# THE EGZ-CONSTANT AND SHORT ZERO-SUM SEQUENCES OVER FINITE ABELIAN GROUPS 

WEIDONG GAO, DONGCHUN HAN, AND HANBIN ZHANG


#### Abstract

Let $G$ be an additive finite abelian group with exponent $\exp (G)$. Let $\eta(G)$ be the smallest integer $t$ such that every sequence of length $t$ has a nonempty zero-sum subsequence of length at most $\exp (G)$. Let $\mathbf{s}(G)$ be the EGZ-constant of $G$, which is defined as the smallest integer $t$ such that every sequence of length $t$ has a zero-sum subsequence of length $\exp (G)$. Let $p$ be an odd prime. We determine $\eta(G)$ for some groups $G$ with $\mathbf{D}(G) \leq 2 \exp (G)-1$, including the $p$-groups of rank three and the $p$-groups $G=C_{\exp (G)} \oplus C_{p^{m}}^{r}$. We also determine $\mathbf{s}(G)$ for the groups $G$ above with more larger exponent than $\mathrm{D}(G)$, which confirms a conjecture by Schmid and Zhuang from 2010, where $\mathrm{D}(G)$ denotes the Davenport constant of $G$.


## 1. Introduction

Throughout this paper, let $p$ denote a prime. Let $G$ be an additive finite abelian group with exponent $\exp (G)$. Let $S=g_{1} \cdot \ldots \cdot g_{k}$ be a sequence over $G$. We call $S$ a zero-sum sequence if $0=\sum_{i=1}^{k} g_{i}$. The Davenport's constant, denoted by $\mathrm{D}(G)$, is the minimal integer $t$ such that such that every sequence $S$ over $G$ of length $|S| \geq t$ has a nonempty zero-sum subsequence. Let $\eta(G)$ be the minimal integer $t$ such that every sequence of length $t$ has a nonempty zero-sum subsequence of length less than or equal to $\exp (G)$. Let $s(G)$ be the minimal integer $t$ such that every sequence of length $t$ has a zero-sum subsequence of length $\exp (G)$.

These are classical invariants in combinatorial number theory and have received a lot of attention(see [17], [18], [8], [2], [11]). For $G$ is cyclic, we have $\eta(G)=|G|$, and $s(G)=2|G|-1$ by the well known Erdős-Ginzurg-Ziv theorem [5]. For the case that $G$ is of rank two, the key step of determine $\eta(G)$ (resp. $\mathrm{s}(G)$ ) is to determine $\eta\left(C_{p}^{2}\right)$ (resp. s $\left(C_{p}^{2}\right)$ ). In 1969, Olson [17] proved $\eta\left(C_{p}^{2}\right)=3 p-2$. While the determining of $s\left(C_{p}^{2}\right)$ is very complicated. In 1983, Kemnitz [15] conjectured that $\mathrm{s}\left(C_{p}^{2}\right)=4 p-3$ and it was confirmed by C. Reiher [18] in 2007. The precise values of $\eta(G)$ and $\mathrm{s}(G)$ for groups with rank at most two has been summarized in ( $[13$, Theorem 5.8.3]) as follows.

If $G=C_{m} \oplus C_{n}$ with $1 \leq m \mid n$, then $s(G)=\eta(G)+n-1=2 m+2 n-3$.
The situation is very different for groups of higher rank. Even for the group $G=C_{p}^{3}$ with $p$ being a prime, the precise value of the $\eta(G), s(G)$ is unknown (for general $p$ ). Fan, Gao, Wang, and Zhong [8] determined the $\eta(G)$ and $s(G)$ for a special type groups with rank three. When $G=C_{3}^{r}$, the precise value of $\eta(G)$ and $s(G)$ has been determined for $r \leq 6$ (see [4]). Apart the results mentioned above, Schmid and Zhuang [19] proved that if $G$ is a finite abelian $p$-group with $\mathrm{D}(G)=2 \exp (G)-1$, then $2 \mathrm{D}(G)-1=\eta(G)+\exp (G)-1=s(G)$, which has

[^0]been generalized recently by Geroldinger, Grynkiewcz and Schmid [12, Theorem 4.2]. Schmid and Zhuang further conjectured the following.

Conjecture 1.1. ([19]) Let $G$ be a finite abelian p-group with $\mathrm{D}(G) \leq 2 \exp (G)-1$. Then

$$
2 \mathrm{D}(G)-1=\eta(G)+\exp (G)-1=s(G)
$$

In this paper we verify this conjecture for some $p$-groups with $\mathrm{D}(G)<2 \exp (G)-$ 1 and our main results are the following.

