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Abstract. The Wiener index W can be viewed as a molecular structure descriptor 

composed of increments representing interactions between pairs of atoms. A generalization of 

the W are the Steiner-Wiener indices kW , k=3,4,.... In the quantity kW , interactions between k-

tuples of atoms play role, based on the concept of Steiner distance. It is shown that the term 

kW W  provides an approximation for the boiling points of alkanes better than W itself. The 

best such approximation is obtained for 7k  . 

 

Keywords: Wiener index, multicenter Wiener index, Steiner distance, Steiner-Wiener index, 

molecular graph 

 

 

INTRODUCTION 

 

The Wiener index (W) is one of the oldest and most examined graph-based molecular 

structure descriptors. For details on its mathematical properties and chemical applications see 

in the reviews,
1-4

 the recent research papers,
5-7

 and the references cited therein. On occasion of 

the fiftieth anniversary of the Wiener index, three special journal issues were published.
8-10

 

Additional historical data on W can be found in the survey.
11

  

 The Wiener index is defined in the following manner. Let G be a molecular graph and 

1 2, , , nv v v   be its vertices. The distance between the vertices iv  and jv , denoted by ( , )i jd v v , 

is the number of edges in (= the length of)  a shortest path that connects iv  and jv . Then, 

 

( ) ( , )i j

i j

W W G d v v


        (1) 

 

with the summation embracing all pairs of vertices ( , )i jv v of the molecular graph G. 
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 Bearing in mind that each vertex of the molecular graph represents an atom of the 

underlying molecule,
12

 the quantity W, defined by means of Eq. (1), may be viewed as a sum 

of structural increments representing pairs of atoms, i.e., two-center interatomic interactions. 

From this point of view, one could think of three-center, four-center, etc. interactions that 

would lead to the following evident multicenter extension of the Wiener-index concept: 

 

3 3( ) ( , , )i j k

i j k

W W G d v v v
 

         (2) 

 

4 4 ( ) ( , , , )i j k l

i j k l

W W G d v v v v
  

        (3) 

 

5 5( ) ( , , , , )i j k l m

i j k l m

W W G d v v v v v
   

       (4) 

 

etc. In formulas (2)-(4), the meaning of the three-, four-, five-vertex distances needs to be 

clarified. In fact, long time ago, such a multi-vertex distance was introduced in graph theory 

by Chartrand et al.
13

 and was eventually much studied under the name “Steiner distance”.
14

 Its 

definition is given in the subsequent section. 

 The multicenter Wiener-type indices, based on Steiner distance, will be referred to as 

“Steiner-Wiener indices” and are also defined in the subsequent section. The present work is 

aimed at establishing their chemical applicability.  

 

 

STEINER DISTANCE AND STEINER-WIENER INDEX 

 

 Let G be a connected graph with n vertices. Let 
1 2

{ , , , }
ki i iS v v v   be a set of k 

distinct vertices of G. Then the Steiner tree ( )T S  is a tree (= connected acyclic graph) that is 

a subgraph of G, containing all vertices of S, and possessing minimal number of edges. The 

number of edges of ( )T S is the Steiner distance of the vertices 
1 2
, , ,

ki i iv v v . For details on the 

Steiner-distance concept see elsewhere.
15,16

 

For 2,3, ,k n  , the k-th Steiner-Wiener index of the (molecular) graph G is defined 

as 



1 2
( ) ( , , , )

kk k i i i

S

W W G d v v v         (5) 

 

where the summation goes over all k-element subsets 
1 2

{ , , , }
ki i iS v v v   of the vertex set of 

G.  

Steiner-Wiener indices kW  were recently considered,
17

 and their basic mathematical 

properties determined. Some of these are the following: 

1. 2 ( )W G  coincides with the ordinary Wiener index ( )W G , Eq. (1).  

2. Eqs. (2), (3), and (4) are special cases of Eq. (5), for 3k  , 4k  , and 5k  , 

respectively. 

3. For a graph G with n vertices, if k n , then ( ) 1kW G n  .  

4. For a graph G with n vertices, if k n , then ( ) 0kW G  .  

5. For a tree T, and for all 2,3, ,k n  , 

1
1 2

1

( ) ( )
( )

k

k

e i

n e n e
W T

i k i





  
   

  
     (6) 

where 1( )n e  and 2 ( )n e  are the number of vertices lying on the two sides if the edge e, and 

where the first summation goes over all edges of T. For all edges e of the tree T, 

1 2( ) ( )n e n e n  .  

