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Abstract
For a graph G and a set S of vertices of G, let A(S) denote the maximum number £
of pairwise edge-disjoint Steiner trees Ty, T, - - - , Ty in G such that S C V(T;) for every
1 < i < /. For an integer k£ with 2 < k < n, where n is the order of GG, the generalized
k-edge-connectivity A\, (G) of G is defined as A\ (G) = min{A(S) | S C V(G) and |S| =
k}. In this paper, we consider the Nordhaus-Gaddum-type results for the parameter

A (G). We obtain sharp upper and lower bounds of A\t (G) + A\, (G) and A\;(G) - Mg (G)
for a graph G of order n, as well as a graph G of order n and size m. Some graph
classes attaining these bounds are also given.
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1 Introduction

All graphs considered in this paper are undirected, finite and simple. We refer to the
book [4] for graph theoretical notation and terminology not described here. For a graph
G(V,E) and a set S C V(G) of at least two vertices, an S-Steiner tree or a Steiner tree
connecting S (a Steiner tree for short) is a subgraph T'(V', E') of G that is a tree with
S C V. Two Steiner trees T' and T” connecting S are edge-disjoint if E(T) N E(T') = @.
The Steiner Tree Packing Problem for a given graph G(V,E) and S C V(G) asks to
find a set of maximum number of edge-disjoint S-Steiner trees in G. This problem has
obtained wide attention and many results have been obtained, see [7, 8, 10, 11, 24, 26].
The problem for S = V(G) is called the Spanning Tree Packing Problem. For any graph
G of order n, the spanning tree packing number or ST P number, is the maximum number
of edge-disjoint spanning trees contained in G. For the ST P number, we refer the reader
to Palmer’s survey [23].
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Recently, we introduced the concept of the generalized edge-connectivity of a graph
G in [21]. For S C V(G) and |S| > 2, the generalized local edge-connectivity A(S) is the
maximum number of edge-disjoint Steiner trees connecting S in G. Note that when |S| = 2
a minimum Steiner tree connecting S is just a path connecting S. For an integer k& with
2 < k < n, where n is the order of G, the generalized k-edge-connectivity A\(G) of a graph
G is defined as A\ (G) = min{A(S) : S C V(G) and |S| = k}. Clearly, when [S| = 2, \2(G)
is nothing new but the edge-connectivity A(G) of G, that is, A2(G) = A(G), which is the
reason why we address \;(G) as the generalized k-edge-connectivity of G. Obviously, the
ST P number of a graph G is just A\,(G). By convention, for a connected graph G with
less than k vertices, we set A\ (G) = 1, and set A\;(G) = 0 when G is disconnected. A\ (G)
is called the generalized k-edge-connectivity also because it is a natural counterpart of the
concept of the generalized (vertex) connectivity, introduced by Chartrand et al. [5] in 1984.
Results on the generalized connectivity can be seen in [12, 13, 14, 15, 17, 18, 19, 20, 21].

Let G(n) denote the class of simple graphs of order n (n > 2) and G(n, m) the subclass
of G(n) in which every graph has n vertices and m edges. Give a graph parameter f(G) and
a positive integer n, the Nordhaus-Gaddum(N-G) Problem is to determine sharp bounds
for (1) f(G)+ f(G) and (2) f(G)- f(G), as G ranges over the class G(n), and characterize
the extremal graphs, i.e., graphs that achieve the bounds. The Nordhaus-Gaddum type
relations have received wide attention; see a recent survey paper [3] by Aouchiche and
Hansen.

In this paper, we study the above problem on the generalized edge-connectivity. The

paper is organized as follows. In Section 2, we study A\ (G) + A\, (G) and Mg (G) - A\, (G) for
the parameter A\;(G) where G € G(n), and get the following result.

Theorem 1. Let G € G(n) and let k be an integer with 3 < k <n. Then
(1) 1< M(G) + M(G) < — [k/2];
(2) 0 < M(@) - M(@) < [*5].

Moreover, the upper and lower bounds are sharp.

In Section 3, we focus our attention on the graph class G(n, m) and obtain the sharp

bounds of A\i(G) + Mk (G) and A\ (G) - Mk (G).

Theorem 2. Let G € G(n,m) and let k be an integer with 3 < k < n. Forn > 6, we have
(1) L(n,m) < M(G) + M\i(G) < M(n,m);
(2) 0 < M(G) - Me(G) < N(n,m),
where L(n,m), M(n,m), N(n,m) are defined in Lemmas 8 and 9.

Moreover, the upper and lower bounds are sharp.

The following theorem and corollary will be used in Section 3 and Section 2, respec-
tively.

Theorem 3. (Nash-Williams [22], Tutte [25]) A multigraph G contains a system of £
edge-disjoint spanning trees if and only if

IG/ 2| > (2| - 1)



holds for every partition & of V(G), where |G/ 2| denotes the number of crossing edges
in G, i.e., edges between distinct parts of .

Corollary 1. Every 2¢-edge-connected graph contains a system of £ edge-disjoint spanning
trees.

2 Nordhaus-Gaddum-type results in G(n)

All graphs considered in this section are of order n. The following observation is
obvious.

Observation 1. Let G be a graph of order n, and let k be an integer with 3 < k < n.
(1) If G is a connected graph, then 1 < A\p(G) < AMG) < §(G).
(2) If H is a spanning subgraph of G, then A\p(H) < A\p(G).

(3) Let G be a connected graph with minimum degree 0. If G has two adjacent vertices
of degree 0, then \i(G) <0 — 1.

Alavi and Mitchem in [2] considered Nordhaus-Gaddum-type results for the connec-
tivity and edge-connectivity parameters. We are concerned with analogous inequalities
involving the generalized k-edge-connectivity.

To start with, let us recall the definition of Harary graph H, 4

Case 1. d even. Let d = 2r. Then H, o, is constructed as follows. It has vertices
0,1,---,n — 1 and two vertices i and j are jointed if i —r < j <1+ r (where addition is
taken modulo n).

Case 2. d odd, n even. Let d = 2r + 1. Then H,, 2,41 is constructed by first drawing
H,, 2 and then adding edges joining vertex i to vertex i + 5 for 1 <i < 5.

