv is a 2-path in G′. We apply the Kelmans
transformation KT (G′, u, w) and get a graph G′′. By the similar analysis in the first step,
we find that G′′ is a connected odd-cycle graph whose cycles are all triangles. Moreover,
we get dG′(u) > dG(u) + 1. Then by at most n − 1 Kelmans transformations as above,
we get a graph G′′ with the maximum degree n − 1, order n and size m. Moreover, G′′

satisfies that all cycles are triangles. It is easy to see that the graph G′′ is isomorphic to
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the graph F (n,m); see Fig. 3.

wu
H1

H2

G′

v

wu
H1

H2

G′′

v
H3H3

Figure 3: KT (G′, u, w) in step 3.

The proof is thus complete.

3 Maximum matching root and Kelmans transformation

In this section, we will show that the maximum matching roots of the graph strictly
increase after the Kelmans transformation. Before proceeding, we first review some useful
lemmas of the matching polynomial.

Lemma 3.1. ([11]) Let edge e = uv. Then

m(G, x) = m(G− e, x)−m(G− u− v, x) (1)

Let G and H be two disjoint graphs. Then the graph G
⋃

H denotes the union of G
and H.

Lemma 3.2. ([11]) Let G1, . . . , Gk be k disjoint graphs. Then

m

(

k
⋃

i=1

Gi, x

)

=
k
∏

i=1

m(Gi, x).

In [12], Gutman showed some parallel results for the roots of the matching polynomial
and the spectra of the characteristic polynomial.

Lemma 3.3. ([12]) If H is a subgraph of G, then t(G) > t(H). If G is connected and H
is a proper subgraph of G, then t(G) > t(H).

Now, we give some propositions of the maximum matching root under the Kelmans
transformation.

Definition 3.4. Define G1 � G2 if for all x > t(G1) we have m(G2, x) > m(G1, x).
Define G1 ≻ G2 if for all x > t(G1) we have m(G2, x) > m(G1, x).
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It is easy to check thatG1 ≻ G2 can deduceG1 � G2. Note that Csikvári [8] introduced
the definition ≻ which has the same meaning as our definition �, and they obtained many
good results which inspire us. In the following, we obtain some results about ≻ and �.

Before proceeding, we list some useful results about � which were proved in [8].

Proposition 3.5. ([8]) The relation � is transitive. If G1 � G2, then t(G1) > t(G2).

Proposition 3.6. ([8]) If H is a spanning subgraph of G, then G � H.

Theorem 3.7. ([8]) Assume that G′ is a graph obtained from G by a number Kelmans
transformations, then G′ � G; in particular, t(G′) > t(G).

Next, we give our results.

Proposition 3.8. The relation ≻ is transitive. If G1 ≻ G2, then t(G1) > t(G2).

Proof. Suppose G1 ≻ G2. Since t(G1) is the maximum root of the matching polynomial,
it implies that for x > t(G1), we have m(G2, x) > m(G1, x) > 0. Due to the fact that
the leading coefficient of the matching polynomial is 1, we get t(G1) > t(G2). If G1 ≻
G2 ≻ G3, then m(G3, x) > m(G2, x) > m(G1, x) for x > max{t(G1), t(G2))} = t(G1). It
follows that G1 ≻ G3.

Proposition 3.9. If G1 ≻ G2 and G2 � G3, then G1 ≻ G3. If G1 � G2 and G2 ≻ G3,
then G1 ≻ G3.

Proof. We only prove the first part, the second part can be proved similarly. For x >

t(G1), we have m(G2, x) > m(G1, x). For x > t(G2), we have m(G3, x) > m(G2, x). By
Propositions 3.5 and 3.8, it follows that t(G1) > t(G2) > t(G3). For x > t(G1), we get
m(G3, x) > m(G1, x), i.e. G1 ≻ G3.

Proposition 3.10. If G is connected and H is a proper spanning subgraph of G, then
G ≻ H.