Theorem 1.2. Let $a, n$ be positive integers, let $H$ be a finite abelian p-group, and let $G=C_{a p^{n}} \oplus H$. Suppose that $\left.\mathrm{D}\left(C_{p^{n}} \oplus H\right)\right) \leq 2 p^{n}-1$. If $p>2 r(H)$ then

$$
\eta(G)=2 \mathrm{D}(G)-a p^{n}=a p^{n}+2 \mathrm{D}(H)-2
$$

provided that $H$ satisfies one of the following conditions:
(1) $\mathrm{D}(H) \leq 2 \exp (H)$.
(2) $\left\lceil\left(k+\frac{1}{2}\right) \exp (H)\right\rceil<\mathrm{D}(H) \leq(k+1) \exp (H)$ for some integer $k \geq 2$.

Theorem 1.3. Let $H$ be a finite abelian p-group with $\exp (H)=p^{m}$, and let $G=$ $C_{a p^{n}} \oplus H$. If $p>2 r(H), p^{n} \geq \mathrm{D}(H)$ and $a>|H| p^{2 m-n}$, then

$$
s(G)=\eta(G)+a p^{n}-1=2 a p^{n}+2 \mathrm{D}(H)-3
$$

provided that $H$ satisfies one of the following conditions:
(1) $\mathrm{D}(H) \leq 2 \exp (H)$.
(2) $\left\lceil\left(k+\frac{1}{2}\right) \exp (H)\right\rceil<\mathrm{D}(H) \leq(k+1) \exp (H)$ for some integer $k \geq 2$.

It is easy to see that the conditions of Theorem 1.2 are fulfilled by the following groups $H$ and $G$.

- $r(H)=2$ and $\mathrm{D}\left(C_{p^{n}} \oplus H\right) \leq 2 p^{n}-1$.
- $\mathrm{D}\left(C_{p^{n}} \oplus H\right) \leq 2 p^{n}-1, H=C_{p^{m}}^{r}$ and $p \geq 2 r+1$.

It is easy to see that the conditions of Theorem 1.3 are fulfilled by the following groups $H$ and $G$.

- $r(H)=2, \mathrm{D}\left(C_{p^{n}} \oplus H\right) \leq 2 p^{n}-1$ and $a>|H| p^{2 m-n}$.
- $\mathrm{D}\left(C_{p^{n}} \oplus H\right) \leq 2 p^{n}-1, H=C_{p^{m}}^{r}, p \geq 2 r+1$ and $a>|H| p^{2 m-n}$


## 2. Preliminaries

Let $\mathbb{N}$ denote the set of positive integers, $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$. For a real number $x$, we denote by $\lfloor x\rfloor$ the largest integer that is less than or equals to $x$, and denote by $\lceil x\rceil$ the smallest integer that is greater than or equals to $x$.

Throughout, all abelian groups will be written additively. By the Fundamental Theorem of Finite Abelian Groups we have

$$
G \cong C_{n_{1}} \oplus \cdots \oplus C_{n_{r}}
$$

where $r=\mathrm{r}(G) \in \mathbb{N}_{0}$ is the $\operatorname{rank}$ of $G, n_{1}, \ldots, n_{r} \in \mathbb{N}$ are integers with $1<$ $n_{1}|\ldots| n_{r}$, moreover, $n_{1}, \ldots, n_{r}$ are uniquely determined by $G$, and $n_{r}=\exp (G)$ is the exponent of $G$. Let

$$
\mathrm{D}^{*}(G)=1+\sum_{i=1}^{r}\left(n_{i}-1\right)
$$

THE EGZ-CONSTANT AND SHORT ZERO-SUM SEQUENCES OVER FINITE ABELIAN GROUPS
For $g_{1}, \ldots, g_{l} \in G$ (repetition allowed), we call $S=g_{1} \cdot \ldots \cdot g_{l}$ a sequence over $G$. We write sequences $S$ in the form

$$
S=\prod_{g \in G} g^{\mathrm{v}_{g}(S)} \text { with } \mathrm{v}_{g}(S) \in \mathbb{N}_{0} \text { for all } g \in G
$$

We call $\mathrm{v}_{g}(S)$ the multiplicity of $g$ in $S$.
For $S=g_{1} \cdot \ldots \cdot g_{l}=\prod_{g \in G} g^{\mathrm{v}_{g}(S)}$, we call

- $|S|=l=\Sigma_{g \in G} \vee_{g}(S) \in \mathbb{N}_{0}$ the length of $S$.
- $\sigma(S)=\Sigma_{i=1}^{l} g_{i}=\Sigma_{g \in G} \vee_{g}(S) g \in G$ the sum of $S$.
- $S$ is a zero-sum sequence if $\sigma(S)=0$.
- $S$ is a short zero-sum sequence if it is a zero-sum sequence of length $|S| \in[1, \exp (G)]$
Let $S=g_{1} \cdot \ldots \cdot g_{l}$ be a sequence over $G$ of length $|S|=l \in \mathbb{N}_{0}$ and let $g \in G$. For every $k \in \mathbb{N}_{0}$ let

$$
N_{g}^{k}(S)=\left|\left\{I \subset[1, l]\left|\Sigma_{i \in I} g_{i}=g,|I|=k\right\} \mid\right.\right.
$$

denote the number of subsequences $T$ of $S$ having sum $\sigma(T)=g$ and length $|T|=k$ (counted with the multiplicity of their appearance in $S$ ).