Case 3. d odd, n even. Let d = 2r + 1. Then H,, 2,1 is constructed by first drawing
n+l

2

H,, 2, and then adding edges joining vertex 0 to vertices ”T_l and

i+”T‘Hfor1§i§”T_l.

and 7 to vertex

Observe that the Harary graph H, 4 is constructed by arranging the n vertices in a
circular order and spreading the d edges around the boundary in a nice way, keeping
the chords as short as possible. They have the maximum connectivity for their size and
k(Hpa) = MHpq) = 0(Hypq) = d. Palmer [23] gave the ST'P number of some special
graph classes.

Lemma 1. [23] (1) The STP number of a complete bipartite graph Ky is La+abb_1j.
(2) The STP number of a Harary graph Hy, q is [d/2].

According to (1) of Observation 1, we can obtain a sharp lower bound for the gener-
alized k-edge-connectivity by Corollary 1. Actually, a A-edge-connected graph G contains
[3A(G)] edge-disjoint spanning trees, each of which is also a Steiner tree connecting S.
So the following proposition is immediate.

Proposition 1. For a connected graph G of order n and 3 < k < n, \(G) > [3M(G)].
Moreover, the lower bound is sharp.



For the sharpness of this lower bound when k = n, we consider the Harary graph H,, 2.
Clearly, A(G) = 2r. From (2) of Lemma 1, H,, o, contains exactly r spanning trees, that
is, An(Hn,2r) = 1. S0 Ap(Hp2r) = [3A(G)]. For a general k (3 < k < n), one can check
that the cycle C,, can attain the lower bound since $A(Cp,) = 1 = A (Ch).

The following proposition indicates that the monotone properties of A\, that is, A, <
A1 <o X < A3 < A is true for 2 < k < n.

Proposition 2. For two integers k and n with 2 < k <n — 1, and a connected graph G,
Ak41(G) < Ak(G).

Proof. Assume 3 < k < n — 1. Set A\y4+1(G) = ¢. For each S C V(G) with |S| = k, we
let S = SU{u}, where u € V(G) but u ¢ S. Since A\p11(G) = ¢, there exist ¢ edge-
disjoint trees connecting S’. These trees are also ¢ edge-disjoint trees connecting S. So
Me(G) > 0 and A\gy1(G) < A\ (G). Combining this with (1) of Observation 1, we get that
Me+1(G) < A(G) for 2 <k <n-—1. O

Now we give the lower bounds of A\;(G) + A\ (G) and \g(G) - Mg (G).

Lemma 2. Let G € G(n) and let k be an integer with 3 < k <n. Then
(1) Ael(G) + (@) = 1
(2) X\e(G) - M(G) > 0.
Moreover, the two lower bounds are sharp.
Proof. (1) If \i(G) + M\(G) = 0, then A\, (G) = M\ (G) = 0, that is, both G and G are

disconnected, which is impossible, and so A\,(G) + A\t (G) > 1.
(2) By definition, A\x(G) > 0 and A\i(G) > 0, and so \x(G) - Ak(G) > 0. O

The following observation gives the graphs attaining the lower bound of (2) in Lemma
2.

Observation 2. \;(G) - \p(G) = 0 if and only if G or G is disconnected.

In [21] we obtained the exact value of the generalized k-edge-connectivity of a complete
graph K.

Lemma 3. [21] For two integers n and k with 2 < k <n, \y(K,) =n— [k/2].

For a connected graph G of order n, we know that 1 < A\ (G) < M\p(Kp) =n — [k/2].
In [21] we characterized the graphs attaining the upper bound.

Lemma 4. [21] For a connected graph G of order n with 3 < k < n, A\t (G) =n — [%1 if
and only if G = K, for k even; G = K, \ M for k odd, where M is an edge set such that
0<|M|< i

Now we want to characterize the graphs that attain the lower bound 1 of A (G)+ Ak (G).
Before doing so, we give some graph classes (each graph of the classes has order n).

For n > 5, G! is a graph class as shown in Figure 1 (a), each graph G of which satisfies
that A(G) = 1 and dg(vi) = n — 1, where v; € V(G); G2 is a graph class as shown in



(a) G, (b) Gx (c) G (d) G
Figure 1. Graphs for Proposition 3 (The degree of a black vertex is n — 1).

Figure 1 (b), each graph G of which satisfies that \(G) = 2 and dg(u1) = n — 1, where
u; € V(Q); G3 is a graph class as shown in Figure 1 (c), each graph G of which satisfies
that A(G) = 2 and dg(v1) = n — 1, where v1 € V(G); G2 is a graph class as shown in
Figure 1 (d), each graph G of which satisfies A\(G) = 2.

The following observation and lemma are preparations for Proposition 3.

Forn > 5, let K2+ n_o be the graph obtained from the complete bipartite graph K ,_o
by adding one edge on the part having n — 2 vertices and let KQJT ;_2 denote any of the
two graphs which are obtained from K53 ,_» by adding two edges on the part having n — 2
vertices.

Observation 3. Let n be an integer with n > 5. Then
(1) MK o) > 2;
(2) An-1(K5 ) 2 2, (K5, p) = 1
(3) M—2(Kan—2) > 2, My(Kap—2) = Ap—1(Kap—2) =1.

Proof. (1) As shown in Figure 2 (a), we have )\n(K;;LQQ) > 2.

(2) As shown in Figure 2 (b), we have )\n_l(K;:n_Q) > 2. Since ]E(K;:n_Q)\ =2(n—
2) + 1 and )\n(K;n_Q) < L%J, then /\n(K;n_Q) < 1. Since K;fn_Q is connected,
then )\n(K;:n_z) =1.

