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Abstract

The theory of matching energy of graphs since be proposed by Gutman and
Wagner in 2012, has attracted more and more attention. Denote by B,, ,, the
class of bipartite graphs with order n and size m. In particular, B, ,, denotes
the set of bipartite unicyclic graphs, which is an interesting class of graphs. In
this paper, for odd n, we characterize the bipartite unicyclic graphs with the
first L"T_‘gj largest matching energies. There is an interesting correspondence:
we conclude that the graph with the second maximal matching energy in B,, ,,
for odd n > 11 is P%, which is the only graph attaining the maximum value

of the energy among all the (bipartite) unicyclic graphs for n > 16.

Keywords: matching energy; bipartite unicyclic graphs; quasi-order;
Coulson integral formula

1. Introduction

In theoretical chemistry and biology, molecular structure descriptors are
used for modeling physical-chemical, toxicologic, pharmacologic, biological
and other properties of chemical compounds. These descriptors are mainly
divided into three types: degree-based indices, distance-based indices and
spectrum-based indices. Degree-based indices [64] contain (general) Randi¢
index [52, 53], (general) zeroth order Randi¢ index [40, 41], Zagreb index |1,
29, 38, 47, 59, 66, 68], connective eccentricity index [72] and so on. Distance-
based indices [70] include the Balaban index [15], the Wiener index [20, 39,
48, 57, 58, 65] and Wiener polarity index [60], the Szeged index [3, 21|, ABC
index [63], the Kirchhoff index [50], the Harary index [5]. Eigenvalues of
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graphs, various of graph energies [7, 8, 9, 17, 16, 31, 61, HOMO-LUMO
index [54, 62] belong to spectrum-based indices. Actually, there are also
some topological indices defined based on both degrees and distances, such
as degree distance [19], graph entropies [10].

In 1977, Gutman [23] proposed the concept of graph energy. The ener-
gy of a simple graph G is defined as the sum of the absolute values of its
eigenvalues, namely,

E(G) = ZM,

where A1, Ao, ..., A, denote the eigenvalues of G. The graph energy has
been rather widely studied by theoretical chemists and mathematicians. For
details, we refer the book on graph energy [55] and some new recent references
42, 43, 56].

A matching in a graph G is a set of pairwise nonadjacent edges. A
matching M is called a k-matching if the size of M is k. Let m(G, k) denote
the number of k-matchings of G, where m(G,1) = m and m(G, k) = 0 for
k > |5] or k < 0. In addition, define m(G,0) = 1. Then the matching
polynomial of the graph G is defined as

(@) = (G, ) =Y (=1)fm(G, k)",

Similar to graph energy, in [37], Gutman and Wagner proposed the con-
cept of matching energy. They defined the matching energy of a graph G
as

i=1

where p;(i = 1,2,...,n) are the roots of a(G, u) = 0. Besides, Gutman and
Wagner also gave the following equivalent definition of matching energy.

Definition 1 ([37]). Let G be a simple graph, and let m(G, k) be the number
of its k-matchings, k = 0,1,2,.... The matching energy of G is

ME = ME(G) = 2 /OOO —1In [Zm(G, k)x%} dz. (1)

T 2
k>0

Formula (1) is called the Coulson integral formula of matching energy.
Obviously, by the monotonicity of the logarithm function, this formula im-
plies that the matching energy of a graph G is a monotonically increasing
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function of any m(G, k). Particularly, if G; and G are two graphs for which
m(Gi, k) > m(Ge, k) holds for all & > 0, then ME(G;) > ME(G,). If, in
addition, m(Gy, k) > m(Ga, k) for at least one k, then M E(G,) > M E(G3).
Thus, we can define a quasi-order = as follows: If G; and G5 are two graphs,
then

G1 = Gy <= m(G1,k) > m(Ga, k) for all k. (2)

And if G = G5 we say that G is m-greater than Gy or G is m-smaller than
(G4, which is also denoted by Gy <X G. If G; = G5 and Gy = G, the graphs
G, and G5 are said to be m-equivalent, denote it by G; ~ Gs. If G; = G,
but the graphs G; and G5 are not m-equivalent (i.e., there exists some k such
that m(Gy, k) > m(Ga, k)), then we say that Gy is strictly m-greater than
Gy, write G = Gs. If neither G7 = G5 nor G5 = G4, the two graphs G; and
G5 are said to be m-incomparable and we denote this by G1#Gs.

According to Eq.(1) and Eq.(2), we get G; = Gy = ME(G;) >
ME(GQ) and Gl b GQ - ME(Gl) > ME(GQ) directly.

In [37], Gutman and Wagner pointed out that the matching energy is a
quantity of relevance for chemical applications. They arrived at the simple
relation:

TRE(G) = E(G) — ME(G).

Where TRE(G) is the so-called “topological resonance energy” of G. About
the chemical applications of matching energy, for more details see [33].

As the research of extremal energy is an amusing work, the study on ex-
tremal matching energy is also interesting. In [37], the authors gave some
elementary results on the matching energy and obtained that ME(S]) <
ME(G) < ME(C,) for any unicyclic graph G of order n, where S is the
graph obtained by adding a new edge to the star S,. In [46], Ji et al. char-
acterized the graphs with the extremal matching energy among all bicyclic
graphs, while Chen and Shi [11] proved the same extremal results for tricyclic
graphs. In [12], Chen et al. characterized the graphs with minimal matching
energy among all unicyclic and bicyclic graphs with a given diameter d. Some
more extremal results on matching energy of graphs see [14, 51, 67, 69, 71].

All graphs considered here are simple, finite and undirected. We follow
the book [6] for all the notations and terminology not defined here. By
convention, denote by P,, C,, S, the path, cycle, star of order n. 7, de-
notes the set of trees with n vertices. Referring to graphs with no odd
cycles as even-cycle graphs, i.e., the bipartite graphs. Denote by B, the
class of even-cycle graphs with order n, and B, ,, the class of graphs in B,
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with m edges. Especially, we call the graphs in B, , as bipartite unicyclic
graphs, which is an interesting class of graphs. What’s more, we introduce
some new notations appeared in [37] and [49]. The sun graph, denoted by
Ci(Ps,4+1, - -+ Ps,+1), is one obtained from the cycle C; = vyvy... v, by i-
dentifying one pendent vertex of path P, with vertex v; for ¢ = 1,...,1.
Note that Cy(P,_;1+1, P1 ..., Py) is also called lollipop graph and abbreviated
as P!. Let G be a connected graph with at least two vertices, and let u be
one of its vertices. Denote by P(n, k,G,u) the graph obtained by identifying
u with the vertex v, of a simple path P = vyvy...v,. We in the following
give the graphs Cy(Ps, 41, ..., Ps+1) and P(s,k, P._ ., u) for examples, as
shown in Fig 1.

