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Abstract

A path in an edge-colored graph is said to be a rainbow path if no two
edges on the path share the same color. An edge-colored graph is (strongly)
rainbow connected if there exists a rainbow (geodesic) path between every
pair of vertices. The (strong) rainbow connection number of G, denoted by
(scr(G), respectively) rc(G), is the smallest number of colors that are needed
in order to make G (strongly) rainbow connected. A vertex-colored graph G is
rainbow vertex-connected if any pair of vertices in G are connected by a path
whose internal vertices have distinct colors. The rainbow vertex-connection
number of a connected graph G, denoted by rvc(G), is the smallest number of
colors that are needed in order to make G rainbow vertex-connected. Though
for a general graph G it is NP-Complete to decide whether rc(G) = 2 (or
rvc(G) = 2), in this paper, we show that the problem becomes easy when G
is a bipartite graph. Whereas deciding whether rc(G) = 3 (or rvc(G) = 3)
is still NP-Complete, even when G is a bipartite graph. Moreover, it is
known that deciding whether a given edge(vertex)-colored (with an unbound
number of colors) graph is rainbow (vertex-)connected is NP-Complete. We
will prove that it is still NP-Complete even when the edge(vertex)-colored
graph is bipartite. We also show that a few NP-hard problems on rainbow
connection are indeed NP-Complete.
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1. Introduction

We follow the terminology and notations of [2] and all graphs considered
here are finite and simple.

As a means of strengthening the connectivity, Chartrand et al. in [6]
first introduced the concepts of rainbow connection and strong rainbow con-
nection. Let G be a nontrivial connected graph with an edge-coloring c:
E(G) → {1, 2, . . . , k}, k ∈ N, where adjacent edges may be colored the
same. A path P in G is a rainbow path if no two edges of P are col-
ored the same. The graph G is rainbow connected (with respect to c) if
G contains a rainbow u − v path for any pair of vertices u and v of G.
In this case, the coloring c is called a rainbow coloring of G. If k colors
are used, then c is a rainbow k-coloring. The rainbow connection number
of G, denoted by rc(G), is the smallest number of colors that are needed
in order to make G rainbow connected. A rainbow u − v geodesic in G
is a rainbow u − v path of length d(u, v), where d(u, v) is the distance
between u and v. The graph G is strongly rainbow connected if there
exists a rainbow u − v geodesic for any two vertices u and v in G. In
this case, the coloring c is called a strong rainbow coloring of G. Sim-
ilarly, we define the strong rainbow connection number of a connected
graph G, denoted by src(G), as the smallest number of colors that are
needed in order to make G strong rainbow connected. Clearly, we have
diam(G) ≤ rc(G) ≤ scr(G) ≤ m, where diam(G) denotes the diameter of
G and m is the number of edges of G. Moreover, it is easy to verify that
src(G) = rc(G) = 1 if and only if G is a complete graph, that rc(G) = 2 if
and only if src(G) = 2, and that rc(G) = n− 1 if and only if G is a tree.

Similar to the concept of rainbow connection number, Krivelevich and
Yuster [14] proposed the concept of rainbow vertex-connection number. Let
G be a nontrivial connected graph with a vertex-coloring c: V (G) → {1, 2, . . . ,
k}, k ∈ N. A path P in G is rainbow vertex-connected if its internal
vertices have distinct colors. The graph G is rainbow vertex-connected
(with respect to c) if any pair of vertices are connected by a rainbow vertex-
connected path. In this case, the coloring c is called a rainbow vertex-
coloring of G. If k colors are used, then c is a rainbow k-vertex-coloring and
G is rainbow k-vertex-connected. The rainbow vertex-connection number
of a connected graph G, denoted by rvc(G), is the smallest number of colors
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that are needed in order to make G rainbow vertex-connected. It is easy to
observe that if G is of order n then rvc(G) ≤ n− 2, rvc(G) = 0 if and only
if G is a complete graph, and rvc(G) = 1 if and only if diam(G) = 2. Notice
that rvc(G) ≥ diam(G)− 1 with equality if the diameter is 1 or 2. For more
results on rainbow connection and rainbow vertex-connection, we refer to the
survey [12] and the book [13].

