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Abstract

The Laplacian Estrada index of a graph G is defined as LEE(G) =
∑n

i=1 e
µi , where µ1,

µ2, . . . , µn are the eigenvalues of the Laplacian matrix of G. In this paper, we characterize

the trees with maximum Laplacian Estrada indices among trees with given matching number,

dominating number, number of pendant vertices, and diameter, respectively.

1 Introduction

In this paper we are concerned with simple finite graphs. Undefined notation and

terminology can be found in [3]. Let G be a simple graph with vertex set V (G) and

edge set E(G). We use dG(v) (or d(v) for short) to denote the degree of a vertex v of

G. For two vertices u, v ∈ V (G), the length of a shortest uv-path is called the distance

between u and v and denoted by dG(u, v). The eccentricity ε(v) of a vertex v is the

maximum distance among the distances from v to the other vertices. Vertices of a

graph G with minimum eccentricity form the center of G. A tree T has exactly one or

two adjacent center vertices. We use PV (T ) to denote the set of pendant vertices of

T .
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Let A(G) and D(G) denote the adjacency matrix and the diagonal matrix of vertex

degrees of G, respectively. The (resp. signless) Laplacian matrix of G is denoted by

L(G) = D(G) − A(G) (resp. Q(G) = D(G) + A(G)). We denote the eigenvalues of

A(G), L(G) and Q(G) by λ1, λ2, · · · , λn; µ1, µ2, · · · , µn; and q1, q2, · · · , qn, respectively.

The Estrada index of G, first put forward by Estrada [7], is defined as

EE(G) =
n∑

i=1

eλi .

The Estrada index has multiple applications in a large variety of problems, for exam-

ple, it has been successfully employed to quantify the degree of folding of long-chain

molecules, especially proteins [8–10], and it is a useful tool to measure the centrality

of complex (reaction, metabolic, communication, social, etc.) networks [11,12]. There

is also a connection between the Estrada index and the extended atomic branching of

molecules [13].

Fath-Tabar et al. [14] proposed the Laplacian Estrada index, in full analogy with

estrada index as

LEE(G) =
n∑

i=1

eµi .

They established lower and uper bounds for LEE in terms of different parameters of

graphs, and they also pointed out that finding graphs with extremum values of LEE

in subcategories of graphs is a part of reaserches about Laplacian Estrada index.

Ayyaswamy et al. [1] defined the signless Laplacian Estrada index as

SLEE(G) =
n∑

i=1

eqi .

They also established lower and upper bounds for SLEE in terms of the numbers of

vertices and edges.

Ilić and Stevanović [16] obtained the unique tree with minimum Estrada index

among the set of trees with a given maximum degree. Zhang, Zhou and Li [19] deter-

mined the unique tree with maximum Estrada indices among the trees with a given



matching number. Ilić and Zhou [17] proved that the path and the star are, respec-

tively, the unique trees with minimum and maximum Laplacian Estrada indices, where

they also showed that the use of Laplacian Estrada index as a measure of branching in

alkanes. In [17], the tree with the second maximum Laplacian Estrada index was also

determined. Zhu [21] gave upper bounds for the Laplacian Estrada index in terms of

connectivity or matching number and characterized the corresponding extremal graphs.

Li and Zhang [18] determined the unicycilc graph with the maximum Laplacian Estra-

da index. More mathematical properties of the Estrada index and Laplacian Estrada

index can be found in [2, 5, 15, 20,22].

In this paper we characterize the trees with maximum LEE among trees with given

matching number, dominating number, number of pendant vertices, and diameter,

respectively.

2 Preliminary

Denote by Tk(G) the k-th signless Laplacian spectral moment of a graph G, i.e.,

Tk(G) =
n∑

i=1

qki .

By using the Taylor expansions of the function ex, we have that

SLEE(G) =
∑
k≥0

Tk(G)

k!
.

Note that the Laplacian and signlees Laplacian spectra of bipartite graphs coincide.

Thus, for a bipartite graph G, we have SLEE(G) = LEE(G). Consequently, if G is

bipartite, then

LEE(G) =
∑
k≥0

Tk(G)

k!
. (1)

Trees are obvious bipartite, and so we can use the provided statements in SLEE for

LEE in our following analysis.