In [13], the authors determined the graphs with the second through the
fourth maximal matching energies in O, ,, when n is odd, where O,, ,, is the set
of unicyclic odd-cycle graphs. Inspired by this, we investigate the extremal
values of matching energy of bipartite unicyclic graphs. We characterize in
this paper the bipartite unicyclic graphs with the first L”T_?’J largest match-
ing energies when n is odd. One of the most interesting things is that the
extremal graphs for matching energy in this paper are P! for some values of
[, which are related to the extremal graph (i.e., P%) having maximal energy
among all the bipartite unicyclic graphs for n > 16 (see [45]). In fact, when
n > 11, with regard to matching energy, the graph P9 is precisely the second
maximal graph in B, , for n being odd.

2. Preliminaries

In this section, we list several known results at first. Then some useful
lemmas are shown, which play the key roles in proving our main results.

Lemma 1 ([18, 25]). Let G be a simple graph, e = uv be an edge of G, and
N(u) = {vi(=v),va,...,v;} be the set of all neighbors of u in G. Then we
have

m(G, k) = m(G —uv, k) + m(G —u—v,k—1), (3)
m(G,k‘):m(G—u,k)+im(G—u—vi7k—1). (4)

From Lemma 1, we know that m(P, UG, k) = m(G, k). And one can also
obtain that



Lemma 2 ([12]). Let G be a simple graph and H be a subgraph (resp. prop-
er subgraph) of G. Then G = H (resp. = H ).

Lemma 3 ([30]). Now Hy and Hy are two graphs. If Hy = Hs, then Hy U
G >~ Hy UG, where G is an arbitrary graph.

Lemma 4 ([49]). Let n, | be positive integers, n > 1 > 3. Denote by U,
the set of unicyclic graphs with n vertices and a cycle of length [, then for
any graph G € Uy ,, we have

ME(P,) > ME(G),
with equality if and only if G = P..
Actually, the authors in [49] proved that P! = G for any G € U;,, \ {P'}.

Lemma 5 ([23, 46]). In regard to the quasi-order -, we have the following
ordering:

PnFPQUPn_Q>P4UPTL_4>"'FPgUPn_:;}PlUPn_l.

Lemma 6 ([23, 37]). If F' is a forest with n(n > 6) vertices, then F' < P,,
with ' ~ P, if and only if I = P,.

Lemma 7 ([37]). Let G be a connected graph with at least two wvertices,
and let w be one of its vertices. Denote by P(n,k,G,u) the graph obtained
by identifying v with the vertex vy of a simple path vy, vs,...,v,. Write
n=4p+1i, 1€ {1,2,3,4}, and l = |(i — 1)/2]. Then the inequalities

ME(P(n,2,G,u)) < ME(P(n,4,G,u)) <--- < ME(P(n,2p+2l,G,u))
< ME(P(n,2p+1,G,u)) <--- < ME(P(n,3,G,u)) < ME(P(n,1,G,u))

hold.

Lemma 8 ([37]). Suppose that G is a connected graph and T an induced
subgraph of G such that T is a tree and T is connected to the rest of G only
by a cut vertex v. If T 1is replaced by a star of the same order, centered at
v, then the matching enerqy decreases (unless T is already such a star). If T
15 replaced by a path, with one end at v, then the matching energy increases
(unless T is already such a path).



Lemma 9. Let n be odd and | be even with 4 <1 <mn—3. Then P. = P2,
Proof. For 0 < k < 274, by Eq.(3),
m(P., k) = m(Pn, k) +m(P_y U Py, k— 1),

m(P2 k) = m(Py, k) +m(PU P,_y_o, k—1).

Since n is odd but [ is even, then [ — 2 and [ are even, while n — [ and
n — 1 — 2 are odd. Applying Lemma 5, we know P, o U P, ; > PU P, ; ».
This deduces that P = P2, |

Remark 1. Through simple calculations, it’s easy to derive P! ~ Pr=+2,
Then by the conclusion above, we get P2 = Pr=l  Notice that both
n — 1+ 2 and n — [ are odd, hence this result is in accordance with Lemma
8 in [13];

Remark 2. Taking advantage of the lemma above, for n being odd, we
obtain P} P8 = P8~ ... = P"5 = Pr=3 = P! directly.

Lemma 10. Let G and G5 be two vertez-disjoint graphs. Then
a(Gl U GQa ZL') = CY(GLZE) ’ CY(GQ,[E)-
Proof. Set ny = |V(G1)], no = |V (G2)|, with ny + ny = n. Then

a(G1UGy, ) = Y (—1)*m(G1U Gy, k)"
k>0
k

= D (D < Z m(Gy, 7)m(Ga, k — j))xnf%

k>0 §=0

= [ X 1ym(@, ]

J=0
| D2 0 Im(Ga k= a0
k—j>0

= a(Gy,x) - a(Gy,x).