Note that for 2k  , formula (6) reduces to the expression (7), discovered by Wiener 

himself as early as in 1947:
5,12,18 

 

1 2( ) ( ) ( )
e

W T n e n e .     (7) 

 

STEINER-WIENER INDICES AND BOILING POINTS OF ALKANES 

 

 The first chemical application of the Wiener index was its usage for the prediction of 

the normal boiling points of alkanes.
18

 Eventually, correlations with boiling points became a 

standard test for the quality of topological indices.
19-22

 In view of this, we also used this 

physico-chemical parameter in our studies of the Steiner-Wiener indices. 

 In Fig. 1 is reproduced the well known
21

 plot of the normal boiling points vs. the 

Wiener index. The curve passing through the data-points is of the form 



*
*

*
( )

1
calc

a bW
bp bp W

cW


 


     (8) 

 

where 
*W W and where , ,a b c  are fitting parameters. The correlation between the 

experimental and calculated boiling points (i.e., between bp  and calcbp , cf. Eq. (8)) are shown 

in Fig. 2. 

Figs. 1 and 2 come about here 

  

 The most obvious idea for testing the Steiner-Wiener indices would be to set *

kW W  

into Eq. (8). This, however, did not yield any improvement, and thus had to be abandoned. A 

better option was to modify the Wiener index as 

 

*

kW W W        (9) 

 

and to use variable 
*W in combination with Eq (8) . For each fixed choice of k,  k=3,4,...8, the 

parameter λ was varied, and its value determined so as to maximize the correlation coefficient 

for the linear correlation between bp  and *( )calcbp W . In all the studied cases, there exists an 

optimal value for λ at which the correlation coefficients attains a maximum; a characteristic 

example is shown in Fig. 3.  

 

Fig. 3 comes about here 

 

The results thus obtained are presented in Tables I and II, and in Figs. 4 and 5.  

 

Tables I and II and Figs. 4 and 5 come about here 

 

DISCUSSION AND CONCLUDING REMARKS 

 

Viewing at the Wiener index as a structure descriptor based on two-center interatomic 

interactions, one could expect that the next-important structural feature will be three-center 

interactions. In the case of Steiner-Wiener index applied to alkanes, this certainly cannot be 

the case, since for trees the following identity holds: 



3

2
( ) ( )

2

n
W T W T


 .      (10) 

 

Therefore 3W  contains the exactly same structural information as the ordinary Wiener index 

W.  

 Relation (10) is deduced from Eq. (6) as follows. For 3k  , Eq. (6) has the form 

 

1 2 1 2

3

( ) ( ) ( ) ( )
( )

1 2 2 1e

n e n e n e n e
W T

      
       

      
   

 

which, bearing in mind that 1 2( ) ( )n e n e n  , is transformed into 

  

2 2 1 1
3 1 2

1 2
1 2 1 2

( )[ ( ) 1] ( )[ ( ) 1]
( ) ( ) ( )

2 2

( ) ( ) 2 2
( ) ( ) ( ) ( )

2 2

e

e e

n e n e n e n e
W T n e n e

n e n e n
n e n e n e n e

  
  

 

  
 



 
 

 

Formula (10) is now obtained from Eq. (7). 

 Our calculations fully agree with the above argument: The accuracy of our models for 

2k   and 3k   is same, see Table I.  

If 3k  , because of the very large number of k-tuples of vertices, the calculation of 

the Steiner-Wiener index kW , based on its definition (5), becomes extremely cumbersome. In 

the case of acyclic systems (such as the molecular graphs of alkanes), instead of Eq. (5) the 

calculations can be done by using Eq. (6), which is significantly easier. In fact, by means of 

Eq. (6) any Steiner-Wiener index kW  can be calculated equally easily as the ordinary Wiener 

index W. 

The fact that the accuracy of the approximations based on the indices 
*

kW W W   

increases with k, and reaches its maximum at 7k  , is somewhat unexpected. It may be that 

this is a statistics-based artifact of the models considered. Anyway, this phenomenon deserves 

to be further examined. 

The results of the present study may be considered from a pessimistic and from an 

optimistic point of view. A pessimist would say that there is very little difference between the 

Figs. 1 and 4, as well as between Figs. 2 and 5. An optimist would point at the fact that the 



average and maximal errors of our best model (based on 7W W ) are, respectively, by 20% 

and 50% smaller than those of the starting model (based solely on W). In view of this, we may 

conclude that by adding multicenter distance-contributions to the Wiener index, its 

applicability to model physico-chemical properties of alkanes is improved, but only to a 

limited extent. 
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Vienerov indeks W se može posmatrati kao molekulski strukturni deskriptor sastavljen 

od sabiraka koji reprezentuju interakcije izmedu parova atoma. Jedna generalizacija 

Vinerovog indeksa su Štajner-Vinerovi indeksi 
kW  , k=3,4,.... U indeksu 

kW se vodi računa o 

interakcijama k atoma, zasnovanih na pojmu Štajnerovog rastojanja. Pokazano je da formula 

kW W  omogućava aproksimativno izračunavanje tačke ključanja alkana bolje nego sam 

Vinerov indeks. Najbolja takva aproksimacije je za k=7. 
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Table and Figure Captions 

 

 

TABLE I. Statistical data for the correlations between boiling points and the topological 

indices *

kW W W  , k=2,3,...,9; R = correlation coefficient, ARE = average relative error 

(in %), MRE = maximal observed relative error (in %). By boldface are indicated the data for 

the best approximation. For details, see Eqs. (8) and (9) and the text. 