Definition 2.1. A semi-edge walk of length k in a graph G is an alternating sequence

W = v1e1v2e2 · · · vkekvk+1 of vertices v1, v2, · · · , vk, vk+1 and edges e1, e2, · · · , ek such

that the vertices vi and vi+1 are end-vertices (not necessarily distinct) of the edge ei,

for any i = 1, 2, · · · , k. If v1 = vk+1, then we say that W is a closed semi-edge walk.

Theorem 2.1. [4] The signless Laplacian spectral moment Tk is equal to the number

of closed semi-edge walks of length k.

Let G and G′ be two graphs with x, y ∈ V (G) and x′, y′ ∈ V (G). We use

SWk(G; x, y) to denote the set of all semi-edge walks of length k in G, starting at vertex

x, and ending at vertex y. For convenience, we denote SWk(G;x, x) by SWk(G;x),

and set SWk(G) =
∪

x∈V (G) SWk(G;x). We use the notation (G;x, y) ≼s (G
′; x′, y′) if

|SWk(G; x, y)| ≤ |SWk(G
′;x′, y′)| for any k ≥ 0. Moreover, if (G;x, y) ≼s (G′;x′, y′),

and there exists a k0 such that |SWk0(G;x, y)| < |SWk0(G
′;x′, y′)|, then we write

(G;x, y) ≺s (G′;x′, y′). If x = y, we use (G;x) as the short form of (G;x, x). From

these notations, we know that

Tk(G) = |SWk(G)| =
∑

x∈V (G)

|SWk(G; x)|. (2)

3 Lemmas

We will give a few lemmas in this section, which will be used in the sequel.

Lemma 3.1. Let G1 and G2 be two graphs with u ∈ V (G1) and v ∈ V (G2). Let G be

the graph obtained from G1 and G2, by joining an edge e = uv. If (G1;u) ≺s (G2; v),

one has (G;u) ≺s (G; v).

Proof. Since (G1;u) ≺s (G2; v), there exists an injection ϕk from SWk(G1;u) to SWk(G2; v)

for any k ≥ 1, and there exists a k0 such that |SWk0(G1;u)| < |SWk0(G2; v)|. Then

ϕk0 is not a bijection. Let W ∈ SWk(G;u) be an arbitrary semi-edge closed walk of G

at u. In order to prove the result, it is sufficient to build an injection Φk (but not a

bijection for all k) from SWk(G;u) to SWk(G; v). We distinguish the following cases.



Case 1: e /∈ W . Then W ∈ SWk(G1;u). Let Φk(W ) = ϕk(W );

Case 2: e ∈ W, v /∈ W . Then W = W1eW2e · · · eWt, where e /∈ Wi ∈ SWli(G1;u)

for i = 1, 2, · · · , t. Let Φk(W ) = ϕl1(W1)eϕl2(W2)e · · · eϕlt(Wt);

Case 3: e ∈ W, v ∈ W . Then W = W1eW2eW3, where e /∈ W1 ∈ SWl1(G1;u) and

e /∈ W3 ∈ SWl3(G1;u). Let Φk(W ) = ϕl1(W1)eW2eϕl3(W3).

It is obvious that Φk is an injection. Furthermore, as ϕk0 is not a bijection, we have

that Φk0 is not a bijection, i,e., (G;u) ≺s (G; v).

Corollary 3.2. Let Pn = v1v2 · · · vn be an n-vertex path. Then one has

(Pn; v1) ≺s (Pn; v2) ≺s · · · ≺s (Pn; v⌊n
2
⌋).

Lemma 3.3. [6] Let H1 and H2 be two bipartite graphs with u, v ∈ V (H1) and w ∈

V (H2). Let Gu (Gv, respectively) be the graph obtained from H1 and H2 by identifying

u (v, respectively) with w. If (H1; v) ≺s (H1;u), then LEE(Gv) < LEE(Gu) (see

Figure 1).

H1 H2
u w
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v

H1 H2
v w

Gv

u

Figure 1. Gu and Gv

Definition 3.1. Let G1 and G2 be two graphs with u ∈ V (G1) and v ∈ V (G2). Let

G be the graph obtained from G1 and G2 by joining an edge uv, and G′ be the graph

obtained from G1 and G2 by identifying u with v and attaching a pendant vertex to u.

We call the procedure of constructing G′ from G the A-transformation of G at edge uv;

see Figure 2.