The computational complexity of rainbow (vertex-)connection number
has been studied extensively. In [3], Caro et al. conjectured that computing
rc(G) is an NP-Hard problem, as well as that even deciding whether a graph
has rc(G) = 2 is NP-Complete. In [4], Chakraborty et al. confirmed this
conjecture. In [1], the complexity of computing rc(G) and src(G) was studied
further. It was shown that given any natural number k ≥ 3 and a graph G,
it is NP-hard to determine whether rc(G) ≤ k. Moreover, for src(G), it was
shown that given any natural number k ≥ 3 and a graph G, determining
whether src(G) ≤ k is NP-hard even when G is bipartite. In this paper, we
will point out that the problems in [1] are, in fact, NP-Complete. Though
for a general graph G it is NP-Complete to decide whether rc(G) = 2 [4], we
show that the problem becomes easy when G is a bipartite graph. Whereas
deciding whether rc(G) = 3 is still NP-Complete, even when G is a bipartite
graph.

For the rainbow vertex-connection number, Chen et al. [8] showed that
for a graph G, deciding whether rvc(G) = 2 is NP-Complete. Recently, Chen
et al. [7] obtained a more general result: for any fixed integer k ≥ 2, to decide
whether rvc(G) ≤ k is NP-Complete. For more complexity results, we refer
to [11, 9, 10, 5, 15].

In this paper, we continue focusing on the bipartite graph. Similarly,
we obtain that deciding whether rvc(G) = 2 can be solved in polynomial
time, whereas deciding whether rvc(G) = 3 is still NP-Complete when G is
a bipartite graph. Moreover, it is NP-Complete to decide whether a given
edge-colored (with an unbound number of colors) graph is rainbow connected
[4] and it is also NP-Complete to decide whether a given vertex-colored graph
is rainbow vertex-connected [8]. We will prove that the two problems are still
NP-Complete even when the graph is bipartite.

2. Main results

At first, we restate several results in [4] and [1].
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Lemma 1. ([4]) Given a graph G, deciding if rc(G) = 2 is NP-Complete.
In particular, computing rc(G) is NP-Hard.

Lemma 2. ([1]) For every k ≥ 3, deciding whether rc(G) ≤ k is NP-Hard.

Lemma 3. ([1]) Deciding whether the rainbow connection number of a graph
is at most 3 is NP-Hard even when the graph G is bipartite.

Lemma 4. ([1]) For every k ≥ 3, deciding whether src(G) ≤ k is NP-Hard
even when G is bipartite.

We will show that “NP-hard” in the above results can be replaced by “NP-
Complete” if k is any fixed integer. It suffices to show that these problems
belong to the class NP for any fixed k. In fact, from the proofs in [1], for
the problems in Lemmas 2 and 4, “For every k ≥ 3” can be replaced by “For
any fixed k ≥ 3”.

Theorem 1. For any fixed k ≥ 2, given a graph G, deciding whether rc(G) ≤
k is NP-Complete.

Proof. By Lemmas 1 and 2, it will suffice to show that the problem in
Lemma 2 belongs to the class NP. Therefore, if given any instance of the
problem whose answer is ‘yes’, namely a graph G with rc(G) ≤ k, we want
to show that there is a certificate validating this fact which can be checked
in polynomial time.

