The bipartite unicyclic graphs with the first $\left\lfloor\frac{n-3}{4}\right\rfloor$ largest matching energies

Lin Chen and Jinfeng Liu
Center for Combinatorics and LPMC-TJKLC
Nankai University, Tianjin 300071, P.R. China
Email: chenlin1120120012@126.com, ljinfeng709@163.com

Abstract

The theory of matching energy of graphs since be proposed by Gutman and Wagner in 2012, has attracted more and more attention. Denote by $\mathcal{B}_{n, m}$ the class of bipartite graphs with order n and size m. In particular, $\mathcal{B}_{n, n}$ denotes the set of bipartite unicyclic graphs, which is an interesting class of graphs. In this paper, for odd n, we characterize the bipartite unicyclic graphs with the first $\left\lfloor\frac{n-3}{4}\right\rfloor$ largest matching energies. There is an interesting correspondence: we conclude that the graph with the second maximal matching energy in $\mathcal{B}_{n, n}$ for odd $n \geq 11$ is P_{n}^{6}, which is the only graph attaining the maximum value of the energy among all the (bipartite) unicyclic graphs for $n \geq 16$.

Keywords: matching energy; bipartite unicyclic graphs; quasi-order; Coulson integral formula

1. Introduction

In theoretical chemistry and biology, molecular structure descriptors are used for modeling physical-chemical, toxicologic, pharmacologic, biological and other properties of chemical compounds. These descriptors are mainly divided into three types: degree-based indices, distance-based indices and spectrum-based indices. Degree-based indices [64] contain (general) Randić index [52, 53], (general) zeroth order Randić index [40, 41], Zagreb index [1, $29,38,47,59,66,68]$, connective eccentricity index [72] and so on. Distancebased indices [70] include the Balaban index [15], the Wiener index [20, 39, $48,57,58,65]$ and Wiener polarity index [60], the Szeged index [3, 21], ABC index [63], the Kirchhoff index [50], the Harary index [5]. Eigenvalues of
graphs, various of graph energies $[7,8,9,17,16,31,61]$, HOMO-LUMO index $[54,62]$ belong to spectrum-based indices. Actually, there are also some topological indices defined based on both degrees and distances, such as degree distance [19], graph entropies [10].

In 1977, Gutman [23] proposed the concept of graph energy. The ener$g y$ of a simple graph G is defined as the sum of the absolute values of its eigenvalues, namely,

$$
E(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right|,
$$

where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ denote the eigenvalues of G. The graph energy has been rather widely studied by theoretical chemists and mathematicians. For details, we refer the book on graph energy [55] and some new recent references [42, 43, 56].

A matching in a graph G is a set of pairwise nonadjacent edges. A matching M is called a k-matching if the size of M is k. Let $m(G, k)$ denote the number of k-matchings of G, where $m(G, 1)=m$ and $m(G, k)=0$ for $k>\left\lfloor\frac{n}{2}\right\rfloor$ or $k<0$. In addition, define $m(G, 0)=1$. Then the matching polynomial of the graph G is defined as

$$
\alpha(G)=\alpha(G, \mu)=\sum_{k \geq 0}(-1)^{k} m(G, k) \mu^{n-2 k} .
$$

Similar to graph energy, in [37], Gutman and Wagner proposed the concept of matching energy. They defined the matching energy of a graph G as

$$
M E(G)=\sum_{i=1}^{n}\left|\mu_{i}\right|,
$$

where $\mu_{i}(i=1,2, \ldots, n)$ are the roots of $\alpha(G, \mu)=0$. Besides, Gutman and Wagner also gave the following equivalent definition of matching energy.
Definition 1 ([37]). Let G be a simple graph, and let $m(G, k)$ be the number of its k-matchings, $k=0,1,2, \ldots$. The matching energy of G is

$$
\begin{equation*}
M E=M E(G)=\frac{2}{\pi} \int_{0}^{\infty} \frac{1}{x^{2}} \ln \left[\sum_{k \geq 0} m(G, k) x^{2 k}\right] d x \tag{1}
\end{equation*}
$$

Formula (1) is called the Coulson integral formula of matching energy. Obviously, by the monotonicity of the logarithm function, this formula implies that the matching energy of a graph G is a monotonically increasing
function of any $m(G, k)$. Particularly, if G_{1} and G_{2} are two graphs for which $m\left(G_{1}, k\right) \geq m\left(G_{2}, k\right)$ holds for all $k \geq 0$, then $\operatorname{ME}\left(G_{1}\right) \geq M E\left(G_{2}\right)$. If, in addition, $m\left(G_{1}, k\right)>m\left(G_{2}, k\right)$ for at least one k, then $M E\left(G_{1}\right)>M E\left(G_{2}\right)$. Thus, we can define a quasi-order \succeq as follows: If G_{1} and G_{2} are two graphs, then

$$
\begin{equation*}
G_{1} \succeq G_{2} \Longleftrightarrow m\left(G_{1}, k\right) \geq m\left(G_{2}, k\right) \text { for all } k \tag{2}
\end{equation*}
$$

And if $G_{1} \succeq G_{2}$ we say that G_{1} is m-greater than G_{2} or G_{2} is m-smaller than G_{1}, which is also denoted by $G_{2} \preceq G_{1}$. If $G_{1} \succeq G_{2}$ and $G_{2} \succeq G_{1}$, the graphs G_{1} and G_{2} are said to be m-equivalent, denote it by $G_{1} \sim G_{2}$. If $G_{1} \succeq G_{2}$, but the graphs G_{1} and G_{2} are not m-equivalent (i.e., there exists some k such that $\left.m\left(G_{1}, k\right)>m\left(G_{2}, k\right)\right)$, then we say that G_{1} is strictly m-greater than G_{2}, write $G_{1} \succ G_{2}$. If neither $G_{1} \succeq G_{2}$ nor $G_{2} \succeq G_{1}$, the two graphs G_{1} and G_{2} are said to be m-incomparable and we denote this by $G_{1} \# G_{2}$.

According to Eq.(1) and Eq.(2), we get $G_{1} \succeq G_{2} \Longrightarrow M E\left(G_{1}\right) \geq$ $M E\left(G_{2}\right)$ and $G_{1} \succ G_{2} \Longrightarrow M E\left(G_{1}\right)>M E\left(G_{2}\right)$ directly.

In [37], Gutman and Wagner pointed out that the matching energy is a quantity of relevance for chemical applications. They arrived at the simple relation:

$$
\operatorname{TRE}(G)=E(G)-M E(G)
$$

Where $\operatorname{TRE}(G)$ is the so-called "topological resonance energy" of G. About the chemical applications of matching energy, for more details see [33].

As the research of extremal energy is an amusing work, the study on extremal matching energy is also interesting. In [37], the authors gave some elementary results on the matching energy and obtained that $M E\left(S_{n}^{+}\right) \leq$ $M E(G) \leq M E\left(C_{n}\right)$ for any unicyclic graph G of order n, where S_{n}^{+}is the graph obtained by adding a new edge to the star S_{n}. In [46], Ji et al. characterized the graphs with the extremal matching energy among all bicyclic graphs, while Chen and Shi [11] proved the same extremal results for tricyclic graphs. In [12], Chen et al. characterized the graphs with minimal matching energy among all unicyclic and bicyclic graphs with a given diameter d. Some more extremal results on matching energy of graphs see [14, 51, 67, 69, 71].

All graphs considered here are simple, finite and undirected. We follow the book [6] for all the notations and terminology not defined here. By convention, denote by P_{n}, C_{n}, S_{n} the path, cycle, star of order n. \mathcal{T}_{n} denotes the set of trees with n vertices. Referring to graphs with no odd cycles as even-cycle graphs, i.e., the bipartite graphs. Denote by \mathcal{B}_{n} the class of even-cycle graphs with order n, and $\mathcal{B}_{n, m}$ the class of graphs in \mathcal{B}_{n}
with m edges. Especially, we call the graphs in $\mathcal{B}_{n, n}$ as bipartite unicyclic graphs, which is an interesting class of graphs. What's more, we introduce some new notations appeared in [37] and [49]. The sun graph, denoted by $C_{l}\left(P_{s_{1}+1}, \ldots, P_{s_{l}+1}\right)$, is one obtained from the cycle $C_{l}=v_{1} v_{2} \ldots v_{l} v_{1}$ by identifying one pendent vertex of path $P_{s_{i}+1}$ with vertex v_{i} for $i=1, \ldots, l$. Note that $C_{l}\left(P_{n-l+1}, P_{1} \ldots, P_{1}\right)$ is also called lollipop graph and abbreviated as P_{n}^{l}. Let G be a connected graph with at least two vertices, and let u be one of its vertices. Denote by $P(n, k, G, u)$ the graph obtained by identifying u with the vertex v_{k} of a simple path $P=v_{1} v_{2} \ldots v_{n}$. We in the following give the graphs $C_{l}\left(P_{s_{1}+1}, \ldots, P_{s_{l}+1}\right)$ and $P\left(s, k, P_{n-s+1}^{l}, u\right)$ for examples, as shown in Fig 1.

In [13], the authors determined the graphs with the second through the fourth maximal matching energies in $\mathcal{O}_{n, n}$ when n is odd, where $\mathcal{O}_{n, n}$ is the set of unicyclic odd-cycle graphs. Inspired by this, we investigate the extremal values of matching energy of bipartite unicyclic graphs. We characterize in this paper the bipartite unicyclic graphs with the first $\left\lfloor\frac{n-3}{4}\right\rfloor$ largest matching energies when n is odd. One of the most interesting things is that the extremal graphs for matching energy in this paper are P_{n}^{l} for some values of l, which are related to the extremal graph (i.e., P_{n}^{6}) having maximal energy among all the bipartite unicyclic graphs for $n \geq 16$ (see [45]). In fact, when $n \geq 11$, with regard to matching energy, the graph P_{n}^{6} is precisely the second maximal graph in $\mathcal{B}_{n, n}$ for n being odd.

2. Preliminaries

In this section, we list several known results at first. Then some useful lemmas are shown, which play the key roles in proving our main results.

Lemma $1([\mathbf{1 8}, \mathbf{2 5}])$. Let G be a simple graph, $e=u v$ be an edge of G, and $N(u)=\left\{v_{1}(=v), v_{2}, \ldots, v_{j}\right\}$ be the set of all neighbors of u in G. Then we have

$$
\begin{gather*}
m(G, k)=m(G-u v, k)+m(G-u-v, k-1), \tag{3}\\
m(G, k)=m(G-u, k)+\sum_{i=1}^{j} m\left(G-u-v_{i}, k-1\right) . \tag{4}
\end{gather*}
$$

From Lemma 1, we know that $m\left(P_{1} \cup G, k\right)=m(G, k)$. And one can also obtain that

Lemma 2 ([12]). Let G be a simple graph and H be a subgraph (resp. proper subgraph) of G. Then $G \succeq H$ (resp. $\succ H$).

Lemma 3 ([30]). Now H_{1} and H_{2} are two graphs. If $H_{1} \succ H_{2}$, then $H_{1} \cup$ $G \succ H_{2} \cup G$, where G is an arbitrary graph.

Lemma 4 ([49]). Let n, l be positive integers, $n>l \geq 3$. Denote by $\mathcal{U}_{l, n}$ the set of unicyclic graphs with n vertices and a cycle of length l, then for any graph $G \in \mathcal{U}_{l, n}$, we have

$$
M E\left(P_{n}^{l}\right) \geq M E(G)
$$

with equality if and only if $G \cong P_{n}^{l}$.
Actually, the authors in [49] proved that $P_{n}^{l} \succ G$ for any $G \in \mathcal{U}_{l, n} \backslash\left\{P_{n}^{l}\right\}$.
Lemma $5([\mathbf{2 3}, 46])$. In regard to the quasi-order \succ, we have the following ordering:

$$
P_{n} \succ P_{2} \cup P_{n-2} \succ P_{4} \cup P_{n-4} \succ \cdots \succ P_{3} \cup P_{n-3} \succ P_{1} \cup P_{n-1} .
$$

Lemma 6 ([23, 37]). If F is a forest with $n(n \geq 6)$ vertices, then $F \preceq P_{n}$, with $F \sim P_{n}$ if and only if $F \cong P_{n}$.

