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Abstract. Let G be a finite group written multiplicatively. Define E(G)
to be the minimal integer t such that every sequence of t elements (rep-
etition allowed) in G contains a subsequence with length |G| and with
product one (in some order). Let p be the smallest prime divisor of |G|.
In this paper we prove that if G is a noncyclic nilpotent group then

E(G) ≤ |G|+ |G|
p

+ p− 2, which confirms partially a conjecture by Gao

and Li. We also determine the exact value of E(G) for G = CpnCpn when
p is a prime, which confirms partially another conjecture by Zhuang and
Gao.
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1. Introduction

Let G be a finite group written multiplicatively (not necessarily commuta-
tive). Let E(G) be the minimal integer t such that given any t elements (rep-
etition allowed) in G, there must be exactly |G| of them that give product 1
when multiplied in some order. In 1961, Erdős,Ginzburg and Ziv proved that
E(G) ≤ 2|G| − 1 for all finite cyclic groups. This result is well known as the
Erdős-Ginzburg-Ziv theorem, and which implies that E(G) = 2|G| − 1 for all
finite cyclic groups. When G is a noncyclic solvable group, Yuster and Peter-
son [19] showed E(G) ≤ 2|G| − 2 in 1984. Later, in 1988, Yuster [18] proved
that E(G) ≤ 2|G| − r with the restriction that n ≥ 600((r − 1)!)2. In 1996,

Gao [4] improved the asymptotic bound of the theorem to E(G) ≤ 11|G|
6 − 1,

and in 2009, Gao and Li [6] proved that E(G) ≤ 7|G|
4 − 1.

Let d(G) denote the small Davenport constant, which is defined as the
maximal integer t such that there are t elements in G(repetition allowed),
it is impossible to find some collection of these that has product 1 when
multiplied in any order.
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Gao [3] proved that E(G) = d(G) + |G| for G being abelian(see [3], [9,
Proposition 5.7.9], and see Chapter 16 in the monograph [11] for a weighted
generalized of this result). The following conjecture is due to Zhuang and
Gao [20].

Conjecture 1.1. For any finite group G we have E(G) = d(G) + |G|.

Also Gao and Li [6] conjectured the following

Conjecture 1.2. For any finite non-cyclic group G we have E(G) ≤ 3|G|
2 .

Conjecture 1.1 has been verified only for very special non-abelian groups.
Zhuang and Gao [20] confirmed conjecture 1.1 for dihedral groups of order 2p
with p ≥ 4001 being a prime. Gao and Lu [7] confirmed conjecture 1.1 for all
dihedral group of order 2n, where n ≥ 23 is an integer. Bass [1] extended the
method of Gao and Lu to prove conjecture 1.1 is true for all dihedral groups,
dicyclic groups and Cp n Cq, where p, q are primes.

In this paper, we will give a large improvement over these results men-
tioned above for nilpotent groups, and our main results are as follows.

Theorem 1.3. Let G be a finite solvable group of order n. If G has a normal
subgroup N such that G/N ' Cm × Cm, then

n+ d(G) ≤ E(G) ≤ n+
n

m
+m− 2.

Theorem 1.4. Let G be a finite nilpotent non-cyclic group of order n, and let
p be the smallest prime divisor of n. Then

n+ d(G) ≤ E(G) ≤ n+
n

p
+ p− 2.

In particular, E(G) ≤ 3n
2 .

From theorem 1.3, we can derive the following result.

Theorem 1.5. Let G be a semidirect product of a normal cyclic subgroup of
order pn and a subgroup of order p, where p is a prime and n is a positive
integer. Then

E(G) = |G|+ d(G) = p2n+ p+ pn− 2.
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2. preliminaries

This section will provide more rigorous definitions for the above concepts and
introduce notations that will be used repeatedly below.