The proof is thus completed. 1

Let G 2 C,, be a connected graph in B, ,. Denote the unique cycle of
G by C;. We call each maximal tree outside C; with one vertex attached
to some vertex of C; a “branch” of GG, namely, any two branches of G have
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no common vertices. It is both consistent and convenient to define a vertex
in C} with no neighbor outside C; also as a branch of G. Any branch with
just one vertex is referred to as trivial. All other branches are nontrivial.
If G 2 C, is a graph in B, , with [ branches outside the unique cycle Cj.
The i-th branch has s; + 1 (s; > 0) vertices for i = 1,...,l, where s; +
S92+ ...+ s, =n—1[. Then according to Lemma 8, the matching energy of GG
increases when each of the branches becomes a path (unless G is already such
a graph). Thus M E(G) < ME(Ci(Ps,+1, Psy+1, - - - Ps,41)), with equality if
and only if G = Ci(Ps,+1, Psy41s - - -5 Ps,41). In the following, we will show
that Cl(Psl-I—lu P52+1, N Psz-‘rl) j OZ<P51+1, Pn—l—sl-i-la Pl, N Pl)

Lemma 11. The graphs Ci(Ps 11, Psy41, - - - Ps,+1) and Ci(Ps, 11, Po—i—s, 41,
Py, ..., P)) are shown in Fig 1 and Fig 2, respectively. Where 1 is even with
4<1<n-21<s <n—-101—1. Then C(Ps+1,Psys1,---, Ps11) =
CI(P31+1, Pnflfs1+17 Pl; ey Pl); with CI(P31+1, P52+1, ey PSL+1) ~ Cl(Plerla
P _si41, P, Py) if and only if Cy(Psy41, Psytty - -+ Psy1) = Ci(Psy 41,
Pn—l—sl—l-l; Pl, ey P1>

Proof. For 0 < k < |3, by Lemmas 1, 4 and 6, we have

m(Cy(Ps 41, Poyr1s - -, Payy1), k)
= m(Cy(Ps 41, Poys1, - -, Pyy1) — uvy, k)
+m(CZ(PS1+1a P32+1a ) Psl-i-l) — U=, k— 1)
m(P._, UPs k) +m(P_g_1UP_1,k—1)
= m(C(Ps1, Pooi—sy 11, P1y .., P1) — 2w, k)
+m(Cy(Psy+1, Pot—sy+1, P1y .., P) —x —w, k— 1)
= m(Ci(Ps 41, Poci—si+1, P1, ..., P1), k).

Which y1€1dS that Ol(Psl—&—l) P32+1, ey PSH—l) j CZ(P51+1, Pn—l—31+17 Pl, ey Pl)
The equality holds for all & if and only if Cy(Ps, 11, Psyt1, - - -, Ps41) — uvg =
Pé_ﬁ U Py, , meanwhile Cy(Ps, 41, Psy+1, .-+, Ps41) —u—v1 = Py_g, 1 UPs, 1.
That is, if and only if Cy( Py, 41, Psyt1, - - - s Ps;+1) = Ci(Psy41, Po—i—sy 41, Pry - -
Pl).

As a special case of Lemma 11, for the graphs C(Ps.1, P1, ..., Pi, P4,
——

Y

t
P,...,P), where [ is even with 4 <[ <n—-21<s<n-—1[0—1. Let

the two 3-degree vertices be z and y, if the number of vertices in the u-
nique cycle between x and y is ¢t with 1 < t < 1_72 (as shown in Fig 2).
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Then it follows immediately that Cj(Psy1, Py, ..., P, Pooj—si1, P1, ..., P1) <
—_———
Cl(Ps-i-la Pn—l—s-l—la Pla s 7P1)-

Lemma 12. Let [ be even with 4 <1 <n —2, s be an integer with 1 < s <
n—1—1. Then C/(Pst1, Pooi—si1, P, ..., 1) = C(Pooim1, P3, Py, ..., )
(these two graphs are shown in Fig 3), wzth Cy(Psy1, Poy—si1, Py ..., Pr) ~
Cy(Pyoy—1,P3, Py, ..., P) if and only if s=n—1—2 or s = 2.

Proof. For 0 < k < |%], we have

m(Ci(Pss1, Paci—sy1, Pry oo P, K)
= m(Ci(Pss1, Poi—si1, Pry ..., P1) — 2y, k)
+m(Cy(Psy1, Poot—s11, P1, ..., P1) — 2z —y, k—1)
= m(P,k)+m(P_2UP;UP,_ s k—1),
m(Cy(Py—1—1, Ps, Py, ..., P1), k)
= m(C(P,_i_1,P3, P1,...,P) —xy, k)
+m(Cy(Pyy—1, P3, P1, ..., P) — o —y,k—1)
= m(P,k)+m(P2UP,_ 1 2UP,k—1).

Since P,UP,_;_s = P,_;_2UP, by Lemma 5, then m(P,_oUP,UP,_; s, k—1) <

(Pl QUPn 1— QUPQ,,I{Z 1) WthhyleldSthat m(Cl( s+17Pn I— s+1,P1,...,P1),
k) < m(Ci(Pn-i-1, P3, P1, ..., P1), k). The equality holds for all £ if and only
if BLUP, ;s = P, oUDP, namely, s =n—1[1—2 or s = 2. Hence, the
result holds. 1

Lemma 13. Let n be odd with n > 9, | be even with 4 < [ < n — 3.
Then P(n—4,3, Pd,uy) = C(Po_i_1, P, Py, ..., Py). Where the graph P(n—
4,3, Pd uy) is shown in Fig /.

Proof. For 0 < k < 221, Eq.(3) leads to

m(P(n — 4,3, P, u1), k)
= m(P(n—4,3, P, uy) — uiv, k)
+m(P(n — 4,3, P{,up) — up — vg, k — 1)
= m(P,UP! , k) +m(CyU Py 7,k —1)
= m(P,UPY k) +m(PyUP, 7 k—1)+m(P,UP, 7,k —2),
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m(Cy(Po_i_1, Ps, Py,..., P, k)
= m(Cy(Pp_i_1,P3,P1,...,P) —yw, k)
+m(Cy(Py—i—1, P35, P1,...,P) —y —w, k—1)
= m(Py,UP' k) +m(P,_3 k—1)
= m(P,UP. , k) +m(P,UP, 7, k—1)+m(PsUP, g, k—2).

