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Abstract

A number of topological indices have recently been incorporated as distance-based descrip-
tors. The Balaban index, a useful distance-based descriptor in Chemometrics, introduced by
A.T. Balaban, is known to depend both on the number of nodes and topology of graphs.
In this paper, we study the sharp upper bounds of Balaban index and Sum-Balaban index
among all bicyclic graphs, by using some graph transformations. The graphs attaining these
bounds are also characterized.



1 Introduction

Thousands of topological indices are introduced to characterize the physical-chemical

properties of molecules [43]. These topological indices are mainly divided into three

types: degree-based indices, distance-based indices and spectrum-based indices. Degree-

based indices contain (general) Randić index [38], (general) zeroth order Randić in-

dex [38], Zagreb index [27], connective eccentricity index [48, 50] and so on. Distance-

based indices [46] include the Balaban index [3, 4], the Wiener index [21], Wiener po-

larity index [16, 40], the Szeged index [26], the Kirchhoff index [20, 23, 24], the Harary

index [1] and so forth [17]. Eigenvalues of graphs [34, 35, 49, 51], various of graph en-

ergies [7, 30, 31, 33, 39], Estrada index [28] and HOMO-LUMO index [32, 37] belong to

spectrum-based indices. Actually, there are also some topological indices defined based

on both degrees and distances [2,8,45], such as Gutman index [25], degree distance [19],

graph entropies [6, 9, 10]. The main contribution of this paper is to prove bounds for

the Balaban index and the Sum-Balaban index.

We first start by providing graph-theoretical preliminaries [29]. Let G = (V, E)

be a simple graph. The distance between vertices u and v is denoted by dG(u, v).

Let DG(u) =
∑

v∈V (G) dG(u, v), which is the distance sum of vertex u in G. Suppose

|V | := n, |E| := m. The cyclomatic number µ of G is the minimum number of edges

that must be removed from G in order to transform it to an acyclic graph. It is known

that µ = m−n+1, see [43]. A bicyclic graph is a graph with µ = 2. Denote by deg(v)

the degree of vertex v.

The Balaban index of a connected graph G = (V, E) is defined as

J(G) =
m

µ + 1

∑
uv∈E

1√
DG(u)DG(v)

.

It has been proposed by Balaban [3,4] in 1982, which is also called the average distance-

sum connectivity index or Balaban J index. Furthermore, Balaban et al. [5] proposed

the concept of the Sum-Balaban index of a connected graph G. It has been defined by

SJ(G) =
m

µ + 1

∑
uv∈E

1√
DG(u) + DG(v)

.



We emphasize that many mathematical properties and results on the Balaban index

and the Sum-Balaban index of trees and unicyclic graphs have been achieved, see

[11–14,18,36,41,44,47,52]. he following theorem is an example.

Theorem 1.1 ( [11–14,36,41,44]) If T is a tree with n ≥ 2 vertices, then

J(Pn) ≤ J(T ) ≤ J(Sn), SJ(Pn) ≤ SJ(T ) ≤ SJ(Sn),

and the left (right) equality holds if and only if T ∼= Pn (T ∼= Sn), where Pn and Sn are

the path graph and the star graph on n vertices, respectively.

In this paper, we study sharp upper bounds of the Balaban index and Sum-Balaban

index by using all bicyclic graphs. We characterize the bicyclic graphs with the max-

imum Balaban index (Sum-Balaban index) among all bicyclic graphs, two cycles of

those are with n1, n2 vertices, respectively. A plausible reason for using these graphs

relates to the definition of the Balaban index and Sum-Balaban. As these indices are

based on distances in a graph, special cyclic graphs are easy to calculate by using these

quantities. Another reason is that mathematical properties of the Balaban index have

been explored for trees extensively [11–14,36,41,44]. The bounds we have proved help

to better understand the mathematical framework that has already been proven useful,

see, e.g., [3, 12, 15, 42]. Therefore, we now pursue studying mathematical properties of

these quantities by using graphs containing cycles.

2 Lemmas

First of all, we list some useful lemmas.

Lemma 2.1 ( [14]) Let a, a′, b, b′, w, x, y, z ∈ R+ such that b
x
≥ a

w
, b′

y
≥ a′

z
, w ≥ x, z ≥

y. Then 1√
(w+a)(z+a′)

+ 1√
xy
≥ 1√

wz
+ 1√

(x+b)(y+b′)
, the equality holds if and only if

b = a, b′ = a′, w = x, z = y.

Lemma 2.2 ( [14]) Let a, x, y ∈ R+ such that x ≥ y + a. Then 1√
xy
≥ 1√

(x−a)(y+a)
,

and the equality holds if and only if x = y + a.



Lemma 2.3 Let x1, x2, y1, y2 ∈ R+ such that x1 > y1, x2 − x1 = y2 − y1 > 0. Then

1√
x1

+ 1√
y2

< 1√
x2

+ 1√
y1

.

Proof. Let s = x2 − x1 = y2 − y1 > 0. Define a function f(z) = 1√
z
− 1√

z+s
. It

is easy to verify that f(z) is a decreasing function of z. Since x1 > y1, we have

1√
x1
− 1√

x1+s
< 1√

y1
− 1√

y1+s
.

Now we recall a useful graph transformation introduced in [11] which we use exten-

sively in our paper.

Definition 2.1 (The edge-lifting transformation) Let G1, G2 be two graphs with

n1 ≥ 2, n2 ≥ 2 vertices, respectively. Suppose u0 ∈ G1 and v0 ∈ G2. If G is the

graph obtained from G1, G2 by adding an edge between u0 and v0, and G′ is the graph

obtained by identifying u0 and v0 and adding a pendent edge to u0(v0), then G′ is called

the edge-lifting transformation of G (see Figure 2.1).

G G
′

u0 v0 u0(v0)

w0

G1 G1
G2 G2

Figure 2.1: The edge-lifting transformation.

Lemma 2.4 ( [11,12]) Let G′ be the edge-lifting transformation of G. Then J(G) <

J(G′) and SJ(G) < JS(G′).

A rooted graph has one vertex called the root distinguished from the others [29]. Let

T1, T2, . . . , Tk be k rooted trees with |V (Ti)| ≥ 2 (1 ≤ i ≤ k) and roots u1, u2, . . . , uk,

respectively. Let Cr be a cycle with length r(r ≥ 3).

For 1 ≤ k1 ≤ r1 ≤ n1, 1 ≤ k2 ≤ r2 ≤ n2, let (G1(n1, r1, k1), G2(n2, r2, k2)) be the

bicyclic graph obtained from Cr1 , Cr2 , T1, T2, . . . , Tk1 , T
′
1, T

′
2, . . . , T

′
k2

, by attaching k1

rooted trees T1, T2, . . . , Tk1 to k1 distinct vertices of Cr1 and attaching k2 rooted trees

T ′
1, T

′
2, . . . , T

′
k1

to k2 distinct vertices of Cr2 , where Cr1 , Cr2 are jointed.
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Figure 2.2: A graph (G∗
1(n1, r1, k1), G

∗
2(n2, r2, k2)) ∈ (G∗1(n1, r1, k1),G∗2(n2, r2, k2)).