(3) As shown in Figure 2 (¢), it follows that A\, _o(K2,-2) > 2. Let U = {u1,u2} and
W ={w;,ws, - ,wp_2} be the two parts of the complete bipartite graph K3 ,_2. Choose
S = {u1,u2, w1, wa, -+ ,wp_3}. If there exists an S-tree containing the vertex wy,_o, then
this tree will use n — 1 edges of E (K2 ,_2), which implies that A,_;(K2,-2) < 1 since
|E(K2n—2)| = 2(n — 2). Suppose that any S-tree does not contain the vertex wy_s. Pick
up such a tree, say T. Then there exists a vertex with degree 2 in T', which implies that
there is no other S-tree in Ko, 2. So A\y—1(K2p—2) < 1. Since Ky ,_o is connected,
)\n—l(KQ,n—Q) = 1. From Proposition 2, )\n(Kgm_Q) =1. ]

Lemma 5. Let G be a connected graph of order n, and let k be an integer with 3 < k < n.
If M(G) = 3 and there exists a vertex u € V(G) such that dg(u) =n — 1, then A\ (G) > 2
for 3 <k <n.

Proof. Let Gy, -+ ,G, be the connected components of G \ u. Since A(G) = 3, it follows
that 6(G;) > 2 (1 <i<r). Let [V(Gy)| =n; (1 <i <r)and V(G;) = {vi1,vi2,  ,Vin, }-
Then there exists an edge, without loss of generality, say e; = v;1v;2 € E(G;) such
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Figure 2. Graphs for Observation 3.
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that G; \ e; is connected for 1 < ¢ < r. Thus G; \ e; contains a spanning tree, say
T; (1 < i < r). The tree T induced by the edges in {uvi 1, uve 1, ,uvp1} U E(T7) U
E(T5) U---UE(T},) and the tree 7" induced by the edges in {vi 1v12, uv12,- -+, uv1 5, } U

{v21v22, uv2 2, -+ , UV } U -+ - U {vp 10,2, Uty 2, - -+ , Uy p, } are two spanning trees of G,
and hence A, (G) > 2. Combining this with Proposition 2, we get A\(G) > 2 for 3 < k <
n. L]

Proposition 3. Let G be a graph of order n, and let k be an integer with 3 < k < n.
M (G) + M(G) = 1 if and only if G (symmetrically, G) satisfies one of the following
conditions:

(1) GeG! orGegG2;

(2) G € G} and there exists a component G; of G\ v1 such that G; is a tree and
[V(Gi)| <k;

(3) G e {K;:ninQ,n_Q} fork =nandn > 5, or G € {P3,C3} for k =n =3, or
Ge{Cy,Ky\e} fork=n=4, or G=Kz3 fork=n=6, or G =Ko, fork=n—1
andn>5, 0orG=Cy fork=n—1=3.

Proof. Sufficiency. Let G be a graph satisfying one of the conditions of (1), (2) and
(3). One can see that G is connected and its complement G is disconnected. Thus
Me(G) + Me(G) = M(G) and A\, (G) > 1. We only need to show that A\;(G) < 1 for each
graph G satisfying one of the conditions of (1), (2) and (3). For G € G}, since 6(G) =1 we
have A\x(G) < 1 by (1) of Observation 1. For G € G2, it follows that A\;(G) < §(G)—1=1
by (3) of Observation 1 since dg(vi) = dg(v2) = §(G) = 2. Suppose that G € G2 and
there exists a connected component G; of G \ vy such that G; is a tree and |V(G;)| < k.
Set V(Gi) = {vi1,viz2, - ,Vin,}. We choose S C V(G) such that V(G;)U{v1} =5 CS.
Then |E(G[S’])| = 2n; — 1. Since every spanning tree of G[S’] uses n; edges of E(G[S']),



there exists at most one spanning tree in G[S’], which implies that there is at most one
tree connecting S in G. So A\;(G) < 1. For G = K;fnfz, An(G) =1 by (2) of Observation
3. For G = Ky,_2, by (3) of Observation 3, we have A\, (K2p—2) = Ap—1(K2p—2) = 1.
For G = K33, \y(G) < L%J = |2] = 1. For G € {P3,C5,Cy, Ky \ e}, one can check
that A\(G) < 1 for k = n or k = n — 1. From these together with A\x(G) > 1, we have
Me(G) + Mi(G) = M (G) = 1.

Necessity. Suppose A\, (G) + A\ (G) = 1. Then M\ (G) =1 and A\, (G) = 0, or \t(G) = 1

and A\;(G) = 0. By symmetry, without loss of generality, let A\x(G) = 1 and A\;(G) = 0.

From these together with Proposition 1, A(G) = 0 and 1 < A(G) < 3. So we have the
following three cases to consider.

Case 1. M\(G) =1.

For n = 3, one can check that G = P5 satisfies A\(G) = 1 but A(G) = 0. Now we
assume n > 4. Since A(G) = 1, there exists a cut edge in G, say e = ujv;. Let Gy and
G2 be the two connected components of G \ e such that u; € V(G1) and v; € V(G2). Set
V(G1) = {u1,ug, - ,upn, } and V(G2) = {v1,v2, -+ ,vp,}, where ny + ng = n. Suppose
n; > 2 (i =1,2). For any u;,u; € V(G1), u; and u; are connected in G since there exists
a path u;vou; in G for any v;, vj € V(G2), v; and v; are connected in @ since there exists
a path vjugv; in G; for any u; € V(G1) and vj; € V(G2) (i # 1 or j # 1), vv; € E(G).
Clearly, the path ujvousvy connects u; and v1 in G. So G is connected, a contradiction.
Thus n; = 1 or ng = 1. Without loss of generality, let n;y = 1. Then V(G;) = {u1} and
V(G2) = {v1,va, -+ ,up_1}. Clearly, G is a graph obtained from G2 by attaching the edge

e =wuyv. Since uiv; ¢ E(G) (1 <j<n—1), wiv; € E(G). If dg(v1) < n — 2, then there
exists a vertex v; such that v1v; € E(G), which results in A\(G) > 1, a contradiction. So
dg(vi) =n —1 and G € G}; see Figure 1 (a).

Case 2. \(G) = 2.