Since n is odd with n > 9 and 4 < [ < n — 3, then by Lemmas 3, 5 and
Remark 2 after Lemma 9, we get P, U P, 7 = PsU P, g and P, UP! , =
P,UP! . Hence m(P(n—4,3, Pt uy), k) > m(C(Poy_1, Ps, Py ..., P1), k).
It follows from P, U P,_7; >~ P3U P,_g that there exists some ky such that
m(PoUP, 7, ko) > m(PsUP, g, ko), which deduces m(P(n—4,3, P&, u;), ko+
2) > m(Cy(Py_i_1, P, Py,...,P1), ko + 2). Therefore, P(n — 4,3, Pd,uy) =
C(Pp—i—1, P35, Pr,...,P). ]

Summarizing the above analysis, the graphs in B,,,, with more than one
nontrivial branch have been discussed. Now consider the graph G in B,, ,, with
just one nontrivial branch. This branch is connected to the unique cycle C;
of G by a cut vertex, say ug. The n — [ vertices outside C; are denoted
by i, ug, ..., Uy Suppose G % P'. If d(ug) > 4, then by Lemma 7 and
Lemma 8, we know that M E(G) < ME(P(n—141,3,Cj,up)), with equality
if and only if G = P(n — 1+ 1,3,Cj,ug). If d(ug) = 3, since G 2 P, there
exists some vertex in {uy, us, . . ., u,_; } having degree not less than 3. Assume
that d(u;) >3 with 1 <i<n—-10—-2,and d(u;) =2for 1 <j <i—1 (see
Fig 4). Then similarly, we have ME(G) < ME(P(n—1—1i+ 1,3, PL; w)),
with equality if and only if G = P(n — 1 — i+ 1,3, PL;,u;). The graphs
P(n—1+1,3,Clup) and P(n — 1l —i+ 1,3, P, u;)) with 1 <i<n—1-3
are shown in Fig 4.

Lemma 14. Let n be odd with n > 9, [ be even with 4 <1 < n — 3. Then
we can obtain P(n — 4,3, P& uy) = P(n—1+1,3,Cy,up).

Proof. For 0 < k < ”T_l, one can check that

m(P(n — 4,3, P, up), k)

m(P(n — 4,3, Pd uy) — ugvg, k)
+m(P(n — 4,3, Py, up) —up — vg, k — 1)
m(PyU P o k) +m(CyU P, 7,k —1)

m(PQUPf_%k)—l—m(P4UPn_7,k:—1),

Vv
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m(P(n—1+1,3,Cu), k)
= m(P(n—1+1,3,Cup) — ugve, k)
+m(P(n—1+1,3,Cj,up) —ug — v, k — 1)
= m(P,UP. 5 k) +m(P_1UP,_ o k—1).

Since n is odd with n > 9 and [ is even with 4 <[ <n —3, then P,UP,,_7 >
P 1UP, ; sand RLUP* , = PB,UP' ,. Hence m(P(n—4,3, P} uy), k) >
m(P(n —1+1,3,C,up), k). Moreover, m(P(n — 4,3, Pd,uy),2) > m(P(n —
[+1,3,C),up),2). Hence P(n — 4,3, P2 uy) = P(n—1+1,3,C,up). ]

Lemma 15. Let n be odd, | be even with 4 <[l <n—5,2<1<n-—1-—3.
Then P(n —1—i+ 1,3, P!, ,u;) = P(5,3, P._y, tp__4), with P(n —1 — i+
1,3, Pll+z'a uz) ~ P(57 3, P7ll—4> un—l—4) Zf and Only ZfP(TL—l—Z—Fl, 37 Pll+ia uz) =
P(5,3, P un_1_4) (i.e., i =n—I1—4). Where the graph P(5,3, P._, tu,_1_4)
15 shown in Fig 5.

Proof. For 0 <k < ”Tfl,

m(P(n —1—1i+ 1,3, PL;,uw),k)
= m(P(n—1—1i+1,3, P, u) — vou;, k)
+m(P(n —1—i+1,3, P, u;) — vy — u;, k — 1)
= m(P, U Py k) +m(P; 1 UPyijo2.k— 1)
= m(P._,UPyLE)+m(PyiitUPy i 0,k —1)
+m(PoaUP,_1UP,__;i 2, k—2),
m(P(5,3, P._, tn_1_4), k)
= m(P(5,3, P, Up_1-4) — Vollp_i_4, k)
+m(P(5,3, Py tp_y_4) — Vg — Un_j_g, k — 1)
= m(P._,UPyk)+m(P._sUPyk—1)

= m(P._,UPy,k)+m(Py_5U Py k—1)
+m(Pl,2 U Pn,l,5 U Pg, k — 2)

Since 2 < i <n—1—3, then Py; 1 UP, ;o = P, 5U P, and also
.PZ_Q U P'_1 U Pn—l—i—2 j Pl_g U Pn—l—5 U Pg. Which mean m(P(n —1—1 +
1,3, P, u;), k) < m(P(5,3, P._y,un__4), k). The equality holds for all k if
and only if : =n — [ — 4. Tt follows that the proof is completed. 1
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Furthermore, if i =n — 1 —2 and G 2 P!, then G = P(3,2, P. 5, up_1_2)
(as shown in Fig 5). In this case, we can also arrive at P(3,2, P! 5 u,_;_2) <
P(5, 3, P7l174, un,l,4).

Lemma 16. For even | with 4 <1 <n —5, we have P(3,2, P, 5, tup_1_2) <
P<5, 3, Prll_4, un—l—4)-

Proof. For all 0 < k < |3], since 4 <1 <n —5,

m(P(3,2, P, o tp_12), k)

= m(P(3,2, P 5 tp_1_2) — Up_i_3Up_1_2, k)
+m(P(3,2, P 5, tn_1_3) — Un_1—3 — Un_i_2,k — 1)

= m(P._,UPk)+m(P._, k—1)

= m(P,_3UPs,k)+m(P_oUP,_;_3UP; k—1)
+m(Pu_g,k—1)+m(P_oUP,__4,k—2),
m(P(5,3, P, 4 tn_1_4), k)

= m(P(5,3, P, tp_i_4) — Volp_i_4, k)
+m(P(5,3, P,ll_4, Up—1-4) — Vg — Up_1—g4,k — 1)
m(P._,UPy k) +m(P._ U Py k—1)
m(P,—o U Py, k) + m(P—oU P2 U Py k—1)
+m(Pu_s U Py, k—1)+m(P_oUP,_;_5UP k—2).

Clearly, P,_3UPs < P, 2 UP,, B oUP, 1 3UP X P oUP, 1 2UDPR,
P,_4 =< Pn75 UPand PoUP,_ ;4 X P_oU Pn7175 U P,. Which nnply that
P<37 27 PrlL727 un—l—Q) < P(57 37 PrlL747 un—l—4)- 1

Lemma 17. Let n > 13 be odd, | be even with 6 < [ < n — 7, then
P(5,3,P* , un_g) = P(5,3, PL_, u,_i_4). Where the graph P(5,3, P}_, u,_3)
1s shown in Fig 6.

