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Abstract

Let (G,C) be an edge-colored bipartite graph with bipartition (X, Y ). A hete-
rochromatic matching of G is such a matching in which no two edges have the same
color. Let N c(S) denote a maximum color neighborhood of S ⊆ V (G). We show
that if |N c(S)| ≥ |S| for all S ⊆ X, then G has a heterochromatic matching with
cardinality at least d |X|3 e. We also obtain that if |X| = |Y | = n and |N c(S)| ≥ |S|
for all S ⊆ X or S ⊆ Y , then G has a heterochromatic matching with cardinality
at least d3n−1

8 e.
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1 Introduction and notation.

We use [3] for terminology and notations not defined here and consider simple undirected
graphs only.

Let G = (V, E) be a graph. An edge-coloring of G is a function C : E → N(N is the
set of nonnegative integers). If G is assigned such a coloring C, then we say that G is an
edge-colored graph. Denote by (G,C) the graph G together with the coloring C and by
C(e) the color of the edge e ∈ E. For a subgraph H of G, let C(H) = {C(e) : e ∈ E(H)}.

A subgraph H of G is called heterochromatic, or rainbow, or colorful if its any
two edges have different colors. There are many publications studying heterochromatic
subgraphs. Very often the subgraphs considered are paths, cycles, trees, etc. The hete-
rochromatic hamiltonian cycle or path problems were studied by Hahn and Thomassen(see
[9]), Rödl and Winkler(see [7]), Frieze and Reed, Albert,Frieze and Reed (see [1]), and H.
Chen and X. Li (see [5]). For more references, see [2, 6, 9].

For an uncolored graph the following theorems are well known in matching theory and
have been widely used.

Theorem 1 [10]. Let G be a bipartite graph with bipartition (X,Y ). Then G contains
a matching that saturates every vertex of X if and only if |N(S)| ≥ |S| for all S ⊆ X.

Theorem 2. A bipartite graph G has a perfect matching if and only if |N(S)| ≥ |S| for
all S ⊆ V ([3]).

A matching is heterochromatic if any two edges of it have different colors. Unlike
uncolored matchings for which the maximum matching problem is solvable in polynomial
time (see [12]), the maximum heterochromatic matching problem is NP -complete, even
for bipartite graphs (see [8]). Heterochromatic matchings have been studied for example
in [11] in which by defining Nc(S) (see the definition below) Hu and Li gave some sufficient
conditions for the existence of perfect heterochromatic matchings in colored graphs. We
have

Let (G,C) be a colored-graph. For a vertex v of G, let CN(v) = {C(e) : e is incident
with v} and CN(S) = ∪v∈SCN(v) for S ⊆ V . For S ∈ V (G), denote Nc(S) as one of the
minimum set(s) W satisfying W ⊆ N(S)\S and [CN(S)\C(G[S])] ⊆ CN(W ).

Theorem 3[11]. Let (B, C) be a colored bipartite graph with bipartition X,Y . Then, B
contains a heterochromatic matching that saturates every vertex in X, if |Nc(S)| ≥ |S|,
for all S ⊆ X.

Theorem 4[11]. A colored graph (G,C) has a perfect heterochromatic matching, if

(1) o(G − S) ≤ |S|, where o(G − S) denotes the number of odd components in the
remaining graph G− S, and
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(2) |Nc(S)| ≥ |S| for all S ⊆ V such that 0 ≤ |S| ≤ |G|
2

and |N(S)\S| ≥ |S|.

We define a maximum color neighborhood and study heterochromatic matchings in
edge-colored bipartite graphs under a new condition related to maximum color-neighborhoods
of subsets of vertices.

Let (G,C) be a colored bipartite graph with bipartition (X,Y ). For a vertex set
S ⊆ X or Y , a color neighbourhood of S is defined as a set T ⊆ NG(S) such that there
are |T | edges between S and T that are adjacent to distinct vertices of T and have distinct
colors. A maximum color neighborhood N c(S) is a color neighborhood of S and |N c(S)|
is maximum. Given an S and a color neighborhood T , denote by C(S, T ) a set of |T |
distinct colors on the |T | edges between S and distinct vertices of T . Note that there
might be more than one such set C(S, T ). If it does not cause confusions, let C(S, T ) be
a fixed color set in the following.

