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Abstract
Mathematical properties of many topological indices are investigated. Knor et al.
gave an upper bound for the Balaban index of r-regular graphs on n vertices and
a better upper bound for fullerene graphs. They also suggested exploring similar
bounds for other topological indices. In this paper, we consider the Sum-Balaban
index and the (revised) Szeged index, and give upper and lower bounds for these
three indices of r-regular graphs, and also the cubic graphs and fullerene graphs,
respectively.

Keywords: Sum-Balaban index; the (revised) Szeged index; regular graph;
fullerene graph

1. Introduction

Thousands of topological indices are introduced to characterize the physical-
chemical properties of molecules [57]. We can divide these topological indices
into three types according the definitions: degree-based indices, distance-based in-
dices and spectrum-based indices. Degree-based indices contain (general) Randić
index [47], (general) zeroth order Randić index [47, 34, 35, 55], Zagreb index
[29, 26, 3, 5, 20, 58], connective eccentricity index [62, 63] and so on. Distance-
based indices [61, 15] include Balaban index [7, 8, 4], Wiener index [51, 50, 41,
22, 25, 33], Wiener polarity index [19, 52], Szeged index [2], Kirchhoff index
[23, 24], the ABC index [32, 54], and the Harary index [1, 6], and so on. Eigen-
values of graphs [64], various of graph energies [10, 11, 36, 37, 43, 48, 38, 49,
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27, 13, 15, 30, 53], the Estrada index [39], and HOMO-LUMO index [46] be-
long to spectrum-based indices. Actually, there are also some topological indices
defined based on both degrees and distances [60], such as degree distance [21].
From mathematical aspect, one direction to studying properties of each index is
to determine the extremal values of the index among a given classes of graphs. In
this paper, we focus on the bound for the Sum-Balaban index and the (revised)
Szeged index.

Let G = (V,E) be a simple graph. The distance between vertices u and v is
denoted by dG(u,v). Let w(u) = ∑a∈V dG(u,a). The Balaban index of G is defined
as

J(G) =
m

m−n+2 ∑
e=uv∈E

1√
w(u) ·w(v)

,

which was proposed by Balaban [7, 8] in 1982. It is also called the average
distance-sum connectivity index or Balaban J index. Furthermore, Balaban et
al. [9] proposed the concept of the Sum-Balaban index for a connected graph G,
namely,

SJ(G) =
m

m−n+2 ∑
e=uv∈E

1√
w(u)+w(v)

.

We emphasize that many mathematical properties and results on the Balaban index
and the Sum-Balaban index have been achieved, see [12, 16, 17, 45, 59, 65].

As a topological index, the Sum-Balaban index was widely used in QSAR/QSPR
modeling. And several approaches have been presented for the calculation of
Sum-Balaban index by taking into account the chemical nature of elements. How-
ever, many mathematical properties of Sum-Balaban index are still not studied
extensively. For example, we have known that the complete graph Kn has the
maximum Sum-Balaban index and

SJ(Kn) =

(n
2

)
(n

2

)−n+2

(
n
2

)
1√

2(n−1)
.

However, the minimum value among n-vertex graphs is not known.
Let e = uv ∈ E. Define three sets as follows:

Nu(e) = {w ∈V (G) : dG(u,w) < dG(v,w)},

Nv(e) = {w ∈V (G) : dG(v,w) < dG(u,w)},
N0(e) = {w ∈V (G) : dG(u,w) = dG(v,w)}.
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Obviously, Nu(e),Nv(e),N0(e) constitutes a partition of V (G). And set |Nu(e)|=
nu(e), |Nv(e)|= nv(e) and |N0(e)|= n0(e). Gutman [28] presented a graph invari-
ant named as Szeged index, defined by

Sz = ∑
e=uv∈E

nu(e)nv(e).

The above index is based on counting of vertices of the underlying graph. Also
the edge-invariant is considered, say “edge-Szeged index” [18, 44]. Randić [56]
found the Szeged index does not count the contributions of the vertices at equal
distances to the two endpoints of an edge and then proposed the revised Szeged
index as follows

S∗z = ∑
e=uv∈E

(
nu(e)+

n0(e)
2

)(
nv(e)+

n0(e)
2

)
.

In [7], Aouchiche and Hansen proved the upper bound of the connected graph
with n vertices and m edges is n2m

4 . Then Xing and Zhou [57] determined the
maximum and minimum revised Szeged index of unicyclic graphs with n ≥ 5
and the unicyclic graph with the unique cycle is of length r(3 ≤ r ≤ n). Several
properties and applications of two indices have been presented in [8, 16, 17].

