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Abstract

A path in an edge-colored graph G is called a rainbow path if no two edges of the path are

colored the same. The minimum number of colors required to color the edges of G such that

every pair of vertices are connected by at least k internally vertex-disjoint rainbow paths is

called the rainbow k-connectivity of the graph G, denoted by rck(G). For the random graph

G(n, p), He and Liang got a sharp threshold function for the property rck(G(n, p)) ≤ d. For

the random equi-bipartite graph G(n, n, p), Fujita et. al. got a sharp threshold function

for the property rck(G(n, n, p)) ≤ 3. They also posed the following problem: For d ≥ 2,

determine a sharp threshold function for the property rck(G) ≤ d, where G is another ran-

dom graph model. This paper is to give a solution to their problem in the general random

bipartite graph model G(m,n, p).
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1 Introduction

In this paper, unless otherwise stated, all graphs are finite, simple and undirected. For basic

terminology and notation in graph theory, see [4]. Connectivity is one of the basic concepts

of graph theory. Recently, the concepts of rainbow connectivity (or rainbow connection) and

rainbow k-connectivity are introduced by Chartrand et. al. in [7] and [8] as a strengthening of

the canonical connectivity concept. Given an edge-colored graph G, we call a path a rainbow

path if no two edges of the path are colored the same. We call the graph G rainbow connected

if every pair of vertices are connected by at least one rainbow path. The minimum number

of colors required to make G rainbow connected is called the rainbow connectivity, denoted by

rc(G). In general, for an integer k ≥ 1, a graph G is called rainbow k-connected if every pair of

∗Supported by NSFC No.11371205 and 11531011, the “973” program.
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vertices of G are connected by at least k internally vertex-disjoint rainbow paths. The minimum

number of colors required to make G rainbow k-connected is called the rainbow k-connectivity,

denoted by rck(G).

In addition to regarding it as a natural combinatorial concept, rainbow connectivity also

has interesting applications in transferring information of high security and networking [8], [6]

and [9]. The following motivation comes from [6]: Suppose we wish to route messages between

any two vertices in a cellular network and require that each link on the route between the

vertices is assigned with a distinct channel. We clearly wish to minimize the number of distinct

channels. The minimum number is exactly the rainbow connectivity of the underlying graph.

The subject has since attracted considerable interest. A great number of results about the

rainbow connectivity have been obtained by the researchers. Recently, Li and Sun published a

book [14] and Li et. al. wrote a survey [13] on the current status of rainbow connectivity. We

refer them to the reader for details.

We will study the rainbow k-connectivity in the random graph setting [1]. Some results

have been obtained in the Erdős-Rényi random graph model G(n, p), which is a graph with

n vertices where each of the
(
n
2

)
potential edges appears with probability p, independently.

Random bipartite graph model is a general model for complex networks, thus in this paper, we

will extend the results to the random bipartite graph G(m,n, p) with bipartition (U, V ), where

|U | = m, |V | = n and for each u ∈ U and v ∈ V the edge uv appears with probability p,

independently. We say that an event E = E(n) happens almost surely (or a.s. for brevity) if

limn→∞ Pr[E(n)] = 1. For a graph property P, a function p∗(n) is called a threshold function

of P if †

• for every p(n) = o(p∗(n)), G(n, p(n)) almost surely does not satisfy P; and

• for every p′(n) = ω(p∗(n)), G(n, p′(n)) almost surely satisfies P.

Furthermore, p∗(n) is called a sharp threshold function of P if there are two positive constants

c and C such that

• for every p(n) ≤ c · p∗(n), G(n, p(n)) almost surely does not satisfy P; and

• for every p′(n) ≥ C · p∗(n), G(n, p′(n)) almost surely satisfies P.