Let S = {S|S is a rooted star with the center as its root}. Let (G∗1(n1, r1, k1),

G∗2(n2, r2, k2)) be the set of all bicyclic graphs obtained from Cr1 , Cr2 by attaching

k1, k2 rooted stars in S to k1, k2 distinct vertices of Cr1 , Cr2 , respectively (see Figure

2.2). By Lemma 2.4, we repeat the edge-lifting transformation to the rooted trees of

(G1(n1, r1, k1), G2(n2, r2, k2)),

and then obtain the following result.

Lemma 2.5 Let n1, k1, r1, n2, k2, r2 be positive integers with 1 ≤ k1 ≤ r1, 3 ≤ r1 ≤
n1 − k1, 1 ≤ k2 ≤ r2, 3 ≤ r2 ≤ n2 − k2, and (G1(n1, r1, k1), G2(n2, r2, k2)) defined as

above. Let (G∗
1(n1, r1, k1), G

∗
2(n2, r2, k2)) ∈ (G∗1(n1, r1, k1),G∗2(n2, r2, k2)) be obtained

from (G1(n1, r1, k1), G2(n2, r2, k2)) by repeating the edge-lifting transformations. Then

J(G1(n1, r1, k1), G2(n2, r2, k2)) ≤ J(G∗
1(n1, r1, k1), G

∗
2(n2, r2, k2)),

SJ(G1(n1, r1, k1), G2(n2, r2, k2)) ≤ SJ(G∗
1(n1, r1, k1), G

∗
2(n2, r2, k2)),

and the equality holds if and only if

(G1(n1, r1, k1), G2(n2, r2, k2)) ∼= (G∗
1(n1, r1, k1), G

∗
2(n2, r2, k2)).

Actually, Figure 2.2 depicts the three cases of bicyclic graphs obtained by repeating

the edge-lifting transformations. Obviously, Case 1 can be exchanged to Case 2 by the

edge-lifting transformations, so there are only two cases in the edge-lifting transforma-

tions of bicyclic graphs.

In the following, we define a new transformation, which is called branch transfor-

mation.



Definition 2.2 (Branch transformation) Let G = (G∗
1(n1, r1, k1), G

∗
2(n2, r2, k2)) ∈

(G∗1(n1, r1, k1),G∗2(n2, r2, k2)) be defined as above. For convenience, let m = b r1

2
c and

n = b r2

2
c.

If r1, r2 are even, define Cr1 = u1, . . . , umvm, . . . , v1, Cr2 = x1, . . . , xnyn, . . . , y1;

if r1, r2 are odd, define Cr1 = u1, . . . , um+1vm, . . . , v1, Cr2 = x1, . . . , xn+1yn, . . . , y1;

if r1 is even, r2 is odd, define Cr1 = u1, . . . , umvm, . . . , v1, Cr2 = x1, . . . , xn+1yn, . . . , y1;

if r1 is odd, r2 is even, define Cr1 = u1, . . . , um+1vm, . . . , v1, Cr2 = x1, . . . , xnyn, . . . , y1.

The graph G′ is obtained from G by deleting the pendent edge viw and adding a pendent

edge uiw for any i ∈ {1, 2, . . . , m} (if such viw exists), where w ∈ V (G∗
1(n1, r1, k1)) \

V (Cr1). We say that G′ is obtained from G by branch transformation.

Obviously, if G′′ is obtained from G′ by deleting the pendent edge yiw and adding

the pendent edge xiw for any i ∈ {1, 2, · · · , n} (if such yiw exists), where w ∈
V (G∗

2(n2, r2, k2)) \ V (Cr2). We also say that G′′ is obtained from G′ by branch trans-

formation. We refer to Figure 2.3.
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Figure 2.3: The branch transformation when r1, r2 are even.

Lemma 2.6 Let n1, k1, r1, n2, k2, r2 be positive integers with 1 ≤ k1 ≤ r1, 3 ≤ r1 ≤
n1 − k1, 1 ≤ k2 ≤ r2, 3 ≤ r2 ≤ n2 − k2. Suppose G = (G∗

1(n1, r1, k1), G
∗
2(n2, r2, k2)) ∈

(G∗1(n1, r1, k1),G∗2(n2, r2, k2)). Let G′ be the graph obtained from G by the branch trans-

formation. Then J(G) ≤ J(G′).



Proof. We suppose that the two cycles of the bicyclic graph have only one com-

mon vertex. Let G1 = G1(n1, r1, k1), G2 = G2(n2, r2, k2), V0 = {v1, v2, . . . , vm},
V1 = {w|viw ∈ E(G1), deg(w) = 1, 1 ≤ i ≤ m}, U0 = {u1, u2, . . . , um}, U1 = {w|uiw ∈
E(G1), deg(w) = 1, 1 ≤ i ≤ m} when r1 = 2m is even, U1 = {w|uiw ∈ E(G1), deg(w) =

1, 1 ≤ i ≤ m}⋃{um+1} when r1 = 2m + 1 is odd, Y0 = {y1, y2, . . . , yn}, Y1 =

{w|yiw ∈ E(G2), deg(w) = 1, 1 ≤ i ≤ n}, X0 = {x1, x2, . . . , xn}, X1 = {w|xiw ∈
E(G2), deg(w) = 1, 1 ≤ i ≤ n} when r2 = 2n is even, X1 = {w|xiw ∈ E(G2), deg(w) =

1, 1 ≤ i ≤ n}⋃{xn+1} when r2 = 2n + 1 is odd.

For any s with 1 ≤ s ≤ m, it is clear that

DG(vs) = DG(vs, V0) + DG(vs, U0) + DG(vs, V1) + DG(vs, U1) + DG(vs, G2) (2.1)

and

DG′(us) = DG′(us, V0) + DG′(us, U0) + DG′(us, V1) + DG′(us, U1) + DG′(us, G2). (2.2)

Note that DG(vs, U0) = DG′(us, V0), DG(vs, V0) = DG′(us, U0), DG(vs, V1) = DG′(us, V1).