Let M be a heterochromatic matching of G, we denote bM = |{e | e ∈ E(G− V (M))
and C(e) ∈ C(M)}| and denote by (XM ∪YM) with XM ⊆ X, YM ⊆ Y , the set of vertices
that is incident with the edges in M .

The following main results are obtained in this paper.

Theorem 5. Let (G,C) be a colored bipartite graph with bipartition (X,Y ) and
|N c(S)| ≥ |S| for all S ⊆ X, then G has a heterochromatic matching of cardinality

at least d |X|
3
e.

Theorem 6. Let (G,C) be a colored bipartite graph with bipartition (X,Y ) and |X| =
|Y | = n. If |N c(S)| ≥ |S| for all S ⊆ X or S ⊆ Y , then G has a heterochromatic matching
of cardinality at least d3n−1

8
e.

Under the conditions of Theorem 6, the following example shows that the best bound
can not be better than dn

2
e. Let Ki

2,2 be an edge-colored graph K2,2 with two colors
{c1,1, c1,2} such that N c(v) = 2 for every v ∈ V (K2,2). Let Gs = K1

2,2 ∪ K2
2,2 ∪ · · · ∪

Ks
2,2. Then Gs is a colored bipartite graph with bipartition (X,Y ) and |X| = |Y | = 2s.

And |N c(S)| ≥ |S| for all S ⊆ X or S ⊆ Y . Clearly the cardinality of the maximum
heterochromatic matching of Gs is s = d2s

2
e. This example shows that the bound in

Theorem 6 is not very far away from the best.

2 Proof of Theorem 5.

Let M be a maximum heterochromatic matching of G. Put S = X −XM . Let N c(S) be
a maximum color neighborhood of S. And write N c(S) = YP ∪ YQ(YP ∩ YQ = φ), where
C(S, YP ) ∩ C(M) = φ and C(S, YQ) ⊆ C(M). Clearly |YQ| ≤ |M |.

3



If YP 6⊆ YM , then there is an edge e ∈ E(X −XM , Y − YM) and C(e) /∈ C(M). Hence
M +e is a heterochromatic matching with cardinality |M |+1, contrary to the maximality
of M .

So YP ⊆ YM . Since |N c(S)| = |YP | + |YQ| ≥ |S|, it follows that |M | = |YM | ≥ |YP | ≥
|S| − |YQ| ≥ |X| − |M | − |M |. This gives |M | ≥ d |X|

3
e . 2

3 Proof of Theorem 6.

Let M be a maximum heterochromatic matching of G with t := |M | such that bM is
maximum. Assume to the contrary that t < 3n−1

8
.

Let C(M) = {c1, c2, · · · , ct}. Put Sx = X − XM and Sy = Y − YM . Let N c(Sx)
and N c(Sy) be a maximum color neighborhood of Sx and Sy respectively. Set N c(Sx) =
YP ∪YQ(YP ∩YQ = φ) where C(Sx, YP )∩C(M) = φ, C(Sx, YQ) ⊆ C(M) and let N c(Sy) =
XP ∪ XQ(XP ∩ XQ = φ) where C(Sy, XP ) ∩ C(M) = φ, C(Sy, XP ) ⊆ C(M). Clearly
|YQ| ≤ t, |XQ| ≤ t.

Claim 1. YP ⊆ YM , XP ⊆ XM .

Proof. Otherwise, there is an edge e ∈ E(Sx, Sy) and C(e) /∈ C(M), then we can obtain
a heterochromatic matching M + e with cardinality t + 1, a contradiction. 2

An alternating 4-cycle AC is a cycle e1e2e3e4e1 such that e1 ∈ E(M), e3 ∈ E(G −
V (M)) and C(e1) = C(e3), C(e2) = C(e4) /∈ C(M). Given two alternating 4-cycles
AC = e1e2e3e4e1 and AC

′
= e

′
1e
′
2e
′
3e
′
4e
′
1, AC is different from AC

′
, we mean that

e1 6= e
′
1 and e3 6= e

′
3.