It is well known that all monotone graph properties have a sharp threshold function [3]

and [10]. Obviously for every k, d, the property that the rainbow k-connectivity is at most d is

monotone, and thus has a sharp threshold. Caro et. al. [5] proved that p =
√

log n/n is a sharp

threshold function for the property rc(G(n, p)) ≤ 2. This was generalized by He and Liang [12],

who proved that if d ≥ 2 and k ≤ O(log n), then p = (log n)1/d/n(d−1)/d is a sharp threshold

†We use the following standard asymptotic notations: as n → ∞, f(n) = o(g(n)) means that f(n)/g(n) → 0;

f(n) = ω(g(n)) means that f(n)/g(n) → ∞; f(n) = O(g(n)) means that there exists a constant C such that

|f(n)| ≤ Cg(n); f(n) = Ω(g(n)) means that there exists a constant c > 0 such that f(n) ≥ cg(n);
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function for the property rck(G(n, p)) ≤ d. Moreover, Fujita et. al. [11] proved that in the

random bipartite graph G(n, n, p), p =
√

log n/n is a sharp threshold function for the property

rck(G(n, n, p)) ≤ 3. They also posed some open problems, one of which is stated as follows.

Problem 1.1 [11] For d ≥ 2, determine a sharp threshold function for the property rck(G) ≤ d,

where G is another random graph model.

In this paper, we consider the random bipartite graph G(m,n, p). The following results are

obtained.

Theorem 1.2 Let d ≥ 2 be a fixed positive integer and k = k(n) ≤ O(log n).

If d is odd, then

p = (log(mn))1/d/(m(d−1)/(2d)n(d−1)/(2d))

is a sharp threshold function for the property rck(G(m,n, p)) ≤ d + 1, where m and n satisfy

that pn ≥ pm ≥ (log n)4.

If d is even, then

p = (log n)1/d/(m1/2n(d−2)/(2d))

is a sharp threshold function for the property rck(G(m,n, p)) ≤ d + 1, where m and n satisfy

that there exists a small constant ϵ with 0 < ϵ < 1 such that pn1−ϵ ≥ pm1−ϵ ≥ (log n)4.

Then, the following corollary follows immediately.

Corollary 1.3 Let d ≥ 2 be a fixed integer and k = k(n) ≤ O(log n). Then p = (log n)1/d/n(d−1)/d

is a sharp threshold function for the property rck(G(n, n, p)) ≤ d+ 1.

When d = 2, the corollary is just the result of Fujita et. al. in [11].

In the sequel, we will first show Theorem 1.2 in Section 2. Then in Section 3, we will prove

a conclusion stated in Section 2, which plays a key role during our proof of Theorem 1.2.

2 Threshold of the rainbow k-connectivity

In this section, we establish a sharp threshold function of the random bipartite graph G(m,n, p)

for the property rck(G(m,n, p)) ≤ d + 1. We distinguish two parts to prove Theorem 1.2

according to the parity of d. For brevity, let p1 = (log(mn))1/d/(m(d−1)/(2d)n(d−1)/(2d)) and

p2 = (log n)1/d/(m1/2n(d−2)/(2d)). For a fixed d, we always assume that p1n ≥ p1m ≥ (log n)4 if

d is odd and there exists a small constant ϵ with 0 < ϵ < 1 such that p2n
1−ϵ ≥ p2m

1−ϵ ≥ (log n)4

if d is even. In the sequel, we fix ϵ. Before our proof, we first recall the following fact on the

diameter of a random bipartite graph.

Theorem 2.1 [2, p.272] Suppose that for all n,

pn ≥ pm ≥ (lnn)4
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and that d is a fixed positive integer.

If d is odd and

pdm(d−1)/2n(d−1)/2 − ln(mn)→∞,

or if d is even and

pdmd/2nd/2−1 − 2 lnn→∞,

then almost every G(m,n, p) is of diameter at most d+ 1.

If d is odd and

pdm(d−1)/2n(d−1)/2 − ln(mn)→ −∞,

or if d is even and

pdmd/2nd/2−1 − 2 lnn→ −∞,

then almost every G(m,n, p) is of diameter at least d+ 2.