Obviously, a rainbow k-coloring of G means that rc(G) ≤ k. For checking
a rainbow k-coloring, we only need to check whether k colors are used and
for any two vertices u and v of G, whether there exists a rainbow u− v path.
Notice that for two vertices u, v, there are at most nl−1 u− v paths of length
l, since if let P = ut1t2 · · · tl−1v, there are less than n choices for each ti
(i ∈ {1, 2, . . . , l− 1}). Therefore, G contains at most Σk

l=1n
l−1 ≤ knk−1 ≤ nk

u− v paths of length no more than k. Then check these paths in turn until
we find one path whose edges have distinct colors or no such paths at all. It
follows that the time used for checking is at most O(nk · n · n2) = O(nk+3).
Since k is a fixed integer, we conclude that the certificate, namely a rainbow
k-coloring of G, can be checked in polynomial time. The proof is complete.

The next theorem can be obtained similarly.
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Theorem 2. For any fixed k ≥ 2, given a graph G, deciding whether src(G) ≤
k is NP-Complete.

Proof. Since rc(G) = 2 if and only if src(G) = 2, by Lemmas 1 and 4, it
suffices to show that the problem in Lemma 4 belongs to the class NP.

From the proof of Theorem 1, it is clear that for any two vertices u and
v of G, the existence of a u− v path of length l (≤ k) can be decided in time
O(nl−1). Therefore, if we check each integer l ≤ k in turn, we can either find
an integer l such that there is a u− v path of length l but no u− v path of
length less than l, or conclude that there is no u−v path of length at most k.
In the former case, the integer l is exactly the distance d(u, v) and then check
the colors of edges of each u − v path of length d(u, v) in turn. Similar to
the proof of Theorem 1, we can obtain that the certificate, namely, a strong
rainbow k-coloring of G, can be checked in polynomial time. The proof is
complete.

We know that for a given graph G, deciding if rc(G) = 2 is NP-Complete.
Surprisingly, if G is a bipartite graph, the problem turns out to be easy.
Before giving the proof, we first introduce the following result stated in [6].

Lemma 5. ([6]) For integers s and t with 2 ≤ s ≤ t,

rc(Ks,t) = min{d s
√

t e, 4}.

Theorem 3. For a bipartite graph G, deciding whether rc(G) = 2 can be
solved in polynomial time.

Proof. Obviously if G is not a complete bipartite graph, there must exist two
nonadjacent vertices x and y in the different parts of G. But then the dis-
tance d(x, y) must be at least 3. We know that d(x, y) ≤ diam(G) ≤ rc(G).
It follows that rc(G) 6= 2. Therefore, only when G is a complete bipartite
graph Ks,t (s ≤ t), it is possible that rc(G) = 2. If s = 1, then G is a star
and rc(G) = t. Otherwise by Lemma 5, rc(G) = min{d s

√
t e, 4}. One only

needs to check if 1 < t ≤ 2s, which can be done by simple computations
and comparisons. Moreover, it is clear that checking whether G is a com-
plete bipartite graph can be done in polynomial time. The proof is complete.

Then by Lemma 3 and Theorem 1, the following result is immediate.
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Corollary 1. Given a bipartite graph G, deciding if rc(G) = 3 is NP-
Complete.

For a general graph, the computational complexity of rainbow vertex-
connection number has been completely solved.

Lemma 6. ([8]) Given a graph G, deciding whether rvc(G) = 2 is NP-
Complete. Thus, computing rvc(G) is NP-Hard.

Later, Chen et al. obtained a more general result:

Lemma 7. ([7]) For every integer k ≥ 2, to decide whether rvc(G) ≤ k
is NP-Hard. Moreover, for any fixed integer k ≥ 2, the problem belongs to
NP-class, and therefore it is NP-Complete.

Now, we restrict our attention to the bipartite graph and obtain similar
results to those for rainbow connection number.

Theorem 4. For a bipartite graph G, deciding whether rvc(G) = 2 can be
solved in polynomial time.

Proof. We know that computing the diameter diam(G) of G can be done in
polynomial time.