Claim 2. There exists an alternating 4-cycle in G.

Proof. Since |N c(Sx)| = |YP |+ |YQ| ≥ |Sx| = n− t, it follows that |YP | ≥ n− t− |YQ| ≥
n − 2t. Similarly |XP | ≥ n − t − |XQ| ≥ n − 2t. Hence |XP | + |YP | ≥ 2(n − 2t) =
2n − 4t > t = |XM | = |YM |. Then there exists an edge xy ∈ E(M) such that x is
adjacent with a vertex y

′ ∈ Sy, C(xy
′
) /∈ C(M) and y is adjacent with a vertex x

′ ∈ Sx,
C(x

′
y) /∈ C(M). Clearly C(xy

′
) = C(x

′
y), otherwise we obtain a new heterochromatic

matching M
′
= M ∪ xy

′ ∪ x
′
y − xy with |M ′| = |M |+ 1 > M , a contradiction.

Then there exists an edge e ∈ E(G − V (M)) such that C(e) = C(xy). Otherwise
M

′′
= M ∪ xy

′ − xy is a heterochromatic matching with |M ′′| = |M | and bM ′′ ≥ bM + 1,
contradicting with the choice of M . If e 6= x

′
y
′
, without loss of generality, assume that y

′

is not incident with e, then M
′′′

= M ∪ e ∪ xy
′ − xy is a heterochromatic matching with

|M ′′′| = |M |+ 1, a contradiction. 2

Suppose that the maximum number of the vertex-disjoint pairwise different alternating
4-cycles in G is l. Clearly 1 ≤ l ≤ t. Assume that the alternating 4-cycle ACi has edges
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{xiy
′
i, y

′
ix
′
i, x

′
iyi, yixi} and C(xy) = C(x

′
iy
′
i) = ci ∈ C(M), C(xy

′
i) = C(x

′
iy) = c

′
i /∈ C(M),

where xy ∈ E(M), and y
′
i ∈ Sy, x

′
i ∈ Sx.

Denote

XL = {x′1, x
′
2, · · · , x

′
l}, YL = {y′1, y

′
2, · · · , y

′
l},

XMl
= {x1, x2, · · · , xl} ∈ XM ,

YMl
= {y1, y2, · · · , yl} ∈ YM ,

where {x1y1, x2y2, · · · , xlyl} = E(Ml) ∈ E(M). We abbreviate C(Ml) = {c1, c2, · · · , cl}
and CL = {c′1, c′2, · · · , c′l}, where c

′
i /∈ C(M) and c

′
i 6= c

′
j if i 6= j. Clearly C(M)−C(Ml) =

C(M −Ml).

Then put S
′
x = X − XM − XL and S

′
y = Y − YM − YL. Let N c(S

′
x) and N c(S

′
y)

be a maximum color neighborhood of S
′
x and S

′
y respectively. Write N c(S

′
x) = Y

′
P ∪

Y
′
Q(Y

′
P ∩ Y

′
Q = φ), where C(S

′
x, Y

′
P ) ∩ C(M − Ml) = φ and C(S

′
x, Y

′
Q) ⊆ C(M − Ml).

And let N c(S
′
y) = X

′
P ∪ X

′
Q(X

′
P ∩ X

′
Q = φ), where C(S

′
y, X

′
P ) ∩ C(M − Ml) = φ and

C(S
′
y, X

′
Q) ⊆ C(M −Ml). Clearly |Y ′

Q| ≤ t− l and |X ′
Q| ≤ t− l .

Claim 3. Y
′
P ∈ YM − YMl

.

Proof. By contradiction. Then there exists an edge e ∈ [S
′
x, Y − (YM − YMl

)] with
C(e) /∈ C(M −Ml).

We distinguish the following three cases.

Case 1. e ∈ E(S
′
x, S

′
y). Let

M1 =

{
M ∪ e C(e) /∈ C(Ml);
M ∪ e ∪ xiy

′
i − xiyi C(e) ∈ C(Ml), w.l.o.g, suppose C(e) = ci.

Then we get a heterochromatic matching M1 with |M1| > |M |, a contradiction.