Lemma 7 ([37]). Let G be a connected graph with at least two vertices, and let u be one of its vertices. Denote by $P(n, k, G, u)$ the graph obtained by identifying u with the vertex v_{k} of a simple path $v_{1}, v_{2}, \ldots, v_{n}$. Write $n=4 p+i, i \in\{1,2,3,4\}$, and $l=\lfloor(i-1) / 2\rfloor$. Then the inequalities

$$
\begin{aligned}
& \operatorname{ME}(P(n, 2, G, u))<\operatorname{ME}(P(n, 4, G, u))<\cdots<\operatorname{ME}(P(n, 2 p+2 l, G, u)) \\
& <\operatorname{ME}(P(n, 2 p+1, G, u))<\cdots<\operatorname{ME}(P(n, 3, G, u))<\operatorname{ME}(P(n, 1, G, u))
\end{aligned}
$$

hold.
Lemma 8 ([37]). Suppose that G is a connected graph and T an induced subgraph of G such that T is a tree and T is connected to the rest of G only by a cut vertex v. If T is replaced by a star of the same order, centered at v, then the matching energy decreases (unless T is already such a star). If T is replaced by a path, with one end at v, then the matching energy increases (unless T is already such a path).

Lemma 9. Let n be odd and l be even with $4 \leq l \leq n-3$. Then $P_{n}^{l} \succ P_{n}^{l+2}$.
Proof. For $0 \leq k \leq \frac{n-1}{2}$, by Eq.(3),

$$
\begin{gathered}
m\left(P_{n}^{l}, k\right)=m\left(P_{n}, k\right)+m\left(P_{l-2} \cup P_{n-l}, k-1\right) \\
m\left(P_{n}^{l+2}, k\right)=m\left(P_{n}, k\right)+m\left(P_{l} \cup P_{n-l-2}, k-1\right) .
\end{gathered}
$$

Since n is odd but l is even, then $l-2$ and l are even, while $n-l$ and $n-l-2$ are odd. Applying Lemma 5, we know $P_{l-2} \cup P_{n-l} \succ P_{l} \cup P_{n-l-2}$. This deduces that $P_{n}^{l} \succ P_{n}^{l+2}$.

Remark 1. Through simple calculations, it's easy to derive $P_{n}^{l} \sim P_{n}^{n-l+2}$. Then by the conclusion above, we get $P_{n}^{n-l+2} \succ P_{n}^{n-l}$. Notice that both $n-l+2$ and $n-l$ are odd, hence this result is in accordance with Lemma 8 in [13];

Remark 2. Taking advantage of the lemma above, for n being odd, we obtain $P_{n}^{4} \succ P_{n}^{6} \succ P_{n}^{8} \succ \ldots \succ P_{n}^{n-5} \succ P_{n}^{n-3} \succ P_{n}^{n-1}$ directly.

Lemma 10. Let G_{1} and G_{2} be two vertex-disjoint graphs. Then

$$
\alpha\left(G_{1} \cup G_{2}, x\right)=\alpha\left(G_{1}, x\right) \cdot \alpha\left(G_{2}, x\right)
$$

Proof. Set $n_{1}=\left|V\left(G_{1}\right)\right|, n_{2}=\left|V\left(G_{2}\right)\right|$, with $n_{1}+n_{2}=n$. Then

$$
\begin{aligned}
\alpha\left(G_{1} \cup G_{2}, x\right)= & \sum_{k \geq 0}(-1)^{k} m\left(G_{1} \cup G_{2}, k\right) x^{n-2 k} \\
= & \sum_{k \geq 0}(-1)^{k}\left(\sum_{j=0}^{k} m\left(G_{1}, j\right) m\left(G_{2}, k-j\right)\right) x^{n-2 k} \\
= & {\left[\sum_{j \geq 0}(-1)^{j} m\left(G_{1}, j\right) x^{n_{1}-2 j}\right] } \\
& \cdot\left[\sum_{k-j \geq 0}(-1)^{k-j} m\left(G_{2}, k-j\right) x^{n_{2}-2(k-j)}\right] \\
= & \alpha\left(G_{1}, x\right) \cdot \alpha\left(G_{2}, x\right) .
\end{aligned}
$$

The proof is thus completed.
Let $G \not \not C_{n}$ be a connected graph in $\mathcal{B}_{n, n}$. Denote the unique cycle of G by C_{l}. We call each maximal tree outside C_{l} with one vertex attached to some vertex of C_{l} a "branch" of G, namely, any two branches of G have
no common vertices. It is both consistent and convenient to define a vertex in C_{l} with no neighbor outside C_{l} also as a branch of G. Any branch with just one vertex is referred to as trivial. All other branches are nontrivial. If $G \not \equiv C_{n}$ is a graph in $\mathcal{B}_{n, n}$ with l branches outside the unique cycle C_{l}. The i-th branch has $s_{i}+1\left(s_{i} \geq 0\right)$ vertices for $i=1, \ldots, l$, where $s_{1}+$ $s_{2}+\ldots+s_{l}=n-l$. Then according to Lemma 8 , the matching energy of G increases when each of the branches becomes a path (unless G is already such a graph). Thus $M E(G) \leq M E\left(C_{l}\left(P_{s_{1}+1}, P_{s_{2}+1}, \ldots, P_{s_{l}+1}\right)\right)$, with equality if and only if $G \cong C_{l}\left(P_{s_{1}+1}, P_{s_{2}+1}, \ldots, P_{s_{l}+1}\right)$. In the following, we will show that $C_{l}\left(P_{s_{1}+1}, P_{s_{2}+1}, \ldots, P_{s_{l}+1}\right) \preceq C_{l}\left(P_{s_{1}+1}, P_{n-l-s_{1}+1}, P_{1}, \ldots, P_{1}\right)$.

Lemma 11. The graphs $C_{l}\left(P_{s_{1}+1}, P_{s_{2}+1}, \ldots, P_{s_{l}+1}\right)$ and $C_{l}\left(P_{s_{1}+1}, P_{n-l-s_{1}+1}\right.$, $\left.P_{1}, \ldots, P_{1}\right)$ are shown in Fig 1 and Fig 2, respectively. Where l is even with $4 \leq l \leq n-2,1 \leq s_{1} \leq n-l-1$. Then $C_{l}\left(P_{s_{1}+1}, P_{s_{2}+1}, \ldots, P_{s_{l}+1}\right) \preceq$ $C_{l}\left(P_{s_{1}+1}, P_{n-l-s_{1}+1}, P_{1}, \ldots, P_{1}\right)$, with $C_{l}\left(P_{s_{1}+1}, P_{s_{2}+1}, \ldots, P_{s_{l}+1}\right) \sim C_{l}\left(P_{s_{1}+1}\right.$, $\left.P_{n-l-s_{1}+1}, P_{1}, \ldots, P_{1}\right)$ if and only if $C_{l}\left(P_{s_{1}+1}, P_{s_{2}+1}, \ldots, P_{s_{l}+1}\right) \cong C_{l}\left(P_{s_{1}+1}\right.$, $\left.P_{n-l-s_{1}+1}, P_{1}, \ldots, P_{1}\right)$.

Proof. For $0 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor$, by Lemmas 1, 4 and 6 , we have

$$
\begin{aligned}
& m\left(C_{l}\left(P_{s_{1}+1}, P_{s_{2}+1}, \ldots, P_{s_{l}+1}\right), k\right) \\
= & m\left(C_{l}\left(P_{s_{1}+1}, P_{s_{2}+1}, \ldots, P_{s_{l}+1}\right)-u v_{1}, k\right) \\
& +m\left(C_{l}\left(P_{s_{1}+1}, P_{s_{2}+1}, \ldots, P_{s_{l}+1}\right)-u-v_{1}, k-1\right) \\
\leq & m\left(P_{n-s_{1}}^{l} \cup P_{s_{1}}, k\right)+m\left(P_{n-s_{1}-1} \cup P_{s_{1}-1}, k-1\right) \\
= & m\left(C_{l}\left(P_{s_{1}+1}, P_{n-l-s_{1}+1}, P_{1}, \ldots, P_{1}\right)-x w, k\right) \\
& +m\left(C_{l}\left(P_{s_{1}+1}, P_{n-l-s_{1}+1}, P_{1}, \ldots, P_{1}\right)-x-w, k-1\right) \\
= & m\left(C_{l}\left(P_{s_{1}+1}, P_{n-l-s_{1}+1}, P_{1}, \ldots, P_{1}\right), k\right)
\end{aligned}
$$

Which yields that $C_{l}\left(P_{s_{1}+1}, P_{s_{2}+1}, \ldots, P_{s_{l}+1}\right) \preceq C_{l}\left(P_{s_{1}+1}, P_{n-l-s_{1}+1}, P_{1}, \ldots, P_{1}\right)$. The equality holds for all k if and only if $C_{l}\left(P_{s_{1}+1}, P_{s_{2}+1}, \ldots, P_{s_{l}+1}\right)-u v_{1} \cong$ $P_{n-s_{1}}^{l} \cup P_{s_{1}}$, meanwhile $C_{l}\left(P_{s_{1}+1}, P_{s_{2}+1}, \ldots, P_{s_{l}+1}\right)-u-v_{1} \cong P_{n-s_{1}-1} \cup P_{s_{1}-1}$. That is, if and only if $C_{l}\left(P_{s_{1}+1}, P_{s_{2}+1}, \ldots, P_{s_{l}+1}\right) \cong C_{l}\left(P_{s_{1}+1}, P_{n-l-s_{1}+1}, P_{1}, \ldots\right.$, P_{1}).

As a special case of Lemma 11, for the graphs $C_{l}(P_{s+1}, \underbrace{P_{1}, \ldots, P_{1}}_{t}, P_{n-l-s+1}$, P_{1}, \ldots, P_{1}), where l is even with $4 \leq l \leq n-2,1 \leq s \leq n-l-1$. Let the two 3 -degree vertices be x and y, if the number of vertices in the unique cycle between x and y is t with $1 \leq t \leq \frac{l-2}{2}$ (as shown in Fig 2).

Then it follows immediately that $C_{l}(P_{s+1}, \underbrace{P_{1}, \ldots, P_{1}}_{t}, P_{n-l-s+1}, P_{1}, \ldots, P_{1}) \prec$ $C_{l}\left(P_{s+1}, P_{n-l-s+1}, P_{1}, \ldots, P_{1}\right)$.

Lemma 12. Let l be even with $4 \leq l \leq n-2$, s be an integer with $1 \leq s \leq$ $n-l-1$. Then $C_{l}\left(P_{s+1}, P_{n-l-s+1}, P_{1}, \ldots, P_{1}\right) \preceq C_{l}\left(P_{n-l-1}, P_{3}, P_{1}, \ldots, P_{1}\right)$ (these two graphs are shown in Fig 3), with $C_{l}\left(P_{s+1}, P_{n-l-s+1}, P_{1}, \ldots, P_{1}\right) \sim$ $C_{l}\left(P_{n-l-1}, P_{3}, P_{1}, \ldots, P_{1}\right)$ if and only if $s=n-l-2$ or $s=2$.

Proof. For $0 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor$, we have

$$
\begin{aligned}
& m\left(C_{l}\left(P_{s+1}, P_{n-l-s+1}, P_{1}, \ldots, P_{1}\right), k\right) \\
= & m\left(C_{l}\left(P_{s+1}, P_{n-l-s+1}, P_{1}, \ldots, P_{1}\right)-x y, k\right) \\
& +m\left(C_{l}\left(P_{s+1}, P_{n-l-s+1}, P_{1}, \ldots, P_{1}\right)-x-y, k-1\right) \\
= & m\left(P_{n}, k\right)+m\left(P_{l-2} \cup P_{s} \cup P_{n-l-s}, k-1\right), \\
& m\left(C_{l}\left(P_{n-l-1}, P_{3}, P_{1}, \ldots, P_{1}\right), k\right) \\
= & m\left(C_{l}\left(P_{n-l-1}, P_{3}, P_{1}, \ldots, P_{1}\right)-x y, k\right) \\
& +m\left(C_{l}\left(P_{n-l-1}, P_{3}, P_{1}, \ldots, P_{1}\right)-x-y, k-1\right) \\
= & m\left(P_{n}, k\right)+m\left(P_{l-2} \cup P_{n-l-2} \cup P_{2}, k-1\right) .
\end{aligned}
$$

Since $P_{s} \cup P_{n-l-s} \preceq P_{n-l-2} \cup P_{2}$ by Lemma 5, then $m\left(P_{l-2} \cup P_{s} \cup P_{n-l-s}, k-1\right) \leq$ $m\left(P_{l-2} \cup P_{n-l-2} \cup P_{2}, k-1\right)$, which yields that $m\left(C_{l}\left(P_{s+1}, P_{n-l-s+1}, P_{1}, \ldots, P_{1}\right)\right.$, $k) \leq m\left(C_{l}\left(P_{n-l-1}, P_{3}, P_{1}, \ldots, P_{1}\right), k\right)$. The equality holds for all k if and only if $P_{s} \cup P_{n-l-s} \cong P_{n-l-2} \cup P_{2}$, namely, $s=n-l-2$ or $s=2$. Hence, the result holds.