As before, G is a finite group of order n(written multiplicatively). For
a1, . . . , ak ∈ G(repetition allowed), we call S = a1 · . . . · ak a sequence in
G. The length of S is |S| = k. A product of S is a value in G obtained
by multiplying all elements of S, i.e., for σ a permutation of the integers
1, . . . , k, aσ(1)aσ(2) · · · aσ(k) is a product of S. For example, we define π(S) =
a1a2 · · · ak to be the specific product of S obtained by multiplying all elements
in the order they appear in S. We call S a product-one sequence if one of its
products is 1.

A subsequence is obtained from a sequence by taking a nonempty subset
of its indices, so for any {i1, . . . , i`} ⊂ {1, . . . , k}, we have the subsequence
T1 = ai1 · . . . ·ai` of S. Note that the elements of a subsequence need not be in
the same order as they appeared in the original sequence. Let ST−11 denote
the deletion of T1 from S, which is the subsequence of S corresponding to
the set of indices {1, . . . k} \ {i1, . . . i`} in ascending order.

Let T2 = aj1 · . . . · ajk be another subsequence of S. T1 and T2 are
disjoint if the sets {i1, . . . , i`} and {j1, . . . , jk} are disjoint. We denote the
concatenation of disjoint subsequences T1 and T2 by T1T2 = ai1 · . . . · ai`aj1 ·
. . . · ajk .

A product-one sequence S is called a minimal product-one sequence if
it can not be partitioned into two nonempty, product-one subsequences.

We denote by
∏
`(S) the set consisting of all elements which can be

expressed as a product of a subsequence T of S with |T | = `. In particular,∏
`

(S) = {ai1 · · · ai` |1 ≤ ij ≤ k for each j, and ij 6= it when j 6= t}.

Using these concepts, we can define

• the small Davenport constant d(G) to be the maximal length t of all
sequence which contains no nonempty product-one subsequence.
• the large Davenport constant D(G) to be the maximal length t of all

minimal product-one sequence.
• E(G) to be the least integer t such that any sequence S of length t in G

has a product-one subsequence T of length |T | = |G|.
A simple argument [10, lemma 2.4] shows that

d(G) + 1 ≤ D(G) ≤ |G|.

When G is abelian, we define

• η(G) to be the least integer t such that any sequence S of length t in
G has a product-one subsequence T of length |T | ∈ [1, exp(G)], where
exp(G) is the exponent of G.
• s(G) to be the least integer t such that any sequence of length t in G

has a product-one subsequence T of length |T | = exp(G).



4 Dongchun Han

Next, we recall [17] the definition of Cm n Cn, it is generated by two
elements x, y such that 〈x〉∩ 〈y〉 = 1, where the order of y is m and the order
of x is n, and yxy−1 = xs, 1 ≤ s ≤ n− 1.

We begin with the bound of E(G).

Lemma 2.1. For every finite group G, d(G) + |G| ≤ E(G) ≤ 2|G| − 1.

Proof. The lower bound can be found in [20, lemma 4] and the upper bound
can be found in [15]. �

Lemma 2.2. ([8]) Any sequence S over Cm × Cm of length |S| = 3m − 2
contains a product-one subsequence T of length |T | ≡ 0 (mod m).

Lemma 2.3. Let G = Cn1 × Cn2 with 1 ≤ n1|n2. Then

s(G) = 2n1 + 2n2 − 3, η(G) = 2n1 + n2 − 2 and d(G) = n1 + n2 − 2.

Proof. Refer to [13], [16] and Theorem 5.8.3 in [9]. �

Lemma 2.4. Let S be a sequence over Cn.

1. If |S| = kn+n−1 with k ≥ 1, then S contains a product-one subsequence
T of length kn;

2. If |S| = kn+n−2 with k ≥ 2 and S contains no product-one subsequence
of length kn, then S must be the type S = axn−1byn−1, where x+y = k+1
and 〈ab−1〉 = Cn. Moreover

∏
kn−2(S) = Cn.

Proof. (1) By using the Erdős-Ginzburg-Ziv theorem of Cn repeatedly, we
get the desired result.