From the above theorem, we can derive that

when d is odd, for every c < 1 and p(n) ≤ c · (ln(mn))1/d/(m(d−1)/(2d)n(d−1)/(2d)), G(m,n, p)

almost surely does not satisfy the property that diam(G(m,n, p)) ≤ d + 1 and for every

C > 1 and p(n) ≥ C · (ln(mn))1/d/(m(d−1)/2dn(d−1)/2d), G(m,n, p) almost surely satisfies

the property that diam(G(m,n, p)) ≤ d + 1. Similarly, when d id even, for every c < 1 and

p(n) ≤ c · (2 log n)1/d/(m1/2n(d−2)/(2d)), G(m,n, p) almost surely does not satisfy the property

that diam(G(m,n, p)) ≤ d+1 and for every C > 1 and p(n) ≥ C · (2 log n)1/d/(m1/2n(d−2)/(2d)),

G(m,n, p) almost surely satisfies the property that diam(G(m,n, p)) ≤ d+ 1.

We also need the following key conclusion during our proof. Here we only state it but give

its proof next section. Assume that c0 ≥ 1 is a positive constant and k = k(n) ≤ c0 logn. Let

C1 = 210d · c0 and C2 = 210d · c0/ϵ.

Theorem 2.2 If d is odd, then with probability at least 1− n−Ω(1), the random bipartite graph

G(m,n,C1p1) satisfies the property:

every two distinct vertices of the same partite are connected by at least 210dc0 log n internally

vertex-disjoint paths of length exactly d+ 1, and every two distinct vertices of different partites

are connected by at least 210dc0 log n internally vertex-disjoint paths of length exactly d.

If d is even, then with probability at least 1−n−Ω(1), the random bipartite graph G(m,n,C2p2)

satisfies the property:

every two distinct vertices of the same partite are connected by at least 210dc0 logn internally

vertex-disjoint paths of length exactly d, and every two distinct vertices of different partites are

connected by at least 210dc0 log n internally vertex-disjoint paths of length exactly d+ 1.

Now we are ready to give the proof of Theorem 1.2.

Part 1: d is odd.

We consider the random bipartite G(m,n, p) with p1n ≥ p1m ≥ (log n)4. To establish a

sharp threshold function for a graph property should have two-folds. They are corresponding to

the following two lemmas.
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Lemma 2.3 rck(G(m,n, p)) ≥ d+ 2 almost surely holds for every p ≤ ((ln 2)1/d)/2 · p1.

Proof. Let c1 = ((ln 2)1/d)/2. Obviously c1 < 1. Since

p ≤ c1p1 = (1/2) ·
(
(ln(mn))1/d/(m(d−1)/(2d)n(d−1)/(2d))

)
,

by Theorem 2.1, diam(G(m,n, p)) ≥ d+ 2 almost surely holds. By

Pr[rck(G(m,n, p)) ≥ d+ 2] ≥ Pr[diam(G(m,n, p)) ≥ d+ 2],

we get that for every p ≤ ((ln 2)1/d)/2 · p1, rck(G(m,n, p)) ≥ d+ 2 almost surely holds.

Lemma 2.4 rck(G(m,n, p)) ≤ d+ 1 almost surely holds for every p ≥ C1 · p1.

Proof. Let S = {1, 2, . . . , d, d+ 1} be a set of d+ 1 distinct colors. Randomly color the edges of

G(m,n, p) with colors from S. By Theorem 2.2, for every two distinct vertices u, v ∈ U(or u, v ∈
V ) there are at least 210dc0 log n internally vertex-disjoint uv-paths of length exactly d+ 1. Let

P1 be such a uv-path. Under the random coloring, the probability that P1 is a rainbow path is

q1 = (d+ 1)!/(d+ 1)d+1 ≥ ((d+ 1)/e)d+1/(d+ 1)d+1 ≥ 8−d,

by Stirling’s formula. Meanwhile, for every u ∈ U and v ∈ V there are also at least 210dc0 log n

internally vertex-disjoint uv-paths of length exactly d. Let P2 be such a uv-path. The probability

that P2 is a rainbow path is

q2 =

(
d+ 1

d

)
d!/(d+ 1)d ≥ ((d+ 1)/e)d+1/(d+ 1)d ≥ 4−d.