For convenience, let $N^{k}(S)$ denote $N_{0}^{k}(S)$.
Lemma 2.1. ([4, Lemma 3.2]) Let $H$ be a finite abelian group, and let $G=C_{n} \oplus H$. If $\exp (H) \mid n$ then $\eta(G) \leq n+2 \mathrm{D}(H)-2$.

Lemma 2.2. ([16]) Let $G$ be a finite abelian p-group. Then

$$
\mathrm{D}(G)=\mathrm{D}^{*}(G)
$$

Moreover, if $S$ is a sequence over $G$ with $|S|=l \geq \mathrm{D}^{*}(G)$, then

$$
1-N^{1}(S)+N^{2}(S)+\cdots+(-1)^{l} N^{l}(S) \equiv 0 \quad(\bmod p)
$$

Lemma 2.3. Let $m$ be a positive integer, let $G$ be a finite abelian p-group, and let $S$ be a sequence over $G$ of length $|S| \geq \mathrm{D}(G)+p^{m}-1$. Let $t=\left\lfloor\frac{|S|}{p^{m}}\right\rfloor$. Then

$$
1+\Sigma_{j=1}^{t}(-1)^{j} N^{j p^{m}}(S) \equiv 0 \quad(\bmod p)
$$

Proof. Let $G \oplus C_{p^{m}}=G \oplus\langle e\rangle$ with $\langle e\rangle=C_{p^{m}}$. Let $\varphi: G \rightarrow G \oplus C_{p^{m}}$ be defined by $\varphi(g)=g+e$ for every $g \in G$. Let $S=g_{1} \cdot \ldots \cdot g_{l}$. Then $\varphi(S)=\left(g_{1}+e\right) \cdot \ldots \cdot\left(g_{l}+e\right)$ is a sequence over $G \oplus C_{p^{m}}$. Thus let $\varphi(T)$ be a subsequence of $\varphi(S)$ over $G \oplus C_{p^{m}}$, $\sigma(\varphi(T))=0$ if and only if $\sigma(T)=0$ and $|T| \equiv 0\left(\bmod p^{m}\right)$.

Apply lemma 2.2 to the sequence $\varphi(S)$, we get

$$
1+\Sigma_{j=1}^{t}(-1)^{j} N^{j p^{m}}(\varphi(S)) \equiv 0 \quad(\bmod p)
$$

hence

$$
1+\Sigma_{j=1}^{t}(-1)^{j} N^{j p^{m}}(S) \equiv 0 \quad(\bmod p)
$$

This completes the proof.

The following congruence is first used by Lucas [14], we give a proof for the convenience of the reader.

Lemma 2.4. Let $a, b$ be positive integers with $a=a_{n} p^{n}+\cdots+a_{1} p+a_{0}$ and $b=b_{n} p^{n}+\cdots+b_{1} p+b_{0}$ be the p-adic expansions, where $p$ is a prime, define $\binom{k}{0}=1$ for $k \geq 0$. Then

$$
\binom{a}{b} \equiv\binom{a_{n}}{b_{n}}\binom{a_{n-1}}{b_{n-1}} \cdots\binom{a_{0}}{b_{0}} \quad(\bmod p)
$$

Proof. We have

$$
\begin{aligned}
(1+x)^{a} & =(1+x)^{a_{n} p^{n}+\cdots+a_{1} p+a_{0}} \\
& =\left(1+x^{p^{n}}\right)^{a_{n}} \cdots\left(1+x^{p}\right)^{a_{1}}(1+x)^{a_{0}} \quad(\bmod p)
\end{aligned}
$$

Since $0 \leq a_{i} \leq p-1$, comparing the coefficient of $x^{b}$, we get the desired result.

Lemma 2.5. Let $n$ and $k$ be positive integers with $1 \leq 2 k \leq n$, and let $A=$ $\left(\binom{n-j}{i}\right)_{0 \leq i, j \leq k}$, that is

$$
A=\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\binom{n}{1} & \left(\begin{array}{c}
n-1 \\
n \\
2
\end{array}\right) & \cdots & \left(\begin{array}{c}
n-k \\
1-1 \\
2
\end{array}\right) \\
\cdots & \binom{n-k}{2} \\
\vdots & \vdots & \ddots & \vdots \\
\binom{n}{k} & \binom{n-1}{k} & \cdots & \binom{n-k}{k}
\end{array}\right)_{(k+1) \times(k+1)}
$$

Then we have

$$
\operatorname{det}(A)=\frac{1}{\prod_{1 \leq t \leq k} t!} \prod_{1 \leq i<j \leq k}(j-i)
$$

Proof. Let

$$
B=\left(\begin{array}{cccc}
1 & 1 & & 1 \\
n & n-1 & \cdots & n-k \\
n(n-1) & (n-1)(n-2) & & (n-k)(n-k-1) \\
\vdots & \vdots & \ddots & \vdots \\
n \cdots(n-k+1) & (n-1) \cdots(n-k) & \cdots & (n-k) \cdots(n-2 k+1)
\end{array}\right) .
$$