If diam(G) ≥ 4, then rvc(G) ≥ diam(G)− 1 ≥ 3.
If diam(G) = 2, namely G is a complete bipartite graph, then rvc(G) = 1.
If diam(G) = 3, then rvc(G) ≥ diam(G) − 1 ≥ 2. Let G = G[X,Y ],

where (X,Y ) is a bipartition of G. We give a vertex-coloring c of G as
follows: c(u) = 1 for u ∈ X and c(u) = 2 for u ∈ Y . For any two vertices u
and v in G, d(u, v) ≤ diam(G) = 3. Furthermore, if u and v belong to the
same part, then d(u, v) = 2 and if u and v belong to the different parts, then
d(u, v) = 1 or 3. Obviously, in this coloring c, G is rainbow vertex-connected.
So rvc(G) ≤ 2 and it follows that rvc(G) = 2.

To summarize, when G is a bipartite graph, for deciding whether rvc(G) =
2, we only need to check whether diam(G) = 3. The proof is complete.

Though for a bipartite graph G it is easy to check whether rvc(G) = 2,
we will show that the problem of deciding whether rvc(G) = 3 is still hard.
Before proceeding, let us recall the 3-vertex-coloring problem: given a graph
G, is G 3-colorable, i.e., does there exist an assignment of at most 3 colors to
the vertices of G such that no pair of adjacent vertices are colored the same.
It is known that this 3-vertex-coloring problem is NP-Complete.
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Theorem 5. Given a bipartite graph G, deciding whether rvc(G) = 3 is
NP-Complete.

Proof. By Lemma 7, it is clear that the problem belongs to class NP. So it
suffices to show that the 3-vertex-coloring problem is polynomially reducible
to this problem.

Let G = (V, E) be any instance of the 3-vertex-coloring problem. We will
construct a corresponding bipartite graph G′ such that rvc(G′) ≤ 3 if and
only if G is 3-colorable.

Define the bipartite graph G′ = G′[X,Y ], where the two parts X and Y
are defined as follows:

X = X1 ∪X2 ∪X3,
X1 = V (G) = {vi : i ∈ {1, 2, . . . , n}}
X2 = {xij : vivj /∈ E(G)} ∪ {xi : d(vi) = n− 1}
X3 = {t, u1, u2, z1, z2};
Y = Y1 ∪ Y2 ∪ Y3,
Y1 = {v′i : i ∈ {1, 2, . . . , n}}
Y2 = {yij : xij ∈ X2} ∪ {yi : xi ∈ X2}
Y3 = {a, b, c, w1, w2}.
Moreover, the edge set E(G′) is defined as follows:
E(G′) = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5 ∪ E6 ∪ E7,
E1 = {viv

′
i : i ∈ {1, 2, . . . , n}}

E2 = {v′ixij, v
′
jxij : vivj /∈ E(G)} ∪ {v′ixi : d(vi) = n− 1}

E3 = {xijyij : xij ∈ X2} ∪ {xiyi : xi ∈ X2}
E4 = {avi, bvi, cvi : i ∈ {1, 2, . . . , n}}
E5 = {w1u,w2u : u ∈ X2}
E6 = {z1u, z2u : u ∈ Y2}
E7 = {ta, tb, tc, tw1, tw2, u1w1, u2w2, z1a, z1b, z1c, z2a, z2b, z2c}.
Suppose that rvc(G′) ≤ 3 and c′ is a rainbow 3-vertex-coloring of G′.

Since d(u1) = d(u2) = 1, any rainbow vertex-connected u1 − u2 path must
go through w1 and w2. So c′(w1) 6= c′(w2) and without loss of generality, let
c′(w1) = 1 and c′(w2) = 2. Note that any vertex y of Y2 corresponds to the
only vertex x of X2 such that xy ∈ E(G′), and vice versa. For any vertex
y ∈ Y2, it can be seen that there is only one u1 − y path of length ≤ 4,
namely u1w1xy, where x ∈ X2 is the corresponding vertex of y. It follows
that c′(w1) 6= c′(x). Similarly, there is only one u2 − y path of length ≤ 4,
namely u2w2xy and so c′(w2) 6= c′(x). So c′(x) 6= 1 and 2, and we can obtain
that c′(x) = 3, for each vertex x of X2. Now we give the 3-vertex-coloring
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Figure 1: The bipartite graph G′.