Lemma 13. Let n be odd with $n \geq 9, l$ be even with $4 \leq l \leq n-3$. Then $P\left(n-4,3, P_{5}^{4}, u_{1}\right) \succ C_{l}\left(P_{n-l-1}, P_{3}, P_{1}, \ldots, P_{1}\right)$. Where the graph $P(n-$ $\left.4,3, P_{5}^{4}, u_{1}\right)$ is shown in Fig 4.

Proof. For $0 \leq k \leq \frac{n-1}{2}$, Eq.(3) leads to

$$
\begin{aligned}
& m\left(P\left(n-4,3, P_{5}^{4}, u_{1}\right), k\right) \\
= & m\left(P\left(n-4,3, P_{5}^{4}, u_{1}\right)-u_{1} v_{2}, k\right) \\
& +m\left(P\left(n-4,3, P_{5}^{4}, u_{1}\right)-u_{1}-v_{2}, k-1\right) \\
= & m\left(P_{2} \cup P_{n-2}^{4}, k\right)+m\left(C_{4} \cup P_{n-7}, k-1\right) \\
= & m\left(P_{2} \cup P_{n-2}^{4}, k\right)+m\left(P_{4} \cup P_{n-7}, k-1\right)+m\left(P_{2} \cup P_{n-7}, k-2\right),
\end{aligned}
$$

$$
\begin{aligned}
& m\left(C_{l}\left(P_{n-l-1}, P_{3}, P_{1}, \ldots, P_{1}\right), k\right) \\
= & m\left(C_{l}\left(P_{n-l-1}, P_{3}, P_{1}, \ldots, P_{1}\right)-y w, k\right) \\
& +m\left(C_{l}\left(P_{n-l-1}, P_{3}, P_{1}, \ldots, P_{1}\right)-y-w, k-1\right) \\
= & m\left(P_{2} \cup P_{n-2}^{l}, k\right)+m\left(P_{n-3}, k-1\right) \\
= & m\left(P_{2} \cup P_{n-2}^{l}, k\right)+m\left(P_{4} \cup P_{n-7}, k-1\right)+m\left(P_{3} \cup P_{n-8}, k-2\right) .
\end{aligned}
$$

Since n is odd with $n \geq 9$ and $4 \leq l \leq n-3$, then by Lemmas 3,5 and Remark 2 after Lemma 9, we get $P_{2} \cup P_{n-7} \succ P_{3} \cup P_{n-8}$ and $P_{2} \cup P_{n-2}^{4} \succeq$ $P_{2} \cup P_{n-2}^{l}$. Hence $m\left(P\left(n-4,3, P_{5}^{4}, u_{1}\right), k\right) \geq m\left(C_{l}\left(P_{n-l-1}, P_{3}, P_{1}, \ldots, P_{1}\right), k\right)$. It follows from $P_{2} \cup P_{n-7} \succ P_{3} \cup P_{n-8}$ that there exists some k_{0} such that $m\left(P_{2} \cup P_{n-7}, k_{0}\right)>m\left(P_{3} \cup P_{n-8}, k_{0}\right)$, which deduces $m\left(P\left(n-4,3, P_{5}^{4}, u_{1}\right), k_{0}+\right.$ 2) $>m\left(C_{l}\left(P_{n-l-1}, P_{3}, P_{1}, \ldots, P_{1}\right), k_{0}+2\right)$. Therefore, $P\left(n-4,3, P_{5}^{4}, u_{1}\right) \succ$ $C_{l}\left(P_{n-l-1}, P_{3}, P_{1}, \ldots, P_{1}\right)$.

Summarizing the above analysis, the graphs in $\mathcal{B}_{n, n}$ with more than one nontrivial branch have been discussed. Now consider the graph G in $\mathcal{B}_{n, n}$ with just one nontrivial branch. This branch is connected to the unique cycle C_{l} of G by a cut vertex, say u_{0}. The $n-l$ vertices outside C_{l} are denoted by $u_{1}, u_{2}, \ldots, u_{n-l}$. Suppose $G \nsubseteq P_{n}^{l}$. If $d\left(u_{0}\right) \geq 4$, then by Lemma 7 and Lemma 8 , we know that $M E(G) \leq M E\left(P\left(n-l+1,3, C_{l}, u_{0}\right)\right)$, with equality if and only if $G \cong P\left(n-l+1,3, C_{l}, u_{0}\right)$. If $d\left(u_{0}\right)=3$, since $G \not \equiv P_{n}^{l}$, there exists some vertex in $\left\{u_{1}, u_{2}, \ldots, u_{n-l}\right\}$ having degree not less than 3 . Assume that $d\left(u_{i}\right) \geq 3$ with $1 \leq i \leq n-l-2$, and $d\left(u_{j}\right)=2$ for $1 \leq j \leq i-1$ (see Fig 4). Then similarly, we have $M E(G) \leq M E\left(P\left(n-l-i+1,3, P_{l+i}^{l}, u_{i}\right)\right)$, with equality if and only if $G \cong P\left(n-l-i+1,3, P_{l+i}^{l}, u_{i}\right)$. The graphs $P\left(n-l+1,3, C_{l}, u_{0}\right)$ and $P\left(n-l-i+1,3, P_{l+i}^{l}, u_{i}\right)$ with $1 \leq i \leq n-l-3$ are shown in Fig 4.

Lemma 14. Let n be odd with $n \geq 9, l$ be even with $4 \leq l \leq n-3$. Then we can obtain $P\left(n-4,3, P_{5}^{4}, u_{1}\right) \succ P\left(n-l+1,3, C_{l}, u_{0}\right)$.

Proof. For $0 \leq k \leq \frac{n-1}{2}$, one can check that

$$
\begin{aligned}
& m\left(P\left(n-4,3, P_{5}^{4}, u_{1}\right), k\right) \\
= & m\left(P\left(n-4,3, P_{5}^{4}, u_{1}\right)-u_{1} v_{2}, k\right) \\
& +m\left(P\left(n-4,3, P_{5}^{4}, u_{1}\right)-u_{1}-v_{2}, k-1\right) \\
= & m\left(P_{2} \cup P_{n-2}^{4}, k\right)+m\left(C_{4} \cup P_{n-7}, k-1\right) \\
\geq & m\left(P_{2} \cup P_{n-2}^{4}, k\right)+m\left(P_{4} \cup P_{n-7}, k-1\right),
\end{aligned}
$$

$$
\begin{aligned}
& m\left(P\left(n-l+1,3, C_{l}, u_{0}\right), k\right) \\
= & m\left(P\left(n-l+1,3, C_{l}, u_{0}\right)-u_{0} v_{2}, k\right) \\
& +m\left(P\left(n-l+1,3, C_{l}, u_{0}\right)-u_{0}-v_{2}, k-1\right) \\
= & m\left(P_{2} \cup P_{n-2}^{l}, k\right)+m\left(P_{l-1} \cup P_{n-l-2}, k-1\right) .
\end{aligned}
$$

Since n is odd with $n \geq 9$ and l is even with $4 \leq l \leq n-3$, then $P_{4} \cup P_{n-7} \succ$ $P_{l-1} \cup P_{n-l-2}$ and $P_{2} \cup P_{n-2}^{4} \succeq P_{2} \cup P_{n-2}^{l}$. Hence $m\left(P\left(n-4,3, P_{5}^{4}, u_{1}\right), k\right) \geq$ $m\left(P\left(n-l+1,3, C_{l}, u_{0}\right), k\right)$. Moreover, $m\left(P\left(n-4,3, P_{5}^{4}, u_{1}\right), 2\right)>m(P(n-$ $\left.\left.l+1,3, C_{l}, u_{0}\right), 2\right)$. Hence $P\left(n-4,3, P_{5}^{4}, u_{1}\right) \succ P\left(n-l+1,3, C_{l}, u_{0}\right)$.

Lemma 15. Let n be odd, l be even with $4 \leq l \leq n-5,2 \leq i \leq n-l-3$. Then $P\left(n-l-i+1,3, P_{l+i}^{l}, u_{i}\right) \preceq P\left(5,3, P_{n-4}^{l}, u_{n-l-4}\right)$, with $P(n-l-i+$ $\left.1,3, P_{l+i}^{l}, u_{i}\right) \sim P\left(5,3, P_{n-4}^{l}, u_{n-l-4}\right)$ if and only if $P\left(n-l-i+1,3, P_{l+i}^{l}, u_{i}\right) \cong$ $P\left(5,3, P_{n-4}^{l}, u_{n-l-4}\right)(i . e ., i=n-l-4)$. Where the graph $P\left(5,3, P_{n-4}^{l}, u_{n-l-4}\right)$ is shown in Fig 5.

Proof. For $0 \leq k \leq \frac{n-1}{2}$,

$$
\begin{aligned}
& m\left(P\left(n-l-i+1,3, P_{l+i}^{l}, u_{i}\right), k\right) \\
= & m\left(P\left(n-l-i+1,3, P_{l+i}^{l}, u_{i}\right)-v_{2} u_{i}, k\right) \\
& +m\left(P\left(n-l-i+1,3, P_{l+i}^{l}, u_{i}\right)-v_{2}-u_{i}, k-1\right) \\
= & m\left(P_{n-2}^{l} \cup P_{2}, k\right)+m\left(P_{l+i-1}^{l} \cup P_{n-l-i-2}, k-1\right) \\
= & m\left(P_{n-2}^{l} \cup P_{2}, k\right)+m\left(P_{l+i-1} \cup P_{n-l-i-2}, k-1\right) \\
& +m\left(P_{l-2} \cup P_{i-1} \cup P_{n-l-i-2}, k-2\right), \\
& m\left(P\left(5,3, P_{n-4}^{l}, u_{n-l-4}\right), k\right) \\
= & m\left(P\left(5,3, P_{n-4}^{l}, u_{n-l-4}\right)-v_{2} u_{n-l-4}, k\right) \\
& +m\left(P\left(5,3, P_{n-4}^{l}, u_{n-l-4}\right)-v_{2}-u_{n-l-4}, k-1\right) \\
= & m\left(P_{n-2}^{l} \cup P_{2}, k\right)+m\left(P_{n-5}^{l} \cup P_{2}, k-1\right) \\
= & m\left(P_{n-2}^{l} \cup P_{2}, k\right)+m\left(P_{n-5} \cup P_{2}, k-1\right) \\
& +m\left(P_{l-2} \cup P_{n-l-5} \cup P_{2}, k-2\right) .
\end{aligned}
$$

Since $2 \leq i \leq n-l-3$, then $P_{l+i-1} \cup P_{n-l-i-2} \preceq P_{n-5} \cup P_{2}$ and also $P_{l-2} \cup P_{i-1} \cup P_{n-l-i-2} \preceq P_{l-2} \cup P_{n-l-5} \cup P_{2}$. Which mean $m(P(n-l-i+$ $\left.\left.1,3, P_{l+i}^{l}, u_{i}\right), k\right) \leq m\left(P\left(5,3, P_{n-4}^{l}, u_{n-l-4}\right), k\right)$. The equality holds for all k if and only if $i=n-l-4$. It follows that the proof is completed.

Furthermore, if $i=n-l-2$ and $G \nsubseteq P_{n}^{l}$, then $G \cong P\left(3,2, P_{n-2}^{l}, u_{n-l-2}\right)$ (as shown in Fig 5). In this case, we can also arrive at $P\left(3,2, P_{n-2}^{l}, u_{n-l-2}\right) \prec$ $P\left(5,3, P_{n-4}^{l}, u_{n-l-4}\right)$.