Lemma 3.4. [6] Let G and G′ be two bipartite graphs, where G′ is an A-transformation

of G at edge uv. If dG(u), dG(v) ≥ 2, then LEE(G) < LEE(G′).
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Figure 2. G and G′

Let T be an arbitrary tree rooted at a center vertex u, and let v be a vertex which

is distinct from u such that NT (v) = {v1, v2, · · · , vs}. It is obvious that T − v has s

components, denoted by T1, T2, · · · , Ts with vi ∈ V (Ti) for 1 ≤ i ≤ s. Without loss of

generality, we may assume u ∈ V (T1). If there exists an i (2 ≤ i ≤ s) such that Ti is a

path, say Ts = Pr, we define a graph transformation as follows:

Ts

T2

T1

T3

Ts−1

v1

v2

v3

vs−1

vs

v

Ts

T2

T1

T3

Ts−1

v1

v2

v3

vs−1

vs

v

u u

Figure 3. T and T ′

Definition 3.2. Let T ′ be the tree obtained from T by removing the edges vv2, vv3, . . . , vvs−1

and adding new edges v1v2, v1v3, . . . , v1vs−1; see Figure 3. We call T ′ a B-transformation

of T at v with vvs remained.

Lemma 3.5. Let T and T ′ be the trees defined as above. If v is not a center of T or

dT (v1) > 2, then LEE(T ) < LEE(T ′).

Proof. Let H1 be the component that contains v1 in T −{vv2, vv3, · · · , vvs−1}, and H2

be the component that contains v in T −{v1, vs}. Let T̂s = T [V (Ts)∪{v}] ∼= Pr+1. If v

is not a center of T , since u ∈ V (T1) and u is the center of T , we know that there exists

a path P in T1 of length at least r+1 with an end vertex v1, and so (T̂s; v) ≺s (T1; v1);



If v is a center and dT (v1) > 2, then there exists a path P in T1 having a length at least

r with an end vertex v1, together with the fact that |SW1(T̂s; v)| = 1 < |SW1(T1; v1)|,

we have that (T̂s; v) ≺s (T1; v1).

By Lemma 3.1, we have (H1; v) ≺s (H1; v1). Consequently, we can obtain LEE(T ) <

LEE(T ′) by Lemma 3.3.

4 The maximum LEE trees with given parameters

The matching number of a graph G is the maximum size of an independent (pairwise

nonadjacent) set of edges of G and will be denoted by α′(G). Let M(n, q) be the set of

all n-vertex trees with matching number q. Let A(n, q) be the tree that is obtained by

attaching q−1 pendant edges to q−1 pendant vertices of the star K1,n−q; see Figure 4.

It is routine to check that A(n, q) ∈ M(n, q). Given a vertex w in G, call w a perfectly

matched vertex if it is matched in any maximum matching of G.

1

2

3

p

A(n, q)

Figure 4. A(n, q)

Theorem 4.1. Among M(n, q), the tree A(n, q) is the unique graph with the maximum

Laplacian Estrada index.

Proof. Choose T ∈ M(n, q) such that its Laplacian Estrada index is as large as possi-

ble. If T contains a pendant path of length p > 2, say v1v2v3...vpvp+1 with v1 ∈ PV (T ),

then (T −v2−v1; v3) ≺s (T −v2−v1; v4) by Lemma 3.1. Let T0 = T −v2v3+v2v4. It is

routine to check that T0 is inM(n, q). By Lemma 3.3, we can get LEE(T ) < LEE(T0),



a contradiction. Hence, any pendant path contained in T must have a length at most

2.

Suppose that there exists a non-center vertex v ∈ V (T ) with dT (v) = r + s + 1

such that T contains r pendant edges vv1, vv2, · · · , vvr and s pendant paths of length 2

vu1u
′
1, vu2u

′
2, · · · , vusu

′
s attached to v. Let u be the center of T and w be the neighbor

of v in the path PT (v, u), where PT (v, u) is the path from v to u in T . We consider the

following possible cases.

Case 1: s = 0 and w is perfectly matched. Let M be a maximum matching of

T . Since w is perfectly matched, there exists a vertex s ̸= v such that sw ∈ M , and

vvi ∈ M for some 1 ≤ i ≤ r. Without loss of generality, suppose vv1 ∈ M . Apply

B−transformation at v with vv1 remained. Then M is also a matching of the resulting

tree T ′. If M is not a maximum matching of T ′, then T ′ has a matching M ′ such

that |M ′| ≥ q + 1. There exists an i (2 ≤ i ≤ r) such that wvi ∈ M ′. Obviously,

M ′ \ {wvi} is a matching of T . Note that |M ′ \ {wvi}| ≥ q and w is not matched in

M ′ \ {wvi}, we can obtained a contradiction. Hence T ′ ∈ M(n, q). By Lemma 3.5 we

get LEE(T ) < LEE(T ′), a contradiction.