Let q = min{q1, q2} ≥ 8−d. Fix u, v ∈ U(or u, v ∈ V or u ∈ U, v ∈ V ), we can estimate the

upper bound of the probability that there are at most k−1 such uv-paths that are rainbow ones

by (
210dc0 log n

k − 1

)
(1− q)2

10dc0 logn−(k−1)

≤
(
210dc0 log n

c0 log n

)
(1− 8−d)(2

10d−1)c0 logn

≤
(
210dc0 log n · e

c0 log n

)c0 logn

· 2−8−d·(210d−1)c0 logn

=(210de)c0 logn · 2−8−d·(210d−1)c0 logn

=

(
e · 2(10d+8−d)

28−d·210d

)c0 logn

≤n−100,

where we apply the inequality
(
n
k

)
≤ (nek )k †

†We find that if in [12] He and Liang use this inequality, their proof could be simplified significantly.
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By the Union Bound, with probability at least

1−
[(

m

2

)
+

(
n

2

)
+

(
m

1

)(
n

1

)]
n−100 ≥ 1− n−90,

every two distinct vertices of G(m,n, p) have at least k internally vertex-disjoint rainbow paths

connecting them. This implies that with probability at least 1−n−90, the event rck(G(m,n, p)) ≤
d+ 1 happens, which gives precisely we want.

By the two lemmas above, it follows that

p1 = (log(mn))1/d/(m(d−1)/(2d)n(d−1)/(2d))

is a sharp threshold function for the property rck(G(m,n, p)) ≤ d + 1, where p1n ≥ p1m ≥
(log n)4.

Part 2: d is even.

Recall that p2 = (log n)1/d/(m1/2n(d−2)/(2d)). We consider the random bipartite graph

G(m,n, p), where m and n satisfy that p2n
1−ϵ ≥ p2m

1−ϵ ≥ (log n)4. The following two lemmas

imply that p2 is a sharp threshold function for the property rck(G(m,n, p)) ≤ d+ 1.

Lemma 2.5 rck(G(m,n, p)) ≥ d+ 2 almost surely holds for every p ≤ p2.

Proof. Let c2 = 1/((2 ln 2)1/d). Obviously, c2 < 1. Since

p ≤ p2 = (log n)1/d/(m1/2n(d−2)/(2d))

=
(
1/(2 ln 2)1/d

)
·
(
(2 lnn)1/d/(m1/2n(d−2)/(2d))

)
= c2 ·

(
(2 lnn)1/d/(m1/2n(d−2)/(2d))

)
,

by Theorem 2.1, diam(G(m,n, p)) ≥ d + 2 almost surely holds. Then it follows that for every

p ≤ p2, rck(G(m,n, p)) ≥ d+ 2 almost surely holds.

Similar to the proof of Lemma 2.4, we can easily get the following result.

Lemma 2.6 rck(G(m,n, p)) ≤ d+ 1 almost surely holds for every p ≥ C2 · p2.

By the two lemmas above, we can conclude that

p2 = (log n)1/d/(m1/2n(d−2)/(2d))

is a sharp threshold function for the property rck(G(m,n, p)) ≤ d + 1, where m and n satisfy

that p2n
1−ϵp2m

1−ϵ ≥ (log n)4.

Combining the two parts discussed above, we complete the proof of Theorem 1.2.
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3 Proof of Theorem 2.2

In this section, we give the proof of Theorem 2.2. We also divide our proof into two parts

according to the parity of d. We first give a definition. An (s, t)-ary tree with a designated

root is a tree such that every non-leaf vertex of even level has exactly s children and every non-

leaf vertex of odd level has exactly t children, where we assume that the root is in zero-level.

Obviously, an (s, t)-ary tree and a (t, s)-ary tree of the same depth are usually different trees.

Part 1: d is odd.

Let p = C1p1 = C1(log(mn))1/d/(m(d−1)/(2d)n(d−1)/(2d)). For every u ∈ U and S ⊆ V (or

u ∈ V and S ⊆ U), let X be the random variable counting the number of neighbors of u inside

S.

Lemma 3.1 For every fixed u, S such that u ∈ U , S ⊆ V and |S| ≥ n/2 for sufficiently large

n,

Pr[X ≥ pn/10] ≥ 1− 2−Ω(n1/d).