Lemma 16. For even l with $4 \leq l \leq n-5$, we have $P\left(3,2, P_{n-2}^{l}, u_{n-l-2}\right) \prec$ $P\left(5,3, P_{n-4}^{l}, u_{n-l-4}\right)$.
Proof. For all $0 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor$, since $4 \leq l \leq n-5$,

$$
\begin{aligned}
& m\left(P\left(3,2, P_{n-2}^{l}, u_{n-l-2}\right), k\right) \\
= & m\left(P\left(3,2, P_{n-2}^{l}, u_{n-l-2}\right)-u_{n-l-3} u_{n-l-2}, k\right) \\
& +m\left(P\left(3,2, P_{n-2}^{l}, u_{n-l-2}\right)-u_{n-l-3}-u_{n-l-2}, k-1\right) \\
= & m\left(P_{n-3}^{l} \cup P_{3}, k\right)+m\left(P_{n-4}^{l}, k-1\right) \\
= & m\left(P_{n-3} \cup P_{3}, k\right)+m\left(P_{l-2} \cup P_{n-l-3} \cup P_{3}, k-1\right) \\
& +m\left(P_{n-4}, k-1\right)+m\left(P_{l-2} \cup P_{n-l-4}, k-2\right), \\
& m\left(P\left(5,3, P_{n-4}^{l}, u_{n-l-4}\right), k\right) \\
= & m\left(P\left(5,3, P_{n-4}^{l}, u_{n-l-4}\right)-v_{2} u_{n-l-4}, k\right) \\
& +m\left(P\left(5,3, P_{n-4}^{l}, u_{n-l-4}\right)-v_{2}-u_{n-l-4}, k-1\right) \\
= & m\left(P_{n-2}^{l} \cup P_{2}, k\right)+m\left(P_{n-5}^{l} \cup P_{2}, k-1\right) \\
= & m\left(P_{n-2} \cup P_{2}, k\right)+m\left(P_{l-2} \cup P_{n-l-2} \cup P_{2}, k-1\right) \\
& +m\left(P_{n-5} \cup P_{2}, k-1\right)+m\left(P_{l-2} \cup P_{n-l-5} \cup P_{2}, k-2\right) .
\end{aligned}
$$

Clearly, $P_{n-3} \cup P_{3} \prec P_{n-2} \cup P_{2}, P_{l-2} \cup P_{n-l-3} \cup P_{3} \preceq P_{l-2} \cup P_{n-l-2} \cup P_{2}$, $P_{n-4} \prec P_{n-5} \cup P_{2}$ and $P_{l-2} \cup P_{n-l-4} \preceq P_{l-2} \cup P_{n-l-5} \cup P_{2}$. Which imply that $P\left(3,2, P_{n-2}^{l}, u_{n-l-2}\right) \prec P\left(5,3, P_{n-4}^{l}, u_{n-l-4}\right)$.

Lemma 17. Let $n \geq 13$ be odd, l be even with $6 \leq l \leq n-7$, then $P\left(5,3, P_{n-4}^{4}, u_{n-8}\right) \succ P\left(5,3, P_{n-4}^{l}, u_{n-l-4}\right)$. Where the graph $P\left(5,3, P_{n-4}^{4}, u_{n-8}\right)$ is shown in Fig 6.

Proof. Since l is even and $6 \leq l \leq n-7$, then by Lemma 5 , we have $P_{2} \cup P_{n-6} \succ P_{l-2} \cup P_{n-l-2}, P_{2} \cup P_{n-9} \succeq P_{l-2} \cup P_{n-l-5}$. For $k \geq 0$, by Lemma 1, we can obtain that

$$
\begin{aligned}
& m\left(P\left(5,3, P_{n-4}^{4}, u_{n-8}\right), k\right) \\
= & m\left(P\left(5,3, P_{n-4}^{4}, u_{n-8}\right)-u_{0} w, k\right) \\
& +m\left(P\left(5,3, P_{n-4}^{4}, u_{n-8}\right)-u_{0}-w, k-1\right)
\end{aligned}
$$

$$
\begin{aligned}
= & m\left(P\left(5,3, P_{n-4}^{4}, u_{n-8}\right)-u_{0} w, k\right) \\
& +m\left(P\left(5,3, P_{n-4}^{4}, u_{n-8}\right)-u_{0}-w-u_{n-8} v_{2}, k-1\right) \\
& +m\left(P\left(5,3, P_{n-4}^{4}, u_{n-8}\right)-u_{0}-w-u_{n-8}-v_{2}, k-2\right) \\
= & m\left(P\left(5,3, P_{n-4}^{4}, u_{n-8}\right)-u_{0} w, k\right)+m\left(P_{2} \cup P_{2} \cup P_{n-6}, k-1\right) \\
& +m\left(P_{2} \cup P_{2} \cup P_{n-9}, k-2\right) \\
\geq & m\left(P\left(5,3, P_{n-4}^{l}, u_{n-l-4}\right)-u_{0} w, k\right)+m\left(P_{2} \cup P_{l-2} \cup P_{n-l-2}, k-1\right) \\
& +m\left(P_{2} \cup P_{l-2} \cup P_{n-l-5}, k-2\right) \\
= & m\left(P\left(5,3, P_{n-4}^{l}, u_{n-l-4}\right), k\right) .
\end{aligned}
$$

Since $P_{2} \cup P_{n-6} \succ P_{l-2} \cup P_{n-l-2}$, by Lemma 3, $P_{2} \cup P_{2} \cup P_{n-6} \succ P_{2} \cup P_{l-2} \cup$ P_{n-l-2}. Thus there exists some k_{0} such that $m\left(P_{2} \cup P_{2} \cup P_{n-6}, k_{0}\right)>m\left(P_{2} \cup\right.$ $\left.P_{l-2} \cup P_{n-l-2}, k_{0}\right)$. So $m\left(P\left(5,3, P_{n-4}^{4}, u_{n-8}\right), k_{0}+1\right)>m\left(P\left(5,3, P_{n-4}^{l}, u_{n-l-4}\right)\right.$, $\left.k_{0}+1\right)$. Therefore, $P\left(5,3, P_{n-4}^{4}, u_{n-8}\right) \succ P\left(5,3, P_{n-4}^{l}, u_{n-l-4}\right)$.

Lemma 18. Let n be odd with $n \geq 11$, then we have $P\left(n-4,3, P_{5}^{4}, u_{1}\right) \succ$ $P\left(5,3, P_{n-4}^{4}, u_{n-8}\right)$.
Proof. For all $k \geq 0$, applying Lemma 1, one can get

$$
\begin{aligned}
& m\left(P\left(n-4,3, P_{5}^{4}, u_{1}\right), k\right) \\
= & m\left(P\left(n-4,3, P_{5}^{4}, u_{1}\right)-u_{1} v_{2}, k\right) \\
& +m\left(P\left(n-4,3, P_{5}^{4}, u_{1}\right)-u_{1}-v_{2}, k-1\right) \\
= & m\left(P_{2} \cup P_{n-2}^{4}, k\right)+m\left(P\left(n-4,3, P_{5}^{4}, u_{1}\right)-u_{1}-v_{2}-u_{3} u_{4}, k-1\right) \\
& +m\left(P\left(n-4,3, P_{5}^{4}, u_{1}\right)-u_{1}-v_{2}-u_{3}-u_{4}, k-2\right) \\
= & m\left(P_{2} \cup P_{n-2}^{4}, k\right)+m\left(C_{4} \cup P_{2} \cup P_{n-9}, k-1\right)+m\left(C_{4} \cup P_{n-10}, k-2\right), \\
& m\left(P\left(5,3, P_{n-4}^{4}, u_{n-8}\right), k\right) \\
= & m\left(P\left(5,3, P_{n-4}^{4}, u_{n-8}\right)-u_{n-8} v_{2}, k\right) \\
& +m\left(P\left(5,3, P_{n-4}^{4}, u_{n-8}\right)-u_{n-8}-v_{2}, k-1\right) \\
= & m\left(P_{2} \cup P_{n-2}^{4}, k\right)+m\left(P\left(5,3, P_{n-4}^{4}, u_{n-8}\right)-u_{n-8}-v_{2}-u_{0} u_{1}, k-1\right) \\
& +m\left(P\left(5,3, P_{n-4}^{4}, u_{n-8}\right)-u_{n-8}-v_{2}-u_{0}-u_{1}, k-2\right) \\
= & m\left(P_{2} \cup P_{n-2}^{4}, k\right)+m\left(C_{4} \cup P_{2} \cup P_{n-9}, k-1\right)+m\left(P_{2} \cup P_{3} \cup P_{n-10}, k-2\right) .
\end{aligned}
$$

Obviously, $C_{4} \succ P_{2} \cup P_{3}$, by Lemma 3, we get $C_{4} \cup P_{n-10} \succ P_{2} \cup P_{3} \cup P_{n-10}$. Thus $m\left(C_{4} \cup P_{n-10}, k-2\right) \geq m\left(P_{2} \cup P_{3} \cup P_{n-10}, k-2\right)$, and then $m(P(n-$ $\left.\left.4,3, P_{5}^{4}, u_{1}\right), k\right) \geq m\left(P\left(5,3, P_{n-4}^{4}, u_{n-8}\right), k\right)$. Moreover, $m\left(P\left(n-4,3, P_{5}^{4}, u_{1}\right)\right.$,
$3)>m\left(P\left(5,3, P_{n-4}^{4}, u_{n-8}\right), 3\right)$. Hence $P\left(n-4,3, P_{5}^{4}, u_{1}\right) \succ P\left(5,3, P_{n-4}^{4}, u_{n-8}\right)$. The proof is finished.

Lemma 19. Let $n \geq 13$ be odd, l be even with $6 \leq l \leq n-7$, then $P(n-$ $\left.4,3, P_{5}^{4}, u_{1}\right) \succ P\left(n-l, 3, P_{l+1}^{l}, u_{1}\right)$. Where the graph $P\left(n-l, 3, P_{l+1}^{l}, u_{1}\right)$ is shown in Fig 6.

Proof. For all $k \geq 0$, it follows from Lemma 1 that

$$
\begin{aligned}
& m\left(P\left(n-4,3, P_{5}^{4}, u_{1}\right), k\right) \\
= & m\left(P\left(n-4,3, P_{5}^{4}, u_{1}\right)-u_{0} w, k\right)+m\left(P\left(n-4,3, P_{5}^{4}, u_{1}\right)-u_{0}-w, k-1\right) \\
= & m\left(P\left(n-4,3, P_{5}^{4}, u_{1}\right)-u_{0} w-u_{1} v_{2}, k\right) \\
& +m\left(P\left(n-4,3, P_{5}^{4}, u_{1}\right)-u_{0} w-u_{1}-v_{2}, k-1\right)+m\left(P_{2} \cup P_{n-4}, k-1\right) \\
= & m\left(P_{2} \cup P_{n-2}, k\right)+m\left(P_{4} \cup P_{n-7}, k-1\right)+m\left(P_{2} \cup P_{n-4}, k-1\right), \\
& m\left(P\left(n-l, 3, P_{l+1}^{l}, u_{1}\right), k\right) \\
= & m\left(P\left(n-l, 3, P_{l+1}^{l}, u_{1}\right)-u_{0} w, k\right) \\
& +m\left(P\left(n-l, 3, P_{l+1}^{l}, u_{1}\right)-u_{0}-w, k-1\right) \\
= & m\left(P\left(n-l, 3, P_{l+1}^{l}, u_{1}\right)-u_{0} w-u_{1} v_{2}, k\right) \\
& +m\left(P\left(n-l, 3, P_{l+1}^{l}, u_{1}\right)-u_{0} w-u_{1}-v_{2}, k-1\right)+m\left(P_{l-2} \cup P_{n-l}, k-1\right) \\
= & m\left(P_{2} \cup P_{n-2}, k\right)+m\left(P_{l} \cup P_{n-l-3}, k-1\right)+m\left(P_{l-2} \cup P_{n-l}, k-1\right) .
\end{aligned}
$$

Since l is even and $6 \leq l \leq n-7$, then $P_{4} \cup P_{n-7} \succeq P_{l} \cup P_{n-l-3}, P_{2} \cup P_{n-4} \succ$ $P_{l-2} \cup P_{n-l}$. Hence $m\left(P\left(n-4,3, P_{5}^{4}, u_{1}\right), k\right) \geq m\left(P\left(n-l, 3, P_{l+1}^{l}, u_{1}\right), k\right)$. In particular, there exists some k_{0} such that $m\left(P_{2} \cup P_{n-4}, k_{0}\right)>m\left(P_{l-2} \cup\right.$ $\left.P_{n-l}, k_{0}\right)$, which implies that $m\left(P\left(n-4,3, P_{5}^{4}, u_{1}\right), k_{0}+1\right)>m\left(P\left(n-l, 3, P_{l+1}^{l}\right.\right.$, $\left.\left.u_{1}\right), k_{0}+1\right)$. Consequently, $P\left(n-4,3, P_{5}^{4}, u_{1}\right) \succ P\left(n-l, 3, P_{l+1}^{l}, u_{1}\right)$.

So far, what remaining to discuss is the comparing of $\operatorname{ME}\left(P\left(n-4,3, P_{5}^{4}, u_{1}\right)\right)$ and $\operatorname{ME}\left(P_{n}^{l}\right)$. By utilizing the Coulson integral formula of matching energy, as well as the help of computer, we will show $\operatorname{ME}\left(P\left(n-4,3, P_{5}^{4}, u_{1}\right)\right)<$ $M E\left(P_{n}^{l}\right)$ for $4 \leq l \leq \frac{n+1}{2}$ in the next section.