Case 2: s = 0 and w is not perfectly matched. Applying A-transformation at edge

wv. Let T ′ be the resulting tree. Note that a matching of T ′ is also a matching

of T , and so α′(T ′) ≤ α′(T ) = q. Since w is not perfectly matched, there exists a

maximum matching M of T such that w is not matched in M . We can easily check

that M is also a matching of T ′. Hence, we have α′(T ′) = q. By Lemma 3.4 we get

LEE(T ) < LEE(T ′), a contradiction.

Case 3: r = 0. Applying B-transformation at v with vu1 remained. It is routine

to check that the resulting tree T ′ is in M(n, q). By Lemma 3.5 we get LEE(T ) <

LEE(T ′), a contradiction.

Case 4: r > 0, s > 0 and w is perfectly matched. For a maximum matching M of

T , we know that there exists an i (1 ≤ i ≤ r) such that vvi ∈ M . Without loss of



generality, suppose vv1 ∈ M . Apply B−transformation at v with vv1 remained. It is

routine to check that T ′ is in M(n, q). By Lemma 3.5 we get LEE(T ) < LEE(T ′), a

contradiction.

Case 5: r > 0, s > 0 and w is not perfectly matched. Applying A-transformation at

edge wv. By a similar analysis in case 2, we can easily check that T ′ is in M(n, q). By

Lemma 3.4 we get LEE(T ) < LEE(T ′), a contradiction.

Hence, all the pendant paths of length at most 2 are attached only to the centers

of T. In order to characterize the structure of T , it suffices to show that T contains

just one center whose degree is larger than 2. Otherwise, assume that T contains two

centers, say c1 and c2, with dT (c1) > 2 and dT (c2) > 2. Applying B-transformation

at c1 with c1u remained in T , where NT (u) = {c1}, we get a new tree, say T ′. It is

routine to check that T ′ is in M(n, q). By Lemma 3.5 we get LEE(T ) < LEE(T ′), a

contradiction.

The proof is now complete.

A dominating set in a graph G is a subset S of V (G) such that each vertex of G

either belongs to S or is adjacent to some elements of S. The dominating number of a

graph G, denoted by γ(G), is defined as the cardinality of a minimum dominating set

of G. Let D(n, q) be the set of all n-vertex trees with dominating number q.

Theorem 4.2. Among D(n, q), the tree A(n, q) is the unique graph with the maximum

Laplacian Estrada index.

Proof. Let T be a tree which maximizes the Laplacian Estrada index among D(n, q).

In order to complete the proof, it suffices to show that γ(T ) = α′(T ). It is known

from [3] that γ(T ) ≤ α′(T ). So we only need to show γ(T ) ≥ α′(T ). Assume that

S = {v1, v2, · · · , vq} is a dominating set of T with cardinality q. We claim that T − S

is an empty graph. In fact, if there exists an edge w1w2 ∈ E(T − S), then w1 and

w2 are dominated by two different vertices of S. Without loss of generality, assume



that wi is dominated by the vertex vi for i = 1, 2. Now we construct a new tree

T ′ ∈ D(n, q) by using A-transformation in T at edges v1w1 and v2w2. By Lemma 3.4

we get LEE(T ) < LEE(T ′), a contradiction. The claim follows and hence, we can

easily get that α′(T ) ≤ q. This completes the proof.

Let P(n, k) be the set of all n-vertex trees with k leaves (2 ≤ k ≤ n− 1). A spider

is a tree with at most one vertex of degree more than 2, and this vertex is called the

hub of the spider (if no vertex of degree more than two, then any vertex can be the

hub). A leg of a spider is a path from the hub to a leaf. Let T k
n be an n-vertex tree

with k legs satisfying all the lengths of the k legs, say l1, l2, · · · , lk, are almost equal,

i.e., |li − lj| ≤ 1 for 1 ≤ i, j ≤ k. It is easy to see that T k
n ∈ P(n, k) and li = ⌊n−1

k
⌋ or

⌈n−1
k
⌉, for any 1 ≤ i ≤ k.

Theorem 4.3. Among P(n, k), the tree T k
n is the unique graph with the maximum

Laplacian Estrada index.

Proof. Choose T ∈ P(n, k) such that its Laplacian Estrada index is as large as possible.