In what follows, we denote the $i$ th row of $B$ by $\operatorname{Row}_{B}(i)$.
Firstly, replace $\operatorname{Row}_{B}(3)$ by $\operatorname{Row}_{B}(3)+\operatorname{Row}_{B}(2)$, and we get the following matrix

$$
\left(\begin{array}{cccc}
1 & 1 & & 1 \\
n & n-1 & \cdots & n-k \\
n^{2} & (n-1)^{2} & & (n-k)^{2} \\
\vdots & \vdots & \ddots & \vdots \\
n \cdots(n-k+1) & (n-1) \cdots(n-k) & \cdots & (n-k) \cdots(n-2 k+1)
\end{array}\right)
$$

by abuse of language we also denote the corresponding new matrix by $B$.
Similarly, let $f_{i}(x)=x(x-1) \cdots(x-i+2)=x^{i-1}+a_{i-2} x^{i-2}+\cdots+a_{1} x$. Then replace $\operatorname{Row}_{B}(i)$ by $\operatorname{Row}_{B}(i)-a_{i-2} \operatorname{Row}_{B}(i-1)-\cdots-a_{1} \operatorname{Row}_{B}(2)$ successively for

THE EGZ-CONSTANT AND SHORT ZERO-SUM SEQUENCES OVER FINITE ABELIAN GROUPS
$4 \leq i \leq k+1$ and after each step also denote the corresponding new matrix by $B$, we can get the following matrix

$$
C=\left(\begin{array}{cccc}
1 & 1 & & 1 \\
n & n-1 & \ldots & n-k \\
n^{2} & (n-1)^{2} & & (n-k)^{2} \\
\vdots & \vdots & \ddots & \vdots \\
n^{k} & (n-1)^{k} & \ldots & (n-k)^{k}
\end{array}\right)
$$

It is well known that $\operatorname{det}(C)$ is a Vandermonde determinant, then clearly

$$
\operatorname{det}(A)=\frac{1}{\prod_{1 \leq t \leq k} t!} \operatorname{det}(B)=\frac{1}{\prod_{1 \leq t \leq k} t!} \operatorname{det}(C)=\frac{1}{\prod_{1 \leq t \leq k} t!} \prod_{1 \leq i<j \leq k}(j-i)
$$

Lemma 2.6. [8, Theorem 1.2] Let $H$ be an arbitrary finite abelian group with $\exp (H)=u \geq 2$, and let $G=C_{v u} \oplus H$. If $v \geq \max \{u|H|+1,4|H|+2 u\}$, then $s(G)=\eta(G)+\exp (G)-1$.
Lemma 2.7. ([12, Page 7, (4.1)]) Let $K$ be subgroup of a finite abelian group $G$. Then, $\eta(G) \leq \exp (G / K)(\eta(K)-1)+\eta(G / K)$.

Lemma 2.8. ([3]) Let a, $n$ be a positive integer, let $H$ be a finite abelian p-group with $D(H) \leq p^{n}-1$, and let $G=C_{a p^{n}} \oplus H$. Then, $\mathrm{D}(G)=a p^{n}+D(H)-1$.

## 3. Proof of the main theorems

Let $G=C_{p^{n}} \oplus H$ be a finite abelian $p$-group with $\exp (H)=p^{m}$. Let $k$ be the integer with

$$
k p^{m} \leq \mathrm{D}(H)-1<(k+1) p^{m}
$$

and let

$$
v=(k+1) p^{m}-\mathrm{D}(H)
$$

The following technical result is crucial in the proof of Theorem 1.2.
Lemma 3.1. Let $G=C_{p^{n}} \oplus H$ be a finite p-group with $\exp (H)=p^{m}$, and let $S$ be a sequence over $G$ of length $s=|S|=p^{n}+2 \mathrm{D}(H)-2$. Suppose that $S$ has no short zero-sum subsequence. If $p^{n} \geq 2 \mathrm{D}(H)-2$, then we have the following congruences:

$$
\begin{equation*}
1+\Sigma_{u=0}^{h}\binom{h}{u} \Sigma_{j=1}^{k}(-1)^{j-1} N^{p^{n}+j p^{m}-u}(S) \equiv 0 \quad(\bmod p) \tag{3.1}
\end{equation*}
$$

holds for every $h \in[0, v]$, and

$$
\begin{equation*}
\Sigma_{j=1}^{k}(-1)^{j-1} N^{p^{n}+j p^{m}-h}(S) \equiv 0 \quad(\bmod p) \tag{3.2}
\end{equation*}
$$

for every $h \in[1, v]$, and

$$
\begin{align*}
& \binom{|S|}{i p^{m}}+\sum_{j=1}^{k}(-1)^{j-1} \Sigma_{u=0}^{v}\binom{|S|-p^{n}-j p^{m}+u}{i p^{m}}\binom{v}{u} N^{p^{n}+j p^{m}-u}(S)  \tag{3.3}\\
& \equiv 0 \quad(\bmod p)
\end{align*}
$$

for every $i \in[0, k]$.