Denote by Kn, Pn and Cn the complete graph, path graph and cycle graph
with n vertices, respectively. Among graphs on n vertices, Balaban index attains
its maximum for the complete graph Kn and J(Kn) = n3−n2

2(n2−3n+2) , which is slightly
more than n/2. However, its minimum value among n-vertex graphs is not known.
Recently, Knor et al. [42] prove that if G is an n-vertex r-regular graph, then J(G)
tends to 0 as n tends to ∞. In other words, zero is also an accumulation point for
Balaban index.

Theorem 1. Let G be an r-regular graph on n vertices with r ≥ 3. Then

J(G)≤ r2(r−1)2

2(r−2)2
⌊

logr−1
(r−2)n+2

r

⌋ ,

which implies that limn→∞ J(G) = 0.

The upper bound of fullerene graphs was also determined. Fullerenes [40] are
polyhedral molecules made of carbon atoms arranged in pentagonal and hexago-
nal faces, and their corresponding graphs, fullerene graphs, are 3-connected, cubic
planar graphs with only pentagonal and hexagonal faces.
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Theorem 2. Let G be a fullerene graph on n≥ 60 vertices. Then J(G)≤ 25√
n .

At the end of [42], Knor et al. suggested exploring similar bounds for other in-
dices. In this paper, we consider the Sum-Balaban index and the (revised) Szeged
index. Following the result of Knor et al., we will give bounds for the Sum-
Balaban index and the (revised) Szeged index of r-regular graphs, and also the
cubic graphs and fullerene graphs, respectively.

2. Regular graphs

In this section, we will concentrate the bounds on r-regular graphs.

Theorem 3. Let G be an r-regular graph on n vertices with r ≥ 3. Then

SJ(G)≤ r2(r−1)n
1
2

2(r−2)
3
2

√
2blogr−1(

(r−2)n+2
r )c

.

Proof. Let u ∈V (G) and ni be the number of vertices at distance i from u. Thus,

w(u) = ∑
i

i ·ni, ∑
i

ni = n.

Since the graph is r-regular, we have ni ≤ r(r−1)i−1. Let s and c satisfy that

n = 1+ r + r(r−1)+ . . .+ r(r−1)s−1 + c, 0≤ c < r(r−1)s.

Thus we can bound w(u) in the following way:

w(u) =
s+1

∑
i=0

i ·ni ≥ 1r +2r(r−1)+ . . .+ sr(r−1)s−1 +(s+1)c.

In other words, a lower bound on w(u) is attained if the breadth-search tree, rooted
at u, is an almost complete tree with all leaves at distance s and maybe s+1 from
u, and every non-leaf vertex is of degree r. So, we have

1+(r−1)+ . . .+(r−1)s−1 =
n−1− c

r
,

and hence

(r−1)s−1
r−2

=
n−1− c

r
,
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which gives

s = logr−1

(
(r−2)n+2− c(r−2)

r

)
. (1)

From (1) and from c < r(r−1)s we get

(r−2)n+2
r

= (r−1)s +
c(r−2)

r
< (r−1)s +(r−1)s(r−2) = (r−1)s+1,

which means that logr−1(
(r−2)n+2

r ) < s+1. Since logr−1(
(r−2)n+2

r )≥ s by (1), we
have s = blogr−1(

(r−2)n+2
r )c. Consequently,

w(u)≥ sr(r−1)s−1 = blogr−1(
(r−2)n+2

r
)c · r · (r−1)blogr−1(

(r−2)n+2
r )c−1

≥ blogr−1(
(r−2)n+2

r
)cr (r−2)n+2

r
1

(r−1)2

= blogr−1(
(r−2)n+2

r
)c(r−2)n+2

(r−1)2 .

Thus,

SJ(G)≤ m
m−n+2

m
1√

2w(u)

≤
rn
2

rn
2 −n+2

rn
2

1

2
√
blogr−1(

(r−2)n+2
r )c (r−2)n+2

(r−1)2

<
r2(r−1)n

1
2

2(r−2)
3
2

√
2blogr−1(

(r−2)n+2
r )c

.

Next, we consider the Szeged index of r-regular graphs.

Theorem 4. Let G be an r-regular connected graph on n vertices, where n is even
and r ≤ n

2 . Then

Sz(G)≤ rn3

8
.

And this bound is tight.
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Proof. By the definition, we know that nu(e)+ nv(e) ≤ n and n0(e) ≥ 0. So the
smaller the n0(e) is and the closer nu(e) and nv(e) are, and then the larger the
Szeged index is. Hence,

Sz(G) = ∑
e=uv∈E

nu(e)nv(e)≤ m
n
2

n
2
≤ rn3

8
.