If k = 2 or n − 1, our result follows immediately. Hence, we consider 2 < k < n − 1.

For convenience, let W be the set of vertices of degree larger than 2 in T .

First, we show that for any v ∈ W , v is a center of T . Otherwise, there exists a

vertex v ∈ W that is not a center of T , and v satisfies that T −v has a path component

T1 with vv1 ∈ E(T ) and v1 is not a center of T . Apply B-transformation of T at v with

vv1 remained to get a new tree T ′. It is straightforward to check that T ′ ∈ P(n, k).

By Lemma 3.5, we have that LEE(T ) < LEE(T ′), a contradiction to the choice of T .

Hence, for any vertex w ∈ V (T ) that is not a center of T , we have dT (w) ≤ 2. If there

are two center vertices c1 and c2 in W , we can similarly apply a B-transformation of

T at c1 with c1u remained to get a new tree T ′, where u ∈ NT (c1) \ {c2}. Then T ′ is a

spider, and by Lemma 3.5 we have LEE(T ) < LEE(T ′), a contradiction.

Now suppose that c is the only vertex in W . We show that|dT (c, ui)−dT (c, uj)| ≤ 1

for any ui, uj ∈ PV (T ). Assume, to the contrary, that there exist two pendant vertices,



say ut, ul, such that

|dT (c, ut)− dT (c, ul)| > 2. (1)

Denote the unique path connecting ut and ul by Ps = w1w2 · · ·wi−1wiwi+1 · · ·ws,

where w1 = ut, ws = ul and wi = c, 1 < i < s. In view of (1), we have

c = wi ̸= w⌊ s+1
2

⌋and c = wi ̸= w⌈ s+1
2

⌉.

Hence, by Corollary 3.2 and Lemma 3.3 there exists an n-vertex tree T ∈ P(n, k) such

that LEE(T ) < LEE(T ′), a contradiction to the choice of T . So we have T ∼= T k
n .

Let Dd
n denote the set of all n-vertex trees of diameter d. Let T̂ d

n,k be the n-vertex

tree obtained from Pd+1 = v1v2 · · · vdvd+1 by attaching n− d− 1 pendant edges to vk;

see Figure 5.

v1 v2 vk vd+1
vd

u1 u2 un−d−1

T̂
d
n,k

Figure 5. T̂ d
n,k

Theorem 4.4. Among Dd
n, the tree T̂ d

n,i is the unique graph with the maximum Lapla-

cian Estrada index, where i = ⌊d
2
⌋+ 1 or ⌈d

2
⌉+ 1.

Proof. Choose T ∈ Dd
n such that its Laplacian Estrada index is as large as possible.

Let Pd+1 = v1v2 · · · vdvd+1 be a longest path in T . Let e = uv be an edge of T .

If {u, v} ∩ {v1, v2 · · · , vd+1} = ∅, we can apply A-transformation at edge uv to get

T ′. Note that T ′ ∈ Dd
n, and LEE(T ) < LEE(T ′) by Lemma 3.4, we can obtain a

contradiction. Hence {u, v} ∩ {v1, v2 · · · , vd+1} ̸= ∅



For any e = uvi ∈ E(G) \ E(Pd+1)(1 < i < d + 1), we prove that i = ⌊d
2
⌋ + 1 or

⌈d
2
⌉ + 1. Suppose i < ⌊d

2
⌋ + 1, and let j = min{i : 1 < i < ⌊d

2
⌋ + 1, dT (vi) > 2}.

We can apply a B-transformation at vj with vjvj−1 remained. It is routine to check

that the resulting tree T ′ is in Dd
n. By Lemma 3.5, we have LEE(T ) < LEE(T ′), a

contradiction. We can similarly get a contradiction if i > ⌈d
2
⌉+ 1.

If dT (v⌊ d
2
⌋+1) > 2 and dT (v⌈ d

2
⌉+1) > 2, By applying a B-transformation at v⌈ d

2
⌉+1

with v⌈ d
2
⌉+1v⌈ d

2
⌉+2 remained, we get a new tree T ′ ∈ Dd

n, and LEE(T ) < LEE(T ′), a

contradiction. Hence dT (v⌊ d
2
⌋+1) = 2 or dT (v⌈ d

2
⌉+1) = 2. This completes our proof.
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[12] E. Estrada, J.A. Rodŕıguez-Valázquez, Spectral measures of bipartivity in complex

networks, Phys. Rev. E 72 (2005), 0461051.
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