Proof. We first have the following claim.
Claim. $N^{i}(S)=0$ for every $i \in\left[1, p^{n}\right] \cup\left[p^{n}+\mathrm{D}(H),|S|\right]$.
Since $S$ has no short zero-sum subsequence, we obtain $N^{i}(S)=0$ for every $i \in\left[1, p^{n}\right]$. Assume that $N^{i}(S) \neq 0$ for some $i \in\left[p^{n}+\mathrm{D}(H),|S|\right]$, then $S$ has a zero-sum subsequence $W$ of length $|W|=i \geq p^{n}+\mathrm{D}(H)=\mathrm{D}(G)+1$, which implies $W$ can be divided into two nonempty zero-sum subsequences $W=W_{1} W_{2}$ with $\left|W_{1}\right| \leq\left|W_{2}\right|$. Since $2 \mathrm{D}(H)-2 \leq p^{n}$, we have

$$
\left|W_{1}\right| \leq \frac{|W|}{2} \leq \frac{|S|}{2}=\frac{p^{n}+2 D(H)-2}{2} \leq p^{n}=\exp (G)
$$

it is a contradiction completing the proof of the Claim.
Consider the following homomorphism

$$
\varphi: G=C_{p^{n}} \oplus H \rightarrow C_{p^{n}} \oplus H \oplus C_{p^{m}}=G \oplus\langle e\rangle
$$

with $\varphi(g)=g+e$ for every $g \in G$, where $\langle e\rangle=C_{p^{m}}$. Let $S=g_{1} \cdot \ldots \cdot g_{s}$. Then $\varphi(S)=\left(g_{1}+e\right) \cdot \ldots \cdot\left(g_{s}+e\right)$ is a sequence over $G \oplus C_{p^{m}}$.

For $i \in[0, k]$, let $T$ be an arbitrary subsequence of $S$ of length

$$
|T|=|S|-i p^{m}
$$

Note that

$$
\begin{aligned}
\left|T 0^{h}\right| & =|T|+h=p^{n}+2 \mathrm{D}(H)-2-i p^{m}+h \geq p^{n}+\mathrm{D}(H)-1+p^{m} \\
& =\mathrm{D}(G)+p^{m}-1
\end{aligned}
$$

holds for $i \in[0, k-1]$ and $h \in[0, v]$, or $i=k$ and $h=v$. Applying Lemma 2.3 to the sequence $\varphi\left(T 0^{h}\right)$ with $i \in[0, k-1]$ and $h \in[0, v]$, or $i=k$ and $h=v$, we get

$$
\begin{equation*}
1+\Sigma_{j=1}^{t}(-1)^{j} N^{j p^{m}}\left(\varphi\left(T 0^{h}\right)\right) \equiv 0 \quad(\bmod p) \tag{3.4}
\end{equation*}
$$

where $t=\left\lfloor\frac{\left\lfloor T 0^{h} \mid\right.}{p^{m}}\right\rfloor$. Therefore,

$$
\begin{equation*}
1+\Sigma_{j=1}^{t}(-1)^{j}\left(\Sigma_{u=0}^{h}\binom{h}{u} N^{j p^{m}-u}(T)\right) \equiv 0 \quad(\bmod p) \tag{3.5}
\end{equation*}
$$

since $N^{j p^{m}}\left(\varphi\left(T 0^{h}\right)\right)=\Sigma_{u=0}^{h}\binom{h}{u} N^{j p^{m}-u}(T)$ for every $j \in[1, t]$.
Note that $N^{i}(T) \leq N^{i}(S)$. Applying the claim above we obtain, $N^{i}(T)=0$ for every $i \in\left[1, p^{n}\right] \cup\left[p^{n}+\mathrm{D}(H),|T|\right]$. Since $p^{n}+\mathrm{D}(H)=p^{n}+(k+1) p^{m}-v$, by (3.5), we obtain

$$
\begin{equation*}
1+\Sigma_{u=0}^{h}\binom{h}{u} \Sigma_{j=1}^{k}(-1)^{j-1} N^{p^{n}+j p^{m}-u}(T) \equiv 0 \quad(\bmod p) \tag{3.6}
\end{equation*}
$$

holds for every pair of $(h, i)$ with $h \in[0, v]$ and $i \in[0, k-1]$, or $h=v$ and $i=k$.
Taking $T=S$ in (3.6) we obtain (3.1).
Let $F(h)=1+\Sigma_{u=0}^{h}\binom{h}{u} \Sigma_{j=1}^{k}(-1)^{j-1} N^{p^{n}+j p^{m}-u}(S)$. By (3.1), we obtain that $F(h+1)-F(h) \equiv 0(\bmod p)$. That is,

$$
\begin{align*}
& \Sigma_{j=1}^{k}(-1)^{j-1} N^{p^{n}+j p^{m}-(h+1)}(S)= \\
& -\sum_{u=0}^{h}\left(\binom{h+1}{u}-\binom{h}{u}\right) \Sigma_{j=1}^{k}(-1)^{j-1} N^{p^{n}+j p^{m}-u}(S) \quad(\bmod p) . \tag{3.7}
\end{align*}
$$