(2) Let S = a1 · . . . · akn+n−2, we define va(S) = |{ai|ai = a}| for any
a ∈ Cn.

Applying Lemma 2.2 in [5], we obtain that there exist two distinct
elements a, b ∈ Cn such that

va(S) + vb(S) = (k + 1)n− 2.

Then we have S = aun+`bvn+m with 0 ≤ ` ≤ n− 1 and 0 ≤ m ≤ n− 1.
If 0 ≤ ` ≤ n− 2, then

(k + 1)n > un+ vn+m ≥ (k + 1)n− 2− ` ≥ kn.
Hence u+v = k and aunbvn is a product-one subsequence of S with length kn.
A contradiction. Otherwise ` = m = n− 1. In other words, S = axn−1byn−1

and an−1bn−1 contains no product-one of length n.
Note that 〈ab−1〉 = Cn. If not, then we get

1 ∈
∏
n(an−1bn−1) = {atbn−t = (ab−1)t | 0 ≤ t ≤ n− 1}.

A contradiction.
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Thus S = axn−1byn−1, where x+ y = k+ 1 and 〈ab−1〉 = Cn. Therefore
we have∏

nk−2(S) =
∏
n(S) = {atbn−t = (ab−1)t | 0 ≤ t ≤ n− 1} = Cn.

�

Lemma 2.5. ([6]) Let G be a non-cyclic finite solvable group of order n. Then
every sequence over G of length kn + 3

4n − 1 contains a product-one subse-
quence of length kn.

We also need the following technical result.

Lemma 2.6. Let G be a non-cyclic finite p-group, where p is a prime. Then
there exists a normal subgroup N of G such that G/N ' Cp × Cp.

Proof. We proceed by induction on the order of G.
If |G| = p2, it is well known that G ' Cp × Cp.
If |G| > p2, let Z(G) = {x ∈ G|xy = yx for all y ∈ G} be the center of

G. It is well known that |Z(G)| ≥ p for any finite p-group G.
If G/Z(G) is cyclic, then G is abelian, there must be a subgroup N ≤ G

with G/N ' Cp×Cp. Otherwise G/Z(G) is non-cyclic, then p2 ≤ |G/Z(G)| <
|G|. Thus by induction there exists a normal subgroup N of G such that
Z(G) ⊆ N ⊆ G and(

G/Z(G)
)/(

N/Z(G)
)
' Cp × Cp ' G/N.

�

Lemma 2.7. ([17]) Let G be a finite nilpotent group, then G =
∏
pGp, where

p is a prime and Gp is the Sylow p-subgroup of G.

3. Proof of the theorems

In this section we shall prove those theorems stated in section 1.

Proof of Theorem 1.3. If m = 1, then the upper bound follows from
lemma 2.1. Suppose that m ≥ 2.

Let S be a sequence over G of length n + n
m + m − 2. Let φ be the

following homomorphism

φ : G→ Cm × Cm,
where kerφ ' N .

We need to show 1 ∈
∏
n(S), i.e., that S has a nonempty 1-product

subsequence of length n. Since G/N ' Cm × Cm , and from lemma 2.3, we
know s(Cm×Cm) = 4m−3. Repeatedly applying the definition of s(Cm×Cm)
to φ(S), we can remove product-one subsequences from φ(S) of length m
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until there are at most 4m− 4 terms of φ(S) left. In other words, we obtain
a factorization S = S1 · . . . · SrS′ with

|Si| = m and π(Si) ∈ kerφ for 1 ≤ i ≤ r, and |S′| ≤ 4m− 4.

Consequently,

r ≥ d
n+ n

m +m− 2− 4m+ 4

m
e =

n

m
+

n

m2
− 2.

If N is not a cyclic subgroup, then by lemma 2.5, π(S1)·. . .·π(S n
m+ n

m2−2)

contains a product-one subsequence of length n
m , therefore we complete the

proof.