Proof. Since H is a proper spanning subgraph of G, suppose H is obtained by deleting l
edges {e1, . . . , el} from G. Then, m(H, x) = m(G− e1− · · ·− el, x). Suppose e1 is uv. By
Lemma 3.1, we have

m(G, x) = m(G− e1, x)−m(G− u− v, x), (2)

Since G is connected, by Lemma 3.3, we have t(G− u− v) < t(G) and t(G− e1) < t(G).
Since the leading coefficient of the matching polynomial is 1, it follows that for x > t(G),
we get

m(G− e1, x)−m(G, x) = m(G− u− v, x) > 0. (3)

Thus we get G ≻ G− e1. Since H is a spanning subgraph of G− e1, by Proposition 3.6,
we have G− e1 � H. By Proposition 3.9, we deduce that G ≻ H.

Proposition 3.11. If H is a proper spanning subgraph of G, then for x > t(G), we have
m(H, x) > m(G, x).

the electronic journal of combinatorics 22(1) (2015), #P1.71 7



Proof. If G is a connected graph, then by Proposition 3.10, we get G ≻ H and m(G, x) >
m(H, x) for x > t(G). Next, we suppose that G has k connected components G1, . . . , Gk

where k > 2. Since H is an edge-deleted subgraph of G, let H be a union of k disjoint
graphs {H1, . . . , Hk}, where Hi is the spanning subgraph of Gi. By Lemma 3.2, we know

m(G, x) = m

(

k
⋃

i=1

Gi, x

)

=
k
∏

i=1

m(Gi, x), (4)

m(H, x) = m

(

k
⋃

i=1

Hi, x

)

=
k
∏

i=1

m(Hi, x). (5)

Since H is the proper spanning subgraph of G, we can find that for some i, Hi is the
proper spanning subgraph of Gi. Without loss of generality, assume that H1 is the proper
spanning subgraph of G1. By Proposition 3.10, we have G1 ≻ H1. Then, for x > t(G1),
m(H1, x) > m(G1, x) > 0. For other subgraphs Hi where i > 2, by Proposition 3.6, we
have Gi � Hi. Then, for x > t(Gi), m(H1, x) > m(G1, x) > 0. From Lemma 3.3, we know
that t(G) = max{t(G1), . . . , t(Gk)}. Thus, for x > t(G), we get m(H1, x) > m(G1, x) > 0
and m(Hi, x) > m(Gi, x) > 0 for 2 6 i 6 k. Using Equations 4 and 5, we deduce that for
x > t(G),

m(H, x) =
k
∏

i=1

m(Hi, x) >
k
∏

i=1

m(Gi, x) = m(G, x).

The proof is now complete.

Theorem 3.12. Let G be a connected graph. Assume that G′ is obtained from G by a
number of Kelmans transformations, and G′ is not isomorphic to G. Then G′ ≻ G.

Proof. Let G be a connected graph. Let G1 be a graph obtained from G by the Kelmans
transformation between u and v, where u is the beneficiary, and G1 is not isomorphic to
G. We just need to prove G1 ≻ G.

Firstly, we find that u has an adjacent vertex w which is not adjacent to v, and v has
an adjacent vertex w′ which is not in the set of neighbors of the vertex u. Otherwise, G1

is isomorphic to G. This is a contradiction.
Secondly, we use Lemma 3.1 and get

m(G, x) = m(G− uw, x)−m(G− u− w, x),

m(G1, x) = m(G1 − uw, x)−m(G1 − u− w, x).

Then we have the following equation

m(G, x)−m(G1, x) = m(G−uw, x)−m(G1−uw, x)+m(G1−u−w, x)−m(G−u−w, x).
(6)

Next, we consider the right part of the above equation. If we apply the Kelmans trans-
formation between u and v in G − uw, then we can get the graph G1 − uw. Thus, by
Theorem 3.7, we get G1 − uw � G− uw. That is,

m(G− uw, x)−m(G1 − uw, x) > 0,
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for x > t(G1−uw). Since v has an adjacent vertex w′ and uw′ is not in E(G), G1−u−w
is a proper spanning subgraph of G− u− w. By Proposition 3.11, we have