For n = 3,4, the graph G € {C3,C4, K4 \ e} satisfies that \(G) = 2 and A(G) = 0.
Since /\3(03) = 1, )\3(04) = 1, )\4(04) = 1, )\3(K4 \ 6) = 2 and )\4(K4 \ e) = 1, we have
G=Csfork=n=3,Ge{Cy,Ky\e}fork=n=4,G=Cyfork=n—-1=3.
Now we assume n > 5. Since A\(G) = 2, there exists an edge cut M such that |[M| = 2.
Let Gy and G3 be the two connected components of G\ M, V(G1) = {u1,- - ,upn, } and
V(G2) ={v1, - ,Un, }, where ny + ny = n. Clearly, G[M| = 2K or G[M] = Ps.

At first, we consider the case G[M] = 2K3. Without loss of generality, let M =
{uivy,ugve}. Since n > 5, n; > 3 or ng > 3. Without loss of generality, let n; > 3.
Clearly, any two vertices v;,v; € V(Ga) are connected in G since there exists a path
viugv; in G. Furthermore, for any u; € V(Gy), wjv1 € E(G) or wv2 € E(G). So G is

connected and A(G) > 1, a contradiction.

Next, we consider the case G[M] = P3;. Without loss of generality, let P = vjujve be
the path of order 3. Since n > 5, there exist at least two vertices in G \ {u1,vi,v2}. If
n1 > 2 and ny > 3, then we can check that G is connected, a contradiction. So we assume
ny = 1or ng = 2, that iS, V(Gg) = {Ul,’UQ} or V(Gl) = {Ul}

For the former, V(G1) = {u1,u2,- -+ ,up—2}. Since AM(G) = 2, vjvy € E(G). Clearly,
viuj,vou; € E(G) (2 < j < n—2), which implies that viu;,vou; € E(G). Therefore,
wu; ¢ E(G) (2 < j < n—2)since G is disconnected. Thus uju; € E(G) for each



j(2<j<n—2). Sodg(u1) =n—1and G € G2; see Figure 1 (b).
For the latter, let V(G2) = {v1,v2, -+ ,vn—1}. First we consider the case vive € E(G).

Since w1v; ¢ E(G) (3 < j < n—1), we have ujv; € E(G). If 3 < dg(v1) < n —2 and
3 < dg(v2) < n—2, then there exist two vertices v; and v; such that v1v;, vav; € E(G) (3 <
i,j < n — 1), which implies that G is connected, a contradiction. So dg(v1) =n — 1 or
dg(v2) = n — 1. Without loss of generality, let dg(v1) = n — 1. Thus G € G3; see Figure
1 ().

Now we focus on the graph G \ vi. Let G1,Ga,- -, G, be the connected components
of G\ v and V(G;) = {vi1,vi2, -+ ,vin,} (1 <i<r), where Y | ;n; =n— 1. If there
exists some connected component G; such that G; = Ka, then G € G2; see Figure 1 (b).
So we assume n; > 3. Then we show the following claim and get a contradiction.

Claim 1. For each connected component G; of G\ vy, if n; > k, or n; < k — 1 and
|E(G;)| > ng, then A\ (G) > 2 for 3 <k <mn.

Proof of Claim 1. For an arbitrary S C V(G) with |S| = k, we only prove that A(S) > 2 for
vy ¢ S. The case v; € S can be proved similarly. If there exists some connected component
G; such that S = V(G;), then n; = k and G; has a spanning tree, say T;. It is also a Steiner
tree connecting S. Since the tree Ti’ induced by the edges in {viv;1,v1vi2, -, V1Vin, }
is another Steiner tree connecting S and T;, T} are two edge-disjoint trees, it follows that
A(S) > 2. Assume now S # V(G;) forn; >k (1 <i<r). Let S;, =SNV(G;) (1<i<r)
and |S;| = k;. It is clear that |J;_,; S; = S and ), , k; = k. Thus S; C V(G;) for each
connected component G; such that n; > k, and S; C V(G;) for each connected component
G such that n; <k —1 and |E(Gj)| > n;. We will show that there are two edge-disjoint
Steiner trees connecting S; U {v1} in G[S; U {v1}] for each i (1 < i < r) so that we can
combine these trees to form two edge-disjoint Steiner trees connecting S in G. Suppose that
G is a connected component such that n; > k. Note that V(G;) = {vi1,vi2, -, Vin, }-
Since S; C V(G}), there exists a vertex, without loss of generality, say v; 1, such that
vi1 ¢ S;. Clearly, G; contains a spanning tree, say Ti’J. Thus T;1 = vivi1 U Ti’,1 is a
Steiner tree connecting S; U{v1} in G[G; U{v1}]. Since the tree T; 2 induced by the edges
in {v1v;2,v10; 3, -+ , V1V n, } is another Steiner tree connecting S; U{v:}. Clearly, T; 1 and
T; 2 are edge-disjoint. Assume that G is a connected component such that n; < k—1 and
|E(G;)| = nj. Note that V(G;) = {vj1,vj2, - ,Ujn,; }- Then there exists an edge, without
loss of generality, say e; = vj1vj2 € E(G;) such that G; \ e; contains a spanning tree of
Gj, say Tj,. Thus the tree T} induced by the edges in {viv;1} U E(T};) and the tree
T}j2 induced by the edges in {v;1v;2,v10j2, -+ ,V1Vjz,; } are two edge-disjoint Steiner trees
connecting Sj U {v1}. Now we combine these small trees connecting S; U {v1} (1 <4 <)
by the vertex vy to form two big trees connecting S. It is clear that the tree T7 induced
by the edges in E(T11) U E(T21) U--- U E(T,;1) and the tree T5 induced by the edges
in E(Th2) U E(Ty2)U---UE(T,2) are our desired trees, and hence A(S) > 2. From the
arbitrariness of S, we have A\t (G) > 2. O

By Claim 1, we know that G € G2 and there exists a connected component G; of
G\ {v1} such that n; <k —1 and G; is a tree.