c of G by c(vi) = c′(vi), for i ∈ {1, 2, . . . , n}. For every vivj ∈ E(G), notice
that there is no vertex adjacent to both v′i and v′j and so the rainbow vertex-
connected path between v′i and v′j has length four. We can let the v′i−v′j path
be v′im1m2m3v

′
j. We know that N(Y1) = X1 ∪X2 and it is impossible that

both m1 and m3 belong to X2, since each vertex of X2 has the same color 3.
Moreover, the case that m1 ∈ X1 and m3 ∈ X2 is also impossible. It follows
that m1 must be vi ∈ X1 and m3 must be vj ∈ X1. Now we can conclude
that c′(vi) 6= c′(vj), namely c(vi) 6= c(vj) and so the 3-vertex-coloring c of G
is proper.

In the other direction, assume that G is 3-colorable and let c be a proper
3-vertex-coloring of G. We define the vertex-coloring c′ of G′ as follows:
c′(vi) = c(vi), for i ∈ {1, 2, . . . , n}; c′(x) = 3, for each vertex x ∈ X2;
c′(t) = 3, c′(z1) = 1, c′(z2) = 2, c′(a) = 1, c′(b) = 2, c′(c) = 3, c′(w1) = 1,
c′(w2) = 2; c′(v) = 1, for each remaining vertex v. We now show that the
3-vertex-coloring c′ makes G′ rainbow vertex-connected. Let u, v be any two
vertices of G′.

Case 1: u, v ∈ Xi or Yi, where i ∈ {1, 2, 3}.
It can be seen that when U = X1, X2, Y2 or Y3, there always exists a

vertex adjacent to every vertex in U . In this situation, any two vertices in U
are clearly rainbow vertex-connected.

For u, v ∈ X3, if u = t and v = ui(zi), then twiui(tazi) is a rainbow
vertex-connected u − v path, for i ∈ {1, 2}; if u = u1(u2) and v = zi, then
u1w1tbzi(u2w2tazi) is a rainbow vertex-connected u − v path, for i ∈ {1, 2};
if u = u1 and v = u2, then u1w1xw2u2 is a rainbow vertex-connected u − v
path, where x is an arbitrary vertex in X2; if u = z1 and v = z2, then z1az2
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is a rainbow vertex-connected u− v path.
For u, v ∈ Y1, let u = v′i and v = v′j. If vivj /∈ E(G), then v′ixijv

′
j is a

rainbow vertex-connected u− v path. If vivj ∈ E(G), by the definition of c′,
c′(vi) 6= c′(vj). Choose a vertex w ∈ {a, b, c} such that c′(w) 6= c′(vi) 6= c′(vj)
and then v′iviwvjv

′
j is a rainbow vertex-connected u− v path.

Case 2: u ∈ X1 and v ∈ V (G′)\X1.
If v ∈ X2, then uatw2v is a rainbow vertex-connected u− v path.
For v ∈ X3, if v = t, z1 or z2, then uav is a rainbow vertex-connected u−v

path; if v = u1(u2), then ubtw1u1(uatw2u2) is a rainbow vertex-connected
u− v path.

If v ∈ Y1, let v = v′i. u and v are obviously rainbow vertex-connected if
u = vi; otherwise, choose a vertex w ∈ {a, b, c} such that c′(w) 6= c′(vi) and
then uwviv is a rainbow vertex-connected u− v path.

If v ∈ Y2, then uaz2v is a rainbow vertex-connected u− v path.
For v ∈ Y3, if v = a, b or c, then u and v are adjacent and so rainbow

vertex-connected; if v = w1 or w2, then uatv is a rainbow vertex-connected
u− v path.