Taking $h=0$ in (3.7), we obtain

$$
\Sigma_{j=1}^{k}(-1)^{j-1} N^{p^{n}+j p^{m}-1}(S) \equiv 0 \quad(\bmod p)
$$

This proves (3.2) for $h=1$. Suppose that (3.2) is true for all $h<\ell(\leq v)$. Again by (3.7) taking $h=\ell-1$, we obtain $\Sigma_{j=1}^{k}(-1)^{j-1} N^{p^{n}+j p^{m}-\ell}(S) \equiv 0(\bmod p)$ completing the proof of (3.2). Now it remains to prove (3.3).

By (3.6) we have

$$
\begin{equation*}
\Sigma_{|T|=|S|-i p^{m}}\left(1+\Sigma_{u=0}^{v}\binom{v}{u} \Sigma_{j=1}^{k}(-1)^{j-1} N^{p^{n}+j p^{m}-u}(T)\right) \equiv 0 \quad(\bmod p) \tag{3.8}
\end{equation*}
$$

where the sum is taken over all $T \mid S$ of length $|T|=|S|-i p^{m}$.
Note that each subsequence $W$ of $S$ of length $|W| \leq|S|-i p^{m}$ can be extended to a subsequence $T$ of length $|T|=|S|-i p^{m}$ in $\binom{|S|-|W|}{|T|-|W|}=\binom{|S|-|W|}{|S|-|T|}=\binom{|S|-|W|}{i p^{m}}$ way. Therefore, the left side of (3.8) equals

$$
\binom{|S|}{i p^{m}}+\Sigma_{j=1}^{k}(-1)^{j-1} \Sigma_{u=0}^{v}\binom{|S|-p^{n}-j p^{m}+u}{i p^{m}}\binom{v}{u} N^{p^{n}+j p^{m}-u}(S)
$$

Now (3.3) follows.

Remark 3.2. Note that $v$ could be 0 and the list of (3.2) is empty.
Proposition 3.3. Let $H$ be a finite abelian p-group with $2 r(H)<p$, and let $G=$ $C_{p^{n}} \oplus H$ with $\mathrm{D}(G) \leq 2 p^{n}-1$. Let $\exp (H)=p^{m}$, and let $\mathrm{D}(H)-1=k p^{m}+t$ with $k$ a integer and $t \in\left[0, p^{m}-1\right]$. If $k=1$ or $2 t \geq p^{m}$, then

$$
\eta(G)=2 \mathrm{D}(G)-p^{n}=p^{n}+2 \mathrm{D}(H)-2
$$

Proof. By Lemma 2.1, it suffices to prove that $\eta(G) \leq p^{n}+2 \mathrm{D}(H)-2$.
Let $S$ be a sequence over $G$ of length $s=|S|=p^{n}+2 \mathrm{D}(H)-2=p^{n}+2 k p^{m}+2 t$. We need to show $S$ has a short zero-sum subsequence. Assume to the contrary that $S$ has no short zero-sum sequence.

Case $1 k=1$.
Since $p>2 r(H)$, we know that $p$ is a odd prime and $\mathrm{D}(H)=\mathrm{D}^{*}(H)$ is odd. Therefore,

$$
v=2 p^{m}-\mathrm{D}(H) \geq 1
$$

In this case, (3.2) becomes

$$
\begin{equation*}
N^{p^{n}+p^{m}-h}(S) \equiv 0 \quad(\bmod p) \tag{3.9}
\end{equation*}
$$

for every $h \in[1, v]$.
By (3.3) taking $i=1$, we obtain

$$
\binom{p^{n}+2 p^{m}+2 t}{p^{m}}+\Sigma_{u=0}^{v}\binom{p^{m}+2 t+u}{p^{m}} N^{p^{n}+p^{m}-u}(S) \equiv 0 \quad(\bmod p)
$$

This together with (3.9) gives that

$$
\binom{p^{n}+2 p^{m}+2 t}{p^{m}}+\binom{p^{m}+2 t}{p^{m}} N^{p^{n}+p^{m}}(S) \equiv 0 \quad(\bmod p)
$$

It follows from Lemma 2.4 that

$$
\begin{equation*}
\binom{2 p^{m}+2 t}{p^{m}}+\binom{p^{m}+2 t}{p^{m}} N^{p^{n}+p^{m}}(S) \equiv 0 \quad(\bmod p) \tag{3.10}
\end{equation*}
$$