Proof. Since [ is even and 6 < [ < n — 7, then by Lemma 5, we have
Pg U Pn,(; - PZ,Q U Pnflf% PQ U Pn79 >~ ]3172 U Pnfl75- For k > 0, by Lemma,
1, we can obtain that

m(P(5,3, Pr_y, un-s), k)
= TTL(P<5, 37 Pﬁ%a un*B) — UoWw, k)
+m(P(57 3a P4—47 U’n—S) — Up — W, k— 1)

n
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= m(P(5,3, P}, up_g) — upw, k)
+m(P(5,3, Pl 4, Up_g) — g — W — Up_gUz, k — 1)
+m(P(5,3, P | tp_g) — g — W — Up_g — Vo, k — 2)

= m(P(5,3, P! 4 up_g) —upw, k) + m(Py U P,U P, g,k — 1)
+m(Py,U P, U P, g,k —2)

> m(P(5,3, P4, un4) —uow, k) + m(PoUP_yUP, 4 o,k —1)
4m(PoUP_s UP,y 5.k —2)

= m(P(5,3, P, un_1_4), k).

Since P, U P,_g =~ P yUP, o, by Lemma 3, LUPUP, ¢ > P UPF_oU
P,_;_5. Thus there exists some kg such that m(P, U P, U P,,_g, ko) > m(P, U
PZ_QUPn_l_g, k’o) So m(P(5, 3, P§_4, Un_g), k‘o—l—l) > m(P(S, 3, Pé_4, U,n_l_4),
ko + 1). Therefore, P(5,3, P, u,g) = P(5,3, P4, tn_1_4). |

Lemma 18. Let n be odd with n > 11, then we have P(n — 4,3, Pd uy) =
P<57 3, P:L1747 un_8).

Proof. For all k > 0, applying Lemma 1, one can get

(P(n—4,3, P, uy), k)

(P(n— 4,3, Pd,uy) — uyvo, k)
+m(P(n — 4,3, Py, u1) —up — vg, k — 1)

= m(P,UP! 5 k) +m(P(n—4,3, Pd u) —up — vy — ugtg, kb — 1)
+m(P(n — 4,3, P, u1) — ugp — vy — uz — ug, k — 2)

= m(P,UP! 5 k) +m(CyUP,UP, g,k —1)+m(CyUPy_10,k — 2),
m(P(5,3, Pt , tun_g), k)

= m(P(5,3, P,_y, un_g) — tp_g¥s, k)
+m(P(5,3, Pt 4 tp_g) — Up_g — Vo, k — 1)

= m(P,UP! k) +m(P(5,3, P |, tp_g) — Up_g — Vo — ugtiy, k — 1)
+m(P(5,3, P}y tp_g) — Up_g — Uy — g — Uy, k — 2)

= m(P,UP! k) +m(CyUP,UP, gk —1)+m(P,UPsUP,_19,k —2).

n—2»
Obviously, Cy = P, U P;, by Lemma 3, we get C4y U P,,_19 = P, U P3U P,_1o.
Thus m(Cy U P10,k —2) > m(Pa U Py U P10, k — 2), and then m(P(n —
4,3, Pd uy), k) > m(P(5,3, P!, u, s), k). Moreover, m(P(n — 4,3, Pd, uy),
3) > m(P(5,3, P} 4, un_g),3). Hence P(n—4,3, P uy) = P(5,3, PY , u,_g).

The proof is finished. 1

m
m
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Lemma 19. Let n > 13 be odd, | be even with 6 <1 < mn —7, then P(n —
4,3, P u1) = P(n—1,3,PL,u1). Where the graph P(n —1,3,PL ,u) is
shown in Fig 6.

Proof. For all k > 0, it follows from Lemma 1 that

m(P(n — 4,3, Pd uy), k)
m(P(n — 4,3, Pd,uy) — uow, k) + m(P(n — 4,3, Pd,uy) —ug —w, k — 1)
m(P(n — 4,3, Pd ) — uow — uyvg, k)
+m(P(n — 4,3, P, u1) — uow — uy — vo, k — 1) + m(PoU Py, k — 1)
= m(PoUP, 9, k) +m(PLUP,_7,k—1)+m(P,UP,_4,k—1),
m(P(n - l’ 3’ Pll—&-l?ul)’ k)
m(P(n —1,3, Py, u1) — uow, k)
+m(P(n —1,3, Pl u1) —up —w, k — 1)
= m(P(n—1,3, PllH,m) — Upw — UV, k)
+m(P(n—1,3, Py, u1) — uow — uy — va, k — 1) + m(P_y U P,k — 1)
= m(P,UP, 9, k)+m(PUP,_;_3,k—1)+m(P_oUP,;,k—1).

Since [ iseven and 6 <[ <n—7,then PL,UP, » = PbUP,_; 3, BLUP, 4+
Py U P, ;. Hence m(P(n — 4,3, P}, u1), k) > m(P(n — 1,3, P, u1), k).
In particular, there exists some ko such that m(P, U P,_4, ko) > m(P_o U
P,_i, ko), which implies that m(P(n—4, 3, P, u1), ko+1) > m(P(n—1,3, P},
uy), ko + 1). Consequently, P(n — 4,3, P#,uy) = P(n— 1,3, PL{, w). 1
So far, what remaining to discuss is the comparing of M E(P(n—4,3, P2, uy))
and ME(P!). By utilizing the Coulson integral formula of matching energy,
as well as the help of computer, we will show ME(P(n — 4,3, Pd,u;)) <
ME(P!) for 4 <1< ™ in the next section.

3. Main results

Let G be a simple graph, e be an edge of G connecting the vertices v,
and vs. By G(e/j) we denote the graph obtained by inserting j(j > 0) new
vertices (of degree two) on the edge e. On the number of k-matchings of
the graph G(e/j), the property that m(G(e/j + 2),k) = m(G(e/j + 1), k) +
m(G(e/j),k—1) for all j > 0 was given in [30]. In addition, on the matching
polynomial of G(e/j), we have shown that a(G(e/j + 2),z) = xza(G(e/j +
1),z) — a(G(e/7),x) in [11].