Case 3: u ∈ X2 and v ∈ V (G′)\X1 ∪X2.
For v ∈ X3, if v = ui(t), then uwiui(uw1t) is a rainbow vertex-connected

u − v path, for i ∈ {1, 2}; if v = z1 or z2, then uyv is a rainbow vertex-
connected u− v path, where y ∈ Y2 is the corresponding vertex of u ∈ X2.

For v ∈ Y1, notice that by the construction of G′, each vertex v of Y1 has
at least one neighbor in X2. If u and v are adjacent, then they are obviously
rainbow vertex-connected; otherwise, uw1nvv is a rainbow vertex-connected
u− v path, where nv ∈ N(v) ∩X2.

For v ∈ Y2, If u and v are adjacent, there is nothing to prove; other-
wise, uw1xv is a rainbow vertex-connected u − v path, where x ∈ X2 is the
corresponding vertex of v ∈ Y2.

For v ∈ Y3, if v = w1 or w2, u and v are clearly rainbow vertex-connected;
if v = a, b or c, then uw1tv is a rainbow vertex-connected u− v path.

Case 4: u ∈ X3 and v ∈ Yi, for i ∈ {1, 2, 3}.
If v ∈ Y1, let v = v′i. If u = t, z1 or z2, choose a vertex w ∈ {a, b, c}

such that c′(w) 6= c′(vi) and then uwviv is a rainbow vertex-connected u− v
path; if u = ui, then uiwinvv is a rainbow vertex-connected u−v path, where
nv ∈ N(v) ∩X2 and i ∈ {1, 2}.

For v ∈ Y2, if u = z1 or z2, then u and v are adjacent; if u = ui(t), then
uiwixv(taz2v) is a rainbow vertex-connected u− v path, where x ∈ X2 is the
corresponding vertex of v ∈ Y2 and i ∈ {1, 2}.
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For v ∈ Y3, if u = t, then u and v are adjacent; if u = ui and v = wi,
then u and v are also adjacent, for i ∈ {1, 2}; if u = u1(u2) and v = a, b, c
or w2(a, b, c or w1), then u1w1tv(u2w2tv) a rainbow vertex-connected u − v
path; if u = z1 or z2 and v = a, b or c, then u and v are adjacent; if u = z1

or z2 and v = w1 or w2, then uatv is a rainbow vertex-connected u− v path.
Case 5: u ∈ Y1 and v ∈ Y2 ∪ Y3.
Let u ∈ Y1 be v′i. If v ∈ Y2, we first choose a vertex z ∈ {z1, z2} such that

c′(z) 6= c′(vi) and then choose a vertex w ∈ {a, b, c} such that c′(w) 6= c′(vi)
and c′(w) 6= c′(z). Now v′iviwzv is a rainbow vertex-connected u− v path;

For v ∈ Y3, if v = a, b or c, then v′iviv is a rainbow vertex-connected u− v
path; if v = w1 or w2, then unuv is a rainbow vertex-connected u − v path,
where nu ∈ N(u) ∩X2.

Case 6: u ∈ Y2 and v ∈ Y3.
If v = a, b or c, then uz1v is a rainbow vertex-connected u − v path; if

v = w1 or w2, then uz1btv is a rainbow vertex-connected u− v path.
We have considered all the cases and so c′ is a rainbow 3-vertex-coloring

of G′. The proof is complete.

As shown in the proof of Theorem 1, given an edge-coloring of a graph, if
the number of colors is constant, then we can verify whether the colored graph
is rainbow connected in polynomial time. However, in [4], Chakraborty et al.
showed that if the coloring is arbitrary, the problem becomes NP-Complete.

Lemma 8. ([4]) The following problem is NP-Complete: given an edge-
colored graph G, check whether the given coloring makes G rainbow connected.

Now we prove that even when G is bipartite, the problem is still NP-
Complete.

Theorem 6. Given an edge-colored bipartite graph G, checking whether the
given coloring makes G rainbow connected is NP-Complete.