3. Main results

Let G be a simple graph, e be an edge of G connecting the vertices v_{r} and v_{s}. By $G(e / j)$ we denote the graph obtained by inserting $j(j \geq 0)$ new vertices (of degree two) on the edge e. On the number of k-matchings of the graph $G(e / j)$, the property that $m(G(e / j+2), k)=m(G(e / j+1), k)+$ $m(G(e / j), k-1)$ for all $j \geq 0$ was given in [30]. In addition, on the matching polynomial of $G(e / j)$, we have shown that $\alpha(G(e / j+2), x)=x \alpha(G(e / j+$ $1), x)-\alpha(G(e / j), x)$ in [11].

Lemma 20. For $3 \leq l \leq n-1$, the matching polynomials of P_{n} and P_{n}^{l} have the following forms:

$$
\begin{aligned}
& \alpha\left(P_{n}, x\right)=A_{1}(x)\left(Y_{1}(x)\right)^{n}+A_{2}(x)\left(Y_{2}(x)\right)^{n} \\
& \alpha\left(P_{n}^{l}, x\right)=B_{1}(x)\left(Y_{1}(x)\right)^{n}+B_{2}(x)\left(Y_{2}(x)\right)^{n}
\end{aligned}
$$

Where $Y_{1}(x)=\frac{x+\sqrt{x^{2}-4}}{2}, Y_{2}(x)=\frac{x-\sqrt{x^{2}-4}}{2}$.
Proof. By the definition of $G(e / j), P_{n}=P_{2}\left(e_{1} / n-2\right)$ and $P_{n}^{l}=P_{n-l+3}^{3}\left(e_{2} / l-\right.$ 3), where e_{1} is the unique edge of P_{2}, e_{2} is one of the edges of the triangle in P_{n-l+3}^{3}. Hence both $\alpha\left(P_{n}, x\right)$ and $\alpha\left(P_{n}^{l}, x\right)$ satisfy the recursive formula

$$
f(n, x)=x f(n-1, x)-f(n-2, x) .
$$

The general solution of this linear homogeneous recurrence relation is

$$
f(n, x)=C_{1}(x)\left(Y_{1}(x)\right)^{n}+C_{2}(x)\left(Y_{2}(x)\right)^{n}
$$

where $Y_{1}(x)=\frac{x+\sqrt{x^{2}-4}}{2}, Y_{2}(x)=\frac{x-\sqrt{x^{2}-4}}{2}$, with $Y_{1}(x)+Y_{2}(x)=x$ and $Y_{1}(x) Y_{2}(x)=1$. Take the initial values as $\alpha\left(P_{2}, x\right)=x^{2}-1$ and $\alpha\left(P_{3}, x\right)=$ $x^{3}-2 x$. We then get

$$
\alpha\left(P_{n}, x\right)=A_{1}(x)\left(Y_{1}(x)\right)^{n}+A_{2}(x)\left(Y_{2}(x)\right)^{n}
$$

where $A_{1}(x)=\frac{Y_{1}(x) \alpha\left(P_{3}, x\right)-\alpha\left(P_{2}, x\right)}{\left(Y_{1}(x)\right)^{4}-\left(Y_{1}(x)\right)^{2}}, A_{2}(x)=\frac{Y_{2}(x) \alpha\left(P_{3}, x\right)-\alpha\left(P_{2}, x\right)}{\left(Y_{2}(x)\right)^{4}-\left(Y_{2}(x)\right)^{2}}$.
For $3 \leq l \leq n-1, m\left(P_{n}^{l}, k\right)=m\left(P_{n}, k\right)+m\left(P_{l-2} \cup P_{n-l}, k-1\right)$. So

$$
\begin{aligned}
\alpha\left(P_{n}^{l}, x\right)= & \sum_{k \geq 0}(-1)^{k} m\left(P_{n}^{l}, k\right) x^{n-2 k} \\
= & \sum_{k \geq 0}(-1)^{k}\left(m\left(P_{n}, k\right)+m\left(P_{l-2} \cup P_{n-l}, k-1\right)\right) x^{n-2 k} \\
= & \sum_{k \geq 0}(-1)^{k} m\left(P_{n}, k\right) x^{n-2 k}+\sum_{k \geq 0}(-1)^{k} m\left(P_{l-2} \cup P_{n-l}, k-1\right) x^{n-2 k} \\
= & \alpha\left(P_{n}, x\right)-\alpha\left(P_{l-2} \cup P_{n-l}, x\right) \\
= & \alpha\left(P_{n}, x\right)-\alpha\left(P_{l-2}, x\right) \cdot \alpha\left(P_{n-l}, x\right) \\
= & A_{1}(x)\left(Y_{1}(x)\right)^{n}+A_{2}(x)\left(Y_{2}(x)\right)^{n}-\left(A_{1}(x)\left(Y_{1}(x)\right)^{l-2}+\right. \\
& \left.A_{2}(x)\left(Y_{2}(x)\right)^{l-2}\right) \cdot\left(A_{1}(x)\left(Y_{1}(x)\right)^{n-l}+A_{2}(x)\left(Y_{2}(x)\right)^{n-l}\right) \\
= & A_{1}(x)\left(Y_{1}(x)\right)^{n}-\left(A_{1}(x)\right)^{2}\left(Y_{1}(x)\right)^{n-2} \\
& -A_{1}(x) A_{2}(x)\left(Y_{1}(x)\right)^{l-2}\left(Y_{2}(x)\right)^{n-l}+A_{2}(x)\left(Y_{2}(x)\right)^{n} \\
& -\left(A_{2}(x)\right)^{2}\left(Y_{2}(x)\right)^{n-2}-A_{1}(x) A_{2}(x)\left(Y_{1}(x)\right)^{n-l}\left(Y_{2}(x)\right)^{l-2} .
\end{aligned}
$$

Therefore, $\alpha\left(P_{n}^{l}, x\right)=B_{1}(x)\left(Y_{1}(x)\right)^{n}+B_{2}(x)\left(Y_{2}(x)\right)^{n}$. Where

$$
\begin{aligned}
& B_{1}(x)=A_{1}(x)-\left(A_{1}(x)\right)^{2}\left(Y_{2}(x)\right)^{2}-A_{1}(x) A_{2}(x)\left(Y_{2}(x)\right)^{2 l-2} \\
& B_{2}(x)=A_{2}(x)-\left(A_{2}(x)\right)^{2}\left(Y_{1}(x)\right)^{2}-A_{1}(x) A_{2}(x)\left(Y_{1}(x)\right)^{2 l-2}
\end{aligned}
$$

for $3 \leq l \leq \frac{n+2}{2}$;

$$
\begin{aligned}
& B_{1}(x)=A_{1}(x)-\left(A_{1}(x)\right)^{2}\left(Y_{2}(x)\right)^{2}-A_{1}(x) A_{2}(x)\left(Y_{2}(x)\right)^{2 n-2 l+2}, \\
& B_{2}(x)=A_{2}(x)-\left(A_{2}(x)\right)^{2}\left(Y_{1}(x)\right)^{2}-A_{1}(x) A_{2}(x)\left(Y_{1}(x)\right)^{2 n-2 l+2}
\end{aligned}
$$

for $\frac{n+2}{2}<l \leq n-1$.
We complete the proof.
Lemma 21. Let $n(n \geq 9)$ be odd and $4 \leq l \leq \frac{n+1}{2}$ be even. Then $M E(P(n-$ $\left.\left.4,3, P_{5}^{4}, u_{1}\right)\right)<M E\left(P_{n}^{l}\right)$.

Proof. If $l=4$, then by Lemma 4, we get $M E\left(P\left(n-4,3, P_{5}^{4}, u_{1}\right)\right)<M E\left(P_{n}^{4}\right)$ directly. If $n=9$, then $l=4$, this is the case just discussed. Hence in the following we assume that $n \geq 11$ and $l \geq 6$. Obviously, $P\left(n-4,3, P_{5}^{4}, u_{1}\right)=$ $P\left(4,3, P_{5}^{4}, u_{1}\right)(e / n-8)$, where e is the pendent edge incident with u_{1} in $P\left(4,3, P_{5}^{4}, u_{1}\right)$. Similarly,

$$
\alpha\left(P\left(n-4,3, P_{5}^{4}, u_{1}\right), x\right)=C_{1}(x)\left(Y_{1}(x)\right)^{n}+C_{2}(x)\left(Y_{2}(x)\right)^{n}
$$

with $Y_{1}(x)=\frac{x+\sqrt{x^{2}-4}}{2}, Y_{2}(x)=\frac{x-\sqrt{x^{2}-4}}{2}$. The initial values can be chosen as:

$$
\begin{aligned}
\alpha\left(P\left(4,3, P_{5}^{4}, u_{1}\right), x\right) & =C_{1}(x)\left(Y_{1}(x)\right)^{8}+C_{2}(x)\left(Y_{2}(x)\right)^{8} \\
& =x^{8}-8 x^{6}+18 x^{4}-12 x^{2}+2 \\
\alpha\left(P\left(5,3, P_{5}^{4}, u_{1}\right), x\right) & =C_{1}(x)\left(Y_{1}(x)\right)^{9}+C_{2}(x)\left(Y_{2}(x)\right)^{9} \\
& =x^{9}-9 x^{7}+25 x^{5}-25 x^{3}+8 x
\end{aligned}
$$

Solving the above two equations, we get

$$
\begin{aligned}
& C_{1}(x)=\frac{Y_{1}(x) \alpha\left(P\left(5,3, P_{5}^{4}, u_{1}\right), x\right)-\alpha\left(P\left(4,3, P_{5}^{4}, u_{1}\right), x\right)}{\left(Y_{1}(x)\right)^{10}-\left(Y_{1}(x)\right)^{8}} \\
& C_{2}(x)=\frac{Y_{2}(x) \alpha\left(P\left(5,3, P_{5}^{4}, u_{1}\right), x\right)-\alpha\left(P\left(4,3, P_{5}^{4}, u_{1}\right), x\right)}{\left(Y_{2}(x)\right)^{10}-\left(Y_{2}(x)\right)^{8}}
\end{aligned}
$$

Set $Z_{1}(x)=-i Y_{1}(i x)=\frac{x+\sqrt{x^{2}+4}}{2}, Z_{2}(x)=-i Y_{2}(i x)=\frac{x-\sqrt{x^{2}+4}}{2}$, where $i^{2}=$ -1 . Then we have $Y_{1}(i x)=i Z_{1}(x), Y_{2}(i x)=i Z_{2}(x), Z_{1}(x) \cdot Z_{2}(x)=-1$, $Z_{1}(x)+Z_{2}(x)=x, Z_{1}(x)-Z_{2}(x)=\sqrt{x^{2}+4}$. Besides, set

$$
\begin{gathered}
f_{1}=-\alpha\left(P_{2}, i x\right)=x^{2}+1 ; \\
f_{2}=i \alpha\left(P_{3}, i x\right)=x^{3}+2 x \\
g_{1}=\alpha\left(P\left(4,3, P_{5}^{4}, u_{1}\right), i x\right)=x^{8}+8 x^{6}+18 x^{4}+12 x^{2}+2 \\
g_{2}=-i \alpha\left(P\left(5,3, P_{5}^{4}, u_{1}\right), i x\right)=x^{9}+9 x^{7}+25 x^{5}+25 x^{3}+8 x
\end{gathered}
$$