Observe that DG(vs, U1) > DG′(us, U1), DG(vs, G2) > DG′(us, G2). Thus, we infer

DG(vs)−DG′(us) = DG(vs, U1)−DG′(us, U1) + DG(vs, G2)−DG′(us, G2) > 0. (2.3)

Similarly, we obtain

DG(us) = DG(us, V0) + DG(us, U0) + DG(us, V1) + DG(us, U1) + DG(us, G2), (2.4)

and

DG′(vs) = DG′(vs, V0) + DG′(vs, U0) + DG′(vs, V1) + DG′(vs, U1) + DG′(vs, G2). (2.5)

Hence,

DG′(vs)−DG(us) = DG′(vs, U1)−DG(us, U1) + DG′(vs, G2)−DG(us, G2) > 0. (2.6)

Therefore, we get

DG(vs)−DG′(us) = DG′(vs)−DG(us) > 0. (2.7)



From Eqs (2.1)–(2.5), we get

DG′(vs)−DG(vs) = DG(us)−DG′(us) > 0. (2.8)

For any edge usut ∈ E(G1[U0]), vsvt ∈ E(G1[V0]), take x = DG′(us), y = DG′(ut),

w = DG(vs), z = DG(vt), a = DG′(vs)−DG(vs), a′ = DG′(vt)−DG(vt), b = DG(us)−
DG′(us), b′ = DG(ut) − DG′(ut). Then b = a > 0, b′ = a′ > 0 by (2.8). It is obvious

that a, a′, b, b′, w, x, y, z ∈ R+, w > x, z > y, which implies that b
x
≥ a

w
, b′

y
≥ a′

z
.

Therefore, by Lemma 2.1, we obtain

1√
DG′(us)DG′(ut)

+
1√

DG′(vs)DG′(vt)
>

1√
DG(us)DG(ut)

+
1√

DG(vs)DG(vt)
. (2.9)

Similarly, for any vertex w ∈ U1∪V1 and any edge usw ∈ E(G), we get DG(w) > DG′(w)

and DG(us) > DG′(us) by (2.8). Thus,

1√
DG′(us)DG′(w)

>
1√

DG(us)DG(w)
. (2.10)

For any edge vsw ∈ E(G) and usw ∈ E(G), we obtain

DG(w) = DG(w, V0) + DG(w, U0) + DG(w, V1) + DG(w, U1) + DG(w, G2) (2.11)

and

DG′(w) = DG′(w, V0) + DG′(w, U0) + DG′(w, V1) + DG′(w, U1) + DG′(w, G2). (2.12)

So,

DG(w)−DG′(w) = DG(w, U1)−DG′(w, U1) + DG(w, G2)−DG′(w, G2) > 0. (2.13)

By Eq. (2.7), we have DG(vs) > DG′(us), and then

1√
DG′(us)DG′(w)

>
1√

DG(vs)DG(w)
. (2.14)

For any edge um+1w ∈ E(G) (if such an edge exists), it is obvious that

1√
DG′(um+1)DG′(w)

=
1√

DG(um+1)DG(w)
. (2.15)



For edge u1v1, by Lemma 2.3 and Eq. (2.8), we obtain

1√
DG′(u1)DG′(v1)

>
1√

DG(u1)DG(v1)
. (2.16)

For any xs, ys ∈ E(G), it is clear that DG(xs) > DG′(xs), DG(ys) > DG′(ys), and so

1√
DG′(xs)DG′(xt)

>
1√

DG(xs)DG(xt)
. (2.17)

1√
DG′(ys)DG′(yt)

>
1√

DG(ys)DG(yt)
. (2.18)

From (2.10)–(2.18), we obtain J(G) < J(G′) by the definition of Balaban index.

By applying a similar method, we can also prove the case that the two cycles of a

bicyclic graph have k common vertices.

Similarly, we infer J(G′) < J(G′′).

Lemma 2.7 Let n1, k1, r1, n2, k2, r2 be positive integers with 1 ≤ k1 ≤ r1, 3 ≤ r1 ≤
n1 − k1, 1 ≤ k2 ≤ r2, 3 ≤ r2 ≤ n2 − k2. Suppose G = (G∗

1(n1, r1, k1), G
∗
2(n2, r2, k2)) ∈

(G∗1(n1, r1, k1),G∗2(n2, r2, k2)). Let G′ be the graph obtained from G by the branch trans-

formation. Then SJ(G) ≤ SJ(G′).

Proof. We suppose that the two cycles of the bicyclic graph have only one common

vertex. Let U0, U1, V0, V1, a, a′, b, b′ be defined as in Lemma 2.6. Let f(x) = 1√
x
− 1

x+b+b′ .

Observe that f(x) is a decreasing function of x. Note that DG(vs)+DG(vt) > DG′(us)+

DG′(ut) = DG(us) + DG(ut)− b− b′, we have

1√
DG(vs) + DG(vt)

− 1√
DG(vs) + DG(vt) + b + b′

<
1√

DG(us) + DG(ut)− b− b′
− 1√

DG(us) + DG(ut)
.

Therefore,

1√
DG′(vs) + DG′(vt)

+
1√

DG′(us) + DG′(ut)

>
1√

DG(vs) + DG(vt)
+

1√
DG(us) + DG(ut)

.



Similarly, for any vertex w ∈ U1

⋃
V1 and any edge usw ∈ E(G), DG(w) > DG′(w),

DG(us) > DG′(us). Then, we obtain

1√
DG′(us) + DG′(w)

>
1√

DG(us) + DG(w)
. (2.19)

For any edge vsw ∈ E(G), then usw ∈ E(G), we have DG(vs) > DG′(us), and thus

1√
DG′(us) + DG′(w)

>
1√

DG(vs) + DG(w)
. (2.20)

For any edge um+1w ∈ E(G) (if such an edge exists), it is obvious that

1√
DG′(um+1) + DG′(w)

=
1√

DG(um+1) + DG(w)
. (2.21)

For edge u1v1, by (2.8), we obtain

1√
DG′(u1) + DG′(v1)

=
1√

DG(u1) + DG(v1)
. (2.22)

For any xs, ys ∈ E(G), it is clear that DG(xs) > DG′(xs) and DG(ys) > DG′(ys), which

implies that
1√

DG′(xs) + DG′(xt)
>

1√
DG(xs) + DG(xt)

. (2.23)

1√
DG′(ys) + DG′(yt)

>
1√

DG(ys) + DG(yt)
. (2.24)

From (2.19)–(2.24), we obtain SJ(G) < SJ(G′) by the definition of Sum-Balaban

index.

Similarly, we can prove the case that the two cycles of the bicyclic graph have k

common vertices.

Similarly, we infer SJ(G′) < SJ(G′′).

Lemma 2.8 Let n1, k1, r1, n2, k2, r2 be positive integers with 1 ≤ k1 ≤ r1, 3 ≤ r1 ≤
n1 − k1, 1 ≤ k2 ≤ r2, 3 ≤ r2 ≤ n2 − k2. Suppose G = (G∗

1(n1, r1, k1), G
∗
2(n2, r2, k2)) ∈

(G∗1(n1, r1, k1),G∗2(n2, r2, k2)). Let G′ be the unique graph obtained from G by repeating

the branch transformations. Then

(1) G′ ∈ (G∗1(n1, r1, 1),G∗2(n2, r2, 1)) (see Figure 2.4).

(2) J(G) ≤ J(G′), and the equality holds if and only if G ∼= G′.

(3) SJ(G) ≤ SJ(G′), and the equality holds if and only if G ∼= G′.
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In order to pursue, we introduce two new transformations.
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Definition 2.3 (The crossing-edge-lifting transformation) Let G ∈ (G∗1(n1, r1,

1),G∗2(n2, r2, 1)) be a bicyclic graph such that the two cycles have k common vertices.

