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Abstract

The Turán number of a k-uniform hypergraph H, denoted by exk (n;H),
is the maximum number of edges in any k-uniform hypergraph F on n ver-
tices which does not contain H as a subgraph. Let C(k)

` denote the family
of all k-uniform minimal cycles of length `, S(`1, . . . , `r) denote the family of
hypergraphs consisting of unions of r vertex disjoint minimal cycles of length
`1, . . . , `r, respectively, and C(k)

` denote a k-uniform linear cycle of length `. We
determine precisely exk (n;S(`1, . . . , `r)) and exk

(
n;C(k)

`1
, . . . ,C(k)

`r

)
for suffi-

ciently large n. The results extend recent results of Füredi and Jiang [Füredi,
Z., Jiang, T. Hypergraph Turán numbers of linear cycles. J. Combin. The-
ory Ser. A, 123(1): 252–270 (2014)], in which the Turán numbers for single
k-uniform minimal cycles and linear cycles are determined.
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1 Introduction

In this paper, we employ standard terminology and notation from hypergraph

theory (see e.g.,[1]). A hypergraph is a pair H = (V, E) consisting of a set V of

vertices and a set E ⊆ P(V ) of edges. If every edge contains exactly k vertices, then
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H is a k-uniform hypergraph. A graph homomorphism f from a graph G = (V, E)

to a graph G′ = (V ′, E ′) is a mapping f : V → V ′ from the vertex set of G to the

vertex set of G′ such that uv ∈ E implies f(u)f(v) ∈ E ′. For two hypergraphs G

and H, we write G ⊆ H if there is an injective homomorphism from G into H. We

use G ∪H to denote the disjoint union of (hyper)graphs G and H. By disjoint, we

will always mean vertex disjoint. A Berge path of length ` is a family of distinct sets

{F1, . . . , F`} and ` + 1 distinct vertices v1, . . . , v`+1 such that for each i = 1, 2, . . . , `,

Fi contains vi and vi+1. Let B(k)
` denote the family of k-uniform Berge paths of length

`. A linear path of length ` is a family of sets {F1, . . . , F`} such that |Fi ∩ Fi+1| = 1

for each i and Fi ∩ Fj = ∅ whenever |i− j| > 1. Let P(k)
` denote the k-uniform linear

path of length `. It is unique up to isomorphisms. A k-uniform Berge cycle of length

` is a cyclic list of distinct k-sets A1, . . . , A` and ` distinct vertices v1, . . . , v` such

that for each i = 1, 2, . . . , `, Ai contains vi and vi+1 (where v`+1 = v1). A k-uniform

minimal cycle of length ` is a cyclic list of k-sets A1, . . . , A` such that consecutive

sets intersect in at least one element and nonconsecutive sets are disjoint. Denote the

family of all k-uniform minimal cycles of length ` by C(k)
` . A k-uniform linear cycle

of length `, denoted by C(k)
` , is a cyclic list of k-sets A1, . . . , A` such that consecutive

sets intersect in exactly one element and nonconsecutive sets are disjoint.

The Turán number, or extremal number, of a k-uniform hypergraph H, denoted

by exk(n; H), is the maximum number of edges in any k-uniform hypergraph F

on n vertices which does not contain H as a subgraph. This is a natural general-

ization of the classic Turán number for 2-uniform graphs; we restrict ourselves to

the case of k-uniform hypergraphs. Let exk(n; F1, F2, . . . , Fr) denote the k-uniform

hypergraph Turán Number of a list of k-uniform hypergraphs F1, F2, . . . , Fr, i.e.,

exk(n; F1, F2, . . . , Fr) = exk(n; F1 ∪ F2 ∪ . . . ∪ Fr).

For the family of k-uniform Berge paths of length `, Györi, Katona and Lemons

[5] determined exk(n;B(k)
` ) exactly for infinitely many n. In [2], Füredi, Jiang and

Seiver established the following results.