We next consider the case vive ¢ E(G); see Figure 1 (d). Thus v1v2 € E(G). Since
uv; & E(G) (3 <j <n—1), ujv; € E(G), which results in viv;,v2v; ¢ E(G) since G is



disconnected. Thus vjvj,vav; € E(G) for each j (3 < j <n—1). Let R={v;]3 < j <
n—1}. If |[E(G[R])| > 2, then G contains a subgraph K;;LQQ, which implies that A, (G) > 2
by (1) of Observation 3. Combining this with Proposition 2, A\(G) > 2 for 3 < k < n,
a contradiction. If |[E(G[R])| < 2, then G = Ky ,_2 and K;:n—? From Observation 3
and Proposition 2, we have )\k(K;n_g) >2for3 <k <n-—1and \y(K2,-2) > 2 for
3 <k <n-—2, a contradiction. So G = Kin_Q for k =n, or G = Ko p—o for k = n, or
G:K;:n_Q fork=n-—1.
Case 3. A\(G) = 3.

For n =4, G = K4, A\3(G) = M\(G) = 2 by Lemma 3, that is, A\;(G) > 2, a contradic-
tion. Assume n > 5. Since A(G) = 3, there exists an edge cut M such that |M| = 3. Let

Figure 3. Graphs for Case 3 of Proposition 3.

G1 and G3 be the two connected components of G\ M, V(G1) = {ui,uz, - ,un, } and
V(G2) = {v1,v2, -+ ,vn, }, where n; + ng = n. Clearly, GIM]| = P, or G[M| = P;U K
or G[M] = 3Ky or G[M] = K;3. For the former three cases, n; > 3 (i = 1,2) and
n > 6 since A(G) = 3. To shorten the discussion, we only show A(G) > 1 for G[M] = P4
and get a contradiction among the former three cases. Without loss of generality, let
G[M] = Py = ujviugvs. For any u;,u; € V(G1) (1 <1i < np), u; and u; are connected in
G since there exists a path w;vsu; in G; for any v;,v; € V(Ga) (1 <i < ng), v; and v; are
connected in G since there exists a path v;uzv; in G; for any u; € V(G1) and v; € V(Ga)
(i # 3 and j # 3), u; and v; are connected in G since there exists a path w;vzuszv; in G.
Since uzv; € E(G) (1 < j < ng) and vsu; € E(G) (1 <i <mny), G is connected, as desired.

Now we consider the graph G such that G[M] = K; 3. Assume n; > 2. If ng > 4,
then we can check that G is connected and get a contradiction. Therefore, no = 3,
V(G2) = {v1,v2,v3} and V(G1) = {u1,u2 -+ ,up—3}. Since A\(G) = 3, it follows that
v1v2, Vou3,v1v3 € E(G). Since viu; ¢ E(G) (1 < i <3, 2 < j < n—3), we have

viuj € E(G). If there exists some vertex u; (2 < j <n — 3) such that wyu; € E(G), then
G is connected, a contradiction. So ujuj € E(G) for 2 < j <n—3. Thus dg(u1) =n—1
(See Figure 3 (a)). From Lemma 5, A\y(G) > 2 for 3 < k < n since \(G) = 3, a
contradiction.

Now assume n; = 1. Then V(G1) = {wi} and V(G2) = {vi,v2--- ,vp-1}. If



Gl{vi,v2,v3}] = 3Ky or G[{v1,v2,v3}] = K;j U Kp, then we have ujv; € E(G) since
wvj ¢ E(G) (4 < j < n—1). From this together with the fact that G is discon-
nected and vivs,vovs € E(G), viv; ¢ E(G) (1 < i <3, 4 < j <mn-—1), we have
viv; € E(G) (1 <i<3,4<j<n—1). Thus G contains a complete bipartite graph K3 ,_3
as its subgraph; see Figure 3 (b) and (c). From (1) of Lemma 1, \,(G) = L%j > 2 for
n > 7, which implies that Ay (G) > 2 for 3 < k < n and n > 7. Since A\(G) = 3, n > 6.
So we only need to consider the case n = 6. Thus G = H; (1 < i < 4) (See Figure 4). If
G = H; (2 <i<4),then \,(G) > 2 for k = n = 6; see Figure 4 (b), (¢) and (d). Therefore
Ae(G) > 2 for 3<k <6.If G= Hy, then A\, (G) < LlEn(fGl)‘J =|2] =1for k=n=6. For
k =5, we can check that A\3(G) > M\(G) > As5(G) > 2; see Figure 4 (e). So G = K33 for
k=mn=6.

(@) H  (b) Hy (¢) H3 (d) Hy (e)
Figure 4. Graphs for Case 3 of Proposition 3.

Suppose G[{vi,ve,v3}] = P3. Without loss of generality, let vivg, vovs € E(G). If
3 < dg(v2) < n — 2 (see Figure 3 (d)), then there exists at least one vertex v; such

that vov; € E(G), which results in vivj,v3v; ¢ E(G) (4 < j < n — 1) since ujv; €
EG) (4 <j <n-1), viv3 € E(G) and G is disconnected. Thus viv,vsvy € E(G)
for each t (4 <t < mn —1). Since d(vq) > §(G) > AG) = 3, we have vgv2 € E(G) or
there exists some vertex v; (5 < j < n — 1) such that vgv; € E(G), which implies that G
contains a subgraph K; + 5 and 50 A, (G) > 2 by (1) of Observation 3. From Proposition
2, \e(G) > 2 for 3 < k < n, a contradiction. If dg(v2) = n —1 (See Figure 3 (e)), then
Ae(G) > 2 for 3 <k <n by Lemma 5 since \(G) = 3, a contradiction.

Assume that G[{vi,ve,v3}] = K3. Without loss of generality, let vive, vivs, vovs €
E(G). If dg(v1) =n—1or dg(v2) =n —1 or dg(vs) = n — 1 (see Figure 3 (f)), then
by Lemma 5 A\ (G) > 2 for 3 < k < n since \(G) = 3, a contradiction. If 3 < dg(v;) <
n —2 (1 <i < 3), then G is connected, another contradiction. O

Now we turn to studying the upper bounds of A\ (G) + Ag(G) and \g(G) - \g(G).

Lemma 6. Let G € G(n), and let k be an integer with 3 < k < n. Then
(1) M(G) + M(@) < n— Th/2].
(2) M(G) - M(@) < R,

Moreover, the two upper bounds are sharp.