Now assume that N is a cyclic subgroup of G. Let T = SS−11 · . . . ·
S−1n

m+ n
m2−2

. Then |T | = 3m− 2 and φ(T ) contains a product-one subsequence

of length m or 2m in Cm × Cm by lemma 2.2. We distinguish the following
two cases.

Case 1: T contains a subsequence of length m, denoted by S n
m+ n

m2−1

such that π(S n
m+ n

m2−1) ∈ kerφ.

Then by lemma 2.4 (1) the sequence π(S1) · . . . · π(S n
m+ n

m2−1) over N

contains a product-one subsequence of length n
m . By rearrangement we may

assume that π(S1) · . . . · π(S n
m

) = 1. That is, S1 · . . . · S n
m

is a product-one
subsequence over G of length n.

Case 2: T contains no subsequence T ′ of length m with π(T ′) ∈ kerφ.

Therefore T contains a subsequence J of length 2m with π(J) ∈ kerφ.
Let W = π(S1) · . . . ·π(S n

m+ n
m2−2), then W is a sequence of length n

m + n
m2 −2

over C n
m2

.

If W contains a product-one subsequence of length n
m , then we have

done. Otherwise, from lemma 2.4(2),
∏

n
m−2

(W ) = C n
m2

, thus (π(J))−1 ∈∏
n
m−2

(W ) and π(Si1) · · ·π(Si n
m

−2
)π(J) = 1 for 1 ≤ i1 < · · · < i n

m−2 ≤
n
m + n

m2 − 2. Hence Si1 · . . . · Si n
m

−2
J is a product-one subsequence of length

( nm − 2)m+ 2m = n over G. This completes the proof. �

Proof of Theorem 1.4. By lemma 2.7 we have G =
∏
q Gq, where q is a

prime and Gq is the Sylow q-subgroup of G. By lemma 2.6 and G is non-cyclic,
there exists a noncyclic Sylow q-subgroup Gq and a normal subgroup Nq of
Gq such that Gq/Nq ' Cq ×Cq. Therefore we get the following isomorphism

G
/

(
∏
p 6=q

Gp ×Nq) ' Gq/Nq ' Cq × Cq.

Then from Theorem 1.3, we have

n+ d(G) ≤ E(G) ≤ n+
n

q
+ q − 2 ≤ n+

n

p
+ p− 2 ≤ 3

2
n,

where p is the smallest prime divisor of n. �
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Proof of Theorem 1.5. Let G be generated by two elements x, y such that
〈x〉 ∩ 〈y〉 = 1, where the order of y is p and the order of x is pn, yxy−1 = xs,
1 ≤ s ≤ pn− 1.

It is well known that G
/
〈xp〉 is abelian, since G

/
〈xp〉 is a group of order

p2 and p is a prime.
Note that ḡp = 1̄ for every element g ∈ G, since x̄p = ȳp = 1̄, where ḡ =

g〈xp〉 ∈ G
/
〈xp〉. Thus G

/
〈xp〉 is generated by two elements x̄, ȳ and G

/
〈xp〉

is a noncyclic group of order p2. Then we have the following isomorphism

G
/
〈xp〉 ' Cp × Cp.

It is easy to check that the sequence yp−1xpn−1 of length p + pn − 2
contains no non-empty product-one subsequence, since yuxv = xs

uvyu for
u ≥ 0, v ≥ 0(the power of y doesn’t change). Then by Theorem 1.3 we get

np2 + pn+ p− 2 ≤ np2 + d(G) ≤ E(G) ≤ np2 + pn+ p− 2,

which completes the proof. �

We end this section with the following

Conjecture 3.1. Let G be a finite non-cyclic group. Then E(G) ≤ |G|+ |G|
p +

p− 2, where p is the smallest prime divisor of |G|.
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4. W.D. Gao, An improvement of Erdős-Ginzburg-Ziv theorem , Acta Math. Sinica
39(1996), 514-523.

5. W.D. Gao, D.C. Han, J.T. Peng, F. Sun, On zero-sum subsequences of length
k exp(G), J. Combin. Theory Ser. A 125 (2014), 240-253.
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