13



Lemma 20. For3 <1< n—1, the matching polynomials of P, and P. have
the following forms:

(B, ) = Ay (2)(Ya(2))" + As(2)(Ya(2))";
(P, x) = By(w)(Yi(2))" + Ba()(Ya(2))"
Where Y:(x) = Wﬂ , Yo(z) = st
Proof. By the definition of G(e/j), P, = Py(e1/n—2) and P} = P3| (ea/1—

3), where e; is the unique edge of Pg, es is one of the edges of the triangle in
P3 5. Hence both a(P,,z) and a(P!, z) satisfy the recursive formula

f(n,x) =xzf(n—1,2) — f(n —2,z).

The general solution of this linear homogeneous recurrence relation is

fn, ) Ci(z)(V1(2))" + Ca(x)(Ya(x))",

where Yy(z) = 22 Yy (z) = =2 with Yi(2) + Ya(z) = z and
Yi(2)Ys(z) = 1. Take the initial values as a(Py,x) =22 — 1 and a(Ps,2) =

2% — 2x. We then get

(P, 7) = A1 (2)(Yi(2))" + Az(2) (Ya(2))",
where Ay(x) = SR, Ay(x) = SekiRacen
For3<1<n-—1, m(Pl k:) m(Pp, k) +m(P_»U P,_y, k — 1). So

a(Pla) = S (~1)fm(PL k)am

k>0

_ Z(—l)k<m(Pn, k) + m(P_o U Py k — 1))x"—2k
k>0

= D (=DFm(Po, k)a" ) (1) m(Py U Py b — 1)
k>0 k>0

O{(Pn, I) - Oé(.Pl_Q U Pn—l7 I)
a(P,,x) — a(P_y,x) - a(Py_y,x)

= A@)N@)" + @) (Va(@)" — (A0 (i) 2 +
Ag(2)(Ya(2))2) - (A (><Y1<:c>>”-l+A2<x><yz<x>>"-l)
= A@)M@)" ~ (A @)V
_Al(

)Az(2) (Vi (2 )) ( 2(2))" + Ap(2) (Ya(@)"
—(Az(2))*(Ya(2))" ™ = Av(2) As () (Y (2))" ™ (Ya(2))' .

14



Therefore, a(P!, z) = By(x)(Yi(z))" + Ba(x)(Ya(z))". Where
By(x) = Ai(r) — (A(2))*(Ya(2))? — Av(2) As (@) (Ya(2))* 7,
z) = As(w) — (Az(2))* (Y1(2))? — As(w) Az(2) (Yi(2))*

P

Bi(z) = A (z) — (A1(2))*(Ya(z))? — A (2)As(z) (Ya(z)) 2242,
Bs(z) = As(z) — (As(2))*(V1(2))? = A; () Ag(z) (Y ()2~ 22

for "T*Q <l<n-1.
We complete the proof. 1

Lemma 21. Letn(n >9) be odd and 4 <1 < 2L be even. Then ME(P(n—
4,3, P} u)) < ME(PL).

Proof. 1f | = 4, then by Lemma 4, we get M E(P(n—4,3, Pi,u;)) < ME(PY)
directly. If n = 9, then [ = 4, this is the case just discussed. Hence in the
following we assume that n > 11 and [ > 6. Obviously, P(n — 4,3, Pi,u;) =
P(4,3, P} uy)(e/n — 8), where e is the pendent edge incident with wu; in
P(4,3, P}, uy). Similarly,

a(P(n—4,3, Py, ur),z) = Cy(z)(Yi(x))" + Ca()(Ya(2))"
with Y;(z) = =2 ‘”2 , Yo(x) = == xQ . The initial values can be chosen as:

a(P(4,3, P, wi), ) = Cl( )(Yi(2))" + Ca()(Ya(2))®
= 28— 8z% + 182* — 1222 4 2;

Oé(P(5,3,P54,U1),ZL') = Cl( )( ( )) +O?( )( (I))g
= 2% — 927 + 252° — 2522 + 8.

Solving the above two equations, we get

Yi( ) (P(53P57u1) ) (P(4 3,P§,u1),x)
(Y1(2))"0 = (Ya())® ’
Ya(x)a(P(5,3, P, u1), x) — a(P(4,3, P, wy), x)
(Y(2))10 — (Ya(x))® '

Cl (33') =

CQ(I’) =

15



Set Zy(x) = —iYi(ix) = ”V;QH, Zy(z) = —iYs(ix) = "E*V;2+4, where 2 =
—1. Then we have Y)(ix) = iZ,(x), Ya(iz) = iZs(x), Zi(x) - Zo(x) = —1,
Z(x) + Zo(z) = o, Zy(x) — Zo(x) = Va? + 4. Besides, set

f1 = —Oé(Pg,il') = 332 + 1,
fo = ia(Ps,ix) = 2* + 2u;
g1 =a(P(4,3, Pf,uy),iz) = 2® + 82° + 182* + 1227 + 2;
g2 = —ia(P(5,3, P, uy),iw) = 2 + 927 + 252° + 252° + 8.

For4 <[ < ”T“, according to Lemma 20 as well as the results got above,

A, (iz) = K(iﬁ)a.(Ps,ifE) - 04.<P2,i$> _ Zi(x)f2+ 1
(Y1 (iz))* — (Ya(iz))? (Z1(2))* + (Zi(2))*
A(iz) = Ya(iz)o( P, ix) — o Py, ix) _ Zy(x)f2+ f1
(Ya(iz))* — (Ya(iz))? (Za(2))* + (Za(2))?
By(iz) = Ai(iz) — (As(ix))?(Ya(in))? — Ay (iz) Ay (i) (Ya(iz))*' 2
_ Zi(x)f2+ fi (Zy(2) f2 + fr)°
(Zi(x)* + (Z1(2))*  (Zi(2))2((Zi(2)* + (Z1(7))?)?
(Z1(x) f2 + f1)(Zo(2) fo + f1)(Za(2))? 2
(Z1(2)* + (Z1(2))*) ((Za(2))* + (Z2(2))?)
By(iz) = Ag(iz) — (Ag(iz))?(Yi(ix))? — Ay (iz) Ay (i) (Yr (i) )*
_ Zy(x) fa + fi n (Za(z) fo + f1)?
(Zo(2))* + (Za(2))?  (Za(2))?((Z2())* + (Za2(7))?)?
(Zi(2) fo + [1)(Za(2) fo + f1) (Za(2)* 2
((Z1(2)* + (Z1(2))?) ((Za(2))* + (Z2(z )))

Culiz) = Yi(ix)a(P(5,3, P wy),ix) — a(P(4,3, P uy), iz)
(Y1 (iz))' — (Y1 (iz))®
_ Zi(z)g2 +91
(Z1 ()0 + (Z1(x))®’ ' |
Colin) = Ya(iz)a(P (5,3, Pd,uy),ix) — a(P(4, 3, Pd,uy), i)

(Ya(ix))'0 — (Ya(ix))®
Zsy(w)g2 + 91

(Z2(2))' + (Za(2))*
16




And then
n—4 3, P ul)) ME(P!)