Proof. Denote by S′ any subset of S with cardinality n/2. Let X1 be the random variable

counting the number of neighbors of u inside S′. Obviously, X1 can be expressed as the sum

of n/2 independent random variables, each of which taking 1 with probability p and 0 with

probability 1− p. Thus E[X1] = pn/2. By the Chernoff-Hoeffding Bound, we have

Pr[X1 < (1− 4/5)pn/2] ≤ exp
(
−(1/2)(4/5)2(pn/2)

)
= 2−Ω(n1/d),

By X ≥ X1, the event X ≥ pn/10 happens with probability at least 1 − 2−Ω(n1/d), which is

precisely what we want.

Lemma 3.2 For every fixed u, S such that u ∈ V , S ⊆ U and |S| ≥ m/2 for sufficiently large

n,

Pr[X ≥ pm/10] ≥ 1− n−Ω(log3 n).

The proof is similar to that of Lemma 3.1. From Lemmas 3.1 and 3.2, it follows that

Pr[X ≥ pn/ log n] ≥ 1− 2−Ω(n1/d) and Pr[X ≥ pm/ logm] ≥ 1− n−Ω(log3 n).

Lemma 3.3 With probability at least 1−n−Ω(1), every two distinct vertices of U are connected

by at least 210dc0 log n internally vertex-disjoint paths of length exactly d+ 1.

Proof. Fix u, v ∈ U, u ̸= v. Consider the following process to generate a (pn/ log n, pm/ logm)-

ary tree of depth d rooted at u:

Step 1. Let T0 = {u}, i← 1, and Ti ← ∅.

Step 2. If i is odd, for every vertex w ∈ Ti−1, choose pn/ log n distinct neighbors of w from

the set V \ (∪ij=0Tj), and add them to Ti. (Note that Ti−1 ⊆ U , Ti is updated every
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time after the processing of a vertex w, and in fact only when j is odd Tj ⊆ V .)

If i is even, for every vertex w ∈ Ti−1, choose pm/ logm distinct neighbors of w from

the set U \ ({v}
∪
∪ij=0Tj), and add them to Ti.

Step 3. Let i← i+ 1. If i ≤ d then go to Step 2, otherwise stop.

Of course, the process may fail during Step 2, since with nonzero probability no neighbor

of w can be chosen as a candidate. However, we will show that with high probability the

tree can be successfully constructed. Observe that when j is even, Tj ⊆ U , and when j is

odd, Tj ⊆ V . Thus, Td−1 ⊆ U , Td ⊆ V and |Td−1| = (pm/ logm)(d−1)/2(pn/ log n)(d−1)/2,

|Td| = (pm/ logm)(d−1)/2(pn/ log n)(d+1)/2. At any time during the process,

|{v} ∪
i∪

j=0,j is even

Tj | ≤ 1 +

d−1∑
j=0

|Tj | ≤ d · |Td−1|

= d · (pm/ logm)(d−1)/2(pn/ log n)(d−1)/2

=
d · Cd−1

1 (log(mn))(d−1)/d

(logm)(d−1)/2(log n)(d−1)/2
·m(d−1)/(2d)n(d−1)/(2d)

≤ m/2

and

|
i∪

j=0,j is odd

Tj | ≤
d∑

j=0

Tj ≤ (d+ 1)|Td|

= (d+ 1) · (pm/ logm)(d−1)/2(pn/ log n)(d+1)/2

=
(d+ 1) · Cd

1 log(mn)

(logm)(d−1)/2(log n)(d+1)/2
· n

≤ n/2

for all sufficiently large n.

By Lemmas 3.1 and 3.2, every execution of Step 2 fails with probability at most n−Ω(log3 n).

Since Step 2 can be executed for at most (d+ 1)(pm/ logm)(d−1)/2(pn/ log n)(d+1)/2, we obtain

that, with probability at least

1− (d+ 1) · (pm/ logm)(d−1)/2(pn/ log n)(d+1)/2 · n−Ω(log3 n) = 1− n−Ω(log3 n),

the process can be successfully terminated.