Proof. (1) Since GUG = K, \i(G) + M (G) < Mg(K,,). Combining this with Lemma 3,
M(G) + (@) < n— 4],
(2) The conclusion holds by (1). O
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Consider (1) of Lemma 6. If one of G and G is disconnected, we can characterize the
graphs attaining the upper bound by Lemma 4.

Proposition 4. Let G be a graph of order n, and let k be an integer with 3 < k < n.
If G is disconnected, then \,(G) + \,(G) = n — [E] if and only if G = K,, for k even;
G =K, \ M for k odd, where M is an edge set such that 0 < |M| < 551,

If both G and G are connected, we can obtain a property of the graphs attaining the
upper bound.

Proposition 5. Let G be a graph of order n, and let k be an integer with 3 < k < n. If
Me(G) + Me(G) =n — [E], then A(G) — 6(G) < [E] - 1.

Proof. Assume that A(G) — §(G) > [g] Since M\, (G) < §(G) =n — 1 - A(G), \(G) +
M(G)<6(G)+n—1-A(G)<n—1- [g], a contradiction. O

The next example shows that for K = n the two upper bounds in Lemma 6 are sharp.

Example 1. Let n,r be two positive integers such that n = 4r+1. From (1) of Lemma 1,
we know that the ST'P number of the complete bipartite graph Ko, 241 is L%J =
r, that is, Ay (K2r2r+1) = 7. Let € be the set of the edges of these r spanning trees in
K 9r4+1. Then there remain 2r(2r + 1) — 4r? = 2r edges in K, 2r41 except the edges
in £. Let M be the set of these 2r edges. Set G = Kor 2,41 \ M. Then \,(G) = r,
M C E(G) and G is a graph obtained from two cliques Ka, and Ko, y1 by adding 2r
edges of M between them, that is, one endpoint of each edge belongs to Ko, and the other

endpoint belongs to Ko,41. Note that E(G) = E(Ks,) UM U E(K2y41). Now we show
that \,(G) > r. As we know, Ko, contains » Hamiltonian paths, say Py, Py, -, P, and
so does Kop11, say P{,Pj,---, P/. Pick up r edges from M, say ej,es, -+ ,e,, and let T;
be the tree induced by the edges in E(P;) U E(P/)U{e;} (1 <i<r). Then T,T5,--- , T,
are r spanning trees in G, thus, \,(G) > r. Since |[E(G)| = (2;) + (2r2+1) +2r =4r2 +2r
and each spanning tree uses 4r edges, these edges can form at most L‘”%Q’"J = r spanning
trees, and hence A, (G) < 7. So A, (G) = r. Clearly, Ay (G) + A (G) = 2r = 2571 = n—[2]
and \,(G) - A\ (G) = r? = [%]2, which implies that the upper bounds of Lemma 6

are sharp.

Combining Lemmas 2 and 6, we complete the proof of Theorem 1.

3 Nordhaus-Gaddum-type results in G(n,m)

Achthan et al. [1] restricted their attention to the subclass of G(n,m) consisting of
graphs with n vertices and m edges. They investigated the edge-connectivity, diameter
and chromatic number parameters. For the edge-connectivity A\(G), they showed that

MG) + AM(G) > maz{l,n — 1 —m}. In this section, we consider a similar problem on the
generalized edge-connectivity.

then G = K,, \ M contains £

Lemma 7. If M C E(K,) such that 0 < m = |M| < [§],
3 2m).
po

edge-disjoint spanning trees, where £ = min{n — 2m — 1, |
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Proof. Let & = |J/_, V; be a partition of V(G) with |V;| =n; (1 <i < p), and &, be the
set of edges between distinct parts of & in G. It suffices to show that |£,| > ¢(]|Z| — 1)
so that we can use the Nash-Williams-Tutte Theorem.

The case p = 1 is trivial, and thus we assume 2 < p < n. Then |E,| > (g) ->PF (”21) —
(M| > (5) = >, (%) — m. We will show that (5) —>F ; () —m > €(p — 1), that is,
w —m—L(p—1)>>" (%). We only need to prove that n(n D - lp—1)>

max{) *_; ("’)} Since f(ni,ng, -+ ,np) = Y., () achieves its maximum value when
ny =ng = =mnp_1 =1and n, =n —p+ 1, we need the inequality Ln Dy — (p—
D2 (- 1)+ ("3, that i, M50 — 02O 5 g 1) Actmally, € <

n(n—1)—(n—p+1)(n—p)—2m 1 p—1

= ) is our required inequality, namely, £ < n — 5 — (%5~ + 2m

p—1
f(z) = £+ 22 achieves its maximum value max{2m + 3, 2t + 2%} when 1 < 2 <n—1,

). Since

we need ¢ <min{n —2m — 1,5 — 2m 7} Since this inequality holds for 0 < m < [§], we
have &, > (5) — >0, (%) — |M| > Z( —1). From Theorem 1, we know that G has /¢
edge-disjoint spanning trees. O

Lemma 8. Let G € G(n,m), and let k be an integer with 3 < k <n. Forn > 6, we have
(1) M\e(G) + A\e(G) > L(n,m), where

L(n,m):{ max{1, |1(n —2—m j}z,

min{n —2m — 1, |§ — 2%}, i

(2) M\e(G) - M\e(G) > 0.

Moreover, the above lower bounds are sharp.

Proof. (1) Since at least one of G and G must be connected, we have A\,(G) + Ag(
1. For m < n—1, \(G) + M(G) > [3MG)] + [ANG)] > [3(MG) + AG) — 1))
L%(max{l n—1-m}—1)] > [3(n—2—m)] by Proposition 1. So A\;(G) + A\(G) >
max{1, [1(n — 2 — m)]}. In particular, for 0 < m < |2], we can give a better lower
bound of A\y(G) + M\i(G) by Lemma 7, that is, A\i(G) + M(G) = M(G) > \(G) >
min{n —2m — 1, |5 — —J}

To show the sharpness of the above lower bound for |2] +1 < m < (), we consider
the graph G = K1 ,,—2 U K;. Then m =n — 2 and G is a graph obtained from a complete
graph K, 1 by attaching a pendant edge. Clearly, \¢(G) = 0 and M\(G) = 1. So
Ak(G) 4+ Ae(G) = 1 =max{1, |$(n — 2 —m)]}. To show the sharpness of the above lower
bound for 0 < m < [%], we consider the graph G = nK;. Thus m = 0 and G = K,.
Since A\ (G) + A (G) =0+ [ 2] =min{n —2-0—1,|% — 2%}, that is, the lower bound
is sharp for k = n.