For $4 \leq l \leq \frac{n+1}{2}$, according to Lemma 20 as well as the results got above,

$$
\begin{aligned}
& A_{1}(i x)= \frac{Y_{1}(i x) \alpha\left(P_{3}, i x\right)-\alpha\left(P_{2}, i x\right)}{\left(Y_{1}(i x)\right)^{4}-\left(Y_{1}(i x)\right)^{2}}=\frac{Z_{1}(x) f_{2}+f_{1}}{\left(Z_{1}(x)\right)^{4}+\left(Z_{1}(x)\right)^{2}} ; \\
& A_{2}(i x)= \frac{Y_{2}(i x) \alpha\left(P_{3}, i x\right)-\alpha\left(P_{2}, i x\right)}{\left(Y_{2}(i x)\right)^{4}-\left(Y_{2}(i x)\right)^{2}}=\frac{Z_{2}(x) f_{2}+f_{1}}{\left(Z_{2}(x)\right)^{4}+\left(Z_{2}(x)\right)^{2}} ; \\
& B_{1}(i x)= A_{1}(i x)-\left(A_{1}(i x)\right)^{2}\left(Y_{2}(i x)\right)^{2}-A_{1}(i x) A_{2}(i x)\left(Y_{2}(i x)\right)^{2 l-2} \\
&= \frac{Z_{1}(x) f_{2}+f_{1}}{\left(Z_{1}(x)\right)^{4}+\left(Z_{1}(x)\right)^{2}}+\frac{\left(Z_{1}(x) f_{2}+f_{1}\right)^{2}}{\left(Z_{1}(x)\right)^{2}\left(\left(Z_{1}(x)\right)^{4}+\left(Z_{1}(x)\right)^{2}\right)^{2}} \\
&+\frac{\left(Z_{1}(x) f_{2}+f_{1}\right)\left(Z_{2}(x) f_{2}+f_{1}\right)\left(Z_{2}(x)\right)^{2 l-2}}{\left(\left(Z_{1}(x)\right)^{4}+\left(Z_{1}(x)\right)^{2}\right)\left(\left(Z_{2}(x)\right)^{4}+\left(Z_{2}(x)\right)^{2}\right)} ; \\
& B_{2}(i x)= A_{2}(i x)-\left(A_{2}(i x)\right)^{2}\left(Y_{1}(i x)\right)^{2}-A_{1}(i x) A_{2}(i x)\left(Y_{1}(i x)\right)^{2 l-2} \\
&= \frac{Z_{2}(x) f_{2}+f_{1}}{\left(Z_{2}(x)\right)^{4}+\left(Z_{2}(x)\right)^{2}}+\frac{\left(Z_{2}(x) f_{2}+f_{1}\right)^{2}}{\left(Z_{2}(x)\right)^{2}\left(\left(Z_{2}(x)\right)^{4}+\left(Z_{2}(x)\right)^{2}\right)^{2}} \\
&+\frac{\left(Z_{1}(x) f_{2}+f_{1}\right)\left(Z_{2}(x) f_{2}+f_{1}\right)\left(Z_{1}(x)\right)^{2 l-2}}{\left(\left(Z_{1}(x)\right)^{4}+\left(Z_{1}(x)\right)^{2}\right)\left(\left(Z_{2}(x)\right)^{4}+\left(Z_{2}(x)\right)^{2}\right)} ; \\
&\left.\left.C_{5}^{4}, u_{1}\right), i x\right)-\alpha\left(P\left(4,3, P_{5}^{4}, u_{1}\right), i x\right) \\
& C_{1}(i x)= \frac{Y_{1}(i x) \alpha\left(P\left(Y_{1}(i x)\right)^{8}\right)}{=} \\
&=\frac{Z_{1}(x) g_{2}+g_{1}}{\left(Z_{1}(x)\right)^{10}+\left(Z_{1}(x)\right)^{8}} ; \\
& C_{2}(i x)= \frac{Y_{2}(i x) \alpha\left(P\left(5,3, P_{5}^{4}, u_{1}\right), i x\right)-\alpha\left(P\left(4,3, P_{5}^{4}, u_{1}\right), i x\right)}{\left(Y_{2}(i x)\right)^{10}-\left(Y_{2}(i x)\right)^{8}} \\
&= \frac{Z_{2}(x) g_{2}+g_{1}}{\left(Z_{2}(x)\right)^{10+\left(Z_{2}(x)\right)^{8}} .}
\end{aligned}
$$

And then

$$
\begin{aligned}
& M E\left(P\left(n-4,3, P_{5}^{4}, u_{1}\right)\right)-M E\left(P_{n}^{l}\right) \\
= & \frac{2}{\pi} \int_{0}^{\infty} \frac{1}{x^{2}} \ln \left[\sum_{k \geq 0} m\left(P\left(n-4,3, P_{5}^{4}, u_{1}\right), k\right) x^{2 k}\right] d x \\
& -\frac{2}{\pi} \int_{0}^{\infty} \frac{1}{x^{2}} \ln \left[\sum_{k \geq 0} m\left(P_{n}^{l}, k\right) x^{2 k}\right] d x \\
= & \frac{2}{\pi} \int_{0}^{\infty} \ln \frac{\alpha\left(P\left(n-4,3, P_{5}^{4}, u_{1}\right), i x\right)}{\alpha\left(P_{n}^{l}, i x\right)} d x \\
= & \frac{2}{\pi} \int_{0}^{\infty} \ln \frac{C_{1}(i x)\left(Y_{1}(i x)\right)^{n}+C_{2}(i x)\left(Y_{2}(i x)\right)^{n}}{B_{1}(i x)\left(Y_{1}(i x)\right)^{n}+B_{2}(i x)\left(Y_{2}(i x)\right)^{n}} d x .
\end{aligned}
$$

Since n is odd,

$$
\begin{aligned}
& \ln \frac{C_{1}(i x)\left(Y_{1}(i x)\right)^{n+2}+C_{2}(i x)\left(Y_{2}(i x)\right)^{n+2}}{B_{1}(i x)\left(Y_{1}(i x)\right)^{n+2}+B_{2}(i x)\left(Y_{2}(i x)\right)^{n+2}}-\ln \frac{C_{1}(i x)\left(Y_{1}(i x)\right)^{n}+C_{2}(i x)\left(Y_{2}(i x)\right)^{n}}{B_{1}(i x)\left(Y_{1}(i x)\right)^{n}+B_{2}(i x)\left(Y_{2}(i x)\right)^{n}} \\
& =\ln \left(1+\frac{K_{0}(x)}{H_{0}(n, x)}\right) .
\end{aligned}
$$

Where

$$
\begin{aligned}
K_{0}(x)= & \left(C_{1}(i x)\left(Y_{1}(i x)\right)^{n+2}+C_{2}(i x)\left(Y_{2}(i x)\right)^{n+2}\right) \\
& \cdot\left(B_{1}(i x)\left(Y_{1}(i x)\right)^{n}+B_{2}(i x)\left(Y_{2}(i x)\right)^{n}\right) \\
& -\left(B_{1}(i x)\left(Y_{1}(i x)\right)^{n+2}+B_{2}(i x)\left(Y_{2}(i x)\right)^{n+2}\right) \\
& \cdot\left(C_{1}(i x)\left(Y_{1}(i x)\right)^{n}+C_{2}(i x)\left(Y_{2}(i x)\right)^{n}\right) \\
= & \left(C_{1}(i x) B_{2}(i x)-C_{2}(i x) B_{1}(i x)\right)\left(\left(Y_{1}(i x)\right)^{2}-\left(Y_{2}(i x)\right)^{2}\right) \\
= & \left(C_{1}(i x) B_{2}(i x)-C_{2}(i x) B_{1}(i x)\right)\left(-x \sqrt{x^{2}+4}\right) ; \\
H_{0}(n, x)= & \left(B_{1}(i x)\left(Y_{1}(i x)\right)^{n+2}+B_{2}(i x)\left(Y_{2}(i x)\right)^{n+2}\right) \\
& \cdot\left(C_{1}(i x)\left(Y_{1}(i x)\right)^{n}+C_{2}(i x)\left(Y_{2}(i x)\right)^{n}\right) \\
= & \alpha\left(P_{n+2}^{l}, i x\right) \cdot \alpha\left(P\left(n-4,3, P_{5}^{4}, u_{1}\right), i x\right) \\
= & \left(i^{n+2} \sum_{k \geq 0}^{\left.m\left(P_{n+2}^{l}, k\right) x^{n+2-2 k}\right)}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \cdot\left(i^{n} \sum_{k \geq 0} m\left(P\left(n-4,3, P_{5}^{4}, u_{1}\right), k\right) x^{n-2 k}\right) \\
= & i^{2 n+2}\left(\sum_{k \geq 0} m\left(P_{n+2}^{l}, k\right) x^{n+2-2 k}\right) \\
& \cdot\left(\sum_{k \geq 0} m\left(P\left(n-4,3, P_{5}^{4}, u_{1}\right), k\right) x^{n-2 k}\right) \\
= & \left(\sum_{k \geq 0} m\left(P_{n+2}^{l}, k\right) x^{n+2-2 k}\right)\left(\sum_{k \geq 0} m\left(P\left(n-4,3, P_{5}^{4}, u_{1}\right), k\right) x^{n-2 k}\right) .
\end{aligned}
$$

Apparently, since $x>0$, meanwhile, $m\left(P_{n+2}^{l}, k\right) \geq 0$ and $m\left(P\left(n-4,3, P_{5}^{4}, u_{1}\right)\right.$, $k) \geq 0$ hold for all $k \geq 0$, then $H_{0}(n, x)>0$. Next, we shall verify $C_{1}(i x) B_{2}(i x)-C_{2}(i x) B_{1}(i x)>0$.

According to the expressions of $C_{j}(i x), B_{j}(i x)(j=1,2)$, together with $Z_{2}(x) f_{2}+f_{1}=\left(Z_{2}(x)\right)^{4}$ and $Z_{1}(x) f_{2}+f_{1}=\left(Z_{1}(x)\right)^{4}$, through a series of calculations, we derive

$$
\begin{aligned}
& C_{1}(i x) B_{2}(i x)-C_{2}(i x) B_{1}(i x) \\
= & \left(\left(Z_{2}(x)\right)^{8}\left(1+\left(Z_{2}(x)\right)^{2}\right)^{2}\left(Z_{1}(x) g_{2}+g_{1}\right)+\left(Z_{2}(x)\right)^{10}\left(1+\left(Z_{1}(x)\right)^{2}\right)\right. \\
& \left(Z_{1}(x) g_{2}+g_{1}\right)+\left(Z_{1}(x)\right)^{2 l-10}\left(1+\left(Z_{2}(x)\right)^{2}\right)\left(Z_{1}(x) g_{2}+g_{1}\right)-\left(Z_{1}(x)\right)^{8} \\
& \left(1+\left(Z_{1}(x)\right)^{2}\right)^{2}\left(Z_{2}(x) g_{2}+g_{1}\right)-\left(Z_{1}(x)\right)^{10}\left(1+\left(Z_{2}(x)\right)^{2}\right)\left(Z_{2}(x) g_{2}+g_{1}\right) \\
& \left.-\left(Z_{2}(x)\right)^{2 l-10}\left(1+\left(Z_{1}(x)\right)^{2}\right)\left(Z_{2}(x) g_{2}+g_{1}\right)\right) /\left(x^{2}+4\right)^{2} .
\end{aligned}
$$

By the help of the computer, we get

$$
\begin{aligned}
Z(x)= & \left(Z_{2}(x)\right)^{8}\left(1+\left(Z_{2}(x)\right)^{2}\right)^{2}\left(Z_{1}(x) g_{2}+g_{1}\right)+\left(Z_{2}(x)\right)^{10}\left(1+\left(Z_{1}(x)\right)^{2}\right) \\
& \left(Z_{1}(x) g_{2}+g_{1}\right)-\left(Z_{1}(x)\right)^{8}\left(1+\left(Z_{1}(x)\right)^{2}\right)^{2}\left(Z_{2}(x) g_{2}+g_{1}\right) \\
& -\left(Z_{1}(x)\right)^{10}\left(1+\left(Z_{2}(x)\right)^{2}\right)\left(Z_{2}(x) g_{2}+g_{1}\right) \\
= & \sqrt{x^{2}+4} x^{13}+13 \sqrt{x^{2}+4} x^{11}+63 \sqrt{x^{2}+4} x^{9}+139 \sqrt{x^{2}+4} x^{7} \\
& +131 \sqrt{x^{2}+4} x^{5}+28 \sqrt{x^{2}+4} x^{3}-10 \sqrt{x^{2}+4} x .
\end{aligned}
$$

Let $H_{0}(l, x)=\left(Z_{2}(x)\right)^{2 l-10}\left(1+\left(Z_{1}(x)\right)^{2}\right)\left(Z_{2}(x) g_{2}+g_{1}\right)-\left(Z_{1}(x)\right)^{2 l-10}(1+$ $\left.\left(Z_{2}(x)\right)^{2}\right)\left(Z_{1}(x) g_{2}+g_{1}\right)$. It suffices to show $Z(x)>H_{0}(l, x)$ holds for $x>$ 0 . Take the derivative of $H_{0}(l, x)$ with respect to l, let $H_{0}^{\prime}(l, x)$ denote the derived function. We claim that $H_{0}(l, x)$ is decreasing on l.

Claim. For $6 \leq l \leq \frac{n+1}{2}$ and any given x with $x>0$, the function $H_{0}(l, x)$ is decreasing on l.