Theorem 1 ([2]) Let k, t be positive integers, where k ≥ 3. For sufficiently large n,

we have

exk

(
n;P(k)

2t+1

)
=

(
n− 1

k − 1

)
+

(
n− 2

k − 1

)
+ . . . +

(
n− t

k − 1

)
.

The only extremal family consists of all the k-sets in [n] that meet some fixed set S

of t vertices. Also,

exk

(
n;P(k)

2t+2

)
=

(
n− 1

k − 1

)
+

(
n− 2

k − 1

)
+ . . . +

(
n− t

k − 1

)
+

(
n− t− 2

k − 2

)
.
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The only extremal family consists of all the k-sets in [n] that meet some fixed set S

of t vertices plus all the k-sets in [n] \ S that contain some two fixed elements.

For more results we refer to [2, 6].

For the minimal and linear cycles, Füredi and Jiang [3] determined the extremal

numbers when the forbidden hypergraph is a single minimal cycle or a single linear

cycle. This confirms, in a stronger form, a conjecture of Mubayi and Verstraëte [6]

for k ≥ 5 and adds to the limited list of hypergraphs whose Turán numbers have

been known either exactly or asymptotically. Their main results are as follows.

Theorem 2 ([3]) Let t be a positive integer, k ≥ 4. For sufficiently large n, we have

exk

(
n; C(k)

2t+1

)
=

(
n

k

)
−

(
n− t

k

)
, and exk

(
n; C(k)

2t+2

)
=

(
n

k

)
−

(
n− t

k

)
+1.

For C(k)
2t+1, the only extremal family consists of all the k-sets in [n] that meet some

fixed t-set S. For C(k)
2t+2, the only extremal family consists of all the k-sets in [n] that

intersect some fixed t-set S plus one additional k-set outside S.

Theorem 3 ([3]) Let t be a positive integer, k ≥ 5. For sufficiently large n, we have

exk

(
n;C(k)

2t+1

)
=

(
n

k

)
−

(
n− t

k

)
, and exk

(
n,C(k)

2t+2

)
=

(
n

k

)
−

(
n− t

k

)
+

(
n− t− 2

k − 2

)
. For C(k)

2t+1, the only extremal family consists of all the k-sets in [n]

that meet some fixed t-set S. For C(k)
2t+2, the only extremal family consists of all the

k-sets in [n] that intersect some fixed t-set S plus all the k-sets in [n]\S that contain

some two fixed elements.

From definition, two k-uniform minimal cycles of the same length may not be iso-

morphic. Hence, we define the following family of hypergraphs, where every member

consists of r vertex disjoint cycles:

S(`1, . . . , `r) = {C1 ∪ . . . ∪ Cr : Ci ∈ C(k)
`i

for i ∈ [r]}.

Apart from the results above, we will need the following result, due to Keevash,

Mubayi and Wilson [4].

Theorem 4 ([4]) Let H be a k-uniform hypergraph on n vertices with no two edges

intersecting in exactly one vertex, where k ≥ 3. Then |E(H)| ≤ (
n

k−2

)
.
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Based on earlier work of Füredi and Jiang [3], in this paper we will determine

precisely the exact Turán numbers when the forbidden hypergraphs are r vertex

disjoint minimal cycles or r vertex disjoint linear cycles. Our main results are as

follows.

Theorem 5 Let integers k ≥ 4, r ≥ 1, `1, . . . , `r ≥ 3, t =
r∑

i=1

⌊
`i+1

2

⌋ − 1, and I = 1

if all the `1, . . . , `r are even, and I = 0 otherwise. For sufficiently large n,

exk (n;S(`1, . . . , `r)) =

(
n

k

)
−

(
n− t

k

)
+ I.

Theorem 6 Let integers k ≥ 5, r ≥ 1, `1, . . . , `r ≥ 3, t =
r∑

i=1

⌊
`i+1

2

⌋ − 1, and

J =

(
n− t− 2

k − 2

)
if all the `1, . . . , `r are even, and J = 0 otherwise. For sufficiently

large n,

exk

(
n;C(k)

`1
, . . . ,C(k)

`r

)
=

(
n

k

)
−

(
n− t

k

)
+ J.