(2) The inequality follows from Theorem 1.

To show the sharpness of the above lower bound for 0 < m < (";1), we consider the
graph G = G’ U K1, where G’ is a graph of order n — 1 and size m. Observe that G is
disconnected. Thus, A\;(G) = 0 and hence A\g(G) - \g(G) = 0. To show the sharpness of
the above lower bound for (n 1) +1<m< (’2"”), we consider a graph G of order n — 1
and size m. Note that |E(G)| < (3) — ("5 ) 1 = n — 2. Therefore, A\;(G) = 0 and hence
M (G) - M (G) = 0. O
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It was pointed out by Harary [9] that given the number of vertices and edges of a
graph, the largest connectivity possible can also be read out of the inequality x(G) <
AMG) < 6(G).

Theorem 4. [9] For each n,m with0 <n—1<m < (}),

W(G) M@ < |2,

where the maximum is taken over all graphs G € G(n,m).

Corollary 2. For any graph G € G(n,m) and 3 < k < n, \(G) < LQTmJ form>n—1.
Moreover, the upper bound is sharp.

Proof. Since m > n — 1, A(G) < A(G) < [22] by (1) of Observation 1 and Theorem
4. One can check that the complete bipartite graph G = K, ,; satisfies that A\3(G) =,
m=e(G) =r(r+1)and [22] = 20D | — |0 4 1| — 7 Thus A\3(G) = r = |22

O

2r+1 2r+1
and so the upper bound is sharp.

Although the above bound of A\¢(G) is the same as A(G), the graphs attaining the
upper bound seem to be very rare. Actually, we can obtain some properties of these
graphs.

Proposition 6. For any G € G(n,m) and 3 < k < n, if \y(G) = [22] form > n — 1,
then

(1) 22 is not an integer;

(2) 8(G) = %)

(3) for u,v € V(G) such that dg(u) = da(v) = |22], uwv ¢ E(G).
Proof. One can check that the conclusion holds for the case m = n — 1. Assume m > n.
We claim that 2m is not an integer; otherwise, let r = 2m be an integer. We will show that
Me(G) <r—1=2"—1 and get a contradiction. If G has at least one vertex v; such that
d(v;) > r, then, since the average degree of G is exactly r, there must be a vertex v; whose
degree d(v;) < r. From (1) of Observation 1, we have A\;(G) < §(G) < d(v;) < r, that is,
M (G) < r —1. If, on the other hand, G is a regular graph, then by (3) of Observation 1,
Me(G) <6(G) —1=r—1. So (1) holds.
t 22 is not an integer, |22 | = \y(G) < §(G) < [22], that is,

n =

For a graph G such tha
§(G) = [22]. So (2) holds.
For u,v € V(G) such that dg(u) = dg(v) = | 22], we claim that uv ¢ E(G); otherwise,
uv € B(G). Since dg(u) = da(v) = §(G) = | 5], M(G) < 0(G) =1 = %] — 1 by (3) of
Observation 1, a contradiction. So (3) holds. O

Corollary 3. For any graph G with n vertices and m edges, if 277” s an integer, then
A(G) <2 — 1.

Lemma 9. Let G € G(n,m), and let k be an integer with 3 <k <n. Then
(1) M\e(G) + M\e(G) < M(n,m), where
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n—[%], if m>n-—1,
or k is even and m = 0,
M(n,m) = or kis odd and 0 < m < 531
n—[5 -1, if kisevenand 1 <m <n-—1,
orkisoddand%§m<n—1.

(2) M(G) - M(G) < N(n,m), where

0, if 0<m<n-—2;
N(n,m) = (2m—1)(n—2—27m), if m>n—1and 2m = 0(mod n);
LLJ(” -2- LQﬂJ)7 otherwise.

Moreover, these upper bounds are sharp.

Proof. From Theorem 1, (1) holds for m > n — 1. We have given Example 1 to show that
the upper bound is sharp. From Proposition 4, \x(G) + At (G) = A\e(G) = n — [g} for k
even and m =0, or k odd and 0 < m < k_l . Sofor k even and 1 <m <n —1, or k odd
and B <m < n—1, \(G) + A(G) < n—[ 1-1.

To prove the sharpness of the bound for k£ odd and k—;l <m < n—1, we consider the
graph G = K 1k U(n— @)K 1. Clearly, G is a graph obtained from the complete graph
K, by deleting all the edges of a star K ey On one hand, by Lemma 4, it follows that

M (G) <n— k“ — 1. On the other hand, by Lemma 4, we have \y(G +¢€) =n — k—;l for
any e ¢ E(G), whlch implies that Ay (G) > n— % —1 (note that Ay (H \e) > Ay (H)—1 for
a connected graph H, where e € E(H)). So M\ (G) + M (G) = M\e(G) = n— % —1. By the
same reason, for k even and 1 < m < n—1 one can check that the graph G = KoU(n—2)K;
satisfies that A, (G) + M\ (G) = \e(G) =n — & — 1.

(2) First, if 0 < m < n — 2, then G € G(n,m) is disconnected. So A\x(G) - \e(G) = 0.
Next, if m > n — 1 and 277“ = r is an integer, then @ =n — 1 —r is also an integer.
From Corollary 3, we have A\y(G) <7 —1 and A\(G) < n—2—7. So \(G) - M\(G) <
(r—=1(n—2-r)= (2 —1)(n—2— 22). Finally, if 2m = nr + ¢ where 1 < ¢ <n — 1,
then A(G) > r+ 1. By (1) of Observation 1, \y(G) < 6(G)=n—1-A(G)<n—-2—r.
S0 M(G)  M(@) r(n—2—71) = |22 ](n—2— 2m]).