Again by Lemma 2.4 and according to $2 t<p^{m}$ or not, from (3.10) we know that either

$$
2+N^{p^{n}+p^{m}}(S) \equiv 0 \quad(\bmod p)
$$

or

$$
3+2 N^{p^{n}+p^{m}}(S) \equiv 0 \quad(\bmod p)
$$

Both contradict to $1+N^{p^{n}+p^{m}}(S) \equiv 0(\bmod p)$ by (3.1).
Case 2: $2 t \geq p^{m}$
From the assumption that $2 r(H)<p$ we infer that $k p^{m}+t=\mathrm{D}(H)-1=$ $\mathrm{D}^{*}(H)-1<r(H) p^{m}<\frac{p}{2} \times p^{m}$. Therefore,

$$
2 k<p
$$

Since

$$
|S|-p^{n}-j p^{m}=p^{n}+2 k p^{m}+2 t-p^{n}-j p^{m}=(2 k-j) p^{m}+2 t
$$

and

$$
\begin{aligned}
|S|-p^{n}-j p^{m}+v & =p^{n}+2 k p^{m}+2 t-p^{n}-j p^{m}+(k+1) p^{m}-\left(k p^{m}+t+1\right) \\
& =(2 k-j) p^{m}+p^{m}+t-1
\end{aligned}
$$

By Lemma 2.4, $\binom{|S|-p^{n}-j p^{m}+u}{i p^{m}}=\binom{|S|-p^{n}-j p^{m}}{i p^{m}}$ for every $u \in[0, v]$. Thus in (3.3), we can treat $\Sigma_{u=0}^{v}\binom{v}{u} N^{p^{n}+j p^{m}-u}(S)$ as one variable.

Set $i=0, \ldots, k$ respectively in (3.3), we get a group of linear equations in variables $1, \Sigma_{u=0}^{v}\binom{v}{u} N^{p^{n}+p^{m}-u}(S), \ldots,(-1)^{k-1} \Sigma_{u=0}^{v}\binom{v}{u} N^{p^{n}+k p^{m}-u}(S)$. That is

$$
\begin{align*}
& \binom{2 k p^{m}+2 t}{i p^{m}}+\sum_{j=1}^{k}(-1)^{j-1}\binom{(2 k-j) p^{m}+2 t}{i p^{m}} \Sigma_{u=0}^{v}\binom{v}{u} N^{p^{n}+p^{m}-u}(S)  \tag{3.11}\\
& \equiv 0 \quad(\bmod p)
\end{align*}
$$

for every $i \in[0, k]$.
Let $2 t=p^{m}+d$ and $l=2 k+1$, where $0 \leq d \leq p^{m}-1$. Note that $2 k<p$. By Lemma 2.4 we have

$$
\binom{(2 k-j) p^{m}+2 t}{i p^{m}}=\binom{2 k+1-j}{i}=\binom{l-j}{i}
$$

for all $i \in[0, k]$ and $j \in[0, k]$.
So, the coefficient matrix of the group of linear equations of (3.11) is $A=$ $\left(\binom{l-j}{i}\right)_{0 \leq i, j \leq k}$, that is

$$
A=\left(\begin{array}{cccc}
1 & 1 & & 1 \\
\binom{l}{1} & \binom{l-1}{1} & \ldots & \left(\begin{array}{c}
l-k \\
1 \\
2
\end{array}\right) \\
\binom{1-1}{2} & \ldots & \binom{1-k}{2} \\
& & \ddots & \\
\binom{l}{k} & \binom{l-1}{k} & \ldots & \binom{l-k}{k}
\end{array}\right)_{(k+1) \times(k+1)} .
$$

By lemma 2.5 we have

$$
\operatorname{det}(A)=\frac{1}{\prod_{1 \leq t \leq k} t!} \prod_{1 \leq i<j \leq k}(j-i) \not \equiv 0 \quad(\bmod p)
$$

Therefore the linear equations above has only trivial solution

$$
\begin{aligned}
& 1 \equiv \Sigma_{u=0}^{v}\binom{v}{u} N^{p^{n}+p^{m}-u}(S) \equiv \cdots \equiv(-1)^{k-1} \Sigma_{u=0}^{v}\binom{v}{u} N^{p^{n}+k p^{m}-u}(S) \\
& \equiv 0 \quad(\bmod p)
\end{aligned}
$$

a contradiction.

Proof of Theorem 1.2. By Lemma 2.1 and Lemma 2.8, we only need to prove that $\eta(G) \leq a p^{n}+2 \mathrm{D}(H)-2$. Note that if $\eta(G) \leq a p^{n}+2 \mathrm{D}(H)-2$ for $a=1$, then by Lemma 2.7 taking $K \simeq C_{a}$ as a subgroup of $G$, we obtain that $\eta(G) \leq$ $\exp (G / K)(\eta(K)-1)+\eta(G / K)=p^{n}(a-1)+p^{n}+2 \mathrm{D}(H)-2=a p^{n}+2 \mathrm{D}(H)-2$. So, it suffices to prove the theorem for $a=1$ which we now assume.
(1): $\mathrm{D}(H) \leq 2 \exp (H)$.