 

TABLE II. Fitting parameters in formulas (8) and (9), for k=2,3,...,9. The (a,b,c)-values were 

obtained by means of the scaled Levenberg-Marquardt algorithm.
24

 The λ-values are those for 

which the respective correlation coefficients are maximal, cf. Fig. 3. By boldface are indicated 

the parameters for the best approximation. 

 

 

Fig. 1. Correlation between normal boiling points (bp / 
o
C ) and Wiener index (W) for the set 

of all isomeric alkanes with 2 to 9 carbon atoms (74 compounds).
23

 The curve passing through 

the data-points is specified by Eq. (8). Statistical data pertaining to this correlation are found 

in Tables I and II, for 2k  . 

 

 

Fig. 2. Correlation between the calculated boiling points ( calcbp , according to Eq. (8), 
*W W )  and the experimental boiling points (bp) for the same compounds as in Fig. 1. 

Statistical data pertaining to this correlation are found in Tables I and II, for 2k  . 

. 
 

 

Fig. 3. The λ-dependence of the correlation coefficient R for the correlation between bp  and 

calcbp  for the case 5k  . The maximum is attained at 0.063  , cf. Table II. 

 

 

Fig. 4. Normal boiling points (bp / 
o
C ) vs. 7W W  for the same alkanes as in Fig. 1. As the 

data in Tables I and II. show, the choice 7k   provides the best agreement between bp and 

bpcalc , cf. Eqs. (8) and (9). 

 

 

Fig. 5. The best correlation between  bp and bpcalc , obtained by Eqs. (8) and (9) for 7k  . 

Statistical data pertaining to this correlation are found in Tables I and II. 

 

 

 

 

 



 

 

TABLE I. Statistical data for the correlations between boiling points and the topological 

indices *

kW W W  , k=2,3,...,9; R = correlation coefficient, ARE = average relative error 

(in %), MRE = maximal observed relative error (in %). By boldface are indicated the data for 

the best approximation. For details, see Eqs. (8) and (9) and the text. 

 

 

k R ARE MRE 

2 0.98954 1.45 8.42 

3 0.98957 1.45 8.83 

4 0.99018 1.41 9.46 

5 0.99135 1.33 8.58 

6 0.99256 1.23 6.80 

7 0.99323 1.18 4.63 

8 0.99273 1.23 4.19 

9 0.99149 1.33 6.98 

 

 

 

 



TABLE II. Fitting parameters in formulas (8) and (9), for k=2,3,...,9. The (a,b,c)-values were 

obtained by means of the scaled Levenberg-Marquardt algorithm.
24

 The λ-values are those for 

which the respective correlation coefficients are maximal, cf. Fig. 3. By boldface are indicated 

the parameters for the best approximation. 

 

 

 

k a b c λ 

2 191.328 15.104 0.031 - 

3 192.480 14.547 0.031 0.023 

4 193.704 14.820 0.032 0.044 

5 191.287 16.476 0.037 0.063 

6 186.764 18.773 0.043 0.127 

7 181.255 21.421 0.049 0.392 

8 180.547 20.834 0.047 0.802 

9 187.788 16.790 0.036 1.400 

 

 

 

 



 

 

 

 

 

 

Fig. 1. Correlation between normal boiling points (bp / 
o
C ) and Wiener index (W) for the set 

of all isomeric alkanes with 2 to 9 carbon atoms (74 compounds).
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 The curve passing through 

the data-points is specified by Eq. (8). Statistical data pertaining to this correlation are found 

in Tables I and II, for 2k  . 
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Fig. 3. The λ-dependence of the correlation coefficient R for the correlation between bp  and 

calcbp  for the case 5k  . The maximum is attained at 0.063  , cf. Table II. 

 



 

 

 

 

 
 

 

Fig. 4. Normal boiling points (bp / 
o
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Fig. 5. The best correlation between  bp and bpcalc , obtained by Eqs. (8) and (9) for 7k  . 

Statistical data pertaining to this correlation are found in Tables I and II. 