Sometimes, we allow the hypergraph to contain less than r minimal or linear

cycles, consider the Turán number in such cases, we have the following two corollaries.

We use notation r · F to denote r vertex disjoint copies of a hypergraph F . Let

`1 = . . . = `r = `, we can immediately get the following two corollaries from Theorems

5 and 6.

Corollary 1 Let integers k ≥ 4, r ≥ 1, ` ≥ 3, t = r
⌊

`+1
2

⌋ − 1, and I = 1 if ` is

even, and I = 0 if ` is odd. For sufficiently large n,

exk

(
n; r · C(k)

`

)
=

(
n

k

)
−

(
n− t

k

)
+ I.

Corollary 2 Let integers k ≥ 5, r ≥ 1, ` ≥ 3, t = r
⌊

`+1
2

⌋−1, and J =

(
n− t− 2

k − 2

)

if ` is even, and J = 0 if ` is odd. For sufficiently large n,

exk

(
n; r · C(k)

`

)
=

(
n

k

)
−

(
n− t

k

)
+ J.

We can see that Theorem 2 and Theorem 3 are special cases of Corollary 1 and

Corollary 2 (when r = 1), respectively. However, the methods we used in the proofs

of Theorem 5 and Theorem 6 are quite different from Theorem 2 and Theorem 3.
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2 Proof of Theorem 5

For convenience, we define f(n, k, {`1, . . . , `r}) =

(
n

k

)
−

(
n− t

k

)
+ I. Note

that the hypergraph on n vertices that has every edge incident to some fixed t-set

S, along with one additional edge disjoint from S when all of `1, . . . , `r are even,

has exactly f(n, k, {`1, . . . , `r}) edges and does not contain a copy of any member of

S(`1, . . . , `r).

Thus, to prove Theorem 5, it suffices to show that exk (n;S(`1, . . . , `r)) ≤
(

n

k

)
−

(
n− t

k

)
+I, i.e., any hypergraph on n vertices with more than f(n, k, {`1, . . . , `r})

edges must contain a member of S(`1, . . . , `r). We use induction on r. From Theorem

2, the case r = 1 has been proved. Assume that r ≥ 2, and Theorem 5 holds for

smaller r.

Let H be a hypergraph on n vertices with m edges and m > f(n, k, {`1, . . . , `r}).
Since f(n, k, {`1, . . . , `r}) > f(n, k, `1) for sufficiently large n, there exists at least one

k-uniform minimal `1-cycle in H. Take one of them, denote its vertex set by C, so

`1 ≤ |C| ≤ (k−1)`1. We have |E(H\C)| ≤ f(n−|C|, k, {`2, . . . , `r}), since otherwise,

by induction hypothesis, we can find vertex disjoint copies of C(k)
`2
∪ . . . ∪ C(k)

`r
in H,

plus the minimal `1-cycle on C, and then there is a copy of a member of S(`1, . . . , `r)

in H already.

Let mC denote the number of edges in H incident to vertices in C. Then,

mC ≥ m− f(n− |C|, k, {`2, . . . , `r}) (1)

≥ f(n, k, {`1, . . . , `r})− f(n− `1, k, {`2, . . . , `r}) (2)

=

⌊
`1+1

2

⌋

(k − 1)!
nk−1 + O

(
nk−2

)
. (3)

We call an edge in H a terminal edge if it contains exactly one vertex in C. Let T

denote the set of all terminal edges in H. For every (k− 1)-set R in V (H) \C, define

TR = {E ∈ T : R ⊆ E}.
According to the size of each set TR, we divide all the (k − 1)-sets in V (H) \ C into

two sets, such that

X = {R ⊆ V (H) \ C and |R| = k − 1 : |TR| ≤
⌊

`1 + 1

2

⌋
− 1}

Y = {R ⊆ V (H) \ C and |R| = k − 1 : |TR| ≥
⌊

`1 + 1

2

⌋
}.
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It is not difficult to give an upper bound of mC in terms of |X| and |Y | as follows:

mC ≤
(
|C|
2

)(
n− 2

k − 2

)
+ |X|

(⌊
`1 + 1

2

⌋
− 1

)
+ |Y | · |C|

≤
(
|C|
2

)(
n− 2

k − 2

)
+

(
n

k − 1

)(⌊
`1 + 1

2

⌋
− 1

)
+ |Y | · `1 (k − 1) .