m(G1 − u− w, x)−m(G− u− w, x) > 0,

for all x > t(G− u−w). By Lemma 3.3, we find that t(G1) > t(G1 − uw) and G− u−w
is isomorphic to a proper subgraph of G1 by mapping v of G− u−w to u of G1. If G1 is
connected, then we have t(G1) > t(G − u − w) by Lemma 3.3. Otherwise, suppose that
G is connected and G1 is not connected. Then it follows that the set of neighbors of u
and the set of neighbors of v are disjoint. Moreover, G1 is the disjoint union of a isolated
vertex v and a connected component H. Then, it implies that G−u−w is isomorphic to
a proper subgraph of H. Thus we have t(G1) = t(H) > t(G−u−w) from Lemma 3.3. We
can conclude thatm(G−uw)−m(G1−uw) > 0 andm(G1−u−w, x)−m(G−u−w, x) > 0
for x > t(G1). Finally, by Equation 6, we have m(G, x)−m(G1, x) > 0 that is G1 ≻ G.

Now we are ready to finish the proof of the theorem. Suppose that G′ is obtained from
G by k Kelmans transformations {KT (G, u, v), KT (G1, u1, v1), . . . , KT (Gk−1, uk−1, vk−1)}
in order. From the above result, G1 ≻ G. Moreover, from Theorem 3.7, G1 � G2 � G3 �
· · · � Gk−1 � G′. By Proposition 3.9, we get G′ ≻ G. The proof is thus complete.

4 The maximum matching roots of odd-cycle graphs

In this section, we first prove a theorem about the maximum matching root of F (n,m).

Theorem 4.1. Given a positive integer n, for n− 1 6 m 6 ⌊3(n−1)
2

⌋ − 1, we have

t(F (n,m)) < t(F (n,m+ 1)).

Given a positive integer m with m > 4, for n 6 m 6 ⌊3(n−1)
2

⌋, we have

t(F (n,m)) < t(F (n+ 1,m)).

Proof. For a positive integer n, when n − 1 6 m 6 ⌊3(n−1)
2

⌋ − 1, F (n,m) is a proper
spanning subgraph of F (n,m + 1). Then, by Proposition 3.10, we have t(F (n,m)) <
t(F (n,m+ 1)).

Given a positive integer m with m > 4, when n 6 m 6 ⌊3(n−1)
2

⌋, suppose that G′ is
the disjoint union of F (n,m) and an isolate vertex named w. Since n 6 m, it follows that
there exists a cycle in F (n,m). Due to the definition of F (n,m), the cycle in F (n,m) is
a triangle. Then there exists a triangle {v1, v2, v3} where v1 has the maximum degree in
F (n,m). Up to isomorphism, the graph F (n+1,m) can be obtained from G′ by deleting
the edge v2v3 and adding the edge v1w. By Lemma 3.1, we have

m(G′, x) = m(G′ − v2v3, x)−m(G′ − v2 − v3, x), (7)

m(F (n+ 1,m), x) = m(F (n+ 1,m)− v1w, x)−m(F (n+ 1,m)− v1 − w, x). (8)

the electronic journal of combinatorics 22(1) (2015), #P1.71 9



Note that the graph G′ − v2v3 is isomorphic to F (n+ 1,m)− v1w. Then we get

m(G′, x)−m(F (n+ 1,m), x) = m(F (n+ 1,m)− v1 − w, x)−m(G′ − v2 − v3, x). (9)

Thanks to the structure of F (n+1,m), the graph F (n+1,m)− v1 −w is the disjoint
union of m − n edges and 3n − 2m − 1 isolated vertices. The graph G′ − v2 − v3 is the
disjoint union of the graph F (n − 2,m − 3) and an isolated vertex w. By the definition
of F (n − 2,m − 3), we know that the graph F (n + 1,m) − v1 − w is a subgraph of
G′ − v2 − v3. When m > n, F (n + 1,m) − v1 − w is isomorphic to a proper spanning
subgraph of G′−v2−v3. When m = n, since m > 4, we deduce that F (n+1,m)−v1−w
is the disjoint union of m− 1 isolated vertices, and the graph G′ − v2 − v3 is the disjoint
union of the graph F (m− 2,m− 3) and an isolated vertex w. Thus F (n+1,m)− v1 −w
is isomorphic to a proper spanning subgraph of G′ − v2 − v3.