Proof. By Lemma 8, it will suffice by showing a polynomial reduction from
the problem in Lemma 8.

Given a graph G = (V, E) and an edge-coloring c of G, we will construct
an edge-colored bipartite graph G′ such that G is rainbow connected if and
only if G′ is rainbow connected.

Now for each edge e ∈ E(G), subdivide e by a new vertex ve. The
obtained graph is exactly G′ and (X,Y ) is a bipartition of G′, where X =
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V (G) and Y = {ve : e ∈ E(G)}. Then the edge-coloring c′ of G′ is defined
by for each edge e = vivj ∈ E(G) (i ≤ j), c′(vive) = c(e) and c′(vjve) = le,
where le is a new color and different from the colors used in c and if e 6= e′,
then le 6= le′ .

If c′ is a rainbow coloring of G′, then any two vertices u and v are con-
nected by a rainbow path P ′

u,v, including every pair of vertices in X = V (G).
Clearly, by contracting edges which are assigned new colors, P ′

u,v can be con-
verted to a rainbow path Pu,v of G (with respect to c), where u, v ∈ V (G).
It follows that the coloring c makes G rainbow connected.

To prove the other direction, assume that for every two vertices vt and
vt′ of G, there always exists a rainbow path Pvtvt′ = vtvt1vt2 . . . vt′ . Now
for each pair (vt, vt′) of vertices in V (G′), if vt, vt′ ∈ X = V (G), then
P ′

vtvt′
= vtvem1

vt1vem2
vt2 . . . vemj

vt′ is a rainbow path in G′, where the ver-

tex vemi
subdivides the edge emi

= vti−1
vti of G, i ∈ {1, . . . , j} (when i = 1,

the edge is vtvt1 and when i = j, the edge is vtj−1
vt′). If vt, vt′ ∈ Y , then there

exist two edges e1 = vi1vj1 and e2 = vi2vj2 (i1 ≤ j1 and i2 ≤ j2) such that in
G′ vt and vt′ subdivide e1 and e2, respectively. Since vj1 , vj2 ∈ X = V (G),
we can find a rainbow path P ′

vj1
vj2

in G′. If vt ∈ P ′
vj1

vj2
, then delete the edge

vj1vt from the path P ′
vj1

vj2
. Otherwise, add the edge vtvj1 to the path P ′

vj1
vj2

.

Similarly, if vt′ ∈ P ′
vj1

vj2
, then delete the edge vt′vj2 from the path P ′

vj1
vj2

.

Otherwise, add the edge vj2vt′ to the path P ′
vj1

vj2
. Then P ′

vj1
vj2

can always
be converted to a rainbow vt − vt′ path. The proof of the case that vt ∈ X
and vt′ ∈ Y is similar. Therefore G′ is rainbow connected with respect to c′.
The proof is complete.

For the rainbow vertex-connection, the conclusions are similar.

Lemma 9. ([8]) The following problem is NP-Complete: given a vertex-
colored graph G, check whether the given coloring makes G rainbow vertex-
connected.

Similarly, we can also prove that even when G is bipartite, the problem
is still NP-Complete.

Theorem 7. Given a vertex-colored bipartite graph G, checking whether the
given coloring makes G rainbow vertex-connected is NP-Complete.

Proof. By Lemmas 8 and 9, it will suffice by showing a polynomial reduction
from the problem in Lemma 8.
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Given a graph G = (V, E) and an edge-coloring c of G, we let G′ be
obtained by subdividing every edge of G. Then we define a vertex-coloring
c′ of G′ as follows. Each vertex of G′ that comes from subdividing an edge
e of G gets the color c(e). Each vertex of G′ that comes from a vertex of
G, gets a unique distinct color. It is easy to see that c′ makes G′ rainbow
vertex-connected if and only of c makes G rainbow connected. The proof is
similar to that of Theorem 6.
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