Combine with (3), we have

|Y | ≥ nk−1

(k − 1) `1 (k − 1)!
+ O(nk−2). (4)

For any (k − 1)-set R ∈ Y , there are at least
⌊

`1+1
2

⌋
vertices in C that can form

terminal edges with R. We choose exactly
⌊

`1+1
2

⌋
of them, and call the vertex set of

these
⌊

`1+1
2

⌋
vertices terminal set relative to R. Since the number of

⌊
`1+1

2

⌋
-sets in

C is at most

(
|C|⌊
`1+1

2

⌋
)

, we can get that some elements in Y may have the same

terminal set. And it is easy to derive that the number of (k − 1)-sets in Y with the

same terminal set is at least

nk−1

(k − 1) `1 (k − 1)!

( |C|⌊
`1+1

2

⌋
)−1

+O(nk−2) ≥ nk−1

(k − 1) `1 (k − 1)!

(
(k − 1) `1⌊

`1+1
2

⌋
)−1

+O(nk−2).

Choose one terminal set U in C, such that there are at least nk−1

(k−1)`1(k−1)!

((k−1)`1

b `1+1
2 c

)−1
+

O(nk−2) (k − 1)-sets in V (H) \ C, every such (k − 1)-set can form a terminal edge

with every vertex in U . Let RU be the set of all the common (k − 1)-sets associated

with U in V (H) \ C. Then we have

|RU | ≥ nk−1

(k − 1) `1 (k − 1)!

(
(k − 1) `1⌊

`1+1
2

⌋
)−1

+ O(nk−2). (5)

Let mU denote the number of edges incident to vertices in U . Then,

mU ≤
⌊

`1 + 1

2

⌋(
n− ⌊

`1+1
2

⌋

k − 1

)
+ m′,

where m′ is the number of edges which contain at least two vertices in U . With some

calculations, we have

f(n, k, {`1, . . . , `r})− f(n−
⌊

`1 + 1

2

⌋
, k, {`2, . . . , `r})−mU

=

(
n− 1

k − 1

)
+

(
n− 2

k − 1

)
+ · · ·+

(
n− ⌊

`1+1
2

⌋

k − 1

)
−mU

≥
[(

n− 1

k − 1

)
−

(
n− ⌊

`1+1
2

⌋

k − 1

)]
+

[(
n− 2

k − 1

)
−

(
n− ⌊

`1+1
2

⌋

k − 1

)]

+ · · ·+
[(

n− ⌊
`1+1

2

⌋
+ 1

k − 1

)
−

(
n− ⌊

`1+1
2

⌋

k − 1

)]
−m′.
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It is not difficult to deduce that the last expression is nonnegative (consider the

combinatorial meaning of that expression). Hence, we can derive

E(H \ U) = m−mU > f(n, k, {`1, . . . , `r})−mU

≥ f(n−
⌊

`1 + 1

2

⌋
, k, {`2, . . . , `r}).

Thus by the induction hypothesis, there exists a member of S(`2, . . . , `r) with vertex

set W in V (H) \ U . Also, we have

|W | ≤ (k − 1)
r∑

i=2

`i. (6)

Now we focus on finding a k-uniform minimal `1-cycle disjoint from W . Consid-

ering the (k− 1)-uniform hypergraph H0 with vertex set V (H) \U and edge set RU ,

we will prove the following claim:

Claim 1 There are
⌊

`1
2

⌋
pairs of (k − 1)-edges in H0, say {ai, bi}, i = 1, . . . ,

⌊
`1
2

⌋
,

such that for every i, ai and bi have exactly one common vertex, and for any j 6= i,

{ai, bi} and {aj, bj} are vertex disjoint, moreover, all these (k−1)-edges disjoint from

W .