Proof. Clearly, $Z_{1}(x)>1$ and $Z_{2}(x)<0$. Moreover, since $Z_{1}(x) \cdot Z_{2}(x)=-1$, then $\ln \left(Z_{1}(x)\right)+\ln \left(-Z_{2}(x)\right)=\ln \left(Z_{1}(x) \cdot\left(-Z_{2}(x)\right)\right)=0$, which implies that $\ln \left(-Z_{2}(x)\right)=-\ln \left(Z_{1}(x)\right)$. Accordingly,

$$
\begin{aligned}
H_{0}^{\prime}(l, x)= & 2\left(1+\left(Z_{1}(x)\right)^{2}\right)\left(Z_{2}(x) g_{2}+g_{1}\right)\left(Z_{2}(x)\right)^{2 l-10} \ln \left(-Z_{2}(x)\right) \\
& -2\left(1+\left(Z_{2}(x)\right)^{2}\right)\left(Z_{1}(x) g_{2}+g_{1}\right)\left(Z_{1}(x)\right)^{2 l-10} \ln \left(Z_{1}(x)\right) \\
= & -2 \ln \left(Z_{1}(x)\right)\left(\left(1+\left(Z_{2}(x)\right)^{2}\right)\left(Z_{1}(x) g_{2}+g_{1}\right)\left(Z_{1}(x)\right)^{2 l-10}\right. \\
& \left.-\left(1+\left(Z_{1}(x)\right)^{2}\right)\left(-Z_{2}(x) g_{2}-g_{1}\right)\left(Z_{2}(x)\right)^{2 l-10}\right) .
\end{aligned}
$$

Make full use of the computer, we obtain

$$
\begin{aligned}
& Z_{1}(x) g_{2}+g_{1} \\
= & \frac{1}{2} x^{10}+\frac{1}{2} \sqrt{x^{2}+4} x^{9}+\frac{11}{2} x^{8}+\frac{9}{2} \sqrt{x^{2}+4} x^{7}+\frac{41}{2} x^{6}+\frac{25}{2} \sqrt{x^{2}+4} x^{5} \\
& +\frac{61}{2} x^{4}+\frac{25}{2} \sqrt{x^{2}+4} x^{3}+16 x^{2}+4 \sqrt{x^{2}+4} x+2>0 ; \\
& \left(1+\left(Z_{2}(x)\right)^{2}\right)\left(Z_{1}(x) g_{2}+g_{1}\right)-\left(1+\left(Z_{1}(x)\right)^{2}\right)\left(-Z_{2}(x) g_{2}-g_{1}\right) \\
= & x^{10}+12 x^{8}+50 x^{6}+84 x^{4}+50 x^{2}+8>0 .
\end{aligned}
$$

Namely, $\left(1+\left(Z_{2}(x)\right)^{2}\right)\left(Z_{1}(x) g_{2}+g_{1}\right)>0$ and $\left(1+\left(Z_{2}(x)\right)^{2}\right)\left(Z_{1}(x) g_{2}+g_{1}\right)>$ $\left(1+\left(Z_{1}(x)\right)^{2}\right)\left(-Z_{2}(x) g_{2}-g_{1}\right)$. On the other hand, since $Z_{1}(x)>\left|Z_{2}(x)\right|>0$, then $\left(Z_{1}(x)\right)^{2 l-10}>\left(Z_{2}(x)\right)^{2 l-10}>0$ for $l \geq 6$. Consequently, we always have $\left(1+\left(Z_{2}(x)\right)^{2}\right)\left(Z_{1}(x) g_{2}+g_{1}\right)\left(Z_{1}(x)\right)^{2 l-10}-\left(1+\left(Z_{1}(x)\right)^{2}\right)\left(-Z_{2}(x) g_{2}-\right.$ $\left.g_{1}\right)\left(Z_{2}(x)\right)^{2 l-10}>0$. Hence $H_{0}^{\prime}(l, x)<0$. That is, $H_{0}(l, x)$ is decreasing on l.

It follows from the claim that $H_{0}(l, x) \leq H_{0}(6, x)$. As $Z(x)-H_{0}(6, x)=$ $\sqrt{x^{2}+4} x^{13}+14 \sqrt{x^{2}+4} x^{11}+75 \sqrt{x^{2}+4} x^{9}+190 \sqrt{x^{2}+4} x^{7}+224 \sqrt{x^{2}+4} x^{5}+$ $98 \sqrt{x^{2}+4} x^{3}+8 \sqrt{x^{2}+4} x>0$ for all $x>0$, we demonstrate that $Z(x)>$ $H_{0}(6, x) \geq H_{0}(l, x)$. Therefore, $C_{1}(i x) B_{2}(i x)-C_{2}(i x) B_{1}(i x)=(Z(x)-$ $\left.H_{0}(l, x)\right) /\left(x^{2}+4\right)^{2}>0$.

Up to now, we have established that $C_{1}(i x) B_{2}(i x)-C_{2}(i x) B_{1}(i x)>0$, which indicates that $K_{0}(x)<0$. Hence $\ln \left(1+\frac{K_{0}(x)}{H_{0}(n, x)}\right)<\ln 1=0$. Namely, we have $\ln \frac{C_{1}(i x)\left(Y_{1}(i x)\right)^{n+2}+C_{2}(i x)\left(Y_{2}(i x)\right)^{n+2}}{B_{1}(i x)\left(Y_{1}(i x)\right)^{n+2}+B_{2}(i x)\left(Y_{2}(i x)\right)^{n+2}}<\ln \frac{C_{1}(i x)\left(Y_{1}(i x)\right)^{n}+C_{2}(i x)\left(Y_{2}(i x)\right)^{n}}{B_{1}(i x)\left(Y_{1}(i x)\right)^{n}+B_{2}(i x)\left(Y_{2}(i x)\right)^{n}}$. Thus
$\ln \frac{C_{1}(i x)\left(Y_{1}(i x)\right)^{n}+C_{2}(i x)\left(Y_{2}(i x)\right)^{n}}{B_{1}(i x)\left(Y_{1}(i x)\right)^{n}+B_{2}(i x)\left(Y_{2}(i x)\right)^{n}} \leq \ln \frac{C_{1}(i x)\left(Y_{1}(i x)\right)^{11}+C_{2}(i x)\left(Y_{2}(i x)\right)^{11}}{B_{1}(i x)\left(Y_{1}(i x)\right)^{11}+B_{2}(i x)\left(Y_{2}(i x)\right)^{11}}$
for $n \geq 11$. This yields that for $6 \leq l \leq \frac{n+1}{2}$,

$$
\begin{aligned}
& M E\left(P\left(n-4,3, P_{5}^{4}, u_{1}\right)\right)-M E\left(P_{n}^{l}\right) \\
= & \frac{2}{\pi} \int_{0}^{\infty} \ln \frac{C_{1}(i x)\left(Y_{1}(i x)\right)^{n}+C_{2}(i x)\left(Y_{2}(i x)\right)^{n}}{B_{1}(i x)\left(Y_{1}(i x)\right)^{n}+B_{2}(i x)\left(Y_{2}(i x)\right)^{n}} d x \\
\leq & \frac{2}{\pi} \int_{0}^{\infty} \ln \frac{C_{1}(i x)\left(Y_{1}(i x)\right)^{11}+C_{2}(i x)\left(Y_{2}(i x)\right)^{11}}{B_{1}(i x)\left(Y_{1}(i x)\right)^{11}+B_{2}(i x)\left(Y_{2}(i x)\right)^{11}} d x \\
= & M E\left(P\left(7,3, P_{5}^{4}, u_{1}\right)\right)-M E\left(P_{11}^{l}\right) .
\end{aligned}
$$

When $n=11$, then $l=6$. By computer-aided calculations, we arrive at $\operatorname{ME}\left(P\left(7,3, P_{5}^{4}, u_{1}\right)\right)=13.75635, \operatorname{ME}\left(P_{11}^{6}\right)=13.77695$. Hence $M E(P(n-$ $\left.\left.4,3, P_{5}^{4}, u_{1}\right)\right)-M E\left(P_{n}^{l}\right) \leq M E\left(P\left(7,3, P_{5}^{4}, u_{1}\right)\right)-M E\left(P_{11}^{6}\right)<0$, i.e., $M E(P(n-$ $\left.\left.4,3, P_{5}^{4}, u_{1}\right)\right)<M E\left(P_{n}^{l}\right)$. The proof is thus completed.

Based on the lemmas we established, we can now state our main results.
Theorem 1. Let $n \geq 9$ be odd and l be even. If G is an arbitrary graph in $\mathcal{B}_{n, n}$ other than the graphs $P_{n}^{l}\left(4 \leq l \leq \frac{n+1}{2}\right)$, then $M E(G)<M E\left(P_{n}^{l}\right)$.
Proof. Let G be an arbitrary graph in $\mathcal{B}_{n, n}$ other than the graphs $P_{n}^{l}(4 \leq$ $\left.l \leq \frac{n+1}{2}\right)$. Suppose the girth of G is $g=g(G)$.

If $n=9$, then $l=4$, by Lemma 4 and Remark 2 after Lemma 9 , it's easy to obtain, for such a graph G, that $M E(G) \leq M E\left(P_{9}^{g}\right) \leq M E\left(P_{9}^{4}\right)$. Furthermore, the equalities can not hold simultaneously. Hence $M E(G)<$ $M E\left(P_{9}^{4}\right)$.

If $n=11$, then $l=4,6$. Since $M E\left(P_{11}^{4}\right)>M E\left(P_{11}^{6}\right)$, it suffices to show $M E(G)<M E\left(P_{11}^{6}\right)$. If $g \geq 6$, then according to Lemma 4 and Remark 2 after Lemma 9, there has no need to elaborate. If $g=4$, then we should only consider the graph $P\left(7,3, P_{5}^{4}, u_{1}\right)$ on the basis of the lemmas 11-19. Applying Lemma 21 directly, we get $\operatorname{ME}\left(P\left(7,3, P_{5}^{4}, u_{1}\right)\right)<M E\left(P_{11}^{6}\right)$.

If $n \geq 13$, for $g>\frac{n+1}{2}$, we have $M E(G) \leq M E\left(P_{n}^{g}\right)<M E\left(P_{n}^{\frac{n+1}{2}}\right) \leq$ $M E\left(P_{n}^{l}\right)$. For $g=\frac{n+1}{2}$, since $G \nsupseteq P_{n}^{\frac{n+1}{2}}$, we have $\operatorname{ME}(G)<M E\left(P_{n}^{\frac{n+1}{2}}\right) \leq$ $\operatorname{ME}\left(P_{n}^{l}\right)$. For $g<\frac{n+1}{2} \leq n-5$, putting Lemmas 11-19 together with Lemma 21, we can show $M E(G)<M E\left(P_{n}^{l}\right)$.

The theorem is thus proved.
Combining Theorem 1 with Remark 2 after Lemma 9, it's not difficult to obtain the key point of our paper.

Theorem 2. Let $n \geq 9$ be odd. Then we have
(i) If $n \equiv 3(\bmod 4), P_{n}^{4}, P_{n}^{6}, \ldots, P_{n}^{\frac{n+1}{2}}$ are the graphs in $\mathcal{B}_{n, n}$ with the first
$\frac{n-3}{4}$ largest matching energies;
(ii) If $n \equiv 1(\bmod 4), P_{n}^{4}, P_{n}^{6}, \ldots, P_{n}^{\frac{n-1}{2}}$ are the graphs in $\mathcal{B}_{n, n}$ with the first $\frac{n-5}{4}$ largest matching energies.

4. Conclusion

In this paper, we established the graphs in $\mathcal{B}_{n, n}$ with the first $\left\lfloor\frac{n-3}{4}\right\rfloor$ largest matching energies. They all have the form of P_{n}^{l} for some l. Among these graphs, the graph P_{n}^{6} plays an important role in unicyclic graphs. In [45], the authors determined that P_{n}^{6} is the only graph which attains the maximum value of the energy among all the bipartite unicyclic graphs for $n \geq 16$. Furthermore, it's the graph having maximal energy among all unicyclic graphs (see [4] and [44]). While in this paper, for odd n, we conclude that P_{n}^{6} has the second maximal matching energy in $\mathcal{B}_{n, n}$ when $n \geq 11$.