= / —ln P(n —4, 3,P§1,u1),k)x2k]dx
k>0

—%/0 ;2 ln[z (PL, ke 2’“]@:

2 (™ a(P(n—4,3,P54,u1),ix)

I /0 n a(PLiz) du

_ 2 [, QUG+ Clinntia)”
o Biliz)(Yai(iz))" + Ba(iz)(Ya(ix))"

™

X.

Since n is odd,

Cy(iz) (Y1 (i)™ + Cy(ix) (Ya (i)™ | - Cu(iw) (Vi(ix))" + Co(iz) (Ya(iz))"

By (iz)(Y1(ix))" 2 + Ba(iz)(Ya(ix))" ™ Bi(iz)(Yi(ix))" + Ba(ix)(Ya(iz))"
z)

H0(7(L, :r))

In

—In (1+
Where
Ko(w) = (Cilim)(Viia))"*2 + Cylia) (Yalin))"*2)
(Buli) (Vi) + Baiz) (Ya(i))")
~(Bu(i) (vi(iz))"*2 + Ba(i) (Va(iz))"*2)
(i) (i) + Colin) (Valia))”
) ((riG2))? = (alia))?)
)) (- 2va?+1);

By(iz) (Y (iz))"** + B(iz)(Ya(ix)) +2>

- (Cl(m:)BQ iz) — Co(iz) B (ix
- (Cl(m)Bz (iz) — Cy(iz) By (i

Hy(n.z) = (

(Gl (i) + Calin) (Vo))"

= a(P.,,iz) - a(P(n—4,3, P, w),ir)

_ (2 Z m(PjLH? k)$n+2—2k>

k>0
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(z” Z m(P(n — 4,3, Pd uy), k’)x”’%>

k>0
_ 2042 ( Z m(Pl,, k)xn+2—2k>
k>0
(Z m(P(n — 4,3, P{,uy), k)x”_2k>
k>0
- (Z m(P o,k "+2_2k> (Z m(P(n — 4,3, P, uy), k)x"_%).
k>0 k>0

Apparently, since x > 0, meanwhile, m(P!_,, k) > 0 and m(P(n—4, 3, P, uy),
k) > 0 hold for all & > 0, then Hy(n,z) > 0. Next, we shall verify

According to the expressions of C;(iz), B;(iz)(j = 1,2), together with
Zy(x)f2 + [ = (Zo(x))* and Zy(z)fa + f1 = (Zi(z))*, through a series of

calculations, we derive
Cy(ix) By (ix) — Cy(ix) By (ix)
= ((Z2( NP1+ (Za(2))?)*(Z1(2) g2 + g1) + (Za(2)) (1 + (Z1(2))?)
(Z1(2)g2 + g1) + (Z1(2))* (1 + (Za(@))*) (Z1(2) g2 + g1) — (Za(x))®
1+ (Z1(2))*)*(Za(2)g2 + 91) = (Z1(2))" (1 + (Za(2))*)(Z2(x) g2 + 91)
~(Za(@)* 1+ (Z1(2)) (Za(w)go + 1)) [ (@® + 4%

By the help of the computer, we get

2@) = (Z@) 1+ (Za@) (2@ + ) + (Za(@)°(1 + (Z2(2))?)
(Zi(2)gs + 01) — (Za(@)P(1 + (Z2(2) VA (Za(2)ga + 1)
—(Z(@) (1 + (Zo()?) Zalw)gs + 1)

= Va2 42" + 13Va2 + 4ot 4 63V + 42° + 139V2? + 427
+131V2? + 42° + 28V/22 + 42® — 10v/22 + 4a.
Let Hy(1, ) = (Za(a)}°(1+ (Z4(2))2) (Za(a)o-+ g0) — (Z:(a)} - 10(1 +
(Zo(x)))(Z1(2)g2 + g1). Tt suffices to show Z(z) > Hy(l,z) holds for z >
l, )

0. Take the derivative of Hy(l,z) with respect to [, let H|(l,x) denote the
derived function. We claim that Hy(l, z) is decreasing on .

Claim. For 6 < [ < "T“ and any given z with = > 0, the function
Hy(l, z) is decreasing on [.

18



Proof. Clearly, Zy(z) > 1 and Zy(x) < 0. Moreover, since Z;(x)-Zy(z) = —1,
then In(Z,(z)) + In(—Z2(z)) = In(Z1(z) - (—Z2(z))) = 0, which implies that
In(—2Z(z)) = —In(Zy(z)). Accordingly,

(Z2(w)g2 + g1)(Z2())* " In(=Zs())
)(Zi(x)gz + 91)(Z1(2))* " In(Zy ()

L+ (Za(2))*)(Z1(2)g2 + 91)(Z1 ()"

) (= Za(x)g2 — 91)(Zz(x))2l‘10).

Hy(l,z) = 2(1+ (Zi(=))’
= —2In(Z(x))

~—

)
)
(

\_//—\

—(1+ (Zi()
Make full use of the computer, we obtain

Z1(x)g2 + g1

1 1 11 25
= §x10+—\/x2+4x9+ 5 \/1:2 4" +— —|—?\/:c2+4:c5

61 25
—1—796 + — \/362—1—4553—1—16:76 +4vVa2 +4r+2 > 0;

(1+ (ZQ(x))Z)(Zl(x)m + 1) — (14 (Z1(2))*) (= Za(x) g2 — 1)
= 21941228 + 5025 + 8421 4+ 502% + 8 > 0.