Proof. The number of (k − 1)-edges incident with some vertices in W is at most

|W | · (n−1
k−2

)
. With the aid of (5) and (6), in RU the number of (k − 1)-edges disjoint

from W is at least

nk−1

(k − 1) `1 (k − 1)!

(
(k − 1) `1⌊

`1+1
2

⌋
)−1

+O(nk−2)−(k−1)
r∑

i=2

`i

(
n− 1

k − 2

)
>

(
n− b `1+1

2
c

k − 2

)
.

By Theorem 4, we can find a pair {a1, b1} of (k − 1)-edges with exactly one com-

mon vertex. Let p =
⌊

`1
2

⌋
(2k − 3). Since nk−1

(k−1)`1(k−1)!

((k−1)`1

b `1+1
2 c

)−1
+ O(nk−2) − (k −

1)
r∑

i=2

`i

(
n−1
k−2

)−p
(

n−1
k−2

)
>

(
n−b `1+1

2
c

k−2

)
, we can repeat the argument above to find {a2, b2},

. . . , {ab `1
2 c, bb `1

2 c} satisfying the properties described in Claim 1. ¤

Let U = {u1, . . . , ub `1+1
2 c}. To form the required minimal `1-cycle, we need to

consider the following two cases:

Case 1. `1 is even.

Find `1
2

pairs of (k− 1)-edges in H0 as described in Claim 1, still denote them by

{ai, bi}, i = 1, . . . , `1
2
. Construct a k-uniform minimal `1-cycle in H with edges:

a1 ∪ {u1}, b1 ∪ {u2}, a2 ∪ {u2}, . . . , b `1
2
−1
∪ {u `1

2

}, a `1
2

∪ {u `1
2

}, b `1
2

∪ {u1}.
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Case 2. `1 is odd.

Find `1−3
2

pairs of (k − 1)-edges in H0 as described in Claim 1. Similar to the

proof of Claim 1. Let Q be the union of W and the set of vertices in all these
`1−3

2
pairs of (k − 1)-edges. Hence, |Q| = `1−3

2
(2k − 3) + |W |. By Theorem 1,

exk−1

(
n− ⌊

`1+1
2

⌋
;P(k−1)

3

)
= 1

(k−2)!
nk−2 +O(nk−3), for sufficiently large n. In H0, the

number of (k− 1)-edges disjoint from Q is at least nk−1

(k−1)`1(k−1)!

((k−1)`1

b `1+1
2 c

)−1
+O(nk−2)−

|Q|(n−1
k−2

)
> 1

(k−2)!
nk−2 + O(nk−3). That implies that in H0 we can find a P(k−1)

3 in

the remaining (k − 1)-edges disjoint from Q. Let x, y, z be the three consecutive

(k − 1)-edges in P(k−1)
3 . Then, in H we can form a k-uniform minimal `1-cycle with

edges:

a1 ∪ {u1}, b1 ∪ {u2}, a2 ∪ {u2}, . . . , a `1−3
2

∪ {u `1−3
2

},
b `1−3

2

∪ {u `1−1
2

}, x ∪ {u `1−1
2

}, y ∪ {u `1+1
2

}, z ∪ {u1}.
Moreover, it is easy to see that this k-uniform minimal `1-cycle is not only minimal,

but also linear, no matter when `1 is even or odd. Thus, we have constructed r

disjoint k-uniform minimal cycles. So, the hypergraph which contains no member of

S(`1, . . . , `r) can not have more than f(n, k, {`1, . . . , `r}) edges. The proof is thus

complete.

3 Proof of Theorem 6

Let g(n, k, {`1, . . . , `r}) =

(
n

k

)
−

(
n− t

k

)
+ J. Firstly, we point out that the

hypergraph on n vertices that has every edge incident to some fixed t-set S, along

with all the k-edges disjoint from S containing some two fixed elements not in S when

all of `1, . . . , `r are even, has exactly g(n, k, {`1, . . . , `r}) edges and does not contain

a copy of any member of C(k)
`1
∪ . . . ∪ C(k)

`r
.