We say this bound is tight, namely, for given n and r, there exist a graph G satisfy-
ing that Sz(G) = rn3

8 . We construct such a graph as follows. Constitute a bipartite
graph B n

2 ,r with vertex classes X = {ui : 1 ≤ i ≤ n
2} and Y = {u′i : 1 ≤ i ≤ n

2} in
which ui join to the corresponding vertices u′i , u′i+1, . . . ,u

′
i+r−1, where the sub-

scripts are taken modulo n
2 . See Figure 1 for B6,3.

u1 u2 u3 u4 u5 u6

u
′

1 u
′

2 u
′

3 u
′

4 u
′

5 u
′

6

X

Y

Figure 1: The graph B6,3.

By some elementary calculations, we get nu(e) = nu(e) = n
2 for an arbitrary

edge e = uv. Therefore,

Sz(B n
2 ,r) =

rn3

8
.

The result is proved.

Theorem 5. Let G be an r-regular connected graph on n vertices. Then

S∗z (G)≤ rn3

8
.

And this bound is tight.

Proof. We know the sum of nu(e) + n0(e)
2 and nv(e) + n0(e)

2 is n. Therefore, the
closer the above two values are, the larger the product is. So, if nu(e)+ n0(e)

2 =
nv(e)+ n0(e)

2 = n
2 , then the product is largest obviously. At this time,

S∗z (G)≤ rn3

8
.
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If for arbitrary n and r satisfying that nr is even, we can find a graph with the
required conditions and the revised Szeged index is rn3

8 , then the theorem is proved
obviously.

In the following, we will characterize such an r-regular graph Cn,r with n ver-
tices. First, we start from a cycle with n vertices, i.e., Cn. Since at least one of r
and n is even, we consider two situations.

Case 1. One of r and n is odd.
For each vertex u in Cn, u is adjacent to every vertex of a path Pr−2 which lies

on Cn, satisfying that the distances in Cn between u and two endpoints of Pr−2 are
equal. Then we get an r-regular graph. As examples, see Figure 2 for C8,5 and
C9,4.

Figure 2: The graph C8,5 (left) and C9,4 (right).

Case 2. Both of r and n are even.
For each vertex u in Cn, find the symmetrical vertex v of u on Cn and join u to

r−2
2 consecutive vertices on the left and right sides of v on Cn, respectively. Then

we get an r-regular graph. See Figure 3 for C6,4.
It is easy to calculate the values of nu(e)+

n0(e)
2 and nv(e)+

n0(e)
2 for each edge

of Cn,r.

Next, we will give a lower bound of the revised Szeged index.

Theorem 6. Let G be an r-regular graph on n vertices with r ≥ 3. Then

S∗z (G)≥ n(r2 +2r)(2n− r−2)
8

.

Proof. From the above proof, we know the larger the difference value of nu(e)+
n0(e)

2 and nv(e)+ n0(e)
2 is, the lower the product is. Therefore, we need to find the
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Figure 3: The graph C6,4.

largest difference. For some edge e(= uv) of G, we know that r− 1 neighbors
of u are either in Nu(e) or N0(e). Obviously, the difference between nu(e)+ n0(e)

2

and nv(e) + n0(e)
2 is largest when the graph satisfies the following conditions: u

and v have r− 2 common neighbors which form a complete subgraph Kr−2; the
other neighbor x of u is adjacent to all neighbors of v. See Figure 4. In this case,
nu(e) = 2, nv(e) = n− r and n0(e) = r−2. So we get the conclusion

S∗z (G)≥ rn
2

(2+
r−2

2
)(n− r +

r−2
2

)≥ n(r2 +2r)(2n− r−2)
8

.

......

Kr−2

H

u
vx

y

Figure 4: The graph G.
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3. Fullerene graphs

Here we consider the chemical structure–fullerene.

Theorem 7. Let G be a fullerene graph on n≥ 60 vertices. Then

SJ(G)≤ 9n√
n
√

n
.

Proof. Let u ∈ V (G) and ni be the number of vertices at distance i from u. Then
n0 = 1 and n1 = 3. Moreover, it is shown that ni+1 ≤ ni + 3 for i ≥ 1. This
immediately gives the bound ni ≤ 3i for i ≥ 1. We obtain a lower bound of w(u)
by assuming each ni = 3i for i≥ 1, as in this way we have fewer vertices at higher
distance. So

w(u) = ∑
i

i ·ni ≥ 1∗3+2∗6+ . . .+ s∗3s+(s+1)c,

for some s and c, where 0≤ c < 3s+3 and 1+3+ · · ·+3s+ c = n. Hence,

3(1+2+ · · ·+ s+(s+1))≥ n,

and so
s2 +3s+2≥ 2n

3
.

Since n≥ 60, we have s≥ 5, and hence s2 ≥ 3s+2, which gives s≥√n
3 . Since s

is integer, we obtain

s≥
⌈√

n
3

⌉
.