Now we assume that T has been successfully constructed. The number of leaves in T is

exactly |Td|. Let Y be the random variable counting the number of neighbors of v inside Td. It

is obvious that

E[Y ] = p · |Td| =
Cd+1
1 (log(mn))(d+1)/d

(logm)(d−1)/2(log n)(d+1)/2
· n

(d+1)/(2d)

m(d−1)/(2d)
≥ 10 · n1/(2d).

By the Chernoff-Hoeffding Bound, we get

Pr[Y < n1/(2d)] ≤ exp(−(1/2)(9/10)2 · 10n1/(2d)) ≤ 2−n1/(4d)
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For every w ∈ T1, define as the vice-tree Tw of T the subtree of T of depth d − 1 rooted

at w. Notice that every vice-tree contains (pm/ logm)(d−1)/2(pn/ logn)(d−1)/2 leaves. For each

vice-tree Tw, let Zw be the random variable counting the number of neighbors of v inside the

set of leaves of Tw. Then we have

Pr[Zw ≥ n1/(10d)] ≤
(
(pm/ logm)(d−1)/2(pn/ log n)(d−1)/2

n1/(10d)

)
· pn1/(10d)

≤

(
(pm/ logm)(d−1)/2(pn/ log n)(d−1)/2 · e

n1/(10d)

)n1/(10d)

· pn1/(10d)

=

(
Cd
1 log(mn) · e

(logm)(d−1)/2(log n)(d−1)/2 · n1/(10d)

)n1/(10d)

≤ n−100,

where we apply the inequality
(
n
k

)
≤ (nek )k. By applying the Union Bound, we get

Pr[
∨

w∈T1

(Zw ≥ n1/(10d))] ≤ (pn/ log n) · n−100 ≤ n−90.

Combined with previous estimations, we derive that with probability at least

1− n−Ω(log3 n) − 2−n1/(4d) − n−90 ≥ 1− n−80,

the following three events simultaneously happen:

1. the tree T is successfully constructed,

2. v has at least n1/(2d) neighbors inside the set of leaves of T ,

3. every vice-tree Tw contains at most n1/(10d) leaves that are neighbors of v.

It is clear that each neighbor v′ of v inside Td induces a uv-path of length d + 1. If two

neighbors v′ and v′′ of v belong to distinct vice-trees, then the corresponding two uv-paths are

internally vertex-disjoint. When all these three events happen, we can choose n1/(2d)/n1/(10d) =

n2/(5d) ≥ 210dc0 log n neighbors of v inside Td, every two of which are from different vice-trees.

Thus we can immediately obtain at least 210dc0 log n internally vertex-disjoint uv-paths.

By using the Union Bound again, it then follows that, with probability at least

1−
(
m

2

)
· n−80 = 1− n−Ω(1),

every two distinct vertices of U are connected by at least 210dc0 log n internally vertex-disjoint

paths of length exactly d+ 1. This completes the proof of Lemma 3.3.

Lemma 3.4 With probability at least 1−n−Ω(1), every two distinct vertices of V are connected

by at least 210dc0 log n internally vertex-disjoint paths of length exactly d+ 1.
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Proof. The proof is similar to that of Lemma 3.3. Here we only point out the differences. Fix

u, v ∈ V, u ̸= v. We first construct a
(
pm/((logm)2/(d−1)), pn/((log n)2/(d−1))

)
-ary tree of depth

d rooted at u. We can easily determinate that with probability at least 1− n−Ω(log3 n) the tree

T can be successfully constructed. Td is just the set of leaves of T and

Td =
(
pm/((logm)2/(d−1))

)(d+1)/2
·
(
pn/((log n)2/(d−1))

)(d−1)/2
.

Let Y be the random variable counting the number of neighbors v inside Td. It is obvious

that

E[Y ] = p · |Td| =
Cd+1
1 (log(mn))(d+1)/d

(logm)(d+1)/(d−1) log n
· m

(d+1)/(2d)

n(d−1)/(2d)
≥ C2

1 (log n)
2.