As shown in Figure 2.5, let u0 the last common vertex of the two cycles, which is

adjacent to v0, u1, u2, where u1 ∈ Cr1 , u2 ∈ Cr2 and v0 is also a common vertex.w is

a vertex adjacent to u0 and deg(w) = 1. Denote by G′ the graph obtained from G by

deleting edges u0u1, u0u2, u0w and adding edges v0u1, v0u2, v0w. We say that G′ is the

crossing-edge-lifting transformation of G (see Figure 2.5).

Definition 2.4 (The cycle-edge-lifting transformation) Let G = Cn1,n2 be a bi-

cyclic graph such that all the vertices lie on the cycles Cn1,n2 with n1, n2 ≥ 3,and the

cycles have only one crossing point u0. If G′ is the graph obtained from G by deleting

a vertex in G apart from u0,and adding a edge between u0 and a new vertex v0,then

connecting the vertices adjacent to the deleted vertex. Then G′ is called the cycle-edge-

lifting transformation of G. (see Figure 2.6).



u1

.
.
.

.
.
.

Cr1−k+1
Cr2−k+1

Figure 2.6: The cycle-edge-lifting transformation.

Lemma 2.9 Let G′ be the crossing-edge-lifting transformation of G. Then

J(G) ≤ J(G′), SJ(G) ≤ SJ(G′)

Proof. Denote by K the set of k common vertices. Let U0 = Cr1\K, V0 = Cr2\K, W =

{w|wu0 ∈ G, deg(w) = 1}.

Case 1: For any vertex u ∈ U0, we have

DG(u) = DG(u, U0) + DG(u, V0) + DG(u,W ) + DG(u,K),

DG′(u) = DG′(u, U0) + DG′(u, V0) + DG′(u,W ) + DG′(u,K).

Since DG(u, U0) = DG′(u, U0), DG(u, V0) = DG′(u, V0), DG(u)−DG′(u) = DG(u,W ) +

DG(u,K) − (DG′(u,W ) + DG′(u,K)) ≥ (n1 + n2 − r1 − r2)(b r1

2
c + 1) − b r1

2
c ≥ 0, we

have DG(u) ≥ DG′(u).

Case 2: For any vertex v ∈ V0, it is similar as that in Case 1, and so we have

DG(v) ≥ DG′(v).

Case 3: For any vertex p ∈ K, we get

DG(p) = DG(p, U0) + DG(p, V0) + DG(p,W ) + DG(p,K),

DG′(p) = DG′(p, U0) + DG′(p, V0) + DG′(p,W ) + DG′(p,K).

Since DG(p, U0) > DG′(p, U0), DG(p, V0) > DG′(p, V0), DG(p,W ) = DG′(p,W ) and

DG(p,K) = DG′(p,K), we have DG(p) > DG′(p).

Case 4: For any vertex w ∈ W , obviously, DG(w) > DG′(w).

Combining the above arguments and by using the definitions of the Balaban index

and Sum-Balaban index, we obtain J(G) ≤ J(G′), SJ(G) ≤ SJ(G′).



Lemma 2.10 Let n1, k1, r1, n2, k2, r2 be positive integers with 1 ≤ k1 ≤ r1, 3 ≤ r1 ≤
n1 − k1, 1 ≤ k2 ≤ r2, 3 ≤ r2 ≤ n2 − k2. Suppose G = (G∗

1(n1, r1, 1), G∗
2(n2, r2, 1)) ∈

(G∗1(n1, r1, 1),G∗2(n2, r2, 1)) is the bicyclic graph whose two cycles have k common ver-

tices. Let G′ be the unique graph obtained from G by repeating the crossing-edge-lifting

transformations until the two cycles of G′ have only one crossing point. Then we have

(1) G′ ∈ (G∗1(n1, r1 − k + 1, 1),G∗2(n2, r2 − k + 1, 1)), with one common vertex (see

Figure 2.7).

(2) J(G) ≤ J(G′), and the equality holds if and only if G ∼= G′′.

(3) SJ(G) ≤ SJ(G′), and the equality holds if and only if G ∼= G′.

.
.
.

.
.
.

.
.
.

.
.
.

u0

u1

u0

v0

Cr1
Cr1

Cr2
Cr2

G G′

u2
u2

Figure 2.7: A graph (G∗
1(n1, r1 − k + 1, 1), G∗

2(n2, r2 − k + 1, 2)) ∈ (G∗1(n1, r1 − k +

1, 1),G∗2(n2, r2 − k + 1, 2)).

Lemma 2.11 Let G′ be the cycle-edge-lifting transformation of G. Then

J(G) ≤ J(G′) and SJ(G) ≤ SJ(G′)

Proof. Let U0 = V (Cn1), V0 = V (Cn2). For any u ∈ U0, v ∈ V0, it is clearly that

DG(u) = DG(u, U0) + DG(u, V0), DG(v) = DG(v, U0) + DG(v, V0),

DG′(u) = DG′(u, U0) + DG′(u, V0), DG′(v) = DG′(v, U0) + DG′(v, V0),

Obviously, DG(u, U0) = DG′(u, U0), so DG(u) − DG′(u) = DG(u, V0) − DG′(u, V0) =

bn2

2
c − 1 ≥ 0, and DG(v) − DG′(v) ≥ bn2

2
c − bn2

2
c + bn2

2
c − 1 − bn2

2
c + 1 = 0 for

v ∈ V0, v 6= v0. Thus, we have

1√
DG(ui)DG(uj)

<
1√

DG′(ui)DG′(uj)
, (2.25)



1√
DG(vi)DG(vj)

<
1√

DG′(vi)DG′(vj)
, (2.26)

for ui, uj ∈ U0, vi, vj ∈ V0 and ui ∼ uj, vi ∼ vj

1√
DG(ubn2

2
c)DG(ubn2

2
c + 1)

<
1√

DG′(u0)DG′(v0)
. (2.27)

From (2.25)–(2.27), we obtain J(G) ≤ J(G′) by using the definition of the Balaban

index.

We have 1√
DG(ui)+DG(uj)

< 1√
DG′ (ui)+DG′ (uj)

, 1√
DG(vi)+DG(vj)

< 1√
DG′ (vi)+DG′ (vj)

and

1√
DG(ubn2

2 c)+DG(ubn2
2 c+1)

< 1√
DG′ (u0)+DG′ (v0)

, similarly. Then we obtain that SJ(G) ≤
SJ(G′) by the definition of the Sum-Balaban index.

3 Bicyclic Graphs

There are three types of bicyclic graphs according to the number of common vertices

of two cycles. In this section, we will determine the graph which has the maximum

Balaban index among all bicyclic graphs with n vertices.