Namely, (1+ (Z(x))*)(Z1(2)g2 +g1) > 0 and (14 (Z2(x))*)(Z1(x)g2 + 91) >
(14 (Z1(2))*)(—Z2(x)g2 — g1). On the other hand, since Z;(x) > |Zy(z)| > 0,
then (Z(x))*71% > (Zy(2))*71° > 0 for [ > 6. Consequently, we always
have (1 + (Z5(2))*)(Z1(2)g2 + 91)(Z1(2))? 70 — (1 + (Z1(x))*)(— Za(2) g2 —
g1)(Zy(2))?710 > 0. Hence Hj(l,x) < 0. That is, Hy(l, ) is decreasing on .

It follows from the claim that Hy(l,z) < Hy(6,x). As Z(z) — Hy(6,x) =
Va2 + 4z +14v/22 + 42 + 7522 + 42° + 190V 22 + 47 +224/ 22 + 425 +
98vx? + 423 + 8V22 + 4z > 0 for all x > 0, we demonstrate that Z(z) >
Ho(6,2) > Hy(l,z). Therefore, C)(ix)By(ix) — Co(ix)By(ix) = (Z(z) —
Hy(l,z))/(z* +4)* > 0.

Up to now, we have established that C(ix)Bs(iz) — Cy(iz)By(iz) > 0,
which indicates that Ky(x) < 0. Hence In(1+ K((’(w) ) <Inl=0. Namely, we

O (iz) (Y1 (i) T2 4+-Co (i) (Ya (iz) )" 2 <1In C1(3x) (Y1 (1z))"+C2 (iz) (Ya (3x))™ Thus
By (Z‘»”U)(Yl(iﬂC))"*2-5-32(%’J»‘)(Yz(i%))"+2 B (iz) (Y1 (iz)) "+ B2 (iz) (Ya (iz))™

Cu(iz) (Y1 (ix))" + Co(iz) (Ya(ix))" | Ci(ix)(Yi(ix))'" + Cy(iz) (Ya(ix))"!
By (i) (Yi(ix))" + By(ix) (Yo (iw))r = Ba(ix)(Yi(iw)) ' + Ba(iz) (Yo (i)

have In

In
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for n > 11. This yields that for 6 <[ < 2=

ME(P(n — 4,3, P, 1)) ME(PI)
2 /mln O (i) (Vi (i) + Caliz) (Ya(i))
7 Sy " Bulia) (Y (i) + Baliz) (Yalix))"
2 [ Cilin) (W) + Colin) (Yafim)"
< w/o " B (i) (Ya (i) )L + Bylia) (Ya(iz)) 1"

— ME(P(7,3, P}, w)) - ME(P},).

n

dx

When n = 11, then [ = 6. By computer-aided calculations, we arrive at
ME(P(7,3, P, uy)) = 13.75635, ME(P{,) = 13.77695. Hence M E(P(n —
4,3, Pd uy))—ME(P) < ME(P(7,3, Pd,uy))—ME(P}) < 0,i.e., ME(P(n—
4,3, P4 uy)) < ME(P!). The proof is thus completed. ]

Based on the lemmas we established, we can now state our main results.

Theorem 1. Let n > 9 be odd and | be even. If G is an arbitrary graph in
B, other than the graphs P.(4 <1 < ™), then ME(G) < ME(P)).

Proof. Let G be an arbitrary graph in B,,, other than the graphs P!(4 <
I < ”T“) Suppose the girth of G is g = g(G).

If n =9, then [ = 4, by Lemma 4 and Remark 2 after Lemma 9, it’s
easy to obtain, for such a graph G, that ME(G) < ME(PY) < ME(Py).
Furthermore, the equalities can not hold simultaneously. Hence M E(G) <
ME(PY).

If n = 11, then | = 4,6. Since ME(P}}) > ME(P}), it suffices to show
ME(G) < ME(P}). If g > 6, then according to Lemma 4 and Remark 2
after Lemma 9, there has no need to elaborate. If ¢ = 4, then we should
only consider the graph P(7,3, P{,u;) on the basis of the lemmas 11-19.
Applying Lemma 21 directly, we get M E(P(7,3, P, uy)) < ME(Plﬁl)

If n > 13, for ¢ > 2+, we have ME(G) < ME(P?) < ME(P ) <

ME(P.). For g = ™ since G 2 P:TH, we have ME(G) < ME(P ) <
ME(P'). For g < ”T“ < n—>5, putting Lemmas 11-19 together with Lemma
21, we can show M E(G) < ME(P!).
The theorem is thus proved. 1
Combining Theorem 1 with Remark 2 after Lemma 9, it’s not difficult to

obtain the key point of our paper.

Theorem 2. Letn > 9 be odd. Then we have
nt
(i) If n =3 (mod 4), P}, PS, ..., P,® are the graphs in By, with the first

T
[ =
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”T_?’ largest matching energies;

(ii) Ifn =1 (mod 4), P}, PS, ..., P.7 are the graphs in B, , with the first

"T_5 largest matching energies.

4. Conclusion

In this paper, we established the graphs in B, , with the first L"T_gj
largest matching energies. They all have the form of P! for some [. Among
these graphs, the graph P plays an important role in unicyclic graphs. In
[45], the authors determined that PS is the only graph which attains the
maximum value of the energy among all the bipartite unicyclic graphs for
n > 16. Furthermore, it’s the graph having maximal energy among all
unicyclic graphs (see [4] and [44]). While in this paper, for odd n, we conclude

that P? has the second maximal matching energy in B,,, when n > 11.
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Fig 1 The graphs C(Py, 41, ..., Ps+1) and P(s, k, PL_ 1, u).
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Fig 2 The graphs Cy(Ps, 1, Poi—s,+1, P1, ..., P1) and
C(Psy1, Pry.. ., Py Pyy—si1, Py .o, Pr).
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Ci(Pos1, Pii—s1, Py ... Py) Ci(Pi—i—1, P3, Py,.... Py)

Fig 3 The graphs used in Lemma 12.
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Fig 4 Some graphs needed in our paper.
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Fig 5 The graphs P(5,3, PL_,, u,_;_4) and P(3,2, PL 5 wu, ;o).
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Fig 6 The graphs P(5,3, Py, tun—s) and P(n — 1,3, PL |, u).
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