As before, we have

Pr
[
Y < C1(log n)

2
]
≤ Pr

[
Y < (1− (C1 − 1)/C1) · C2

1 (log n)
2
]

≤ exp
(
−(1/2)((C1 − 1)/C1)

2 · C2
1 (log n)

2
)

≤ n−O(logn)

Notice that every vice-tree contains
(
pm/((logm)2/(d−1))

)(d−1)/2 ·
(
pn/((log n)2/(d−1))

)(d−1)/2

=
(
pd−1m(d−1)/2n(d−1)/2

)
/ (logm · log n) leaves. For each vice-tree Tw, let Zw be the random

variable counting the number of neighbors v inside the set of leaves of Tw. Then we have

Pr[Zw ≥ log n] ≤
((

pd−1m(d−1)/2n(d−1)/2
)
/ (logm · log n)

log n

)
· plogn

≤

(
pdm(d−1)/2n(d−1)/2e

logm · log2 n

)logn

=

(
Cd
1 log(mn) · e
logm · log2 n

)logn

≤ n−O(log logn),

and

Pr[
∨

w∈T1

(Zw ≥ log n)] ≤ (pm/(logm)2/(d−1)) · n−O(log logn) = n−O(log logn).

Since C1 log
2 n/ log n = 210dc0 log n, combined with the estimations above, we derive that

with probability at least

1− n−Ω(log3 n) − n−O(logn) − n−O(log logn) = 1− n−O(log logn),

there are at least 210dc0 log n internally vertex-disjoint uv-paths.

Therefore, we can easily obtain that with probability at least

1−
(
n

2

)
· n−O(log logn) = 1− n−O(log logn),

every two distinct vertices of V have at least 210dc0 log n internally vertex-disjoint paths of length

d+ 1 connecting them.
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Lemma 3.5 With probability at least 1−n−Ω(1), every two distinct vertices of different partites

are connected by at least 210dc0 log n internally vertex-disjoint paths of length exactly d.

Proof. Similarly, fix u ∈ U, v ∈ V . We first construct a (pn/10, pm/10)-ary tree of depth d − 1

rooted at u. It can also be estimated that with probability at least 1 − n−Ω(log3 n) the tree T

can be successfully constructed.

Let Y be the random variable counting the number of neighbors of v inside Td−1 which is

just the set of leaves of T . Then

|Td−1| = (pm/10)(d−1)/2(pn/10)(d−1)/2,

E[Y ] = p · |Td−1| = 10 · (C1/10)
d · log(mn),

Pr
[
Y < (C1/10)

d log(mn)
]
≤ n−10.

Notice that every vice-tree contains (pm/10)(d−1)/2(pn/10)(d−3)/2 leaves. For each vice-tree

Tw, let Zw be the random variable counting the number of neighbors v inside the set of leaves

of Tw. Then we have

Pr[Zw ≥ 10d] ≤
(
(pm/10)(d−1)/2 · (pn/10)(d−3)/2

10d

)
· p10d ≤ O(n−5),

Pr[
∨

w∈T1

(Zw ≥ 10d)] ≤ (pn/10) ·O(n−5) ≤ O(n−4).

Since ((C1/10)
d/10d) log(mn) ≥ 210dc0 log n, combined with the estimations above, we derive

that with probability at least

1− n−Ω(log3 n) − n−10 −O(n−4) ≥ 1−O(n−3),

there are at least 210dc0 log n internally vertex-disjoint uv-paths.

It follows that with probability at least 1−mn·O(n−3) ≥ 1−n−1 every two distinct vertices of

different partites have at least 210dc0 log n internally vertex-disjoint paths of length d connecting

them.

Now we have seen that Theorem 2.2 is true for the case that d is odd.

Part 2: d is even.

Let p = C2p2 = C2(log n)
1/d/(m1/2n(d−2)/(2d)). For every u ∈ U and S ⊆ V (or u ∈ V and

S ⊆ U), let X be the random variable counting the number of neighbors of u inside S. We have

the following results similar to Lemmas 3.1 and 3.2.

Lemma 3.6 For every fixed u, S such that u ∈ U , S ⊆ V and |S| ≥ n/2 for sufficiently large

n,

Pr[X ≥ pn/10] ≥ 1− 2−Ω(n1/d).