The preceding discussion shows that the Balaban index of a bicyclic graph G is

lower than the Balaban index of G′ obtained from G by repeating edge-lifting trans-

formations, branch transformations and crossing-edge-lifting transformations. Thus,

the bicyclic graph which has the maximum Balaban index among all bicyclic graphs

on n1 + n2 − k vertices is the bicyclic graph such that the two cycles have only one

common vertex. Now we only need to prove J(G) ≤ J(G∗
1(n1, 3, 1), G∗

2(n2, 3, 1)), where

G is the bicyclic graph such that the two cycles have only one common vertex.

Let G be a bicyclic graph on n1 + n2 − 1 vertices. Then |E(G)| = n1 + n2, µ = 2,

and then J(G) = n1+n2

3

∑
uv∈E(G)

1√
DG(u)DG(v)

.

Lemma 3.1 Let the two cycles of the bicyclic graph have only one common vertex.
Let n1, r1, n2, r2 be positive integers with 1 ≤ r1 ≤ n1, 1 ≤ r2 ≤ n2 − k2 and G =
(G∗

1(n1, r1, 1),G∗
2(n2, r2, 1)) ∈ (G∗1(n1, r1, 1),G∗2(n2, r2, 1)) (see Case 1 of Figure 2.4).

We get that



(1). if r1, r2 are even, then

3J(G)
n1 + n2

=
n1 + n2 − r1 − r2√(

r2
1
4 + r2

2
4 − r1 − r2 + 2(n1 + n2)− 3

)(
r2
1
4 + r2

2
4 − r1 − r2 + n1 + n2

)

+
∑

1≤i≤ r1
2

2√
D1

G(ui)D1
G(ui+1)

+
∑

1≤j≤ r2
2

2√
D1

G(vj)D1
G(vj+1)

;

(2). if r1, r2 are odd, then

3J(G)
n1 + n2

=
n1 + n2 − r1 − r2√(

r2
1
4 + r2

2
4 − r1 − r2 + 2(n1 + n2)− 7

2

)(
r2
1
4 + r2

2
4 − r1 − r2 + n1 + n2 − 1

2

)

+
∑

1≤i≤ r1−1
2

2√
D2

G(ui)D2
G(ui+1)

+
1

r2
1
4 + r2

2
4 + r2+1

2 (n1 + n2 − r2 − 1)− r1 + 1
2

+
∑

1≤j≤ r2−1
2

2√
D2

G(vj)D2
G(vj+1)

+
1

r2
1
4 + r2

2
4 + r1+1

2 (n1 + n2 − r1 − 1)− r2 + 1
2

;

(3). if r1 is odd and r2 is even, then

3J(G)
n1 + n2

=
n1 + n2 − r1 − r2√(

r2
1
4 + r2

2−1
4 − r1 − r2 + 2(n1 + n2)− 3

)(
r2
1
4 + r2

2−1
4 − r1 − r2 + n1 + n2

)

+
∑

1≤i≤ r1−1
2

2√
D3

G(ui)D3
G(ui+1)

+
∑

1≤j≤ r2
2

2√
D3

G(vj)D3
G(vj+1)

+
1

r2
1
4 + r2

2
4 + r1+1

2 (n1 + n2 − r1 − 1)− r2 + 1
2

;

(4). if r1 is even and r2 is odd, then

3J(G)

n1 + n2

=
n1 + n2 − r1 − r2√(

r2
1−1

4
+

r2
2

4
− r1 − r2 + 2(n1 + n2)− 3

)(
r2
1

4
+

r2
2−1

4
− r1 − r2 + n1 + n2

)

+
∑

1≤i≤ r1
2

2√
D4

G(ui)D4
G(ui+1)

+
∑

1≤j≤ r2−1
2

2√
D4

G(vj)D4
G(vj+1)

+
1

r2
1

4
+

r2
2

4
+ r2+1

2
(n1 + n2 − r2 − 1)− r1 + 1

2

,

where D1
G(ui) =

r2
1

4
+

r2
2

4
+ i(n1 + n2 − r1 − 1) − r2 + 1, D1

G(vj) =
r2
1

4
+

r2
2

4
+ j(n1 +

n2 − r2 − 1) − r1 + 1, D2
G(ui) =

r2
1

4
+

r2
2

4
+ i(n1 + n2 − r1 − 1) − r2 + 1

2
, D2

G(vj) =

r2
1

4
+

r2
2

4
+j(n1+n2−r2−1)−r1+

1
2
, D3

G(ui) =
r2
1

4
+

r2
2−1

4
+i(n1+n2−r1−1)−r2+1, D3

G(vj) =

r2
1−1

4
+

r2
2

4
+ j(n1 +n2− r2−1)− r1 +1, D4

G(ui) =
r2
1

4
+

r2
2−1

4
+ i(n1 +n2− r1−1)− r2 +1,

D4
G(vj) =

r2
1−1

4
+

r2
2

4
+ j(n1 + n2 − r2 − 1)− r1 + 1.



Proof. We calculate DG(u) for any vertex u ∈ V (G).

Case 1. r1, r2 is even.

Subcase 1.1. u ∈ V (G) \ V (Cr1)
⋃

V (Cr2).

In this subcase, we have DG(u) =
r2
1

4
+

r2
2

4
− r1 − r2 + 2(n1 + n2)− 3.

Subcase 1.2. u = ui ∈ V (Cr1).

Note that DG(ui) = DG(ur1−i+2), we only need to calculate DG(ui) for 1 ≤ i ≤ r1+2
2

.

Clearly, when 1 ≤ i ≤ r1+2
2

, we have DG(ui) =
r2
1

4
+

r2
2

4
+ i(n1 + n2 − r1 − 1)− r2 + 1.

Subcase 1.3. u = vj ∈ V (Cr2).

It is similar as Subcase 1.2. When 1 ≤ j ≤ r2+2
2

, we have DG(vj) =
r2
1

4
+

r2
2

4
+

j(n1 + n2 − r2 − 1)− r1 + 1.

Case 2. r1, r2 are odd.

Subcase 2.1. u ∈ V (G) \ V (Cr1)
⋃

V (Cr2).

In this subcase, we have DG(u) =
r2
1

4
+

r2
2

4
− r1 − r2 + 2(n1 + n2)− 7

2
.

Subcase 2.2. u = ui ∈ V (Cr1).

Note that DG(ui) = DG(ur1−i+2), we only need to calculate DG(ui) for 1 ≤ i ≤ r1+1
2

.

Clearly, when 1 ≤ i ≤ r1+1
2

, we have DG(ui) =
r2
1

4
+

r2
2

4
+ i(n1 + n2 − r1 − 1)− r2 + 1

2
.

Subcase 2.3. u = vj ∈ V (Cr2).

It is similar as Subcase 2.2. When 1 ≤ j ≤ r2+1
2

, we have DG(vj) =
r2
1

4
+

r2
2

4
+

j(n1 + n2 − r2 − 1)− r1 + 1
2
.

Case 3. r1 is odd and r2 is even.

Subcase 3.1. u ∈ V (G) \ V (Cr1)
⋃

V (Cr2).