Case 2. e ∈ E(S
′
x, YMl

). Without loss of generality, suppose e is incident with yi. Let

M1 =





M ∪ e ∪ xiy
′
i − xiyi C(e) /∈ C(Ml) ∪ CL;

M ∪ e ∪ x
′
iy
′
i − xiyi C(e) ∈ CL;

M ∪ e ∪ xiy
′
i − xiyi C(e) = ci ∈ C(Ml);

M ∪ e ∪ xiy
′
i ∪ xjy

′
j − xiyi − xjyj C(e) = cj ∈ C(Ml) and cj 6= ci.

Then we obtain a heterochromatic matching M1 and |M1| > |M |, a contradiction.

Case 3. e ∈ E(S
′
x, YL). Without loss of generality, suppose e is incident with y

′
i. Let

M1 =





M ∪ e C(e) /∈ C(Ml);
M ∪ e ∪ x

′
iyi − xiyi C(e) = ci ∈ C(Ml);

M ∪ e ∪ xjy
′
j − xjyj C(e) = cj ∈ C(Ml) and cj 6= ci.
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Then we obtain a heterochromatic matching M1 and |M1| > |M |, a contradiction.

This completes the proof of the claim. 2

Since |N c(S
′
x)| = |Y ′

P | + |Y ′
Q| ≥ |S ′

x|, it follows that |Y ′
P | ≥ n− t− l − |Y ′

Q| ≥ n− t−
l − (t− l) ≥ n− 2t.

Similarly it holds that X
′
P ∈ XM −XMl

and hence |X ′
P | ≥ n− 2t.

Since Y
′
P ∈ YM − YMl

and X
′
P ∈ XM −XMl

, it holds that

2(t− l) = |XM −XMl
|+ |YM − YMl

| ≥ |X ′
P |+ |Y ′

P | ≥ 2n− 4t.

That is

l ≤ 3t− n.

Then

l ≤ 3t− n ≤ 3× 3n− 1

8
− n ≤ n− 3

8
.

If follows that

|X ′
P |+ |Y ′

P | − |XM −XMl
|

≥ 2n− 4t− (t− l)

≥ 2n− 5t + l.

≥ 2n− 5× 3n− 1

8
+ l

≥ n− 3

8
+ l + 1

≥ 2l + 1.

So there exists an edge x0y0 ∈ E(M −Ml), where x0 is adjacent with a vertex y
′
0 ∈ S

′
y

and y0 is adjacent with a vertex x
′
0 ∈ S

′
x such that at least one of C(x0y

′
0), C(x

′
0y0) is not

in C(Ml) ∪ CL. Without loss of generality, suppose C(x0y
′
0) /∈ C(Ml) ∪ CL. Note that

C(x
′
0y0) /∈ C(M −Ml).

If C(x
′
0y0) ∈ C(Ml), suppose C(x

′
0y0) = ci. Then M1 = M ∪x0y

′
0∪x

′
0y0∪xiy

′
i−xiyi−

x0y0 is a heterochromatic matching and |M1| > |M |, a contradiction with the maximality
of M.

If C(x
′
0y0) ∈ CL or C(x

′
0y0) /∈ C(Ml) ∪ CL and C(x

′
0y0) 6= C(x0y

′
0). Then M1 =

M ∪ x0y
′
0 ∪ x

′
0y0 − x0y0 is a heterochromatic matching and |M1| > |M |, a contradiction.

If C(x
′
0y0) = C(x0y

′
0). By the same proof in Claim 2, it holds that C(x0y0) = C(x

′
0y

′
0).

Then we obtain an alternating 4-cycle with edges {x0y0, x
′
0y0, x

′
0y

′
0, x0y

′
0} and C(x0y0) =

C(x
′
0y

′
0), C(x

′
0y0) = C(x0y

′
0) /∈ C(M)∪CL, where x0y0 ∈ E(M−Ml) and y

′
0 ∈ S

′
y, x

′
0 ∈ S

′
x.

So the number of vertex-disjoint pairwise different alternating 4-cycles is at least l + 1, a
contradiction.

The proof of Theorem 6 is complete. 2
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