Consequently,

w(u)≥ 1∗3+2∗6+ · · ·+3d
√

n
3
e2 + c(d

√
n
3
e+1)≥ 3

d
√ n

3 e
∑
j=1

j2 >
n
3

√
n
3
.

Thus,

SJ(G)≤ m
m−n+2

m
1√

2w(u)
≤

rn
2

rn
2 −n+2

rn
2

1√
2n

3

√n
3

≤ 9
√

3
√

3n

2
√

2n
√

n
<

9n√
n
√

n
.
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We know that the smallest fullerene graph is the dodecahedral C20. Other
fullerenes are denoted by C2n,n = 12,13, . . .. For each edge e(= uv) of one
fullerene, there are at least 2 vertices at the same distance to u and v. Particu-
larly, for the five edges of the outer pentagonal or hexagonal faces, there are at
least 4 such vertices. Then we can get Theorem 8 directly.

Theorem 8. Let G be a fullerene graph on n vertices. Then

Sz(G) <
3n(n−2)2

8
−5(n−3).

The following result can be obtained directly from Theorems 2.2 and 2.3.

Theorem 9. Let G be a fullerene graph on n≥ 60 vertices. Then

15n(2n−5)
8

< S∗z (G)≤ 3n3

8
.

4. Cubic graphs

In [42], Knor et al. consider a special cubic graph Hn. In this section, we
consider the Sum-Balaban and the (revised) Szeged index value of Hn.

Let 4|n, and Hn be such a graph which has the cycle of length 3n
4 , in which

every third vertex is doubled, see Figure 5 for H12. In other words, Hn is obtained
from n/4 copies of K4− e joined by n/4 extra edges. Obviously, Hn is a cubic
connected graph. And we can get the following conclusion.

Figure 5: The graph H12.

Theorem 10. For positive n is divisible by 4, it holds

SJ(Hn)≤ 6
√

2.
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Proof. Let ` = 3n
4 . First we give a lower bound for w(u),u ∈ V (Hn). In order to

do so, we find the total distance cw(u) from u to the vertices of the original cycle.
If l is even, then

cw(u) = 1+2+ · · ·+ `

2
+1+2+ · · ·+(

`

2
−1) =

`2

4
.

Similarly, if ` is odd, then

cw(u) = 2(1+2+ · · ·+ `−1
2

) =
`2−1

4
.

As there is at least one vertex in Hn not on the original cycle and different from u,
and as the distance of this vertex to u is at least one, for both the above cases we get

w(u)≥ cw(u)+1 >
`2

4
=

9n2

64
.

Hence,

SJ(Hn)≤
3n
2

3n
2 −n+2

3n
2

1√
29n2

64

=
12n√

2(n+4)
< 6

√
2.

From the properties of this graph, we can get the following results easily.

Theorem 11. For positive n divisible by 4, it holds

Sz(Hn) =

{
5n(n−2)2+4n

16 if n
4 is odd,

5n3−8n2+4n
16 if n

4 is even.

Theorem 12. For positive n divisible by 4, it holds

S∗z (Hn) =

{
3n3

8 if n
4 is odd,

3n3−2n
8 if n

4 is even.
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5. Summary and Conclusion

Knor et al. gave an upper bound for the Balaban index of r-regular graphs
on n vertices and a better upper bound for fullerene graphs. They also suggested
exploring similar bounds for other indices. In this paper, we consider the Sum-
Balaban index and the (revised) Szeged index, and give bounds for these three
indices of r-regular graphs, and also the cubic graphs and fullerene graphs, re-
spectively. As a future work, it would be interesting to consider other topological
indices for regular graphs.
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Math. Comput. Chem. 72(2014) 227–238.

[15] M. Dehmer, Y. Shi, The uniqueness of DMAX -matrix graph invariants,
PLOS ONE 9(1)(2014), e83868.

[16] H. Deng, On the Balaban index of trees, MATCH Commum. Math. Comput.
Chem. 66 (2011) 253–260.

[17] H. Deng, On the Sum-Balaban index, MATCH Commum. Math. Comput.
Chem. 66 (2011) 273–284.

[18] A. Dolati, I. Motevalian, A. Ehyaee, Szeged index, edge Szeged index, and
semi-star trees, Discrete Appl. Math. 158 (2010) 876–881.

[19] W. Du, X. Li, Y. Shi, Algorithms and extremal problem on Wiener polarity
index, MATCH Commun. Math. Comput. Chem. 62 (2009) 235–244.

[20] M. Eliasi, D. Vukicevic, Comparing the Multiplicative Zagreb Indices,
MATCH Commun. Math. Comput. Chem. 69 (2013) 765-773

13
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