In this subcase, we have DG(u) =
r2
1

4
+

r2
2

4
− r1 − r2 + 2(n1 + n2)− 13

4
.

Subcase 3.2. u = ui ∈ V (Cr1).

Note that DG(ui) = DG(ur1−i+2), we only need to calculate DG(ui) for 1 ≤ i ≤ r1+1
2

.

Clearly, when 1 ≤ i ≤ r1+1
2

, we have DG(ui) =
r2
1

4
+

r2
2

4
+ i(n1 + n2 − r1 − 1)− r2 + 3

4
.



Subcase 3.3. u = vj ∈ V (Cr2).

Note that DG(vj) = DG(ur2−j+2), we only need to calculate DG(vj) for 1 ≤ j ≤ r2+2
2

.

Clearly, when 1 ≤ j ≤ r2+2
2

, we have DG(vj) =
r2
1

4
+

r2
2

4
+ j(n1 + n2 − r2 − 1)− r1 + 3

4
.

Case 4. r1 is even and r2 is odd.

Obviously, this case is similar as Case 3.

By combining the above arguments the proof is thus completed.

Theorem 3.2 Let n1, r1, n2, r2 be positive integers with 1 ≤ r1 + k − 1 ≤ n1, 1 ≤
r2 + k − 1 ≤ n2 − k2. Let G be a connected bicyclic graph on n1 + n2 − 1 vertices

such that the two cycles have k common vertices and r1 + k − 1, r2 + k − 1 vertices,

respectively. Then J(G) ≤ n1+n2

3
(A + B + C), and the equality holds if and only if

G ∼= (G∗
1(n1, 3, 1), G∗

2(n2, 3, 1)), where A = 2
2(n1+n2)−6

, B = n1+n2−6√
(2(n1+n2)−5)(n1+n2−2)

and

C = 4√
(2(n1+n2)−6)(n1+n2−2)

.

Proof. Let G � Cn1,n2 . There exist positive integers n1, k1, r1, n2, k2, r2 with 1 ≤ k1 ≤
r1 + k− 1, 3 ≤ r1 + k− 1 ≤ n1 − k1, 1 ≤ k2 ≤ r2 + k− 1, 3 ≤ r2 + k− 1 ≤ n2 − k2 such

that G = (G1(n1, r1 + k − 1, k1), G2(n2, r2 + k − 1, k2)).

By Lemma 2.5, there exists a graph G1 ∈ (G∗1(n1, r1+k−1, k1),G∗2(n2, r2+k−1, k2))

such that G1 is obtained from G by repeating edge-lifting transformations. Then

J(G) ≤ J(G1), and the equality holds if and only if G ∼= G1. By Lemma 2.8, we

obtain a graph G2 = (G∗
1(n1, r1 + k − 1, 1), G∗

2(n2, r2 + k − 1, 1)) ∈ (G∗1(n1, r1 + k −
1, 1),G∗2(n2, r2 + k − 1, 1)) from G1 by repeating branch transformations such that

J(G1) ≤ J(G2), with equality if and only if G1
∼= G2. By Lemma 2.10, we obtain a

graph G3 ∈ (G∗1(n1, r1, 1),G∗2(n2, r2, 1)) such that the two cycles have only one common

vertex, from G2 by repeating crossing-edge-lifting transformations such that J(G2) ≤
J(G3), with equality if and only if G2

∼= G3. By Lemma 3.1, we need to prove that

J(G∗
1(n1, r1, 1), G∗

2(n2, r2, 1))

≤max{J(G∗
1(n1, 3, 1), G∗

2(n2, 3, 1)), J(G∗
1(n1, 3, 1), G∗

2(n2, 4, 1)), J(G∗
1(n1, 4, 1),

G∗
2(n2, 3, 1)), J(G∗

1(n1, 4, 1), G∗
2(n2, 4, 1))}.



We consider the following cases.

Case 1. r1, r2 is even.

Let f(r1, r2) = (
r2
1

4
+

r2
2

4
−r1−r2+2(n1+n2)−3)(

r2
1

4
+

r2
2

4
−r1−r2+n1+n2), gi(r1, r2) =

(
r2
1

4
+

r2
2

4
+i(n1+n2−r1−1)−r2+1)(

r2
1

4
+

r2
2

4
+(i+1)(n1+n2−r1−1)−r2+1) for 1 ≤ i ≤ r1

2
,

and hj(r1, r2) = (
r2
1

4
+

r2
2

4
+j(n1+n2−r1−1)−r1+1)(

r2
1

4
+

r2
2

4
+(j+1)(n1+n2−r1−1)−r1+1)

for 1 ≤ j ≤ r2

2
.

It is obvious that f ′r1
> 0, f ′r2

> 0, g′1r1
> 0, · · · , g′r1

2
r1

> 0, g′1r2
> 0, · · · , g′r1

2
r2

>

0, h′1r1
> 0, · · · , h′r2

2
r1

> 0, h′1r2
> 0, · · · , h′r2

2
r2

> 0. So J(G∗
1(n1, r1, 1), G∗

2(n2, r2, 1))

is a decreasing function of r1, r2. Thus, we have

J(G∗
1(n1, 4, 1), G∗

2(n2, 4, 1)) >J(G∗
1(n1, 6, 1), G∗

2(n2, 6, 1)) > · · ·
>J(G∗

1(n1, 2bn1 − 1

2
c, 1), G∗

2(n2, 2bn2 − 1

2
c, 1)).

Case 2. r1, r2 is odd.

Let f(r1, r2) = (
r2
1

4
+

r2
2

4
− r1 − r2 + 2(n1 + n2)− 7

2
)(

r2
1

4
+

r2
2

4
− r1 − r2 + n1 + n2 − 1

2
),

gi(r1, r2) = (
r2
1

4
+

r2
2

4
+i(n1+n2−r1−1)−r2+ 1

2
)(

r2
1

4
+

r2
2

4
+(i+1)(n1+n2−r1−1)−r2+ 1

2
)

for 1 ≤ i ≤ r1+1
2

, hj(r1, r2) = (
r2
1

4
+

r2
2

4
+j(n1 +n2−r1−1)−r1 + 1

2
)(

r2
1

4
+

r2
2

4
+(j +1)(n1 +

n2−r1−1)−r1 + 1
2
) for 1 ≤ j ≤ r2+1

2
, p(r1, r2) =

r2
1

4
+

r2
2

4
+ r1+1

2
(n1 +n2−r1−1)−r2 + 1

2

and q(r1, r2) =
r2
1

4
+

r2
2

4
+ r2+1

2
(n1 + n2 − r2 − 1)− r1 + 1

2
.

Clearly, the partial derivative of f(r1, r2), gi(r1, r2), hj(r1, r2), p(r1, r2), q(r1, r2) for

r1, r2 is positive, so J(G∗
1(n1, r1, 1), G∗

2(n2, r2, 1)) is decreasing. Thus we have

J(G∗
1(n1, 3, 1), G∗

2(n2, 3, 1)) >J(G∗
1(n1, 5, 1), G∗

2(n2, 5, 1)) > · · ·
>J(G∗

1(n1, 2bn1 − 2

2
c+ 1, 1), G∗

2(n2, 2bn2 − 2

2
c+ 1, 1)).