Since $\mathrm{D}(H)-1 \leq 2 \exp (H)-1$, we have

$$
k=1
$$

Hence by Proposition 3.3, we get the desired result.
(2): $\left\lceil\left(k+\frac{1}{2}\right) \exp (H)\right\rceil<\mathrm{D}(H) \leq(k+1) \exp (H)$ for some integer $k \geq 2$.

Let $\mathrm{D}(H)-1=k p^{m}+t$. Since $\left\lceil\left(k+\frac{1}{2}\right) \exp (H)\right\rceil<\mathrm{D}(H) \leq(k+1) \exp (H)$, we have

$$
2 t \geq p^{m}
$$

Hence by Proposition 3.3, we get the desired result.

Proof of Theorem 1.3. If $H$ is cyclic, then $G$ is of rank at most two and the result is true as mentioned in the introduction. Now we assume that $r(H) \geq 2$. Since $p>2 r(H)$, we have $p \geq 5$ and $|H| \geq 25$ follows. Let $u=p^{m}$ and $v=a p^{n-m}$. Then $u v=a p^{n}$. By $a>p^{2 m-n}|H|$ we obtain $v \geq m|H|+1=\max \{m|H|+1,4|H|+2 m\}$. It follows from Lemma 2.6 that $s(G)=\eta(G)+\exp (G)-1$. Now the result follows from Theorem 1.2.

## References

1. N. Alon and M. Dubiner, A lattice point problem and additive number theory, Combinatorica, 15 (1995) 301-309.
2. R. Chi, S.Y. Ding, W.D. Gao, A. Geroldinger and W.A. Schmid, On zero-sum subsequences of restricted size IV. Acta Math. Hung., 107(2005) 337- 344.
3. P. van Emde Boas, A combinatorial problem on finite abelian groups II, in Reports of the Mathematisch Centrum Amsterdam, ZW-1969-007.
4. Y. Edel, C. Elsholtz, A. Geroldinger, S. Kubertin and L. Rackham. Zero-sum problems in finite abelian groups and affine caps. Quarterly J. Math., Oxford II. Ser., 58(2007) 159-186.
5. P. Erdős, G. Ginzburg and A. Ziv, Theorem in the additive number theory, Bull. Res. Council Israel, 10F(1961) 41-43.
6. Y.S. Fan, W.D. Gao, G.Q. Wang, Q.H. Zhong and J.J. Zhuang, On Short Zero-sum Subsequences of Zero-sum Sequences, Electronic J. Combinatorics, 2012.
7. Y.S. Fan, W.D. Gao and Q.H. Zhong, On the Erdős-Ginzburg-Ziv constant of finite abelian groups of high rank, 131(2011) 1864-1874.
8. Y.S. Fan, W.D. Gao, L.L. Wang, Q.H. Zhong, Two zero-sum invariants on finite abelian groups, European J. Combinatorics, 34 (2013) 1331-1337.
9. W.D. Gao, On zero-sum subsequences of restricted size III, Ars. Combin., 61 (2001) 65-72.
10. W.D. Gao, On zero-sum subsequences of restricted size II, Discrete Math., 271 (2003) 51-59.
11. W.D. Gao and A. Geroldinger, Zero-sum problems in abelian groups: A survey, Expo. Math., 24 (2006) 337-369.
12. A. Geroldinger, D.J. Grynkiewicz and W.A. Schmid, Zero-sum problems with congruence conditions. Acta Math. Hung., 131(2011) 323- 345.
13. A. Geroldinger and F. Halter-Koch, Non-Unique Factorizations. Algebraic, Combinatorial and Analytic Theory, Pure and Applied Mathematics, vol. 278, Chapman \& Hall/CRC, 2006.
14. F.E.A. Lucas, Sur les congruences des nombres eulériens et les coefficients différentiels des functions trigonométriques suivant un module premier.(French), Bull. Soc. Math. France, 6 (1878) 49-54.
15. A. kemnitz, On a lattice point problem, Ars Combin., 16b(1983) 151-160.
16. J.E. Olson, A combinatorial problem on finite Abelian groups I, J. Number Theory, 1(1969) 8-10.
17. J. E. Olson, A combinatorial problem on finite Abelian groups II, J. Number Theory, 1(1969) 195-199.
18. C. Reiher, On Kemnitz' conjecture concerning lattice points in the plane, Ramanujan J., 13(2007) 333-337.
19. W.A. Schmid and J.J. Zhuang, On short zero-sum subsequences over p-groups, Ars. Combin., 95(2010) 343-352.

Center for Combinatorics, Nankai University, Tianjin 300071, P.R. China
E-mail address: wdgao1963@aliyun.com
Center for Combinatorics, Nankai University, Tianjin 300071, P.R. China
E-mail address: han-qingfeng@163.com
Center for Combinatorics, Nankai University, Tianjin 300071, P.R. China
E-mail address: nkuzhanghanbin@163.com


[^0]:    Gao.