5. Acknowledgments

This work was supported by NSFC and PCSIRT.
[1] H. Abdo, D. Dimitrov, T. Reti, D. Stevanovic, Estimating the spectral radius of a graph by the second Zagreb index, MATCH Commun. Math. Comput. Chem. 72(3)(2014) 741-751.
[2] J. Aihara, A new definition of Dewar-type resonance energies, J. Am. Chem. Soc. 98(1976) 2750-2758.
[3] T. Al-Fozan, P. Manuel, I. Rajasingh, R. S. Rajan, Computing Szeged index of certain nanosheets using partition technique, MATCH Commun. Math. Comput. Chem. 72(2014) 339-353.
[4] E. O. D. Andriantiana, S. Wagner, Unicyclic graphs with large energy, Lin. Algebra Appl. 435(2011) 1399-1414.
[5] M. Azari, A. Iranmanesh, Harary index of some Nano-structures, MATCH Commun. Math. Comput. Chem. 71(2014) 373-382.
[6] J. A. Bondy, U. S. R. Murty, Graph Theory, Springer, Berlin, 2008.
[7] S. B. Bozkurt, D. Bozkurt, Sharp upper bounds for energy and Randić energy, MATCH Commun. Math. Comput. Chem. 70(2013) 669-680.
[8] S. B. Bozkurt, D. Bozkurt, On incidence energy, MATCH Commun. Math. Comput. Chem. 72(2014) 215-225.
[9] S. B. Bozkurt, I. Gutman, Estimating the incidence energy, MATCH Commun. Math. Comput. Chem. 70(2013) 143-156.
[10] S. Cao, M. Dehmer, Y. Shi, Extremality of degree-based graph entropies, Inform. Sci. 278(2014) 22-33.
[11] L. Chen, Y. Shi, The maximal matching energy of tricyclic graphs, MATCH Commun. Math. Comput. Chem. 73(2015) 105-119.
[12] L. Chen, J. Liu, Y. Shi, Matching energy of unicyclic and bicyclic graphs with a given diameter, Complexity, in press.
[13] L. Chen, J. Liu, Y. Shi, Bounds on the Matching Energy of Unicyclic Odd-cycle Graphs, submitted.
[14] X. Chen, X. Li, H. Lian, The matching energy of random graphs, Discrete Appl. Math., in press.
[15] Z. Chen, M. Dehmer, Y. Shi, H. Yang, Sharp upper bounds for the Balaban index of bicyclic graphs, MATCH Commun. Math. Comput. Chem., in press.
[16] K. C. Das, I. Gutman, A. S. Cevik, B. Zhou, On Laplacian energy. MATCH Commun. Math. Comput. Chem. 70(2013) 689-696.
[17] K. C. Das, S. Sorgun, On Randić energy of graphs, MATCH Commun. Math. Comput. Chem. 72(2014) 227-238.
[18] E. J. Farrell, An introduction to matching polynomials, J. Combin. Theory B 27(1979) 75-86.
[19] L. Feng, W. Liu, A. Ilić, G. Yu, The degree distance of unicyclic graphs with given matching number, Graphs Combin. 29(2013) 449-462.
[20] C. M. da Fonseca, M. Ghebleh, A. Kanso, D. Stevanovic, Counterexamples to a conjecture on Wiener index of common neighborhood graphs, MATCH Commun. Math. Comput. Chem. 72(1)(2014) 333-338.
[21] C. M. da Fonseca, D. Stevanovic, Further properties of the second Zagreb index, MATCH Commun. Math. Comput. Chem. 72(2014) 655-668.
[22] M. Ghorbani, M. Faghani, A. R. Ashrafi, S. Heidari-Rad, A. Graovac, An upper bound for energy of matrices associated to an infinite class of fullerenes, MATCH Commun. Math. Comput. Chem. 71(2014) 341-354.
[23] I. Gutman, Acylclic systems with extremal Hückel π-electron energy, Theor. Chim. Acta 45(1977) 79-87.
[24] I. Gutman, The energy of a graph, Ber. Math. Statist. Sekt. Forsch. Graz. 103(1978) 1-22.
[25] I. Gutman, The matching polynomial, MATCH Commun. Math. Comput. Chem. 6(1979) 75-91.
[26] I. Gutman, Graphs with greatest number of matchings, Publ. Inst. Math.(Beograd) 27(1980) 67-76.
[27] I. Gutman, Correction of the paper "Graphs with greatest number of matchings", Publ. Inst. Math.(Beograd) 32(1982) 61-63.
[28] I. Gutman, The Energy of a graph: Old and new results, in: A. Betten, A. Kohnert, R. Laue, A. Wassermann (Eds.), Algebraic Combinatorics and Applications, Springer, Berlin, 2001, pp. 196-211.
[29] I. Gutman, An exceptional property of first Zagreb index, MATCH Commun. Math. Comput. Chem. 72(2014) 733-740.
[30] I. Gutman, D. Cvetković, Finding tricyclic graphs with a maximal number of matchings - another example of computer aided research in graph theory, Publ. Inst. Math.(Beograd) 35(1984) 33-40.
[31] I. Gutman, X. Li, Y. Shi, J. Zhang, Hypoenergetic trees, MATCH Commun. Math. Comput. Chem. 60(2008) 415-426.
[32] I. Gutman, X. Li, J. Zhang, Graph energy, in: M. Dehmer, F. EmmertStreib(Eds.), Analysis of Complex Networks - From Biology to Linguistics, Wiley-VCH, Weinheim, 2009, pp. 145-174.
[33] I. Gutman, M. Milun, N. Trinajstić, Topological definition of delocalisation energy, MATCH Commun. Math. Comput. Chem. 1(1975) 171-175.
[34] I. Gutman, M. Milun, N. Trinajstić, Graph theory and molecular orbitals 19. Nonparametric resonance energies of arbitrary conjugated systems, J. Am. Chem. Soc. 99(1977) 1692-1704.
[35] I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer-Verlag, Berlin, 1986.
[36] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total π electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17(1972) 535-538.
[37] I. Gutman, S. Wagner, The matching energy of a graph, Discrete Appl. Math. 160(2012) 2177-2187.
[38] A. Hamzeh, T. Reti, An analogue of Zagreb index inequality obtained from graph irregularity measures, MATCH Commun. Math. Comput. Chem. 72(3)(2014) 669-683.
[39] K. Hrinakova, M. Knor, R. Skrekovski, A. Tepeh, A congruence relation for the Wiener index of graphs with a tree-like structure, MATCH Commun. Math. Comput. Chem. 72(3)(2014) 791-806.
[40] Y. Hu, X. Li, Y. Shi, T. Xu, Connected (n, m)-graphs with minimum and maximum zeroth-order general Randić index, Discrete Appl. Math. 155(8)(2007) 1044-1054.
[41] Y. Hu, X. Li, Y. Shi, T. Xu, I. Gutman, On molecular graphs with smallest and greatest zeroth-order general Randić index, MATCH Commun. Math. Comput. Chem. 54(2)(2005) 425-434.
[42] B. Huo, S. Ji, X. Li, Y. Shi, Complete solution to a conjecture on the fourth maximal energy tree, MATCH Commun. Math. Comput. Chem. 66(2011) 903-912.
[43] B. Huo, S. Ji, X. Li, Y. Shi, Solution to a problem on the maximal energy of bicyclic bipartite graphs, Lin. Algebra Appl. 435(2011) 804-810.
[44] B. Huo, X. Li, Y. Shi, Complete solution to a conjecture on the maximal energy of unicyclic graphs, European J. Comb. 32(2011) 662-673.
[45] B. Huo, X. Li, Y. Shi, Complete solution to a problem on the maximal energy of unicyclic bipartite graphs, Lin. Algebra Appl. 434(2011) 13701377.
[46] S. Ji, X. Li, Y. Shi, Extremal matching energy of bicyclic graphs, MATCH Commun. Math. Comput. Chem. 70(2013) 697-706.
[47] R. Kazemi, The second Zagreb index of molecular graphs with tree structure, MATCH Commun. Math. Comput. Chem. 72(3)(2014) 753-760.
[48] M. Knor, B. Luzar, R. Skrekovski, I. Gutman, On Wiener index of common neighborhood graphs, MATCH Commun. Math. Comput. Chem. 72 (2014) 321-332.
[49] H. Li, Y. Zhou, L. Su, Graphs with extremal matching energies and prescribed paramaters, MATCH Commun. Math. Comput. Chem. 72(2014) 239-248.
[50] R. Li, Lower bounds for the Kirchhoff index, MATCH Commun. Math. Comput. Chem. 70(2013) 163-174.
[51] S. Li, W. Yan, The matching energy of graphs with given parameters, Discrete Appl. Math. 162(2014) 415-420.
[52] X. Li, Y. Shi, A survey on the Randić index, MATCH Commun. Math. Comput. Chem. 59(2008) 127-156.
[53] X. Li, Y. Shi, On a relation between the Randić index and the chromatic number, Discrete Math. 310(17-18)(2010) 2448-2451.
[54] X. Li, Y. Li, Y. Shi, I. Gutman, Note on the HOMO-LUMO index of graphs, MATCH Commun. Math. Comput. Chem. 70(1)(2013) 85-96.
[55] X. Li, Y. Shi, I. Gutman, Graph Energy, Springer, New York, 2012.
[56] X. Li, Y. Shi, M. Wei, J. Li, On a conjecture about tricyclic graphs with maximal energy, MATCH Commun. Math. Comput. Chem. 72(2014) 183-214.
[57] H. Lin, On the Wiener index of trees with given number of branching vertices, MATCH Commun. Math. Comput. Chem. 72(1)(2014) 301310.
[58] H. Lin, Extremal Wiener index of trees with given number of vertices of even degree, MATCH Commun. Math. Comput. Chem. 72(1)(2014) 311-320.
[59] H. Lin, Vertices of degree two and the first Zagreb index of trees, MATCH Commun. Math. Comput. Chem. 72(2014) 825-834.
[60] J. Ma, Y. Shi, J. Yue, The Wiener polarity index of graph products, Ars. Combin. 116(2014) 235-244.
[61] I. Z. Milovanovic, E. I. Milovanovic, A. Zakic, A short note on graph energy, MATCH Commun. Math. Comput. Chem. 72(1)(2014) 179-182.
[62] B. Mohar, Median eigenvalues of bipartite planar graphs, MATCH Commun. Math. Comput. Chem. 70(1)(2013) 79-84.
[63] J. L. Palacios, A resistive upper bound for the ABC index, MATCH Commun. Math. Comput. Chem. 72 (2014) 709-713.
[64] J. Rada, R. Cruz, I. Gutman, Benzenoid systems with extremal vertex-degree-based topological indices, MATCH Commun. Math. Comput. Chem. 72(2014) 125-136.
[65] R. Skrekovski, I. Gutman, Vertex version of the Wiener Theorem, MATCH Commun. Math. Comput. Chem. 72(1)(2014) 295-300.
[66] A. Vasilyev, R. Darda, D. Stevanovic, Trees of given order and independence number with minimal first Zagreb index, MATCH Commun. Math. Comput. Chem. 72(2014) 775-782.
[67] W. H. Wang, W. So, On minimum matching energy of graphs, MATCH Commun. Math. Comput. Chem. 74(2015) 399-410.
[68] K. Xu, K. C. Das, S. Balachandran, Maximizing the Zagreb indices of (n, m)-graphs, MATCH Commun. Math. Comput. Chem. 72(2014) 641-654.
[69] K. Xu, K. C. Das, Z. Zheng, The minimal matching energy of (n, m) graphs with a given matching number, MATCH Commun. Math. Comput. Chem. 73(2015) 93-104.
[70] K. Xu, M. Liu, K. C. Das, I. Gutman, B. Furtula, A survey on graphs extremal with respect to distance-based topological indices, MATCH Commun. Math. Comput. Chem. 71(2014) 461-508.
[71] K. Xu, Z. Zheng, K. C. Das, Extremal t-apex trees with respect to matching energy, Complexity, accepted.
[72] G. Yu, L. Feng, On connective eccentricity index of graphs, MATCH Commun. Math. Comput. Chem. 69(2013) 611-628.
[73] V. A. Zorich, Mathematical Analysis, MCCME, Moscow, 2002.

Fig 1 The graphs $C_{l}\left(P_{s_{1}+1}, \ldots, P_{s_{l}+1}\right)$ and $P\left(s, k, P_{n-s+1}^{l}, u\right)$.

Fig 2 The graphs $C_{l}\left(P_{s_{1}+1}, P_{n-l-s_{1}+1}, P_{1}, \ldots, P_{1}\right)$ and $C_{l}(P_{s+1}, \underbrace{P_{1}, \ldots, P_{1}}_{t}, P_{n-l-s+1}, P_{1}, \ldots, P_{1})$.

Fig 3 The graphs used in Lemma 12.

$$
P\left(n-4,3, P_{5}^{4}, u_{1}\right)
$$

G

$P\left(n-l+1,3, C_{l}, u_{0}\right)$

$P\left(n-l-i+1,3, P_{l+i}^{l}, u_{i}\right)$

Fig 4 Some graphs needed in our paper.

$P\left(5,3, P_{n-4}^{l}, u_{n-l-4}\right)$

$P\left(3,2, P_{n-2}^{l}, u_{n-l-2}\right)$

Fig 5 The graphs $P\left(5,3, P_{n-4}^{l}, u_{n-l-4}\right)$ and $P\left(3,2, P_{n-2}^{l}, u_{n-l-2}\right)$.

Fig 6 The graphs $P\left(5,3, P_{n-4}^{4}, u_{n-8}\right)$ and $P\left(n-l, 3, P_{l+1}^{l}, u_{1}\right)$.