Case 3. r1 is odd and r2 is even.

Let f(r1, r2) = (
r2
1

4
+

r2
2

4
− r1− r2 + 2(n1 + n2)− 13

4
)(

r2
1

4
+

r2
2

4
− r1− r2 + n1 + n2− 1

4
),

gi(r1, r2) = (
r2
1

4
+

r2
2

4
+i(n1+n2−r1−1)−r2+ 3

4
)(

r2
1

4
+

r2
2

4
+(i+1)(n1+n2−r1−1)−r2+ 3

4
)

for 1 ≤ i ≤ r1+1
2

, hj(r1, r2) = (
r2
1

4
+

r2
2

4
+j(n1 +n2−r1−1)−r1 + 3

4
)(

r2
1

4
+

r2
2

4
+(j +1)(n1 +

n2−r1−1)−r1+ 3
4
) for 1 ≤ j ≤ r2

2
and p(r1, r2) =

r2
1

4
+

r2
2

4
+ r1+1

2
(n1+n2−r1−1)−r2+ 1

2
.



Clearly, the partial derivative of f(r1, r2), gi(r1, r2), hj(r1, r2), p(r1, r2) for r1, r2 is

larger than 0, so J(G∗
1(n1, r1, 1), G∗

2(n2, r2, 1)) is a decreasing function. Thus, we have

J(G∗
1(n1, 3, 1), G∗

2(n2, 4, 1)) >J(G∗
1(n1, 5, 1), G∗

2(n2, 6, 1)) > · · ·
>J(G∗

1(n1, 2bn1 − 2

2
c+ 1, 1), G∗

2(n2, 2bn2 − 1

2
c, 1)).

Case 4. r1 is even and r2 is odd.

Similarly as that in Case 3, we have

J(G∗
1(n1, 4, 1), G∗

2(n2, 3, 1)) >J(G∗
1(n1, 6, 1), G∗

2(n2, 5, 1)) > · · ·
>J(G∗

1(n1, 2bn1 − 1

2
c, 1), G∗

2(n2, 2bn2 − 2

2
c+ 1, 1)).

On the other hand, by performing some elementary calculations, we get

3

n1 + n2

(J(G∗
1(n1, 3, 1), G∗

2(n2, 3, 1))− J(G∗
1(n1, 4, 1), G∗

2(n2, 3, 1)))

=
3

n1 + n2

(J(G∗
1(n1, 3, 1), G∗

2(n2, 3, 1))− J(G∗
1(n1, 3, 1), G∗

2(n2, 4, 1))) > 0

and

3

n1 + n2

(J(G∗
1(n1, 3, 1), G∗

2(n2, 3, 1))− J(G∗
1(n1, 3, 1), G∗

2(n2, 4, 1)))

=
n1 + n2 − 6√

(2(n1 + n2)− 5)(n1 + n2 − 2)
+

4√
(2(n1 + n2)− 6)(n1 + n2 − 2)

+
2

2(n1 + n2)− 6
− n1 + n2 − 7√

(2(n1 + n2)− 4)(n1 + n2 − 1)

− 2√
(2(n1 + n2)− 6)(n1 + n2 − 1)

− 2√
(2(n1 + n2)− 6)(3(n1 + n2)− 1)

− 2√
(2(n1 + n2)− 5)(n1 + n2 − 1)

− 1

2(n1 + n2)− 5
> 0.

Moreover, we have

3

n1 + n2

(J(G∗
1(n1, 3, 1), G∗

2(n2, 3, 1))− J(G∗
1(n1, 4, 1), G∗

2(n2, 4, 1)))

=
n1 + n2 − 6√

(2(n1 + n2)− 5)(n1 + n2 − 2)
+

4√
(2(n1 + n2)− 6)(n1 + n2 − 2)

− n1 + n2 − 8√
(2(n1 + n2)− 3)(n1 + n2)

− 4√
(2(n1 + n2)− 5)(n1 + n2)

− 4√
(2(n1 + n2)− 5)(3(n1 + n2)− 10)

+
2

2(n1 + n2)− 6
> 0.



From the above arguments, we have

J(G∗
1(n1, r1, 1), G∗

2(n2, r2, 1))

≤max{J(G∗
1(n1, 3, 1), G∗

2(n2, 3, 1)), J(G∗
1(n1, 3, 1), G∗

2(n2, 4, 1)),

J(G∗
1(n1, 4, 1), G∗

2(n2, 3, 1)), J(G∗
1(n1, 4, 1), G∗

2(n2, 4, 1))}
=J(G∗

1(n1, 3, 1), G∗
2(n2, 3, 1)).

If G ∼= Cn1,n2 , by Lemma 2.11, we get

J(G) ≤ J(G∗
1(n1, 3, 1), G∗

2(n2, 3, 1)).

Therefore, if G is a bicyclic graph such that the two cycles have k common vertices,

then J(G) ≤ J(G∗
1(n1, 3, 1), G∗

2(n2, 3, 1)).

4 Maximum Sum-Balaban Index of Bicyclic Graphs

In this section, we will determine the graph which has the maximum Sum-Balaban

index among all bicyclic graphs with n vertices.

Similar to the arguments of the maximum Balaban index of bicyclic graphs, we see

that the bicyclic graph which has the maximum Sum-Balaban index among all bicyclic

graphs on n1 + n2 − k vertices is the bicyclic graph such that the two cycles have only

one common vertex. Now we only need to prove SJ(G) ≤ SJ(G∗
1(n1, 3, 1), G∗

2(n2, 3, 1)),

where G is the bicyclic graph such that the two cycles have only one common vertex.

Let G = (V, E) be a bicyclic graph on n1+n2−1 vertices. Suppose |E| = n1+n2, µ =

2 and then J(G) = n1+n2

3

∑
uv∈E(G)

1√
DG(u)+DG(v)

. Similarly, we obtain the following

results straightforwardly.