Above all, by Proposition 3.11, for x > t(G′ − v2 − v3), we have m(F (n+1,m)− v1 −
w, x) > m(G′ − v2 − v3, x). Since G′ − v2 − v3 is a proper subgraph of F (n + 1,m), by
Lemma 3.3, we get t(G′ − v2 − v3) < t(F (n + 1,m)). Then for x > t(F (n + 1,m)), we
obtain m(G′, x) −m(F (n + 1,m), x) > 0, that is, F (n + 1,m) ≻ G′. Thus, we conclude
that t(F (n,m)) = t(G′) < t(F (n+ 1,m)). The proof is now complete.

Next, we give a proof of Conjecture 1.4 by proving the following theorem.

Theorem 4.2. If G is an odd-cycle graph of order n, then t(G) 6 t(Hn), and equality
holds if and only if G ∼= Hn.

Proof. If G is disconnected, then there is a connected odd-cycle graph G′ with order n
which contains G as a proper subgraph. By Lemma 3.3, t(G) is less than t(G′). Then,
suppose that G is a connected odd-cycle graph with order n and size m.

By Kelmans transformations, we transfer the graph G into F (n,m). By Theorem 3.12,
we deduce that t(G) 6 F (n,m) and equality holds if and only if G ∼= F (n,m). When

t < ⌊3(n−1)
2

⌋, by Theorem 4.1 it follows that t(F (n, t)) < t(F (n, ⌊3(n−1)
2

⌋)) = t(Hn). Then,
we conclude that t(G) 6 t(Hn) and equality holds if and only if G ∼= Hn. The proof is
thus complete.

Now we are ready to finish the proof of Theorem 1.5.

Proof of Theorem 1.5. For m 6 2, it is easy to check that the first two parts of the
theorem is true.

For m = 3, G is one of the following graphs: the disjoint union of three edges and
n − 6 isolated vertices, the disjoint union of the star K1,2, an edge and n − 5 isolated
vertices, the disjoint union of the star K1,3 and n− 4 isolated vertices, the disjoint union
of a triangle and n− 4 isolated vertices. By some computations, it is easy to check that
the third part of the theorem is true.

For 4 6 m 6 n − 2, suppose that G has s connected components {G1, · · · , Gs} with
order {n1, · · · , ns} and size {m1, · · · ,ms}, where s > n − m. Since every connected
component is an odd-cycle graph, by the Kelmans transformations, we can obtained a
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graph G′ with s connected components {F (n1,m1), · · · , F (ns,ms)}. Then by Lemma 3.2
and Lemma 3.12, we have

t(G) = max{t(G1), . . . , t(Gs)} 6 max{t(F (n1,m1)), · · · , t(F (ns,ms))} = t(G′).

In every nontrivial connected component F (ni,mi), one of the vertices which have the
maximum degree in F (ni,mi) is named the root vertex of F (ni,mi). By identifying all
root vertices, we obtain a graph F (n− s+ 1,m). Let G′′ be the graph obtained from the
disjoint union of the graph F (n− s+ 1,m) and s− 1 isolated vertices.

If there are at least two nontrivial connected components, then every nontrivial con-
nected component F (ni,mi) is a proper subgraph of F (n − s + 1,m). Then by Lemma
3.2 and Lemma 3.3, it implies that t(G′) < t(F (n− s+ 1,m)). It follows that

t(G) 6 t(G′) < t(G′′).

Next, by Theorem 4.1, for s > n−m we have

t(F (n− s+ 1,m)) < t(F (m+ 1,m)).

Above all, together with Theorem 3.12, we conclude that t(G) 6 t(F (m + 1,m)) and
the equality holds if and only if G has only one nontrivial connected component which is
isomorphic to F (m+ 1,m). Thus, the fourth part of the theorem is true.

When n − 1 6 m 6 ⌊3(n−1)
2

⌋ and m > 4, suppose that G is disconnected and has s
connected components. Then by the similar method to the fourth part, we can deduce
that the maximum matching root of G is smaller than the maximum matching root of
F (n− s+ 1,m). By Theorem 4.1, for s > 1 we have

t(F (n− s+ 1,m)) < t(F (n,m)).

Then, we conclude that t(G) 6 t(F (n,m)), and the equality holds if and only if G is
connected and isomorphic to F (n,m) from Theorem 3.12. Thus, the fifth part of the
theorem is true.

The proof is thus complete.
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