11



Lemma 3.7 For every fixed u, S such that u ∈ V , S ⊆ U and |S| ≥ m/2 for sufficiently large n,

Pr[X ≥ pm/10] ≥ 1− n−Ω(log3 n).

Lemmas 3.6 and 3.7 also imply that Pr[X ≥ pn/ log n] ≥ 1 − 2−Ω(n1/d) and Pr[X ≥
pm/ logm] ≥ 1 − n−Ω(log3 n). The proofs of the following three lemmas are similar to those

of Lemmas 3.3, 3.4 and 3.5, but the estimations are different. So we only sketch the proofs of

them and list the results of their estimations.

Lemma 3.8 With probability at least 1−n−Ω(1), every two distinct vertices of U are connected

by at least 210dc0 log n internally vertex-disjoint paths of length exactly d.

Proof. Fix u, v ∈ U, u ̸= v. We construct a (pn/10, pm/10)-ary tree of depth d− 1 rooted at u.

Then we can similarly give the estimations. We obtain that with probability at least

1− n−Ω(log3 n) − n−10 − n−5 ≥ 1− n−4,

the following three events simultaneously happen:

1. the tree T is successfully constructed,

2. v has at least ((C2/10)
d log n) · (n/m) neighbors inside the set of leaves of T ,

3. every vice-tree Tw contains at most 10d · (n/m) leaves that are neighbors of v.

Since
((C2/10)

d log n) · (n/m)

10d · (n/m)
≥ 210dc0logn,

and

1−
(
n

2

)
· n−4 = 1− n−Ω(1),

every two distinct vertices of U are connected by at least 210dc0 log n internally vertex-disjoint

paths of length exactly d.

Lemma 3.9 With probability at least 1−n−Ω(1), every two distinct vertices of V are connected

by at least 210dc0 log n internally vertex-disjoint paths of length exactly d.

Proof. Fix u, v ∈ V, u ̸= v. In this case, we construct a (pm/10, pn/10)-ary tree of depth d− 1

rooted at u. We can determine that with probability at least

1− n−Ω(log3 n) − n−10 −O(n−8) ≥ 1−O(n−7),

the following three events simultaneously happen:

1. the tree T is successfully constructed,

12



2. v has at least (C2/10)
d log n neighbors inside the set of leaves of T ,

3. every vice-tree Tw contains at most (10d)/ϵ leaves that are neighbors of v.

Since
(C2/10)

d log n

(10d)/ϵ
≥ 210dc0 logn,

and

1−
(
n

2

)
·O(n−7) ≥ 1− n−Ω(1),

every two distinct vertices of V are connected by at least 210dc0logn internally vertex-disjoint

paths of length exactly d.

Lemma 3.10 With probability at least 1−n−Ω(1), every two distinct vertices of different partites

are connected by at least 210dc0 log n internally vertex-disjoint paths of length exactly d+ 1.

Proof. Fix u ∈ U, v ∈ V . In this case, the estimations are more complicated than the previous

cases. We construct a (pm/ logm, pn/ log n)-ary tree of depth d rooted at v. We can determine

that with probability at least

1− n−Ω(log3 n) − n−10 −O(n−8) ≥ 1−O(n−6),

the following three events simultaneously happen:

1. the tree T is successfully constructed,

2. u has at least

L1 =
Cd
2 (log n)

(d+1)/d

(logm)d/2(log n)d/2
· n

1/2+1/d

m1/2

neighbors inside the set of leaves of T ,

3. every vice-tree Tw contains at most

L2 =
Cd
2 log n

(logm)d/2−1(log n)d/2
· n

m1−ϵ/2

leaves that are neighbors of v.

Since

L1/L2 ≥ 210dc0 log n,

and

1−
(
n

2

)
·O(n−6) ≥ 1− n−Ω(1),

every two distinct vertices of different partites are connected by at least 210dc0 log n internally

vertex-disjoint paths of length exactly d.

Now we can see that Theorem 2.2 is also true for the case that d is even.

Combining the two parts discussed above, the proof of Theorem 2.2 is thus completed.
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