Hence, it suffices to show that exk

(
n;C(k)

`1
, . . . ,C(k)

`r

)
≤ g(n, k, {`1, . . . , `r}). We

proceed by induction on r again since the case r = 1 is provided by Theorem 3.

Let H be a hypergraph on n vertices with m > g(n, k, {`1, . . . , `r}) edges. If one of

`1, . . . , `r is even, rearrange the sequence to make sure `1 is even.

As in the proof of Theorem 5, since g(n, k, {`1, . . . , `r}) > g(n, k, `1) for sufficiently

large n, there exists at least one k-uniform linear `1-cycle in H. Take one of them,

denote its vertex set by C. Similarly, we have |E(H \C)| ≤ g(n−|C|, k, {`2, . . . , `r}).
Still let mC denote the number of edges in H incident to some vertices in C. With
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some calculations, we can get

mC ≥
⌊

`1+1
2

⌋

(k − 1)!
nk−1 + O

(
nk−2

)
.

Again we define terminal edges, TR, X, Y as before, we then can find the
⌊

`1+1
2

⌋
-set

U , too. Then by induction hypothesis, we can find a copy of C(k)
`2
∪ . . .∪C(k)

`r
on vertex

set W in V (H)\U . Now we focus on finding a k-uniform linear `1-cycle disjoint from

W . Again considering the (k − 1)-uniform hypergraph H0 with vertex set V (H) \ U

and edge set RU , it is easy to see that the Claim 1 still holds. Thus, like Theorem 5,

we have the terminal set U = {u1, . . . , ub `1+1
2 c}. To form the required linear `1-cycle,

we also need to consider the following two cases:

Case 1. `1 is even.

Find `1
2

pairs of (k− 1)-edges in H0 as described in Claim 1, still denote them by

{ai, bi}, i = 1, . . . , `1
2
. Construct a k-uniform linear `1-cycle in H with edges:

a1 ∪ {u1}, b1 ∪ {u2}, a2 ∪ {u2}, . . . , b `1
2
−1
∪ {u `1

2

}, a `1
2

∪ {u `1
2

}, b `1
2

∪ {u1}.

Case 2. `1 is odd.

Find `1−3
2

pairs of (k − 1)-edges in H0 as described in Claim 1. Similar to the

proof of Claim 1. Let Q be the union of W and the set of vertices in all these
`1−3

2
pairs of (k − 1)-edges. Hence, |Q| = `1−3

2
(2k − 3) + |W |. By Theorem 1,

exk−1

(
n− ⌊

`1+1
2

⌋
;P(k−1)

3

)
= 1

(k−2)!
nk−2 +O(nk−3), for sufficiently large n. In H0, the

number of (k− 1)-edges disjoint from Q is at least nk−1

(k−1)`1(k−1)!

((k−1)`1

b `1+1
2 c

)−1
+O(nk−2)−

|Q|(n−1
k−2

)
> 1

(k−2)!
nk−2 + O(nk−3). That implies that in H0 we can find a P(k−1)

3 in

the remaining (k − 1)-edges disjoint from Q. Let x, y, z be the three consecutive

(k − 1)-edges in P(k−1)
3 . Then, in H we can form a k-uniform linear `1-cycle with

edges:

a1 ∪ {u1}, b1 ∪ {u2}, a2 ∪ {u2}, . . . , a `1−3
2

∪ {u `1−3
2

},
b `1−3

2

∪ {u `1−1
2

}, x ∪ {u `1−1
2

}, y ∪ {u `1+1
2

}, z ∪ {u1}.
Since we construct this k-uniform linear `1-cycle avoiding the vertices in W , we

know that the hypergraph containing no C(k)
`1
∪ . . . ∪ C(k)

`r
can not have more than

g(n, k, {`1, . . . , `r}) edges. The proof is then complete.
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