To show the sharpness of the upper bound for 0 < m < n — 2, we consider the
graph G of size m. Clearly, A\;(G) = 0 and hence \;(G) - \p(G) = 0. For m > n — 1
and 22 = r 4+ ¢ (1 < ¢ <n-—1), welet G = P;. Then \3(G) =1 = H = 22| and

A3(G) = A3(Pr) = 1 =4-2—[§] =n—2-[Z]. S0 X3(G) \s(G) = |3 (n—2—2*]). OO

To show the sharpness of the upper bound for m > n — 1 and 2m = 0 (mod n), we
consider the following example.

Example 2. Let G be a cycle C), = wjws - - - wpwi(n > 9). Clearly, \3(G) = 1= =2 — 1.
Since 2 = 2 is an integer, it suffices to show that A\3(G) = n —2 — 2% = n — 4.

First we show that A3(G) > n — 4. For arbitrary S = {z,y,2} C V(G) = V(Cp).
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By the definition of A3(G), we need to show that A\(S) > n — 4. If d¢,(z,y) = 1 and
de, (y,z) = 1, without loss of generality, let N¢, () = {z1,y} and N¢, (z) = {y, 22}, then
the trees T; induced by the edges in {xw;, yw;, zw; } together with the tree T} induced by
the edges in {xz, zx1, 71y} form n — 4 edge-disjoint S-trees in G (see Figure 5 (a)) and
hence A(S) > n — 4, where {wy,wa, -+ ,wn—5} = V(G) \ {z,y, 2,21, 22}. If do, (x,y) =2
and d¢, (y, z) = 1, without loss of generality, let N¢, (x) = {z1,y1} and N¢, (v) = {y1, 2}
and N¢, (z) = {y, 22}, then the trees T; induced by the edges in {zw;, yw;, zw;} together
with the tree T} induced by the edges in {zy,xz} and the tree T induced by the edges
in {20, 20y, 20y1, 312} form n — 4 edge-disjoint S-trees in G (see Figure 5 (b)) and hence
A(S) > n —4, where {wi, w3, ,wn—6} = V(G) \ {z,y, 2z, 21,01, 22}. If de, (x,y) > 3
and d¢, (y, z) = 1, without loss of generality, let N¢, (z) = {x1,22} and Ng¢, (2) = {y1, 2}
and N¢, (z) = {y, 22}, then the trees T; induced by the edges in {zw;, yw;, zw;} together
with the tree T} induced by the edges in {zy,xz} and the tree T5 induced by the edges
in {zom, 29y, 22y1, y12} and the tree T3 induced by the edges in {xy1,y121, 21y, x12} form
n — 4 edge-disjoint S-trees in G (see Figure 5 (c)), and hence A(S) > n — 4, where
{wi,wa, - ,w,—7} = V(G) \ {x,y, 2z, 21,22, y1, 22}. If do, (x,y) = 2 and d¢, (y,2) = 2,
without loss of generality, let N¢, () = {x1,91} and N¢,(y) = {y1,21} and N¢,(z) =
{z1, 22}, then the trees T; induced by the edges in {zw;, yw;, zw;} together with the tree
T; induced by the edges in {2z, zy} and the tree T; induced by the edges in {zza, yz2,yz}
and the tree T3 induced by the edges in {1y, 12, x121,221} form n — 4 edge-disjoint S-
trees in G (see Figure 5 (d)), and hence A\(S) > n—4, where {wy,wa, - ,w,—7} = V(G)\
{z,y,2,21,y1,21,22}. If de,(x,y) > 3 and d¢, (y,z) = 2, without loss of generality, let
N¢, (z) = {x1, 22} and N¢, (y) = {y1, 21} and N¢, (2) = {z1, 22}, then the trees T; induced
by the edges in {zw;, yw;, zw;} together with the tree T} induced by the edges in {xz, zy}
and the tree T5 induced by the edges in {xz2, 22y, yz} and the tree T3 induced by the
edges in {x1y, x12, z1y1, zy1 } and the tree Ty induced by the edges in {2y, x2z, x221, 212}
form n — 4 edge-disjoint S-trees in G (see Figure 5 (e)), and thus A(S) > n — 4, where
{wi,we, - yw,—s} = V(G) \ {x,y, z, x1, 2, Y1, Y2, 22}. Suppose that d¢, (z,y) > 3 and
de, (y, z) > 3, without loss of generality, let N¢, (z) = {x1, 22} and N¢, (y) = {v1, y2} and
N¢, (2) = {z1,22}. Then the trees T; induced by the edges in {zw;, yw;, zw;} together
with the tree T} induced by the edges in {xz,zy} and the tree T5 induced by the edges in
{xz2,yz9,yz} and the tree T3 induced by the edges in {z1y,z12,z1y1, 12} and the tree
T3 induced by the edges in {xz1,yz21,y221,y22} and the tree T5 induced by the edges in
{29y, T2z, ToYy2, Yoz} form n — 4 edge-disjoint S-trees in G (see Figure 5 (f)), and hence
A(S) > n — 4, where {wi,wa, - ,wp—9} = V(G) \ {z,vy, z,x1, 2, Y1, Y2, 21, 22}. From the
arbitrariness of S, we know that A\3(G) > n — 4. We now prove that A\3(G) < n — 4
for G = C,. Choose S = {wi,ws,w3} C V(G) = V(Cy,). Then wiw, € E(C,) and
wzwy € E(Cp). Thus |E(G[S])| = 1 and |Eg[S, S]| = 3(n — 3) — 2, which implies that
|E(G[S]) U EZ[S,5]] = 3(n —3) — 1 (see Figure 5 (g)). One can see that each tree
connecting S in G uses at least 3 edges from E(G[S]) U Ex[S,S]. Therefore A\3(G) <
3(71_3& = n — 3 — %, which results in A3(G) < n — 4 since A3(G) is an integer. So
A3(G) =n—4 and \3(G) - A3(G) = A3(Cp) - A3(Cr) =1-(n—4) = (22 —1)(n — 2 — 22).

The upper bound is sharp.

Combining with Lemmas 8 and 9, we complete the proof of Theorem 2.
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Figure 5. Graphs for Example 3.
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