Lemma 4.1 Suppose the two cycles of the bicyclic graph have only one common ver-
tex. Let n1, r1, n2, r2 be positive integers with 1 ≤ r1 ≤ n1, 1 ≤ r2 ≤ n2 − k2,
G = (G∗

1(n1, r1, 1),G∗
2(n2, r2, 1)) ∈ (G∗1(n1, r1, 1),G∗2(n2, r2, 1)) (see Case 1 of Figure

2.4). We have



(1). if r1, r2 are even, then

3SJ(G)
n1 + n2

=
n1 + n2 − r1 − r2√

r2
1
2 + r2

2
2 − 2(r1 + r2) + 3(n1 + n2)− 3

+
∑

1≤i≤ r1
2

2√
D1

G(ui) + D1
G(ui+1)

+
∑

1≤j≤ r2
2

2√
D1

G(vj) + D1
G(vj+1)

;

(2). if r1, r2 are odd, then

3SJ(G)
n1 + n2

=
n1 + n2 − r1 − r2√

r2
1
2 + r2

2
2 − 2(r1 + r2) + 3(n1 + n2)− 4

+
1√

r2
1
2 + r2

2
2 + (r1 + 1)(n1 + n2 − r1 − 1)− 2r2 + 1

+
1√

r2
1
2 + r2

2
2 + (r2 + 1)(n1 + n2 − r2 − 1)− 2r1 + 1

+
∑

1≤i≤ r1−1
2

2√
D2

G(ui) + D2
G(ui+1)

+
∑

1≤j≤ r2−1
2

2√
D2

G(vj) + D2
G(vj+1)

;

(3). if r1 is odd and r2 is even, then

3SJ(G)
n1 + n2

=
n1 + n2 − r1 − r2√

r2
1
2 + r2

2
2 − 2(r1 + r2) + 3(n1 + n2)− 7

2

+
1√

r2
1
2 + r2

2
2 + (r1 + 1)(n1 + n2 − r1 − 1)− 2r2 + 1

+
∑

1≤i≤ r1−1
2

2√
D3

G(ui) + D3
G(ui+1)

+
∑

1≤j≤ r2
2

2√
D3

G(vj) + D3
G(vj+1)

;

(4). if r1 is even and r2 is odd, then

3SJ(G)
n1 + n2

=
n1 + n2 − r1 − r2√

r2
1
2 + r2

2
2 − 2(r1 + r2) + 3(n1 + n2)− 7

2

+
1√

r2
1
2 + r2

2
2 + (r2 + 1)(n1 + n2 − r2 − 1)− 2r1 + 1

+
∑

1≤i≤ r1
2

2√
D4

G(ui) + D4
G(ui+1)

+
∑

1≤j≤ r2−1
2

2√
D4

G(vj) + D4
G(vj+1)

,

where D1
G(ui) =

r2
1

4
+

r2
2

4
+ i(n1 + n2 − r1 − 1) − r2 + 1, D1

G(vj) =
r2
1

4
+

r2
2

4
+ j(n1 +

n2 − r2 − 1) − r1 + 1, D2
G(ui) =

r2
1

4
+

r2
2

4
+ i(n1 + n2 − r1 − 1) − r2 + 1

2
, D2

G(vj) =

r2
1

4
+

r2
2

4
+j(n1+n2−r2−1)−r1+

1
2
, D3

G(ui) =
r2
1

4
+

r2
2−1

4
+i(n1+n2−r1−1)−r2+1, D3

G(vj) =

r2
1−1

4
+

r2
2

4
+ j(n1 +n2− r2−1)− r1 +1, D4

G(ui) =
r2
1

4
+

r2
2−1

4
+ i(n1 +n2− r1−1)− r2 +1,

D4
G(vj) =

r2
1−1

4
+

r2
2

4
+ j(n1 + n2 − r2 − 1)− r1 + 1.



Note that

3

n1 + n2

(SJ(G∗
1(n1, 3, 1), G∗

2(n2, 3, 1))− SJ(G∗
1(n1, 3, 1), G∗

2(n2, 4, 1)))

=
n1 + n2 − 6√
3(n1 + n2)− 7

+
2√

4(n1 + n2)− 12
+

4√
3(n1 + n2)− 8

− n1 + n2 − 7√
3(n1 + n2)− 5

− 2√
3(n1 + n2)− 6

− 1√
4(n1 + n2)− 10

− 2√
3(n1 + n2)− 7

− 2√
5(n1 + n2)− 17

> 0,

and
3

n1 + n2

(SJ(G∗
1(n1, 3, 1), G∗

2(n2, 3, 1))− SJ(G∗
1(n1, 4, 1), G∗

2(n2, 3, 1)))

=
3

n1 + n2

(SJ(G∗
1(n1, 3, 1), G∗

2(n2, 3, 1))− SJ(G∗
1(n1, 3, 1), G∗

2(n2, 4, 1))) > 0.

Moreover, we have

3

n1 + n2

(SJ(G∗
1(n1, 3, 1), G∗

2(n2, 3, 1))− SJ(G∗
1(n1, 4, 1), G∗

2(n2, 4, 1)))

=
n1 + n2 − 6√
3(n1 + n2)− 7

+
2√

4(n1 + n2)− 12
+

4√
3(n1 + n2)− 8

−
(

n1 + n2 − 8√
3(n1 + n2)− 3

+
4√

3(n1 + n2)− 5
+

4√
5(n1 + n2)− 15

)
> 0.

Therefore, we infer the following theorem.

Theorem 4.2 Let n1, r1, n2, r2 be positive integers with 1 ≤ r1 + k − 1 ≤ n1, 1 ≤
r2 + k − 1 ≤ n2 − k2. Suppose G is a connected bicyclic graph on n1 + n2 − 1 vertices

such that the two cycles have k common vertices and r1 + k − 1, r2 + k − 1 vertices,

respectively. Then

SJ(G) ≤ n1 + n2

3

(
n1 + n2 − 6√
3(n1 + n2)− 7

+
2√

4(n1 + n2)− 12
+

4√
3(n1 + n2)− 8

)
,

and the equality holds if and only if G ∼= (G∗
1(n1, r1, 1), G∗

2(n2, r2, 1))(k = 1).



Proof. Similar to the proof of Theorem 3.2, we have

J(G∗
1(n1, r1 + k − 1, 1), G∗

2(n2, r2 + k − 1, 1))

≤max{SJ(G∗
1(n1, 3, 1), G∗

2(n2, 3, 1)), SJ(G∗
1(n1, 3, 1), G∗

2(n2, 4, 1)),

SJ(G∗
1(n1, 4, 1), G∗

2(n2, 3, 1)), SJ(G∗
1(n1, 4, 1), G∗

2(n2, 4, 1))}
=SJ(G∗

1(n1, 3, 1), G∗
2(n2, 3, 1))(k = 1).

If G ∼= Cn1,n2 , then by Lemma 2.11, we obtain

SJ(G) ≤ SJ(G∗
1(n1, 3, 1), G∗

2(n2, 3, 1)).

Combining the above cases, we complete the proof.

5 Conclusion

In this paper, we studied sharp upper bounds for the Balaban index and the Sum-

Balaban index among all bicyclic graphs, by using some transformations. The graphs

attaining these bounds were also characterized. An important question is how general

the bounds are. Obviously, the proof techniques use structural properties of the graphs

under consideration and it may be intricate to extend the techniques when using more

general graphs.

Consequently we will consider the extremal problems of the Balaban index for gen-

eral graphs, i.e., the graphs with the cyclomatic number µ = k for any integer k ≥ 3,

and also some special networks as future work. Further, we would like to explore ad-

vanced structural properties of the Balaban index, and relations between the Balaban

index and some other topological indices.
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